xref: /qemu/hw/i386/intel_iommu.c (revision ead62c75f618c072a3a18221fd03ae99ae923cca)
1 /*
2  * QEMU emulation of an Intel IOMMU (VT-d)
3  *   (DMA Remapping device)
4  *
5  * Copyright (C) 2013 Knut Omang, Oracle <knut.omang@oracle.com>
6  * Copyright (C) 2014 Le Tan, <tamlokveer@gmail.com>
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License as published by
10  * the Free Software Foundation; either version 2 of the License, or
11  * (at your option) any later version.
12 
13  * This program is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  * GNU General Public License for more details.
17 
18  * You should have received a copy of the GNU General Public License along
19  * with this program; if not, see <http://www.gnu.org/licenses/>.
20  */
21 
22 #include "qemu/osdep.h"
23 #include "qemu/error-report.h"
24 #include "qemu/main-loop.h"
25 #include "qapi/error.h"
26 #include "hw/sysbus.h"
27 #include "exec/address-spaces.h"
28 #include "intel_iommu_internal.h"
29 #include "hw/pci/pci.h"
30 #include "hw/pci/pci_bus.h"
31 #include "hw/qdev-properties.h"
32 #include "hw/i386/pc.h"
33 #include "hw/i386/apic-msidef.h"
34 #include "hw/i386/x86-iommu.h"
35 #include "hw/pci-host/q35.h"
36 #include "sysemu/kvm.h"
37 #include "sysemu/dma.h"
38 #include "sysemu/sysemu.h"
39 #include "hw/i386/apic_internal.h"
40 #include "kvm/kvm_i386.h"
41 #include "migration/vmstate.h"
42 #include "trace.h"
43 
44 /* context entry operations */
45 #define VTD_CE_GET_RID2PASID(ce) \
46     ((ce)->val[1] & VTD_SM_CONTEXT_ENTRY_RID2PASID_MASK)
47 #define VTD_CE_GET_PASID_DIR_TABLE(ce) \
48     ((ce)->val[0] & VTD_PASID_DIR_BASE_ADDR_MASK)
49 
50 /* pe operations */
51 #define VTD_PE_GET_TYPE(pe) ((pe)->val[0] & VTD_SM_PASID_ENTRY_PGTT)
52 #define VTD_PE_GET_LEVEL(pe) (2 + (((pe)->val[0] >> 2) & VTD_SM_PASID_ENTRY_AW))
53 #define VTD_PE_GET_FPD_ERR(ret_fr, is_fpd_set, s, source_id, addr, is_write) {\
54     if (ret_fr) {                                                             \
55         ret_fr = -ret_fr;                                                     \
56         if (is_fpd_set && vtd_is_qualified_fault(ret_fr)) {                   \
57             trace_vtd_fault_disabled();                                       \
58         } else {                                                              \
59             vtd_report_dmar_fault(s, source_id, addr, ret_fr, is_write);      \
60         }                                                                     \
61         goto error;                                                           \
62     }                                                                         \
63 }
64 
65 static void vtd_address_space_refresh_all(IntelIOMMUState *s);
66 static void vtd_address_space_unmap(VTDAddressSpace *as, IOMMUNotifier *n);
67 
68 static void vtd_panic_require_caching_mode(void)
69 {
70     error_report("We need to set caching-mode=on for intel-iommu to enable "
71                  "device assignment with IOMMU protection.");
72     exit(1);
73 }
74 
75 static void vtd_define_quad(IntelIOMMUState *s, hwaddr addr, uint64_t val,
76                             uint64_t wmask, uint64_t w1cmask)
77 {
78     stq_le_p(&s->csr[addr], val);
79     stq_le_p(&s->wmask[addr], wmask);
80     stq_le_p(&s->w1cmask[addr], w1cmask);
81 }
82 
83 static void vtd_define_quad_wo(IntelIOMMUState *s, hwaddr addr, uint64_t mask)
84 {
85     stq_le_p(&s->womask[addr], mask);
86 }
87 
88 static void vtd_define_long(IntelIOMMUState *s, hwaddr addr, uint32_t val,
89                             uint32_t wmask, uint32_t w1cmask)
90 {
91     stl_le_p(&s->csr[addr], val);
92     stl_le_p(&s->wmask[addr], wmask);
93     stl_le_p(&s->w1cmask[addr], w1cmask);
94 }
95 
96 static void vtd_define_long_wo(IntelIOMMUState *s, hwaddr addr, uint32_t mask)
97 {
98     stl_le_p(&s->womask[addr], mask);
99 }
100 
101 /* "External" get/set operations */
102 static void vtd_set_quad(IntelIOMMUState *s, hwaddr addr, uint64_t val)
103 {
104     uint64_t oldval = ldq_le_p(&s->csr[addr]);
105     uint64_t wmask = ldq_le_p(&s->wmask[addr]);
106     uint64_t w1cmask = ldq_le_p(&s->w1cmask[addr]);
107     stq_le_p(&s->csr[addr],
108              ((oldval & ~wmask) | (val & wmask)) & ~(w1cmask & val));
109 }
110 
111 static void vtd_set_long(IntelIOMMUState *s, hwaddr addr, uint32_t val)
112 {
113     uint32_t oldval = ldl_le_p(&s->csr[addr]);
114     uint32_t wmask = ldl_le_p(&s->wmask[addr]);
115     uint32_t w1cmask = ldl_le_p(&s->w1cmask[addr]);
116     stl_le_p(&s->csr[addr],
117              ((oldval & ~wmask) | (val & wmask)) & ~(w1cmask & val));
118 }
119 
120 static uint64_t vtd_get_quad(IntelIOMMUState *s, hwaddr addr)
121 {
122     uint64_t val = ldq_le_p(&s->csr[addr]);
123     uint64_t womask = ldq_le_p(&s->womask[addr]);
124     return val & ~womask;
125 }
126 
127 static uint32_t vtd_get_long(IntelIOMMUState *s, hwaddr addr)
128 {
129     uint32_t val = ldl_le_p(&s->csr[addr]);
130     uint32_t womask = ldl_le_p(&s->womask[addr]);
131     return val & ~womask;
132 }
133 
134 /* "Internal" get/set operations */
135 static uint64_t vtd_get_quad_raw(IntelIOMMUState *s, hwaddr addr)
136 {
137     return ldq_le_p(&s->csr[addr]);
138 }
139 
140 static uint32_t vtd_get_long_raw(IntelIOMMUState *s, hwaddr addr)
141 {
142     return ldl_le_p(&s->csr[addr]);
143 }
144 
145 static void vtd_set_quad_raw(IntelIOMMUState *s, hwaddr addr, uint64_t val)
146 {
147     stq_le_p(&s->csr[addr], val);
148 }
149 
150 static uint32_t vtd_set_clear_mask_long(IntelIOMMUState *s, hwaddr addr,
151                                         uint32_t clear, uint32_t mask)
152 {
153     uint32_t new_val = (ldl_le_p(&s->csr[addr]) & ~clear) | mask;
154     stl_le_p(&s->csr[addr], new_val);
155     return new_val;
156 }
157 
158 static uint64_t vtd_set_clear_mask_quad(IntelIOMMUState *s, hwaddr addr,
159                                         uint64_t clear, uint64_t mask)
160 {
161     uint64_t new_val = (ldq_le_p(&s->csr[addr]) & ~clear) | mask;
162     stq_le_p(&s->csr[addr], new_val);
163     return new_val;
164 }
165 
166 static inline void vtd_iommu_lock(IntelIOMMUState *s)
167 {
168     qemu_mutex_lock(&s->iommu_lock);
169 }
170 
171 static inline void vtd_iommu_unlock(IntelIOMMUState *s)
172 {
173     qemu_mutex_unlock(&s->iommu_lock);
174 }
175 
176 static void vtd_update_scalable_state(IntelIOMMUState *s)
177 {
178     uint64_t val = vtd_get_quad_raw(s, DMAR_RTADDR_REG);
179 
180     if (s->scalable_mode) {
181         s->root_scalable = val & VTD_RTADDR_SMT;
182     }
183 }
184 
185 /* Whether the address space needs to notify new mappings */
186 static inline gboolean vtd_as_has_map_notifier(VTDAddressSpace *as)
187 {
188     return as->notifier_flags & IOMMU_NOTIFIER_MAP;
189 }
190 
191 /* GHashTable functions */
192 static gboolean vtd_uint64_equal(gconstpointer v1, gconstpointer v2)
193 {
194     return *((const uint64_t *)v1) == *((const uint64_t *)v2);
195 }
196 
197 static guint vtd_uint64_hash(gconstpointer v)
198 {
199     return (guint)*(const uint64_t *)v;
200 }
201 
202 static gboolean vtd_hash_remove_by_domain(gpointer key, gpointer value,
203                                           gpointer user_data)
204 {
205     VTDIOTLBEntry *entry = (VTDIOTLBEntry *)value;
206     uint16_t domain_id = *(uint16_t *)user_data;
207     return entry->domain_id == domain_id;
208 }
209 
210 /* The shift of an addr for a certain level of paging structure */
211 static inline uint32_t vtd_slpt_level_shift(uint32_t level)
212 {
213     assert(level != 0);
214     return VTD_PAGE_SHIFT_4K + (level - 1) * VTD_SL_LEVEL_BITS;
215 }
216 
217 static inline uint64_t vtd_slpt_level_page_mask(uint32_t level)
218 {
219     return ~((1ULL << vtd_slpt_level_shift(level)) - 1);
220 }
221 
222 static gboolean vtd_hash_remove_by_page(gpointer key, gpointer value,
223                                         gpointer user_data)
224 {
225     VTDIOTLBEntry *entry = (VTDIOTLBEntry *)value;
226     VTDIOTLBPageInvInfo *info = (VTDIOTLBPageInvInfo *)user_data;
227     uint64_t gfn = (info->addr >> VTD_PAGE_SHIFT_4K) & info->mask;
228     uint64_t gfn_tlb = (info->addr & entry->mask) >> VTD_PAGE_SHIFT_4K;
229     return (entry->domain_id == info->domain_id) &&
230             (((entry->gfn & info->mask) == gfn) ||
231              (entry->gfn == gfn_tlb));
232 }
233 
234 /* Reset all the gen of VTDAddressSpace to zero and set the gen of
235  * IntelIOMMUState to 1.  Must be called with IOMMU lock held.
236  */
237 static void vtd_reset_context_cache_locked(IntelIOMMUState *s)
238 {
239     VTDAddressSpace *vtd_as;
240     VTDBus *vtd_bus;
241     GHashTableIter bus_it;
242     uint32_t devfn_it;
243 
244     trace_vtd_context_cache_reset();
245 
246     g_hash_table_iter_init(&bus_it, s->vtd_as_by_busptr);
247 
248     while (g_hash_table_iter_next (&bus_it, NULL, (void**)&vtd_bus)) {
249         for (devfn_it = 0; devfn_it < PCI_DEVFN_MAX; ++devfn_it) {
250             vtd_as = vtd_bus->dev_as[devfn_it];
251             if (!vtd_as) {
252                 continue;
253             }
254             vtd_as->context_cache_entry.context_cache_gen = 0;
255         }
256     }
257     s->context_cache_gen = 1;
258 }
259 
260 /* Must be called with IOMMU lock held. */
261 static void vtd_reset_iotlb_locked(IntelIOMMUState *s)
262 {
263     assert(s->iotlb);
264     g_hash_table_remove_all(s->iotlb);
265 }
266 
267 static void vtd_reset_iotlb(IntelIOMMUState *s)
268 {
269     vtd_iommu_lock(s);
270     vtd_reset_iotlb_locked(s);
271     vtd_iommu_unlock(s);
272 }
273 
274 static void vtd_reset_caches(IntelIOMMUState *s)
275 {
276     vtd_iommu_lock(s);
277     vtd_reset_iotlb_locked(s);
278     vtd_reset_context_cache_locked(s);
279     vtd_iommu_unlock(s);
280 }
281 
282 static uint64_t vtd_get_iotlb_key(uint64_t gfn, uint16_t source_id,
283                                   uint32_t level)
284 {
285     return gfn | ((uint64_t)(source_id) << VTD_IOTLB_SID_SHIFT) |
286            ((uint64_t)(level) << VTD_IOTLB_LVL_SHIFT);
287 }
288 
289 static uint64_t vtd_get_iotlb_gfn(hwaddr addr, uint32_t level)
290 {
291     return (addr & vtd_slpt_level_page_mask(level)) >> VTD_PAGE_SHIFT_4K;
292 }
293 
294 /* Must be called with IOMMU lock held */
295 static VTDIOTLBEntry *vtd_lookup_iotlb(IntelIOMMUState *s, uint16_t source_id,
296                                        hwaddr addr)
297 {
298     VTDIOTLBEntry *entry;
299     uint64_t key;
300     int level;
301 
302     for (level = VTD_SL_PT_LEVEL; level < VTD_SL_PML4_LEVEL; level++) {
303         key = vtd_get_iotlb_key(vtd_get_iotlb_gfn(addr, level),
304                                 source_id, level);
305         entry = g_hash_table_lookup(s->iotlb, &key);
306         if (entry) {
307             goto out;
308         }
309     }
310 
311 out:
312     return entry;
313 }
314 
315 /* Must be with IOMMU lock held */
316 static void vtd_update_iotlb(IntelIOMMUState *s, uint16_t source_id,
317                              uint16_t domain_id, hwaddr addr, uint64_t slpte,
318                              uint8_t access_flags, uint32_t level)
319 {
320     VTDIOTLBEntry *entry = g_malloc(sizeof(*entry));
321     uint64_t *key = g_malloc(sizeof(*key));
322     uint64_t gfn = vtd_get_iotlb_gfn(addr, level);
323 
324     trace_vtd_iotlb_page_update(source_id, addr, slpte, domain_id);
325     if (g_hash_table_size(s->iotlb) >= VTD_IOTLB_MAX_SIZE) {
326         trace_vtd_iotlb_reset("iotlb exceeds size limit");
327         vtd_reset_iotlb_locked(s);
328     }
329 
330     entry->gfn = gfn;
331     entry->domain_id = domain_id;
332     entry->slpte = slpte;
333     entry->access_flags = access_flags;
334     entry->mask = vtd_slpt_level_page_mask(level);
335     *key = vtd_get_iotlb_key(gfn, source_id, level);
336     g_hash_table_replace(s->iotlb, key, entry);
337 }
338 
339 /* Given the reg addr of both the message data and address, generate an
340  * interrupt via MSI.
341  */
342 static void vtd_generate_interrupt(IntelIOMMUState *s, hwaddr mesg_addr_reg,
343                                    hwaddr mesg_data_reg)
344 {
345     MSIMessage msi;
346 
347     assert(mesg_data_reg < DMAR_REG_SIZE);
348     assert(mesg_addr_reg < DMAR_REG_SIZE);
349 
350     msi.address = vtd_get_long_raw(s, mesg_addr_reg);
351     msi.data = vtd_get_long_raw(s, mesg_data_reg);
352 
353     trace_vtd_irq_generate(msi.address, msi.data);
354 
355     apic_get_class()->send_msi(&msi);
356 }
357 
358 /* Generate a fault event to software via MSI if conditions are met.
359  * Notice that the value of FSTS_REG being passed to it should be the one
360  * before any update.
361  */
362 static void vtd_generate_fault_event(IntelIOMMUState *s, uint32_t pre_fsts)
363 {
364     if (pre_fsts & VTD_FSTS_PPF || pre_fsts & VTD_FSTS_PFO ||
365         pre_fsts & VTD_FSTS_IQE) {
366         error_report_once("There are previous interrupt conditions "
367                           "to be serviced by software, fault event "
368                           "is not generated");
369         return;
370     }
371     vtd_set_clear_mask_long(s, DMAR_FECTL_REG, 0, VTD_FECTL_IP);
372     if (vtd_get_long_raw(s, DMAR_FECTL_REG) & VTD_FECTL_IM) {
373         error_report_once("Interrupt Mask set, irq is not generated");
374     } else {
375         vtd_generate_interrupt(s, DMAR_FEADDR_REG, DMAR_FEDATA_REG);
376         vtd_set_clear_mask_long(s, DMAR_FECTL_REG, VTD_FECTL_IP, 0);
377     }
378 }
379 
380 /* Check if the Fault (F) field of the Fault Recording Register referenced by
381  * @index is Set.
382  */
383 static bool vtd_is_frcd_set(IntelIOMMUState *s, uint16_t index)
384 {
385     /* Each reg is 128-bit */
386     hwaddr addr = DMAR_FRCD_REG_OFFSET + (((uint64_t)index) << 4);
387     addr += 8; /* Access the high 64-bit half */
388 
389     assert(index < DMAR_FRCD_REG_NR);
390 
391     return vtd_get_quad_raw(s, addr) & VTD_FRCD_F;
392 }
393 
394 /* Update the PPF field of Fault Status Register.
395  * Should be called whenever change the F field of any fault recording
396  * registers.
397  */
398 static void vtd_update_fsts_ppf(IntelIOMMUState *s)
399 {
400     uint32_t i;
401     uint32_t ppf_mask = 0;
402 
403     for (i = 0; i < DMAR_FRCD_REG_NR; i++) {
404         if (vtd_is_frcd_set(s, i)) {
405             ppf_mask = VTD_FSTS_PPF;
406             break;
407         }
408     }
409     vtd_set_clear_mask_long(s, DMAR_FSTS_REG, VTD_FSTS_PPF, ppf_mask);
410     trace_vtd_fsts_ppf(!!ppf_mask);
411 }
412 
413 static void vtd_set_frcd_and_update_ppf(IntelIOMMUState *s, uint16_t index)
414 {
415     /* Each reg is 128-bit */
416     hwaddr addr = DMAR_FRCD_REG_OFFSET + (((uint64_t)index) << 4);
417     addr += 8; /* Access the high 64-bit half */
418 
419     assert(index < DMAR_FRCD_REG_NR);
420 
421     vtd_set_clear_mask_quad(s, addr, 0, VTD_FRCD_F);
422     vtd_update_fsts_ppf(s);
423 }
424 
425 /* Must not update F field now, should be done later */
426 static void vtd_record_frcd(IntelIOMMUState *s, uint16_t index,
427                             uint16_t source_id, hwaddr addr,
428                             VTDFaultReason fault, bool is_write)
429 {
430     uint64_t hi = 0, lo;
431     hwaddr frcd_reg_addr = DMAR_FRCD_REG_OFFSET + (((uint64_t)index) << 4);
432 
433     assert(index < DMAR_FRCD_REG_NR);
434 
435     lo = VTD_FRCD_FI(addr);
436     hi = VTD_FRCD_SID(source_id) | VTD_FRCD_FR(fault);
437     if (!is_write) {
438         hi |= VTD_FRCD_T;
439     }
440     vtd_set_quad_raw(s, frcd_reg_addr, lo);
441     vtd_set_quad_raw(s, frcd_reg_addr + 8, hi);
442 
443     trace_vtd_frr_new(index, hi, lo);
444 }
445 
446 /* Try to collapse multiple pending faults from the same requester */
447 static bool vtd_try_collapse_fault(IntelIOMMUState *s, uint16_t source_id)
448 {
449     uint32_t i;
450     uint64_t frcd_reg;
451     hwaddr addr = DMAR_FRCD_REG_OFFSET + 8; /* The high 64-bit half */
452 
453     for (i = 0; i < DMAR_FRCD_REG_NR; i++) {
454         frcd_reg = vtd_get_quad_raw(s, addr);
455         if ((frcd_reg & VTD_FRCD_F) &&
456             ((frcd_reg & VTD_FRCD_SID_MASK) == source_id)) {
457             return true;
458         }
459         addr += 16; /* 128-bit for each */
460     }
461     return false;
462 }
463 
464 /* Log and report an DMAR (address translation) fault to software */
465 static void vtd_report_dmar_fault(IntelIOMMUState *s, uint16_t source_id,
466                                   hwaddr addr, VTDFaultReason fault,
467                                   bool is_write)
468 {
469     uint32_t fsts_reg = vtd_get_long_raw(s, DMAR_FSTS_REG);
470 
471     assert(fault < VTD_FR_MAX);
472 
473     if (fault == VTD_FR_RESERVED_ERR) {
474         /* This is not a normal fault reason case. Drop it. */
475         return;
476     }
477 
478     trace_vtd_dmar_fault(source_id, fault, addr, is_write);
479 
480     if (fsts_reg & VTD_FSTS_PFO) {
481         error_report_once("New fault is not recorded due to "
482                           "Primary Fault Overflow");
483         return;
484     }
485 
486     if (vtd_try_collapse_fault(s, source_id)) {
487         error_report_once("New fault is not recorded due to "
488                           "compression of faults");
489         return;
490     }
491 
492     if (vtd_is_frcd_set(s, s->next_frcd_reg)) {
493         error_report_once("Next Fault Recording Reg is used, "
494                           "new fault is not recorded, set PFO field");
495         vtd_set_clear_mask_long(s, DMAR_FSTS_REG, 0, VTD_FSTS_PFO);
496         return;
497     }
498 
499     vtd_record_frcd(s, s->next_frcd_reg, source_id, addr, fault, is_write);
500 
501     if (fsts_reg & VTD_FSTS_PPF) {
502         error_report_once("There are pending faults already, "
503                           "fault event is not generated");
504         vtd_set_frcd_and_update_ppf(s, s->next_frcd_reg);
505         s->next_frcd_reg++;
506         if (s->next_frcd_reg == DMAR_FRCD_REG_NR) {
507             s->next_frcd_reg = 0;
508         }
509     } else {
510         vtd_set_clear_mask_long(s, DMAR_FSTS_REG, VTD_FSTS_FRI_MASK,
511                                 VTD_FSTS_FRI(s->next_frcd_reg));
512         vtd_set_frcd_and_update_ppf(s, s->next_frcd_reg); /* Will set PPF */
513         s->next_frcd_reg++;
514         if (s->next_frcd_reg == DMAR_FRCD_REG_NR) {
515             s->next_frcd_reg = 0;
516         }
517         /* This case actually cause the PPF to be Set.
518          * So generate fault event (interrupt).
519          */
520          vtd_generate_fault_event(s, fsts_reg);
521     }
522 }
523 
524 /* Handle Invalidation Queue Errors of queued invalidation interface error
525  * conditions.
526  */
527 static void vtd_handle_inv_queue_error(IntelIOMMUState *s)
528 {
529     uint32_t fsts_reg = vtd_get_long_raw(s, DMAR_FSTS_REG);
530 
531     vtd_set_clear_mask_long(s, DMAR_FSTS_REG, 0, VTD_FSTS_IQE);
532     vtd_generate_fault_event(s, fsts_reg);
533 }
534 
535 /* Set the IWC field and try to generate an invalidation completion interrupt */
536 static void vtd_generate_completion_event(IntelIOMMUState *s)
537 {
538     if (vtd_get_long_raw(s, DMAR_ICS_REG) & VTD_ICS_IWC) {
539         trace_vtd_inv_desc_wait_irq("One pending, skip current");
540         return;
541     }
542     vtd_set_clear_mask_long(s, DMAR_ICS_REG, 0, VTD_ICS_IWC);
543     vtd_set_clear_mask_long(s, DMAR_IECTL_REG, 0, VTD_IECTL_IP);
544     if (vtd_get_long_raw(s, DMAR_IECTL_REG) & VTD_IECTL_IM) {
545         trace_vtd_inv_desc_wait_irq("IM in IECTL_REG is set, "
546                                     "new event not generated");
547         return;
548     } else {
549         /* Generate the interrupt event */
550         trace_vtd_inv_desc_wait_irq("Generating complete event");
551         vtd_generate_interrupt(s, DMAR_IEADDR_REG, DMAR_IEDATA_REG);
552         vtd_set_clear_mask_long(s, DMAR_IECTL_REG, VTD_IECTL_IP, 0);
553     }
554 }
555 
556 static inline bool vtd_root_entry_present(IntelIOMMUState *s,
557                                           VTDRootEntry *re,
558                                           uint8_t devfn)
559 {
560     if (s->root_scalable && devfn > UINT8_MAX / 2) {
561         return re->hi & VTD_ROOT_ENTRY_P;
562     }
563 
564     return re->lo & VTD_ROOT_ENTRY_P;
565 }
566 
567 static int vtd_get_root_entry(IntelIOMMUState *s, uint8_t index,
568                               VTDRootEntry *re)
569 {
570     dma_addr_t addr;
571 
572     addr = s->root + index * sizeof(*re);
573     if (dma_memory_read(&address_space_memory, addr, re, sizeof(*re))) {
574         re->lo = 0;
575         return -VTD_FR_ROOT_TABLE_INV;
576     }
577     re->lo = le64_to_cpu(re->lo);
578     re->hi = le64_to_cpu(re->hi);
579     return 0;
580 }
581 
582 static inline bool vtd_ce_present(VTDContextEntry *context)
583 {
584     return context->lo & VTD_CONTEXT_ENTRY_P;
585 }
586 
587 static int vtd_get_context_entry_from_root(IntelIOMMUState *s,
588                                            VTDRootEntry *re,
589                                            uint8_t index,
590                                            VTDContextEntry *ce)
591 {
592     dma_addr_t addr, ce_size;
593 
594     /* we have checked that root entry is present */
595     ce_size = s->root_scalable ? VTD_CTX_ENTRY_SCALABLE_SIZE :
596               VTD_CTX_ENTRY_LEGACY_SIZE;
597 
598     if (s->root_scalable && index > UINT8_MAX / 2) {
599         index = index & (~VTD_DEVFN_CHECK_MASK);
600         addr = re->hi & VTD_ROOT_ENTRY_CTP;
601     } else {
602         addr = re->lo & VTD_ROOT_ENTRY_CTP;
603     }
604 
605     addr = addr + index * ce_size;
606     if (dma_memory_read(&address_space_memory, addr, ce, ce_size)) {
607         return -VTD_FR_CONTEXT_TABLE_INV;
608     }
609 
610     ce->lo = le64_to_cpu(ce->lo);
611     ce->hi = le64_to_cpu(ce->hi);
612     if (ce_size == VTD_CTX_ENTRY_SCALABLE_SIZE) {
613         ce->val[2] = le64_to_cpu(ce->val[2]);
614         ce->val[3] = le64_to_cpu(ce->val[3]);
615     }
616     return 0;
617 }
618 
619 static inline dma_addr_t vtd_ce_get_slpt_base(VTDContextEntry *ce)
620 {
621     return ce->lo & VTD_CONTEXT_ENTRY_SLPTPTR;
622 }
623 
624 static inline uint64_t vtd_get_slpte_addr(uint64_t slpte, uint8_t aw)
625 {
626     return slpte & VTD_SL_PT_BASE_ADDR_MASK(aw);
627 }
628 
629 /* Whether the pte indicates the address of the page frame */
630 static inline bool vtd_is_last_slpte(uint64_t slpte, uint32_t level)
631 {
632     return level == VTD_SL_PT_LEVEL || (slpte & VTD_SL_PT_PAGE_SIZE_MASK);
633 }
634 
635 /* Get the content of a spte located in @base_addr[@index] */
636 static uint64_t vtd_get_slpte(dma_addr_t base_addr, uint32_t index)
637 {
638     uint64_t slpte;
639 
640     assert(index < VTD_SL_PT_ENTRY_NR);
641 
642     if (dma_memory_read(&address_space_memory,
643                         base_addr + index * sizeof(slpte), &slpte,
644                         sizeof(slpte))) {
645         slpte = (uint64_t)-1;
646         return slpte;
647     }
648     slpte = le64_to_cpu(slpte);
649     return slpte;
650 }
651 
652 /* Given an iova and the level of paging structure, return the offset
653  * of current level.
654  */
655 static inline uint32_t vtd_iova_level_offset(uint64_t iova, uint32_t level)
656 {
657     return (iova >> vtd_slpt_level_shift(level)) &
658             ((1ULL << VTD_SL_LEVEL_BITS) - 1);
659 }
660 
661 /* Check Capability Register to see if the @level of page-table is supported */
662 static inline bool vtd_is_level_supported(IntelIOMMUState *s, uint32_t level)
663 {
664     return VTD_CAP_SAGAW_MASK & s->cap &
665            (1ULL << (level - 2 + VTD_CAP_SAGAW_SHIFT));
666 }
667 
668 /* Return true if check passed, otherwise false */
669 static inline bool vtd_pe_type_check(X86IOMMUState *x86_iommu,
670                                      VTDPASIDEntry *pe)
671 {
672     switch (VTD_PE_GET_TYPE(pe)) {
673     case VTD_SM_PASID_ENTRY_FLT:
674     case VTD_SM_PASID_ENTRY_SLT:
675     case VTD_SM_PASID_ENTRY_NESTED:
676         break;
677     case VTD_SM_PASID_ENTRY_PT:
678         if (!x86_iommu->pt_supported) {
679             return false;
680         }
681         break;
682     default:
683         /* Unknwon type */
684         return false;
685     }
686     return true;
687 }
688 
689 static inline bool vtd_pdire_present(VTDPASIDDirEntry *pdire)
690 {
691     return pdire->val & 1;
692 }
693 
694 /**
695  * Caller of this function should check present bit if wants
696  * to use pdir entry for futher usage except for fpd bit check.
697  */
698 static int vtd_get_pdire_from_pdir_table(dma_addr_t pasid_dir_base,
699                                          uint32_t pasid,
700                                          VTDPASIDDirEntry *pdire)
701 {
702     uint32_t index;
703     dma_addr_t addr, entry_size;
704 
705     index = VTD_PASID_DIR_INDEX(pasid);
706     entry_size = VTD_PASID_DIR_ENTRY_SIZE;
707     addr = pasid_dir_base + index * entry_size;
708     if (dma_memory_read(&address_space_memory, addr, pdire, entry_size)) {
709         return -VTD_FR_PASID_TABLE_INV;
710     }
711 
712     return 0;
713 }
714 
715 static inline bool vtd_pe_present(VTDPASIDEntry *pe)
716 {
717     return pe->val[0] & VTD_PASID_ENTRY_P;
718 }
719 
720 static int vtd_get_pe_in_pasid_leaf_table(IntelIOMMUState *s,
721                                           uint32_t pasid,
722                                           dma_addr_t addr,
723                                           VTDPASIDEntry *pe)
724 {
725     uint32_t index;
726     dma_addr_t entry_size;
727     X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(s);
728 
729     index = VTD_PASID_TABLE_INDEX(pasid);
730     entry_size = VTD_PASID_ENTRY_SIZE;
731     addr = addr + index * entry_size;
732     if (dma_memory_read(&address_space_memory, addr, pe, entry_size)) {
733         return -VTD_FR_PASID_TABLE_INV;
734     }
735 
736     /* Do translation type check */
737     if (!vtd_pe_type_check(x86_iommu, pe)) {
738         return -VTD_FR_PASID_TABLE_INV;
739     }
740 
741     if (!vtd_is_level_supported(s, VTD_PE_GET_LEVEL(pe))) {
742         return -VTD_FR_PASID_TABLE_INV;
743     }
744 
745     return 0;
746 }
747 
748 /**
749  * Caller of this function should check present bit if wants
750  * to use pasid entry for futher usage except for fpd bit check.
751  */
752 static int vtd_get_pe_from_pdire(IntelIOMMUState *s,
753                                  uint32_t pasid,
754                                  VTDPASIDDirEntry *pdire,
755                                  VTDPASIDEntry *pe)
756 {
757     dma_addr_t addr = pdire->val & VTD_PASID_TABLE_BASE_ADDR_MASK;
758 
759     return vtd_get_pe_in_pasid_leaf_table(s, pasid, addr, pe);
760 }
761 
762 /**
763  * This function gets a pasid entry from a specified pasid
764  * table (includes dir and leaf table) with a specified pasid.
765  * Sanity check should be done to ensure return a present
766  * pasid entry to caller.
767  */
768 static int vtd_get_pe_from_pasid_table(IntelIOMMUState *s,
769                                        dma_addr_t pasid_dir_base,
770                                        uint32_t pasid,
771                                        VTDPASIDEntry *pe)
772 {
773     int ret;
774     VTDPASIDDirEntry pdire;
775 
776     ret = vtd_get_pdire_from_pdir_table(pasid_dir_base,
777                                         pasid, &pdire);
778     if (ret) {
779         return ret;
780     }
781 
782     if (!vtd_pdire_present(&pdire)) {
783         return -VTD_FR_PASID_TABLE_INV;
784     }
785 
786     ret = vtd_get_pe_from_pdire(s, pasid, &pdire, pe);
787     if (ret) {
788         return ret;
789     }
790 
791     if (!vtd_pe_present(pe)) {
792         return -VTD_FR_PASID_TABLE_INV;
793     }
794 
795     return 0;
796 }
797 
798 static int vtd_ce_get_rid2pasid_entry(IntelIOMMUState *s,
799                                       VTDContextEntry *ce,
800                                       VTDPASIDEntry *pe)
801 {
802     uint32_t pasid;
803     dma_addr_t pasid_dir_base;
804     int ret = 0;
805 
806     pasid = VTD_CE_GET_RID2PASID(ce);
807     pasid_dir_base = VTD_CE_GET_PASID_DIR_TABLE(ce);
808     ret = vtd_get_pe_from_pasid_table(s, pasid_dir_base, pasid, pe);
809 
810     return ret;
811 }
812 
813 static int vtd_ce_get_pasid_fpd(IntelIOMMUState *s,
814                                 VTDContextEntry *ce,
815                                 bool *pe_fpd_set)
816 {
817     int ret;
818     uint32_t pasid;
819     dma_addr_t pasid_dir_base;
820     VTDPASIDDirEntry pdire;
821     VTDPASIDEntry pe;
822 
823     pasid = VTD_CE_GET_RID2PASID(ce);
824     pasid_dir_base = VTD_CE_GET_PASID_DIR_TABLE(ce);
825 
826     /*
827      * No present bit check since fpd is meaningful even
828      * if the present bit is clear.
829      */
830     ret = vtd_get_pdire_from_pdir_table(pasid_dir_base, pasid, &pdire);
831     if (ret) {
832         return ret;
833     }
834 
835     if (pdire.val & VTD_PASID_DIR_FPD) {
836         *pe_fpd_set = true;
837         return 0;
838     }
839 
840     if (!vtd_pdire_present(&pdire)) {
841         return -VTD_FR_PASID_TABLE_INV;
842     }
843 
844     /*
845      * No present bit check since fpd is meaningful even
846      * if the present bit is clear.
847      */
848     ret = vtd_get_pe_from_pdire(s, pasid, &pdire, &pe);
849     if (ret) {
850         return ret;
851     }
852 
853     if (pe.val[0] & VTD_PASID_ENTRY_FPD) {
854         *pe_fpd_set = true;
855     }
856 
857     return 0;
858 }
859 
860 /* Get the page-table level that hardware should use for the second-level
861  * page-table walk from the Address Width field of context-entry.
862  */
863 static inline uint32_t vtd_ce_get_level(VTDContextEntry *ce)
864 {
865     return 2 + (ce->hi & VTD_CONTEXT_ENTRY_AW);
866 }
867 
868 static uint32_t vtd_get_iova_level(IntelIOMMUState *s,
869                                    VTDContextEntry *ce)
870 {
871     VTDPASIDEntry pe;
872 
873     if (s->root_scalable) {
874         vtd_ce_get_rid2pasid_entry(s, ce, &pe);
875         return VTD_PE_GET_LEVEL(&pe);
876     }
877 
878     return vtd_ce_get_level(ce);
879 }
880 
881 static inline uint32_t vtd_ce_get_agaw(VTDContextEntry *ce)
882 {
883     return 30 + (ce->hi & VTD_CONTEXT_ENTRY_AW) * 9;
884 }
885 
886 static uint32_t vtd_get_iova_agaw(IntelIOMMUState *s,
887                                   VTDContextEntry *ce)
888 {
889     VTDPASIDEntry pe;
890 
891     if (s->root_scalable) {
892         vtd_ce_get_rid2pasid_entry(s, ce, &pe);
893         return 30 + ((pe.val[0] >> 2) & VTD_SM_PASID_ENTRY_AW) * 9;
894     }
895 
896     return vtd_ce_get_agaw(ce);
897 }
898 
899 static inline uint32_t vtd_ce_get_type(VTDContextEntry *ce)
900 {
901     return ce->lo & VTD_CONTEXT_ENTRY_TT;
902 }
903 
904 /* Only for Legacy Mode. Return true if check passed, otherwise false */
905 static inline bool vtd_ce_type_check(X86IOMMUState *x86_iommu,
906                                      VTDContextEntry *ce)
907 {
908     switch (vtd_ce_get_type(ce)) {
909     case VTD_CONTEXT_TT_MULTI_LEVEL:
910         /* Always supported */
911         break;
912     case VTD_CONTEXT_TT_DEV_IOTLB:
913         if (!x86_iommu->dt_supported) {
914             error_report_once("%s: DT specified but not supported", __func__);
915             return false;
916         }
917         break;
918     case VTD_CONTEXT_TT_PASS_THROUGH:
919         if (!x86_iommu->pt_supported) {
920             error_report_once("%s: PT specified but not supported", __func__);
921             return false;
922         }
923         break;
924     default:
925         /* Unknown type */
926         error_report_once("%s: unknown ce type: %"PRIu32, __func__,
927                           vtd_ce_get_type(ce));
928         return false;
929     }
930     return true;
931 }
932 
933 static inline uint64_t vtd_iova_limit(IntelIOMMUState *s,
934                                       VTDContextEntry *ce, uint8_t aw)
935 {
936     uint32_t ce_agaw = vtd_get_iova_agaw(s, ce);
937     return 1ULL << MIN(ce_agaw, aw);
938 }
939 
940 /* Return true if IOVA passes range check, otherwise false. */
941 static inline bool vtd_iova_range_check(IntelIOMMUState *s,
942                                         uint64_t iova, VTDContextEntry *ce,
943                                         uint8_t aw)
944 {
945     /*
946      * Check if @iova is above 2^X-1, where X is the minimum of MGAW
947      * in CAP_REG and AW in context-entry.
948      */
949     return !(iova & ~(vtd_iova_limit(s, ce, aw) - 1));
950 }
951 
952 static dma_addr_t vtd_get_iova_pgtbl_base(IntelIOMMUState *s,
953                                           VTDContextEntry *ce)
954 {
955     VTDPASIDEntry pe;
956 
957     if (s->root_scalable) {
958         vtd_ce_get_rid2pasid_entry(s, ce, &pe);
959         return pe.val[0] & VTD_SM_PASID_ENTRY_SLPTPTR;
960     }
961 
962     return vtd_ce_get_slpt_base(ce);
963 }
964 
965 /*
966  * Rsvd field masks for spte:
967  *     vtd_spte_rsvd 4k pages
968  *     vtd_spte_rsvd_large large pages
969  */
970 static uint64_t vtd_spte_rsvd[5];
971 static uint64_t vtd_spte_rsvd_large[5];
972 
973 static bool vtd_slpte_nonzero_rsvd(uint64_t slpte, uint32_t level)
974 {
975     uint64_t rsvd_mask = vtd_spte_rsvd[level];
976 
977     if ((level == VTD_SL_PD_LEVEL || level == VTD_SL_PDP_LEVEL) &&
978         (slpte & VTD_SL_PT_PAGE_SIZE_MASK)) {
979         /* large page */
980         rsvd_mask = vtd_spte_rsvd_large[level];
981     }
982 
983     return slpte & rsvd_mask;
984 }
985 
986 /* Find the VTD address space associated with a given bus number */
987 static VTDBus *vtd_find_as_from_bus_num(IntelIOMMUState *s, uint8_t bus_num)
988 {
989     VTDBus *vtd_bus = s->vtd_as_by_bus_num[bus_num];
990     GHashTableIter iter;
991 
992     if (vtd_bus) {
993         return vtd_bus;
994     }
995 
996     /*
997      * Iterate over the registered buses to find the one which
998      * currently holds this bus number and update the bus_num
999      * lookup table.
1000      */
1001     g_hash_table_iter_init(&iter, s->vtd_as_by_busptr);
1002     while (g_hash_table_iter_next(&iter, NULL, (void **)&vtd_bus)) {
1003         if (pci_bus_num(vtd_bus->bus) == bus_num) {
1004             s->vtd_as_by_bus_num[bus_num] = vtd_bus;
1005             return vtd_bus;
1006         }
1007     }
1008 
1009     return NULL;
1010 }
1011 
1012 /* Given the @iova, get relevant @slptep. @slpte_level will be the last level
1013  * of the translation, can be used for deciding the size of large page.
1014  */
1015 static int vtd_iova_to_slpte(IntelIOMMUState *s, VTDContextEntry *ce,
1016                              uint64_t iova, bool is_write,
1017                              uint64_t *slptep, uint32_t *slpte_level,
1018                              bool *reads, bool *writes, uint8_t aw_bits)
1019 {
1020     dma_addr_t addr = vtd_get_iova_pgtbl_base(s, ce);
1021     uint32_t level = vtd_get_iova_level(s, ce);
1022     uint32_t offset;
1023     uint64_t slpte;
1024     uint64_t access_right_check;
1025 
1026     if (!vtd_iova_range_check(s, iova, ce, aw_bits)) {
1027         error_report_once("%s: detected IOVA overflow (iova=0x%" PRIx64 ")",
1028                           __func__, iova);
1029         return -VTD_FR_ADDR_BEYOND_MGAW;
1030     }
1031 
1032     /* FIXME: what is the Atomics request here? */
1033     access_right_check = is_write ? VTD_SL_W : VTD_SL_R;
1034 
1035     while (true) {
1036         offset = vtd_iova_level_offset(iova, level);
1037         slpte = vtd_get_slpte(addr, offset);
1038 
1039         if (slpte == (uint64_t)-1) {
1040             error_report_once("%s: detected read error on DMAR slpte "
1041                               "(iova=0x%" PRIx64 ")", __func__, iova);
1042             if (level == vtd_get_iova_level(s, ce)) {
1043                 /* Invalid programming of context-entry */
1044                 return -VTD_FR_CONTEXT_ENTRY_INV;
1045             } else {
1046                 return -VTD_FR_PAGING_ENTRY_INV;
1047             }
1048         }
1049         *reads = (*reads) && (slpte & VTD_SL_R);
1050         *writes = (*writes) && (slpte & VTD_SL_W);
1051         if (!(slpte & access_right_check)) {
1052             error_report_once("%s: detected slpte permission error "
1053                               "(iova=0x%" PRIx64 ", level=0x%" PRIx32 ", "
1054                               "slpte=0x%" PRIx64 ", write=%d)", __func__,
1055                               iova, level, slpte, is_write);
1056             return is_write ? -VTD_FR_WRITE : -VTD_FR_READ;
1057         }
1058         if (vtd_slpte_nonzero_rsvd(slpte, level)) {
1059             error_report_once("%s: detected splte reserve non-zero "
1060                               "iova=0x%" PRIx64 ", level=0x%" PRIx32
1061                               "slpte=0x%" PRIx64 ")", __func__, iova,
1062                               level, slpte);
1063             return -VTD_FR_PAGING_ENTRY_RSVD;
1064         }
1065 
1066         if (vtd_is_last_slpte(slpte, level)) {
1067             *slptep = slpte;
1068             *slpte_level = level;
1069             return 0;
1070         }
1071         addr = vtd_get_slpte_addr(slpte, aw_bits);
1072         level--;
1073     }
1074 }
1075 
1076 typedef int (*vtd_page_walk_hook)(IOMMUTLBEvent *event, void *private);
1077 
1078 /**
1079  * Constant information used during page walking
1080  *
1081  * @hook_fn: hook func to be called when detected page
1082  * @private: private data to be passed into hook func
1083  * @notify_unmap: whether we should notify invalid entries
1084  * @as: VT-d address space of the device
1085  * @aw: maximum address width
1086  * @domain: domain ID of the page walk
1087  */
1088 typedef struct {
1089     VTDAddressSpace *as;
1090     vtd_page_walk_hook hook_fn;
1091     void *private;
1092     bool notify_unmap;
1093     uint8_t aw;
1094     uint16_t domain_id;
1095 } vtd_page_walk_info;
1096 
1097 static int vtd_page_walk_one(IOMMUTLBEvent *event, vtd_page_walk_info *info)
1098 {
1099     VTDAddressSpace *as = info->as;
1100     vtd_page_walk_hook hook_fn = info->hook_fn;
1101     void *private = info->private;
1102     IOMMUTLBEntry *entry = &event->entry;
1103     DMAMap target = {
1104         .iova = entry->iova,
1105         .size = entry->addr_mask,
1106         .translated_addr = entry->translated_addr,
1107         .perm = entry->perm,
1108     };
1109     DMAMap *mapped = iova_tree_find(as->iova_tree, &target);
1110 
1111     if (event->type == IOMMU_NOTIFIER_UNMAP && !info->notify_unmap) {
1112         trace_vtd_page_walk_one_skip_unmap(entry->iova, entry->addr_mask);
1113         return 0;
1114     }
1115 
1116     assert(hook_fn);
1117 
1118     /* Update local IOVA mapped ranges */
1119     if (event->type == IOMMU_NOTIFIER_MAP) {
1120         if (mapped) {
1121             /* If it's exactly the same translation, skip */
1122             if (!memcmp(mapped, &target, sizeof(target))) {
1123                 trace_vtd_page_walk_one_skip_map(entry->iova, entry->addr_mask,
1124                                                  entry->translated_addr);
1125                 return 0;
1126             } else {
1127                 /*
1128                  * Translation changed.  Normally this should not
1129                  * happen, but it can happen when with buggy guest
1130                  * OSes.  Note that there will be a small window that
1131                  * we don't have map at all.  But that's the best
1132                  * effort we can do.  The ideal way to emulate this is
1133                  * atomically modify the PTE to follow what has
1134                  * changed, but we can't.  One example is that vfio
1135                  * driver only has VFIO_IOMMU_[UN]MAP_DMA but no
1136                  * interface to modify a mapping (meanwhile it seems
1137                  * meaningless to even provide one).  Anyway, let's
1138                  * mark this as a TODO in case one day we'll have
1139                  * a better solution.
1140                  */
1141                 IOMMUAccessFlags cache_perm = entry->perm;
1142                 int ret;
1143 
1144                 /* Emulate an UNMAP */
1145                 event->type = IOMMU_NOTIFIER_UNMAP;
1146                 entry->perm = IOMMU_NONE;
1147                 trace_vtd_page_walk_one(info->domain_id,
1148                                         entry->iova,
1149                                         entry->translated_addr,
1150                                         entry->addr_mask,
1151                                         entry->perm);
1152                 ret = hook_fn(event, private);
1153                 if (ret) {
1154                     return ret;
1155                 }
1156                 /* Drop any existing mapping */
1157                 iova_tree_remove(as->iova_tree, &target);
1158                 /* Recover the correct type */
1159                 event->type = IOMMU_NOTIFIER_MAP;
1160                 entry->perm = cache_perm;
1161             }
1162         }
1163         iova_tree_insert(as->iova_tree, &target);
1164     } else {
1165         if (!mapped) {
1166             /* Skip since we didn't map this range at all */
1167             trace_vtd_page_walk_one_skip_unmap(entry->iova, entry->addr_mask);
1168             return 0;
1169         }
1170         iova_tree_remove(as->iova_tree, &target);
1171     }
1172 
1173     trace_vtd_page_walk_one(info->domain_id, entry->iova,
1174                             entry->translated_addr, entry->addr_mask,
1175                             entry->perm);
1176     return hook_fn(event, private);
1177 }
1178 
1179 /**
1180  * vtd_page_walk_level - walk over specific level for IOVA range
1181  *
1182  * @addr: base GPA addr to start the walk
1183  * @start: IOVA range start address
1184  * @end: IOVA range end address (start <= addr < end)
1185  * @read: whether parent level has read permission
1186  * @write: whether parent level has write permission
1187  * @info: constant information for the page walk
1188  */
1189 static int vtd_page_walk_level(dma_addr_t addr, uint64_t start,
1190                                uint64_t end, uint32_t level, bool read,
1191                                bool write, vtd_page_walk_info *info)
1192 {
1193     bool read_cur, write_cur, entry_valid;
1194     uint32_t offset;
1195     uint64_t slpte;
1196     uint64_t subpage_size, subpage_mask;
1197     IOMMUTLBEvent event;
1198     uint64_t iova = start;
1199     uint64_t iova_next;
1200     int ret = 0;
1201 
1202     trace_vtd_page_walk_level(addr, level, start, end);
1203 
1204     subpage_size = 1ULL << vtd_slpt_level_shift(level);
1205     subpage_mask = vtd_slpt_level_page_mask(level);
1206 
1207     while (iova < end) {
1208         iova_next = (iova & subpage_mask) + subpage_size;
1209 
1210         offset = vtd_iova_level_offset(iova, level);
1211         slpte = vtd_get_slpte(addr, offset);
1212 
1213         if (slpte == (uint64_t)-1) {
1214             trace_vtd_page_walk_skip_read(iova, iova_next);
1215             goto next;
1216         }
1217 
1218         if (vtd_slpte_nonzero_rsvd(slpte, level)) {
1219             trace_vtd_page_walk_skip_reserve(iova, iova_next);
1220             goto next;
1221         }
1222 
1223         /* Permissions are stacked with parents' */
1224         read_cur = read && (slpte & VTD_SL_R);
1225         write_cur = write && (slpte & VTD_SL_W);
1226 
1227         /*
1228          * As long as we have either read/write permission, this is a
1229          * valid entry. The rule works for both page entries and page
1230          * table entries.
1231          */
1232         entry_valid = read_cur | write_cur;
1233 
1234         if (!vtd_is_last_slpte(slpte, level) && entry_valid) {
1235             /*
1236              * This is a valid PDE (or even bigger than PDE).  We need
1237              * to walk one further level.
1238              */
1239             ret = vtd_page_walk_level(vtd_get_slpte_addr(slpte, info->aw),
1240                                       iova, MIN(iova_next, end), level - 1,
1241                                       read_cur, write_cur, info);
1242         } else {
1243             /*
1244              * This means we are either:
1245              *
1246              * (1) the real page entry (either 4K page, or huge page)
1247              * (2) the whole range is invalid
1248              *
1249              * In either case, we send an IOTLB notification down.
1250              */
1251             event.entry.target_as = &address_space_memory;
1252             event.entry.iova = iova & subpage_mask;
1253             event.entry.perm = IOMMU_ACCESS_FLAG(read_cur, write_cur);
1254             event.entry.addr_mask = ~subpage_mask;
1255             /* NOTE: this is only meaningful if entry_valid == true */
1256             event.entry.translated_addr = vtd_get_slpte_addr(slpte, info->aw);
1257             event.type = event.entry.perm ? IOMMU_NOTIFIER_MAP :
1258                                             IOMMU_NOTIFIER_UNMAP;
1259             ret = vtd_page_walk_one(&event, info);
1260         }
1261 
1262         if (ret < 0) {
1263             return ret;
1264         }
1265 
1266 next:
1267         iova = iova_next;
1268     }
1269 
1270     return 0;
1271 }
1272 
1273 /**
1274  * vtd_page_walk - walk specific IOVA range, and call the hook
1275  *
1276  * @s: intel iommu state
1277  * @ce: context entry to walk upon
1278  * @start: IOVA address to start the walk
1279  * @end: IOVA range end address (start <= addr < end)
1280  * @info: page walking information struct
1281  */
1282 static int vtd_page_walk(IntelIOMMUState *s, VTDContextEntry *ce,
1283                          uint64_t start, uint64_t end,
1284                          vtd_page_walk_info *info)
1285 {
1286     dma_addr_t addr = vtd_get_iova_pgtbl_base(s, ce);
1287     uint32_t level = vtd_get_iova_level(s, ce);
1288 
1289     if (!vtd_iova_range_check(s, start, ce, info->aw)) {
1290         return -VTD_FR_ADDR_BEYOND_MGAW;
1291     }
1292 
1293     if (!vtd_iova_range_check(s, end, ce, info->aw)) {
1294         /* Fix end so that it reaches the maximum */
1295         end = vtd_iova_limit(s, ce, info->aw);
1296     }
1297 
1298     return vtd_page_walk_level(addr, start, end, level, true, true, info);
1299 }
1300 
1301 static int vtd_root_entry_rsvd_bits_check(IntelIOMMUState *s,
1302                                           VTDRootEntry *re)
1303 {
1304     /* Legacy Mode reserved bits check */
1305     if (!s->root_scalable &&
1306         (re->hi || (re->lo & VTD_ROOT_ENTRY_RSVD(s->aw_bits))))
1307         goto rsvd_err;
1308 
1309     /* Scalable Mode reserved bits check */
1310     if (s->root_scalable &&
1311         ((re->lo & VTD_ROOT_ENTRY_RSVD(s->aw_bits)) ||
1312          (re->hi & VTD_ROOT_ENTRY_RSVD(s->aw_bits))))
1313         goto rsvd_err;
1314 
1315     return 0;
1316 
1317 rsvd_err:
1318     error_report_once("%s: invalid root entry: hi=0x%"PRIx64
1319                       ", lo=0x%"PRIx64,
1320                       __func__, re->hi, re->lo);
1321     return -VTD_FR_ROOT_ENTRY_RSVD;
1322 }
1323 
1324 static inline int vtd_context_entry_rsvd_bits_check(IntelIOMMUState *s,
1325                                                     VTDContextEntry *ce)
1326 {
1327     if (!s->root_scalable &&
1328         (ce->hi & VTD_CONTEXT_ENTRY_RSVD_HI ||
1329          ce->lo & VTD_CONTEXT_ENTRY_RSVD_LO(s->aw_bits))) {
1330         error_report_once("%s: invalid context entry: hi=%"PRIx64
1331                           ", lo=%"PRIx64" (reserved nonzero)",
1332                           __func__, ce->hi, ce->lo);
1333         return -VTD_FR_CONTEXT_ENTRY_RSVD;
1334     }
1335 
1336     if (s->root_scalable &&
1337         (ce->val[0] & VTD_SM_CONTEXT_ENTRY_RSVD_VAL0(s->aw_bits) ||
1338          ce->val[1] & VTD_SM_CONTEXT_ENTRY_RSVD_VAL1 ||
1339          ce->val[2] ||
1340          ce->val[3])) {
1341         error_report_once("%s: invalid context entry: val[3]=%"PRIx64
1342                           ", val[2]=%"PRIx64
1343                           ", val[1]=%"PRIx64
1344                           ", val[0]=%"PRIx64" (reserved nonzero)",
1345                           __func__, ce->val[3], ce->val[2],
1346                           ce->val[1], ce->val[0]);
1347         return -VTD_FR_CONTEXT_ENTRY_RSVD;
1348     }
1349 
1350     return 0;
1351 }
1352 
1353 static int vtd_ce_rid2pasid_check(IntelIOMMUState *s,
1354                                   VTDContextEntry *ce)
1355 {
1356     VTDPASIDEntry pe;
1357 
1358     /*
1359      * Make sure in Scalable Mode, a present context entry
1360      * has valid rid2pasid setting, which includes valid
1361      * rid2pasid field and corresponding pasid entry setting
1362      */
1363     return vtd_ce_get_rid2pasid_entry(s, ce, &pe);
1364 }
1365 
1366 /* Map a device to its corresponding domain (context-entry) */
1367 static int vtd_dev_to_context_entry(IntelIOMMUState *s, uint8_t bus_num,
1368                                     uint8_t devfn, VTDContextEntry *ce)
1369 {
1370     VTDRootEntry re;
1371     int ret_fr;
1372     X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(s);
1373 
1374     ret_fr = vtd_get_root_entry(s, bus_num, &re);
1375     if (ret_fr) {
1376         return ret_fr;
1377     }
1378 
1379     if (!vtd_root_entry_present(s, &re, devfn)) {
1380         /* Not error - it's okay we don't have root entry. */
1381         trace_vtd_re_not_present(bus_num);
1382         return -VTD_FR_ROOT_ENTRY_P;
1383     }
1384 
1385     ret_fr = vtd_root_entry_rsvd_bits_check(s, &re);
1386     if (ret_fr) {
1387         return ret_fr;
1388     }
1389 
1390     ret_fr = vtd_get_context_entry_from_root(s, &re, devfn, ce);
1391     if (ret_fr) {
1392         return ret_fr;
1393     }
1394 
1395     if (!vtd_ce_present(ce)) {
1396         /* Not error - it's okay we don't have context entry. */
1397         trace_vtd_ce_not_present(bus_num, devfn);
1398         return -VTD_FR_CONTEXT_ENTRY_P;
1399     }
1400 
1401     ret_fr = vtd_context_entry_rsvd_bits_check(s, ce);
1402     if (ret_fr) {
1403         return ret_fr;
1404     }
1405 
1406     /* Check if the programming of context-entry is valid */
1407     if (!s->root_scalable &&
1408         !vtd_is_level_supported(s, vtd_ce_get_level(ce))) {
1409         error_report_once("%s: invalid context entry: hi=%"PRIx64
1410                           ", lo=%"PRIx64" (level %d not supported)",
1411                           __func__, ce->hi, ce->lo,
1412                           vtd_ce_get_level(ce));
1413         return -VTD_FR_CONTEXT_ENTRY_INV;
1414     }
1415 
1416     if (!s->root_scalable) {
1417         /* Do translation type check */
1418         if (!vtd_ce_type_check(x86_iommu, ce)) {
1419             /* Errors dumped in vtd_ce_type_check() */
1420             return -VTD_FR_CONTEXT_ENTRY_INV;
1421         }
1422     } else {
1423         /*
1424          * Check if the programming of context-entry.rid2pasid
1425          * and corresponding pasid setting is valid, and thus
1426          * avoids to check pasid entry fetching result in future
1427          * helper function calling.
1428          */
1429         ret_fr = vtd_ce_rid2pasid_check(s, ce);
1430         if (ret_fr) {
1431             return ret_fr;
1432         }
1433     }
1434 
1435     return 0;
1436 }
1437 
1438 static int vtd_sync_shadow_page_hook(IOMMUTLBEvent *event,
1439                                      void *private)
1440 {
1441     memory_region_notify_iommu(private, 0, *event);
1442     return 0;
1443 }
1444 
1445 static uint16_t vtd_get_domain_id(IntelIOMMUState *s,
1446                                   VTDContextEntry *ce)
1447 {
1448     VTDPASIDEntry pe;
1449 
1450     if (s->root_scalable) {
1451         vtd_ce_get_rid2pasid_entry(s, ce, &pe);
1452         return VTD_SM_PASID_ENTRY_DID(pe.val[1]);
1453     }
1454 
1455     return VTD_CONTEXT_ENTRY_DID(ce->hi);
1456 }
1457 
1458 static int vtd_sync_shadow_page_table_range(VTDAddressSpace *vtd_as,
1459                                             VTDContextEntry *ce,
1460                                             hwaddr addr, hwaddr size)
1461 {
1462     IntelIOMMUState *s = vtd_as->iommu_state;
1463     vtd_page_walk_info info = {
1464         .hook_fn = vtd_sync_shadow_page_hook,
1465         .private = (void *)&vtd_as->iommu,
1466         .notify_unmap = true,
1467         .aw = s->aw_bits,
1468         .as = vtd_as,
1469         .domain_id = vtd_get_domain_id(s, ce),
1470     };
1471 
1472     return vtd_page_walk(s, ce, addr, addr + size, &info);
1473 }
1474 
1475 static int vtd_sync_shadow_page_table(VTDAddressSpace *vtd_as)
1476 {
1477     int ret;
1478     VTDContextEntry ce;
1479     IOMMUNotifier *n;
1480 
1481     if (!(vtd_as->iommu.iommu_notify_flags & IOMMU_NOTIFIER_IOTLB_EVENTS)) {
1482         return 0;
1483     }
1484 
1485     ret = vtd_dev_to_context_entry(vtd_as->iommu_state,
1486                                    pci_bus_num(vtd_as->bus),
1487                                    vtd_as->devfn, &ce);
1488     if (ret) {
1489         if (ret == -VTD_FR_CONTEXT_ENTRY_P) {
1490             /*
1491              * It's a valid scenario to have a context entry that is
1492              * not present.  For example, when a device is removed
1493              * from an existing domain then the context entry will be
1494              * zeroed by the guest before it was put into another
1495              * domain.  When this happens, instead of synchronizing
1496              * the shadow pages we should invalidate all existing
1497              * mappings and notify the backends.
1498              */
1499             IOMMU_NOTIFIER_FOREACH(n, &vtd_as->iommu) {
1500                 vtd_address_space_unmap(vtd_as, n);
1501             }
1502             ret = 0;
1503         }
1504         return ret;
1505     }
1506 
1507     return vtd_sync_shadow_page_table_range(vtd_as, &ce, 0, UINT64_MAX);
1508 }
1509 
1510 /*
1511  * Check if specific device is configed to bypass address
1512  * translation for DMA requests. In Scalable Mode, bypass
1513  * 1st-level translation or 2nd-level translation, it depends
1514  * on PGTT setting.
1515  */
1516 static bool vtd_dev_pt_enabled(VTDAddressSpace *as)
1517 {
1518     IntelIOMMUState *s;
1519     VTDContextEntry ce;
1520     VTDPASIDEntry pe;
1521     int ret;
1522 
1523     assert(as);
1524 
1525     s = as->iommu_state;
1526     ret = vtd_dev_to_context_entry(s, pci_bus_num(as->bus),
1527                                    as->devfn, &ce);
1528     if (ret) {
1529         /*
1530          * Possibly failed to parse the context entry for some reason
1531          * (e.g., during init, or any guest configuration errors on
1532          * context entries). We should assume PT not enabled for
1533          * safety.
1534          */
1535         return false;
1536     }
1537 
1538     if (s->root_scalable) {
1539         ret = vtd_ce_get_rid2pasid_entry(s, &ce, &pe);
1540         if (ret) {
1541             error_report_once("%s: vtd_ce_get_rid2pasid_entry error: %"PRId32,
1542                               __func__, ret);
1543             return false;
1544         }
1545         return (VTD_PE_GET_TYPE(&pe) == VTD_SM_PASID_ENTRY_PT);
1546     }
1547 
1548     return (vtd_ce_get_type(&ce) == VTD_CONTEXT_TT_PASS_THROUGH);
1549 }
1550 
1551 /* Return whether the device is using IOMMU translation. */
1552 static bool vtd_switch_address_space(VTDAddressSpace *as)
1553 {
1554     bool use_iommu;
1555     /* Whether we need to take the BQL on our own */
1556     bool take_bql = !qemu_mutex_iothread_locked();
1557 
1558     assert(as);
1559 
1560     use_iommu = as->iommu_state->dmar_enabled && !vtd_dev_pt_enabled(as);
1561 
1562     trace_vtd_switch_address_space(pci_bus_num(as->bus),
1563                                    VTD_PCI_SLOT(as->devfn),
1564                                    VTD_PCI_FUNC(as->devfn),
1565                                    use_iommu);
1566 
1567     /*
1568      * It's possible that we reach here without BQL, e.g., when called
1569      * from vtd_pt_enable_fast_path(). However the memory APIs need
1570      * it. We'd better make sure we have had it already, or, take it.
1571      */
1572     if (take_bql) {
1573         qemu_mutex_lock_iothread();
1574     }
1575 
1576     /* Turn off first then on the other */
1577     if (use_iommu) {
1578         memory_region_set_enabled(&as->nodmar, false);
1579         memory_region_set_enabled(MEMORY_REGION(&as->iommu), true);
1580     } else {
1581         memory_region_set_enabled(MEMORY_REGION(&as->iommu), false);
1582         memory_region_set_enabled(&as->nodmar, true);
1583     }
1584 
1585     if (take_bql) {
1586         qemu_mutex_unlock_iothread();
1587     }
1588 
1589     return use_iommu;
1590 }
1591 
1592 static void vtd_switch_address_space_all(IntelIOMMUState *s)
1593 {
1594     GHashTableIter iter;
1595     VTDBus *vtd_bus;
1596     int i;
1597 
1598     g_hash_table_iter_init(&iter, s->vtd_as_by_busptr);
1599     while (g_hash_table_iter_next(&iter, NULL, (void **)&vtd_bus)) {
1600         for (i = 0; i < PCI_DEVFN_MAX; i++) {
1601             if (!vtd_bus->dev_as[i]) {
1602                 continue;
1603             }
1604             vtd_switch_address_space(vtd_bus->dev_as[i]);
1605         }
1606     }
1607 }
1608 
1609 static inline uint16_t vtd_make_source_id(uint8_t bus_num, uint8_t devfn)
1610 {
1611     return ((bus_num & 0xffUL) << 8) | (devfn & 0xffUL);
1612 }
1613 
1614 static const bool vtd_qualified_faults[] = {
1615     [VTD_FR_RESERVED] = false,
1616     [VTD_FR_ROOT_ENTRY_P] = false,
1617     [VTD_FR_CONTEXT_ENTRY_P] = true,
1618     [VTD_FR_CONTEXT_ENTRY_INV] = true,
1619     [VTD_FR_ADDR_BEYOND_MGAW] = true,
1620     [VTD_FR_WRITE] = true,
1621     [VTD_FR_READ] = true,
1622     [VTD_FR_PAGING_ENTRY_INV] = true,
1623     [VTD_FR_ROOT_TABLE_INV] = false,
1624     [VTD_FR_CONTEXT_TABLE_INV] = false,
1625     [VTD_FR_ROOT_ENTRY_RSVD] = false,
1626     [VTD_FR_PAGING_ENTRY_RSVD] = true,
1627     [VTD_FR_CONTEXT_ENTRY_TT] = true,
1628     [VTD_FR_PASID_TABLE_INV] = false,
1629     [VTD_FR_RESERVED_ERR] = false,
1630     [VTD_FR_MAX] = false,
1631 };
1632 
1633 /* To see if a fault condition is "qualified", which is reported to software
1634  * only if the FPD field in the context-entry used to process the faulting
1635  * request is 0.
1636  */
1637 static inline bool vtd_is_qualified_fault(VTDFaultReason fault)
1638 {
1639     return vtd_qualified_faults[fault];
1640 }
1641 
1642 static inline bool vtd_is_interrupt_addr(hwaddr addr)
1643 {
1644     return VTD_INTERRUPT_ADDR_FIRST <= addr && addr <= VTD_INTERRUPT_ADDR_LAST;
1645 }
1646 
1647 static void vtd_pt_enable_fast_path(IntelIOMMUState *s, uint16_t source_id)
1648 {
1649     VTDBus *vtd_bus;
1650     VTDAddressSpace *vtd_as;
1651     bool success = false;
1652 
1653     vtd_bus = vtd_find_as_from_bus_num(s, VTD_SID_TO_BUS(source_id));
1654     if (!vtd_bus) {
1655         goto out;
1656     }
1657 
1658     vtd_as = vtd_bus->dev_as[VTD_SID_TO_DEVFN(source_id)];
1659     if (!vtd_as) {
1660         goto out;
1661     }
1662 
1663     if (vtd_switch_address_space(vtd_as) == false) {
1664         /* We switched off IOMMU region successfully. */
1665         success = true;
1666     }
1667 
1668 out:
1669     trace_vtd_pt_enable_fast_path(source_id, success);
1670 }
1671 
1672 /* Map dev to context-entry then do a paging-structures walk to do a iommu
1673  * translation.
1674  *
1675  * Called from RCU critical section.
1676  *
1677  * @bus_num: The bus number
1678  * @devfn: The devfn, which is the  combined of device and function number
1679  * @is_write: The access is a write operation
1680  * @entry: IOMMUTLBEntry that contain the addr to be translated and result
1681  *
1682  * Returns true if translation is successful, otherwise false.
1683  */
1684 static bool vtd_do_iommu_translate(VTDAddressSpace *vtd_as, PCIBus *bus,
1685                                    uint8_t devfn, hwaddr addr, bool is_write,
1686                                    IOMMUTLBEntry *entry)
1687 {
1688     IntelIOMMUState *s = vtd_as->iommu_state;
1689     VTDContextEntry ce;
1690     uint8_t bus_num = pci_bus_num(bus);
1691     VTDContextCacheEntry *cc_entry;
1692     uint64_t slpte, page_mask;
1693     uint32_t level;
1694     uint16_t source_id = vtd_make_source_id(bus_num, devfn);
1695     int ret_fr;
1696     bool is_fpd_set = false;
1697     bool reads = true;
1698     bool writes = true;
1699     uint8_t access_flags;
1700     VTDIOTLBEntry *iotlb_entry;
1701 
1702     /*
1703      * We have standalone memory region for interrupt addresses, we
1704      * should never receive translation requests in this region.
1705      */
1706     assert(!vtd_is_interrupt_addr(addr));
1707 
1708     vtd_iommu_lock(s);
1709 
1710     cc_entry = &vtd_as->context_cache_entry;
1711 
1712     /* Try to fetch slpte form IOTLB */
1713     iotlb_entry = vtd_lookup_iotlb(s, source_id, addr);
1714     if (iotlb_entry) {
1715         trace_vtd_iotlb_page_hit(source_id, addr, iotlb_entry->slpte,
1716                                  iotlb_entry->domain_id);
1717         slpte = iotlb_entry->slpte;
1718         access_flags = iotlb_entry->access_flags;
1719         page_mask = iotlb_entry->mask;
1720         goto out;
1721     }
1722 
1723     /* Try to fetch context-entry from cache first */
1724     if (cc_entry->context_cache_gen == s->context_cache_gen) {
1725         trace_vtd_iotlb_cc_hit(bus_num, devfn, cc_entry->context_entry.hi,
1726                                cc_entry->context_entry.lo,
1727                                cc_entry->context_cache_gen);
1728         ce = cc_entry->context_entry;
1729         is_fpd_set = ce.lo & VTD_CONTEXT_ENTRY_FPD;
1730         if (!is_fpd_set && s->root_scalable) {
1731             ret_fr = vtd_ce_get_pasid_fpd(s, &ce, &is_fpd_set);
1732             VTD_PE_GET_FPD_ERR(ret_fr, is_fpd_set, s, source_id, addr, is_write);
1733         }
1734     } else {
1735         ret_fr = vtd_dev_to_context_entry(s, bus_num, devfn, &ce);
1736         is_fpd_set = ce.lo & VTD_CONTEXT_ENTRY_FPD;
1737         if (!ret_fr && !is_fpd_set && s->root_scalable) {
1738             ret_fr = vtd_ce_get_pasid_fpd(s, &ce, &is_fpd_set);
1739         }
1740         VTD_PE_GET_FPD_ERR(ret_fr, is_fpd_set, s, source_id, addr, is_write);
1741         /* Update context-cache */
1742         trace_vtd_iotlb_cc_update(bus_num, devfn, ce.hi, ce.lo,
1743                                   cc_entry->context_cache_gen,
1744                                   s->context_cache_gen);
1745         cc_entry->context_entry = ce;
1746         cc_entry->context_cache_gen = s->context_cache_gen;
1747     }
1748 
1749     /*
1750      * We don't need to translate for pass-through context entries.
1751      * Also, let's ignore IOTLB caching as well for PT devices.
1752      */
1753     if (vtd_ce_get_type(&ce) == VTD_CONTEXT_TT_PASS_THROUGH) {
1754         entry->iova = addr & VTD_PAGE_MASK_4K;
1755         entry->translated_addr = entry->iova;
1756         entry->addr_mask = ~VTD_PAGE_MASK_4K;
1757         entry->perm = IOMMU_RW;
1758         trace_vtd_translate_pt(source_id, entry->iova);
1759 
1760         /*
1761          * When this happens, it means firstly caching-mode is not
1762          * enabled, and this is the first passthrough translation for
1763          * the device. Let's enable the fast path for passthrough.
1764          *
1765          * When passthrough is disabled again for the device, we can
1766          * capture it via the context entry invalidation, then the
1767          * IOMMU region can be swapped back.
1768          */
1769         vtd_pt_enable_fast_path(s, source_id);
1770         vtd_iommu_unlock(s);
1771         return true;
1772     }
1773 
1774     ret_fr = vtd_iova_to_slpte(s, &ce, addr, is_write, &slpte, &level,
1775                                &reads, &writes, s->aw_bits);
1776     VTD_PE_GET_FPD_ERR(ret_fr, is_fpd_set, s, source_id, addr, is_write);
1777 
1778     page_mask = vtd_slpt_level_page_mask(level);
1779     access_flags = IOMMU_ACCESS_FLAG(reads, writes);
1780     vtd_update_iotlb(s, source_id, vtd_get_domain_id(s, &ce), addr, slpte,
1781                      access_flags, level);
1782 out:
1783     vtd_iommu_unlock(s);
1784     entry->iova = addr & page_mask;
1785     entry->translated_addr = vtd_get_slpte_addr(slpte, s->aw_bits) & page_mask;
1786     entry->addr_mask = ~page_mask;
1787     entry->perm = access_flags;
1788     return true;
1789 
1790 error:
1791     vtd_iommu_unlock(s);
1792     entry->iova = 0;
1793     entry->translated_addr = 0;
1794     entry->addr_mask = 0;
1795     entry->perm = IOMMU_NONE;
1796     return false;
1797 }
1798 
1799 static void vtd_root_table_setup(IntelIOMMUState *s)
1800 {
1801     s->root = vtd_get_quad_raw(s, DMAR_RTADDR_REG);
1802     s->root &= VTD_RTADDR_ADDR_MASK(s->aw_bits);
1803 
1804     vtd_update_scalable_state(s);
1805 
1806     trace_vtd_reg_dmar_root(s->root, s->root_scalable);
1807 }
1808 
1809 static void vtd_iec_notify_all(IntelIOMMUState *s, bool global,
1810                                uint32_t index, uint32_t mask)
1811 {
1812     x86_iommu_iec_notify_all(X86_IOMMU_DEVICE(s), global, index, mask);
1813 }
1814 
1815 static void vtd_interrupt_remap_table_setup(IntelIOMMUState *s)
1816 {
1817     uint64_t value = 0;
1818     value = vtd_get_quad_raw(s, DMAR_IRTA_REG);
1819     s->intr_size = 1UL << ((value & VTD_IRTA_SIZE_MASK) + 1);
1820     s->intr_root = value & VTD_IRTA_ADDR_MASK(s->aw_bits);
1821     s->intr_eime = value & VTD_IRTA_EIME;
1822 
1823     /* Notify global invalidation */
1824     vtd_iec_notify_all(s, true, 0, 0);
1825 
1826     trace_vtd_reg_ir_root(s->intr_root, s->intr_size);
1827 }
1828 
1829 static void vtd_iommu_replay_all(IntelIOMMUState *s)
1830 {
1831     VTDAddressSpace *vtd_as;
1832 
1833     QLIST_FOREACH(vtd_as, &s->vtd_as_with_notifiers, next) {
1834         vtd_sync_shadow_page_table(vtd_as);
1835     }
1836 }
1837 
1838 static void vtd_context_global_invalidate(IntelIOMMUState *s)
1839 {
1840     trace_vtd_inv_desc_cc_global();
1841     /* Protects context cache */
1842     vtd_iommu_lock(s);
1843     s->context_cache_gen++;
1844     if (s->context_cache_gen == VTD_CONTEXT_CACHE_GEN_MAX) {
1845         vtd_reset_context_cache_locked(s);
1846     }
1847     vtd_iommu_unlock(s);
1848     vtd_address_space_refresh_all(s);
1849     /*
1850      * From VT-d spec 6.5.2.1, a global context entry invalidation
1851      * should be followed by a IOTLB global invalidation, so we should
1852      * be safe even without this. Hoewever, let's replay the region as
1853      * well to be safer, and go back here when we need finer tunes for
1854      * VT-d emulation codes.
1855      */
1856     vtd_iommu_replay_all(s);
1857 }
1858 
1859 /* Do a context-cache device-selective invalidation.
1860  * @func_mask: FM field after shifting
1861  */
1862 static void vtd_context_device_invalidate(IntelIOMMUState *s,
1863                                           uint16_t source_id,
1864                                           uint16_t func_mask)
1865 {
1866     uint16_t mask;
1867     VTDBus *vtd_bus;
1868     VTDAddressSpace *vtd_as;
1869     uint8_t bus_n, devfn;
1870     uint16_t devfn_it;
1871 
1872     trace_vtd_inv_desc_cc_devices(source_id, func_mask);
1873 
1874     switch (func_mask & 3) {
1875     case 0:
1876         mask = 0;   /* No bits in the SID field masked */
1877         break;
1878     case 1:
1879         mask = 4;   /* Mask bit 2 in the SID field */
1880         break;
1881     case 2:
1882         mask = 6;   /* Mask bit 2:1 in the SID field */
1883         break;
1884     case 3:
1885         mask = 7;   /* Mask bit 2:0 in the SID field */
1886         break;
1887     default:
1888         g_assert_not_reached();
1889     }
1890     mask = ~mask;
1891 
1892     bus_n = VTD_SID_TO_BUS(source_id);
1893     vtd_bus = vtd_find_as_from_bus_num(s, bus_n);
1894     if (vtd_bus) {
1895         devfn = VTD_SID_TO_DEVFN(source_id);
1896         for (devfn_it = 0; devfn_it < PCI_DEVFN_MAX; ++devfn_it) {
1897             vtd_as = vtd_bus->dev_as[devfn_it];
1898             if (vtd_as && ((devfn_it & mask) == (devfn & mask))) {
1899                 trace_vtd_inv_desc_cc_device(bus_n, VTD_PCI_SLOT(devfn_it),
1900                                              VTD_PCI_FUNC(devfn_it));
1901                 vtd_iommu_lock(s);
1902                 vtd_as->context_cache_entry.context_cache_gen = 0;
1903                 vtd_iommu_unlock(s);
1904                 /*
1905                  * Do switch address space when needed, in case if the
1906                  * device passthrough bit is switched.
1907                  */
1908                 vtd_switch_address_space(vtd_as);
1909                 /*
1910                  * So a device is moving out of (or moving into) a
1911                  * domain, resync the shadow page table.
1912                  * This won't bring bad even if we have no such
1913                  * notifier registered - the IOMMU notification
1914                  * framework will skip MAP notifications if that
1915                  * happened.
1916                  */
1917                 vtd_sync_shadow_page_table(vtd_as);
1918             }
1919         }
1920     }
1921 }
1922 
1923 /* Context-cache invalidation
1924  * Returns the Context Actual Invalidation Granularity.
1925  * @val: the content of the CCMD_REG
1926  */
1927 static uint64_t vtd_context_cache_invalidate(IntelIOMMUState *s, uint64_t val)
1928 {
1929     uint64_t caig;
1930     uint64_t type = val & VTD_CCMD_CIRG_MASK;
1931 
1932     switch (type) {
1933     case VTD_CCMD_DOMAIN_INVL:
1934         /* Fall through */
1935     case VTD_CCMD_GLOBAL_INVL:
1936         caig = VTD_CCMD_GLOBAL_INVL_A;
1937         vtd_context_global_invalidate(s);
1938         break;
1939 
1940     case VTD_CCMD_DEVICE_INVL:
1941         caig = VTD_CCMD_DEVICE_INVL_A;
1942         vtd_context_device_invalidate(s, VTD_CCMD_SID(val), VTD_CCMD_FM(val));
1943         break;
1944 
1945     default:
1946         error_report_once("%s: invalid context: 0x%" PRIx64,
1947                           __func__, val);
1948         caig = 0;
1949     }
1950     return caig;
1951 }
1952 
1953 static void vtd_iotlb_global_invalidate(IntelIOMMUState *s)
1954 {
1955     trace_vtd_inv_desc_iotlb_global();
1956     vtd_reset_iotlb(s);
1957     vtd_iommu_replay_all(s);
1958 }
1959 
1960 static void vtd_iotlb_domain_invalidate(IntelIOMMUState *s, uint16_t domain_id)
1961 {
1962     VTDContextEntry ce;
1963     VTDAddressSpace *vtd_as;
1964 
1965     trace_vtd_inv_desc_iotlb_domain(domain_id);
1966 
1967     vtd_iommu_lock(s);
1968     g_hash_table_foreach_remove(s->iotlb, vtd_hash_remove_by_domain,
1969                                 &domain_id);
1970     vtd_iommu_unlock(s);
1971 
1972     QLIST_FOREACH(vtd_as, &s->vtd_as_with_notifiers, next) {
1973         if (!vtd_dev_to_context_entry(s, pci_bus_num(vtd_as->bus),
1974                                       vtd_as->devfn, &ce) &&
1975             domain_id == vtd_get_domain_id(s, &ce)) {
1976             vtd_sync_shadow_page_table(vtd_as);
1977         }
1978     }
1979 }
1980 
1981 static void vtd_iotlb_page_invalidate_notify(IntelIOMMUState *s,
1982                                            uint16_t domain_id, hwaddr addr,
1983                                            uint8_t am)
1984 {
1985     VTDAddressSpace *vtd_as;
1986     VTDContextEntry ce;
1987     int ret;
1988     hwaddr size = (1 << am) * VTD_PAGE_SIZE;
1989 
1990     QLIST_FOREACH(vtd_as, &(s->vtd_as_with_notifiers), next) {
1991         ret = vtd_dev_to_context_entry(s, pci_bus_num(vtd_as->bus),
1992                                        vtd_as->devfn, &ce);
1993         if (!ret && domain_id == vtd_get_domain_id(s, &ce)) {
1994             if (vtd_as_has_map_notifier(vtd_as)) {
1995                 /*
1996                  * As long as we have MAP notifications registered in
1997                  * any of our IOMMU notifiers, we need to sync the
1998                  * shadow page table.
1999                  */
2000                 vtd_sync_shadow_page_table_range(vtd_as, &ce, addr, size);
2001             } else {
2002                 /*
2003                  * For UNMAP-only notifiers, we don't need to walk the
2004                  * page tables.  We just deliver the PSI down to
2005                  * invalidate caches.
2006                  */
2007                 IOMMUTLBEvent event = {
2008                     .type = IOMMU_NOTIFIER_UNMAP,
2009                     .entry = {
2010                         .target_as = &address_space_memory,
2011                         .iova = addr,
2012                         .translated_addr = 0,
2013                         .addr_mask = size - 1,
2014                         .perm = IOMMU_NONE,
2015                     },
2016                 };
2017                 memory_region_notify_iommu(&vtd_as->iommu, 0, event);
2018             }
2019         }
2020     }
2021 }
2022 
2023 static void vtd_iotlb_page_invalidate(IntelIOMMUState *s, uint16_t domain_id,
2024                                       hwaddr addr, uint8_t am)
2025 {
2026     VTDIOTLBPageInvInfo info;
2027 
2028     trace_vtd_inv_desc_iotlb_pages(domain_id, addr, am);
2029 
2030     assert(am <= VTD_MAMV);
2031     info.domain_id = domain_id;
2032     info.addr = addr;
2033     info.mask = ~((1 << am) - 1);
2034     vtd_iommu_lock(s);
2035     g_hash_table_foreach_remove(s->iotlb, vtd_hash_remove_by_page, &info);
2036     vtd_iommu_unlock(s);
2037     vtd_iotlb_page_invalidate_notify(s, domain_id, addr, am);
2038 }
2039 
2040 /* Flush IOTLB
2041  * Returns the IOTLB Actual Invalidation Granularity.
2042  * @val: the content of the IOTLB_REG
2043  */
2044 static uint64_t vtd_iotlb_flush(IntelIOMMUState *s, uint64_t val)
2045 {
2046     uint64_t iaig;
2047     uint64_t type = val & VTD_TLB_FLUSH_GRANU_MASK;
2048     uint16_t domain_id;
2049     hwaddr addr;
2050     uint8_t am;
2051 
2052     switch (type) {
2053     case VTD_TLB_GLOBAL_FLUSH:
2054         iaig = VTD_TLB_GLOBAL_FLUSH_A;
2055         vtd_iotlb_global_invalidate(s);
2056         break;
2057 
2058     case VTD_TLB_DSI_FLUSH:
2059         domain_id = VTD_TLB_DID(val);
2060         iaig = VTD_TLB_DSI_FLUSH_A;
2061         vtd_iotlb_domain_invalidate(s, domain_id);
2062         break;
2063 
2064     case VTD_TLB_PSI_FLUSH:
2065         domain_id = VTD_TLB_DID(val);
2066         addr = vtd_get_quad_raw(s, DMAR_IVA_REG);
2067         am = VTD_IVA_AM(addr);
2068         addr = VTD_IVA_ADDR(addr);
2069         if (am > VTD_MAMV) {
2070             error_report_once("%s: address mask overflow: 0x%" PRIx64,
2071                               __func__, vtd_get_quad_raw(s, DMAR_IVA_REG));
2072             iaig = 0;
2073             break;
2074         }
2075         iaig = VTD_TLB_PSI_FLUSH_A;
2076         vtd_iotlb_page_invalidate(s, domain_id, addr, am);
2077         break;
2078 
2079     default:
2080         error_report_once("%s: invalid granularity: 0x%" PRIx64,
2081                           __func__, val);
2082         iaig = 0;
2083     }
2084     return iaig;
2085 }
2086 
2087 static void vtd_fetch_inv_desc(IntelIOMMUState *s);
2088 
2089 static inline bool vtd_queued_inv_disable_check(IntelIOMMUState *s)
2090 {
2091     return s->qi_enabled && (s->iq_tail == s->iq_head) &&
2092            (s->iq_last_desc_type == VTD_INV_DESC_WAIT);
2093 }
2094 
2095 static void vtd_handle_gcmd_qie(IntelIOMMUState *s, bool en)
2096 {
2097     uint64_t iqa_val = vtd_get_quad_raw(s, DMAR_IQA_REG);
2098 
2099     trace_vtd_inv_qi_enable(en);
2100 
2101     if (en) {
2102         s->iq = iqa_val & VTD_IQA_IQA_MASK(s->aw_bits);
2103         /* 2^(x+8) entries */
2104         s->iq_size = 1UL << ((iqa_val & VTD_IQA_QS) + 8 - (s->iq_dw ? 1 : 0));
2105         s->qi_enabled = true;
2106         trace_vtd_inv_qi_setup(s->iq, s->iq_size);
2107         /* Ok - report back to driver */
2108         vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_QIES);
2109 
2110         if (s->iq_tail != 0) {
2111             /*
2112              * This is a spec violation but Windows guests are known to set up
2113              * Queued Invalidation this way so we allow the write and process
2114              * Invalidation Descriptors right away.
2115              */
2116             trace_vtd_warn_invalid_qi_tail(s->iq_tail);
2117             if (!(vtd_get_long_raw(s, DMAR_FSTS_REG) & VTD_FSTS_IQE)) {
2118                 vtd_fetch_inv_desc(s);
2119             }
2120         }
2121     } else {
2122         if (vtd_queued_inv_disable_check(s)) {
2123             /* disable Queued Invalidation */
2124             vtd_set_quad_raw(s, DMAR_IQH_REG, 0);
2125             s->iq_head = 0;
2126             s->qi_enabled = false;
2127             /* Ok - report back to driver */
2128             vtd_set_clear_mask_long(s, DMAR_GSTS_REG, VTD_GSTS_QIES, 0);
2129         } else {
2130             error_report_once("%s: detected improper state when disable QI "
2131                               "(head=0x%x, tail=0x%x, last_type=%d)",
2132                               __func__,
2133                               s->iq_head, s->iq_tail, s->iq_last_desc_type);
2134         }
2135     }
2136 }
2137 
2138 /* Set Root Table Pointer */
2139 static void vtd_handle_gcmd_srtp(IntelIOMMUState *s)
2140 {
2141     vtd_root_table_setup(s);
2142     /* Ok - report back to driver */
2143     vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_RTPS);
2144     vtd_reset_caches(s);
2145     vtd_address_space_refresh_all(s);
2146 }
2147 
2148 /* Set Interrupt Remap Table Pointer */
2149 static void vtd_handle_gcmd_sirtp(IntelIOMMUState *s)
2150 {
2151     vtd_interrupt_remap_table_setup(s);
2152     /* Ok - report back to driver */
2153     vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_IRTPS);
2154 }
2155 
2156 /* Handle Translation Enable/Disable */
2157 static void vtd_handle_gcmd_te(IntelIOMMUState *s, bool en)
2158 {
2159     if (s->dmar_enabled == en) {
2160         return;
2161     }
2162 
2163     trace_vtd_dmar_enable(en);
2164 
2165     if (en) {
2166         s->dmar_enabled = true;
2167         /* Ok - report back to driver */
2168         vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_TES);
2169     } else {
2170         s->dmar_enabled = false;
2171 
2172         /* Clear the index of Fault Recording Register */
2173         s->next_frcd_reg = 0;
2174         /* Ok - report back to driver */
2175         vtd_set_clear_mask_long(s, DMAR_GSTS_REG, VTD_GSTS_TES, 0);
2176     }
2177 
2178     vtd_reset_caches(s);
2179     vtd_address_space_refresh_all(s);
2180 }
2181 
2182 /* Handle Interrupt Remap Enable/Disable */
2183 static void vtd_handle_gcmd_ire(IntelIOMMUState *s, bool en)
2184 {
2185     trace_vtd_ir_enable(en);
2186 
2187     if (en) {
2188         s->intr_enabled = true;
2189         /* Ok - report back to driver */
2190         vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_IRES);
2191     } else {
2192         s->intr_enabled = false;
2193         /* Ok - report back to driver */
2194         vtd_set_clear_mask_long(s, DMAR_GSTS_REG, VTD_GSTS_IRES, 0);
2195     }
2196 }
2197 
2198 /* Handle write to Global Command Register */
2199 static void vtd_handle_gcmd_write(IntelIOMMUState *s)
2200 {
2201     uint32_t status = vtd_get_long_raw(s, DMAR_GSTS_REG);
2202     uint32_t val = vtd_get_long_raw(s, DMAR_GCMD_REG);
2203     uint32_t changed = status ^ val;
2204 
2205     trace_vtd_reg_write_gcmd(status, val);
2206     if (changed & VTD_GCMD_TE) {
2207         /* Translation enable/disable */
2208         vtd_handle_gcmd_te(s, val & VTD_GCMD_TE);
2209     }
2210     if (val & VTD_GCMD_SRTP) {
2211         /* Set/update the root-table pointer */
2212         vtd_handle_gcmd_srtp(s);
2213     }
2214     if (changed & VTD_GCMD_QIE) {
2215         /* Queued Invalidation Enable */
2216         vtd_handle_gcmd_qie(s, val & VTD_GCMD_QIE);
2217     }
2218     if (val & VTD_GCMD_SIRTP) {
2219         /* Set/update the interrupt remapping root-table pointer */
2220         vtd_handle_gcmd_sirtp(s);
2221     }
2222     if (changed & VTD_GCMD_IRE) {
2223         /* Interrupt remap enable/disable */
2224         vtd_handle_gcmd_ire(s, val & VTD_GCMD_IRE);
2225     }
2226 }
2227 
2228 /* Handle write to Context Command Register */
2229 static void vtd_handle_ccmd_write(IntelIOMMUState *s)
2230 {
2231     uint64_t ret;
2232     uint64_t val = vtd_get_quad_raw(s, DMAR_CCMD_REG);
2233 
2234     /* Context-cache invalidation request */
2235     if (val & VTD_CCMD_ICC) {
2236         if (s->qi_enabled) {
2237             error_report_once("Queued Invalidation enabled, "
2238                               "should not use register-based invalidation");
2239             return;
2240         }
2241         ret = vtd_context_cache_invalidate(s, val);
2242         /* Invalidation completed. Change something to show */
2243         vtd_set_clear_mask_quad(s, DMAR_CCMD_REG, VTD_CCMD_ICC, 0ULL);
2244         ret = vtd_set_clear_mask_quad(s, DMAR_CCMD_REG, VTD_CCMD_CAIG_MASK,
2245                                       ret);
2246     }
2247 }
2248 
2249 /* Handle write to IOTLB Invalidation Register */
2250 static void vtd_handle_iotlb_write(IntelIOMMUState *s)
2251 {
2252     uint64_t ret;
2253     uint64_t val = vtd_get_quad_raw(s, DMAR_IOTLB_REG);
2254 
2255     /* IOTLB invalidation request */
2256     if (val & VTD_TLB_IVT) {
2257         if (s->qi_enabled) {
2258             error_report_once("Queued Invalidation enabled, "
2259                               "should not use register-based invalidation");
2260             return;
2261         }
2262         ret = vtd_iotlb_flush(s, val);
2263         /* Invalidation completed. Change something to show */
2264         vtd_set_clear_mask_quad(s, DMAR_IOTLB_REG, VTD_TLB_IVT, 0ULL);
2265         ret = vtd_set_clear_mask_quad(s, DMAR_IOTLB_REG,
2266                                       VTD_TLB_FLUSH_GRANU_MASK_A, ret);
2267     }
2268 }
2269 
2270 /* Fetch an Invalidation Descriptor from the Invalidation Queue */
2271 static bool vtd_get_inv_desc(IntelIOMMUState *s,
2272                              VTDInvDesc *inv_desc)
2273 {
2274     dma_addr_t base_addr = s->iq;
2275     uint32_t offset = s->iq_head;
2276     uint32_t dw = s->iq_dw ? 32 : 16;
2277     dma_addr_t addr = base_addr + offset * dw;
2278 
2279     if (dma_memory_read(&address_space_memory, addr, inv_desc, dw)) {
2280         error_report_once("Read INV DESC failed.");
2281         return false;
2282     }
2283     inv_desc->lo = le64_to_cpu(inv_desc->lo);
2284     inv_desc->hi = le64_to_cpu(inv_desc->hi);
2285     if (dw == 32) {
2286         inv_desc->val[2] = le64_to_cpu(inv_desc->val[2]);
2287         inv_desc->val[3] = le64_to_cpu(inv_desc->val[3]);
2288     }
2289     return true;
2290 }
2291 
2292 static bool vtd_process_wait_desc(IntelIOMMUState *s, VTDInvDesc *inv_desc)
2293 {
2294     if ((inv_desc->hi & VTD_INV_DESC_WAIT_RSVD_HI) ||
2295         (inv_desc->lo & VTD_INV_DESC_WAIT_RSVD_LO)) {
2296         error_report_once("%s: invalid wait desc: hi=%"PRIx64", lo=%"PRIx64
2297                           " (reserved nonzero)", __func__, inv_desc->hi,
2298                           inv_desc->lo);
2299         return false;
2300     }
2301     if (inv_desc->lo & VTD_INV_DESC_WAIT_SW) {
2302         /* Status Write */
2303         uint32_t status_data = (uint32_t)(inv_desc->lo >>
2304                                VTD_INV_DESC_WAIT_DATA_SHIFT);
2305 
2306         assert(!(inv_desc->lo & VTD_INV_DESC_WAIT_IF));
2307 
2308         /* FIXME: need to be masked with HAW? */
2309         dma_addr_t status_addr = inv_desc->hi;
2310         trace_vtd_inv_desc_wait_sw(status_addr, status_data);
2311         status_data = cpu_to_le32(status_data);
2312         if (dma_memory_write(&address_space_memory, status_addr, &status_data,
2313                              sizeof(status_data))) {
2314             trace_vtd_inv_desc_wait_write_fail(inv_desc->hi, inv_desc->lo);
2315             return false;
2316         }
2317     } else if (inv_desc->lo & VTD_INV_DESC_WAIT_IF) {
2318         /* Interrupt flag */
2319         vtd_generate_completion_event(s);
2320     } else {
2321         error_report_once("%s: invalid wait desc: hi=%"PRIx64", lo=%"PRIx64
2322                           " (unknown type)", __func__, inv_desc->hi,
2323                           inv_desc->lo);
2324         return false;
2325     }
2326     return true;
2327 }
2328 
2329 static bool vtd_process_context_cache_desc(IntelIOMMUState *s,
2330                                            VTDInvDesc *inv_desc)
2331 {
2332     uint16_t sid, fmask;
2333 
2334     if ((inv_desc->lo & VTD_INV_DESC_CC_RSVD) || inv_desc->hi) {
2335         error_report_once("%s: invalid cc inv desc: hi=%"PRIx64", lo=%"PRIx64
2336                           " (reserved nonzero)", __func__, inv_desc->hi,
2337                           inv_desc->lo);
2338         return false;
2339     }
2340     switch (inv_desc->lo & VTD_INV_DESC_CC_G) {
2341     case VTD_INV_DESC_CC_DOMAIN:
2342         trace_vtd_inv_desc_cc_domain(
2343             (uint16_t)VTD_INV_DESC_CC_DID(inv_desc->lo));
2344         /* Fall through */
2345     case VTD_INV_DESC_CC_GLOBAL:
2346         vtd_context_global_invalidate(s);
2347         break;
2348 
2349     case VTD_INV_DESC_CC_DEVICE:
2350         sid = VTD_INV_DESC_CC_SID(inv_desc->lo);
2351         fmask = VTD_INV_DESC_CC_FM(inv_desc->lo);
2352         vtd_context_device_invalidate(s, sid, fmask);
2353         break;
2354 
2355     default:
2356         error_report_once("%s: invalid cc inv desc: hi=%"PRIx64", lo=%"PRIx64
2357                           " (invalid type)", __func__, inv_desc->hi,
2358                           inv_desc->lo);
2359         return false;
2360     }
2361     return true;
2362 }
2363 
2364 static bool vtd_process_iotlb_desc(IntelIOMMUState *s, VTDInvDesc *inv_desc)
2365 {
2366     uint16_t domain_id;
2367     uint8_t am;
2368     hwaddr addr;
2369 
2370     if ((inv_desc->lo & VTD_INV_DESC_IOTLB_RSVD_LO) ||
2371         (inv_desc->hi & VTD_INV_DESC_IOTLB_RSVD_HI)) {
2372         error_report_once("%s: invalid iotlb inv desc: hi=0x%"PRIx64
2373                           ", lo=0x%"PRIx64" (reserved bits unzero)",
2374                           __func__, inv_desc->hi, inv_desc->lo);
2375         return false;
2376     }
2377 
2378     switch (inv_desc->lo & VTD_INV_DESC_IOTLB_G) {
2379     case VTD_INV_DESC_IOTLB_GLOBAL:
2380         vtd_iotlb_global_invalidate(s);
2381         break;
2382 
2383     case VTD_INV_DESC_IOTLB_DOMAIN:
2384         domain_id = VTD_INV_DESC_IOTLB_DID(inv_desc->lo);
2385         vtd_iotlb_domain_invalidate(s, domain_id);
2386         break;
2387 
2388     case VTD_INV_DESC_IOTLB_PAGE:
2389         domain_id = VTD_INV_DESC_IOTLB_DID(inv_desc->lo);
2390         addr = VTD_INV_DESC_IOTLB_ADDR(inv_desc->hi);
2391         am = VTD_INV_DESC_IOTLB_AM(inv_desc->hi);
2392         if (am > VTD_MAMV) {
2393             error_report_once("%s: invalid iotlb inv desc: hi=0x%"PRIx64
2394                               ", lo=0x%"PRIx64" (am=%u > VTD_MAMV=%u)",
2395                               __func__, inv_desc->hi, inv_desc->lo,
2396                               am, (unsigned)VTD_MAMV);
2397             return false;
2398         }
2399         vtd_iotlb_page_invalidate(s, domain_id, addr, am);
2400         break;
2401 
2402     default:
2403         error_report_once("%s: invalid iotlb inv desc: hi=0x%"PRIx64
2404                           ", lo=0x%"PRIx64" (type mismatch: 0x%llx)",
2405                           __func__, inv_desc->hi, inv_desc->lo,
2406                           inv_desc->lo & VTD_INV_DESC_IOTLB_G);
2407         return false;
2408     }
2409     return true;
2410 }
2411 
2412 static bool vtd_process_inv_iec_desc(IntelIOMMUState *s,
2413                                      VTDInvDesc *inv_desc)
2414 {
2415     trace_vtd_inv_desc_iec(inv_desc->iec.granularity,
2416                            inv_desc->iec.index,
2417                            inv_desc->iec.index_mask);
2418 
2419     vtd_iec_notify_all(s, !inv_desc->iec.granularity,
2420                        inv_desc->iec.index,
2421                        inv_desc->iec.index_mask);
2422     return true;
2423 }
2424 
2425 static bool vtd_process_device_iotlb_desc(IntelIOMMUState *s,
2426                                           VTDInvDesc *inv_desc)
2427 {
2428     VTDAddressSpace *vtd_dev_as;
2429     IOMMUTLBEvent event;
2430     struct VTDBus *vtd_bus;
2431     hwaddr addr;
2432     uint64_t sz;
2433     uint16_t sid;
2434     uint8_t devfn;
2435     bool size;
2436     uint8_t bus_num;
2437 
2438     addr = VTD_INV_DESC_DEVICE_IOTLB_ADDR(inv_desc->hi);
2439     sid = VTD_INV_DESC_DEVICE_IOTLB_SID(inv_desc->lo);
2440     devfn = sid & 0xff;
2441     bus_num = sid >> 8;
2442     size = VTD_INV_DESC_DEVICE_IOTLB_SIZE(inv_desc->hi);
2443 
2444     if ((inv_desc->lo & VTD_INV_DESC_DEVICE_IOTLB_RSVD_LO) ||
2445         (inv_desc->hi & VTD_INV_DESC_DEVICE_IOTLB_RSVD_HI)) {
2446         error_report_once("%s: invalid dev-iotlb inv desc: hi=%"PRIx64
2447                           ", lo=%"PRIx64" (reserved nonzero)", __func__,
2448                           inv_desc->hi, inv_desc->lo);
2449         return false;
2450     }
2451 
2452     vtd_bus = vtd_find_as_from_bus_num(s, bus_num);
2453     if (!vtd_bus) {
2454         goto done;
2455     }
2456 
2457     vtd_dev_as = vtd_bus->dev_as[devfn];
2458     if (!vtd_dev_as) {
2459         goto done;
2460     }
2461 
2462     /* According to ATS spec table 2.4:
2463      * S = 0, bits 15:12 = xxxx     range size: 4K
2464      * S = 1, bits 15:12 = xxx0     range size: 8K
2465      * S = 1, bits 15:12 = xx01     range size: 16K
2466      * S = 1, bits 15:12 = x011     range size: 32K
2467      * S = 1, bits 15:12 = 0111     range size: 64K
2468      * ...
2469      */
2470     if (size) {
2471         sz = (VTD_PAGE_SIZE * 2) << cto64(addr >> VTD_PAGE_SHIFT);
2472         addr &= ~(sz - 1);
2473     } else {
2474         sz = VTD_PAGE_SIZE;
2475     }
2476 
2477     event.type = IOMMU_NOTIFIER_DEVIOTLB_UNMAP;
2478     event.entry.target_as = &vtd_dev_as->as;
2479     event.entry.addr_mask = sz - 1;
2480     event.entry.iova = addr;
2481     event.entry.perm = IOMMU_NONE;
2482     event.entry.translated_addr = 0;
2483     memory_region_notify_iommu(&vtd_dev_as->iommu, 0, event);
2484 
2485 done:
2486     return true;
2487 }
2488 
2489 static bool vtd_process_inv_desc(IntelIOMMUState *s)
2490 {
2491     VTDInvDesc inv_desc;
2492     uint8_t desc_type;
2493 
2494     trace_vtd_inv_qi_head(s->iq_head);
2495     if (!vtd_get_inv_desc(s, &inv_desc)) {
2496         s->iq_last_desc_type = VTD_INV_DESC_NONE;
2497         return false;
2498     }
2499 
2500     desc_type = inv_desc.lo & VTD_INV_DESC_TYPE;
2501     /* FIXME: should update at first or at last? */
2502     s->iq_last_desc_type = desc_type;
2503 
2504     switch (desc_type) {
2505     case VTD_INV_DESC_CC:
2506         trace_vtd_inv_desc("context-cache", inv_desc.hi, inv_desc.lo);
2507         if (!vtd_process_context_cache_desc(s, &inv_desc)) {
2508             return false;
2509         }
2510         break;
2511 
2512     case VTD_INV_DESC_IOTLB:
2513         trace_vtd_inv_desc("iotlb", inv_desc.hi, inv_desc.lo);
2514         if (!vtd_process_iotlb_desc(s, &inv_desc)) {
2515             return false;
2516         }
2517         break;
2518 
2519     /*
2520      * TODO: the entity of below two cases will be implemented in future series.
2521      * To make guest (which integrates scalable mode support patch set in
2522      * iommu driver) work, just return true is enough so far.
2523      */
2524     case VTD_INV_DESC_PC:
2525         break;
2526 
2527     case VTD_INV_DESC_PIOTLB:
2528         break;
2529 
2530     case VTD_INV_DESC_WAIT:
2531         trace_vtd_inv_desc("wait", inv_desc.hi, inv_desc.lo);
2532         if (!vtd_process_wait_desc(s, &inv_desc)) {
2533             return false;
2534         }
2535         break;
2536 
2537     case VTD_INV_DESC_IEC:
2538         trace_vtd_inv_desc("iec", inv_desc.hi, inv_desc.lo);
2539         if (!vtd_process_inv_iec_desc(s, &inv_desc)) {
2540             return false;
2541         }
2542         break;
2543 
2544     case VTD_INV_DESC_DEVICE:
2545         trace_vtd_inv_desc("device", inv_desc.hi, inv_desc.lo);
2546         if (!vtd_process_device_iotlb_desc(s, &inv_desc)) {
2547             return false;
2548         }
2549         break;
2550 
2551     default:
2552         error_report_once("%s: invalid inv desc: hi=%"PRIx64", lo=%"PRIx64
2553                           " (unknown type)", __func__, inv_desc.hi,
2554                           inv_desc.lo);
2555         return false;
2556     }
2557     s->iq_head++;
2558     if (s->iq_head == s->iq_size) {
2559         s->iq_head = 0;
2560     }
2561     return true;
2562 }
2563 
2564 /* Try to fetch and process more Invalidation Descriptors */
2565 static void vtd_fetch_inv_desc(IntelIOMMUState *s)
2566 {
2567     int qi_shift;
2568 
2569     /* Refer to 10.4.23 of VT-d spec 3.0 */
2570     qi_shift = s->iq_dw ? VTD_IQH_QH_SHIFT_5 : VTD_IQH_QH_SHIFT_4;
2571 
2572     trace_vtd_inv_qi_fetch();
2573 
2574     if (s->iq_tail >= s->iq_size) {
2575         /* Detects an invalid Tail pointer */
2576         error_report_once("%s: detected invalid QI tail "
2577                           "(tail=0x%x, size=0x%x)",
2578                           __func__, s->iq_tail, s->iq_size);
2579         vtd_handle_inv_queue_error(s);
2580         return;
2581     }
2582     while (s->iq_head != s->iq_tail) {
2583         if (!vtd_process_inv_desc(s)) {
2584             /* Invalidation Queue Errors */
2585             vtd_handle_inv_queue_error(s);
2586             break;
2587         }
2588         /* Must update the IQH_REG in time */
2589         vtd_set_quad_raw(s, DMAR_IQH_REG,
2590                          (((uint64_t)(s->iq_head)) << qi_shift) &
2591                          VTD_IQH_QH_MASK);
2592     }
2593 }
2594 
2595 /* Handle write to Invalidation Queue Tail Register */
2596 static void vtd_handle_iqt_write(IntelIOMMUState *s)
2597 {
2598     uint64_t val = vtd_get_quad_raw(s, DMAR_IQT_REG);
2599 
2600     if (s->iq_dw && (val & VTD_IQT_QT_256_RSV_BIT)) {
2601         error_report_once("%s: RSV bit is set: val=0x%"PRIx64,
2602                           __func__, val);
2603         return;
2604     }
2605     s->iq_tail = VTD_IQT_QT(s->iq_dw, val);
2606     trace_vtd_inv_qi_tail(s->iq_tail);
2607 
2608     if (s->qi_enabled && !(vtd_get_long_raw(s, DMAR_FSTS_REG) & VTD_FSTS_IQE)) {
2609         /* Process Invalidation Queue here */
2610         vtd_fetch_inv_desc(s);
2611     }
2612 }
2613 
2614 static void vtd_handle_fsts_write(IntelIOMMUState *s)
2615 {
2616     uint32_t fsts_reg = vtd_get_long_raw(s, DMAR_FSTS_REG);
2617     uint32_t fectl_reg = vtd_get_long_raw(s, DMAR_FECTL_REG);
2618     uint32_t status_fields = VTD_FSTS_PFO | VTD_FSTS_PPF | VTD_FSTS_IQE;
2619 
2620     if ((fectl_reg & VTD_FECTL_IP) && !(fsts_reg & status_fields)) {
2621         vtd_set_clear_mask_long(s, DMAR_FECTL_REG, VTD_FECTL_IP, 0);
2622         trace_vtd_fsts_clear_ip();
2623     }
2624     /* FIXME: when IQE is Clear, should we try to fetch some Invalidation
2625      * Descriptors if there are any when Queued Invalidation is enabled?
2626      */
2627 }
2628 
2629 static void vtd_handle_fectl_write(IntelIOMMUState *s)
2630 {
2631     uint32_t fectl_reg;
2632     /* FIXME: when software clears the IM field, check the IP field. But do we
2633      * need to compare the old value and the new value to conclude that
2634      * software clears the IM field? Or just check if the IM field is zero?
2635      */
2636     fectl_reg = vtd_get_long_raw(s, DMAR_FECTL_REG);
2637 
2638     trace_vtd_reg_write_fectl(fectl_reg);
2639 
2640     if ((fectl_reg & VTD_FECTL_IP) && !(fectl_reg & VTD_FECTL_IM)) {
2641         vtd_generate_interrupt(s, DMAR_FEADDR_REG, DMAR_FEDATA_REG);
2642         vtd_set_clear_mask_long(s, DMAR_FECTL_REG, VTD_FECTL_IP, 0);
2643     }
2644 }
2645 
2646 static void vtd_handle_ics_write(IntelIOMMUState *s)
2647 {
2648     uint32_t ics_reg = vtd_get_long_raw(s, DMAR_ICS_REG);
2649     uint32_t iectl_reg = vtd_get_long_raw(s, DMAR_IECTL_REG);
2650 
2651     if ((iectl_reg & VTD_IECTL_IP) && !(ics_reg & VTD_ICS_IWC)) {
2652         trace_vtd_reg_ics_clear_ip();
2653         vtd_set_clear_mask_long(s, DMAR_IECTL_REG, VTD_IECTL_IP, 0);
2654     }
2655 }
2656 
2657 static void vtd_handle_iectl_write(IntelIOMMUState *s)
2658 {
2659     uint32_t iectl_reg;
2660     /* FIXME: when software clears the IM field, check the IP field. But do we
2661      * need to compare the old value and the new value to conclude that
2662      * software clears the IM field? Or just check if the IM field is zero?
2663      */
2664     iectl_reg = vtd_get_long_raw(s, DMAR_IECTL_REG);
2665 
2666     trace_vtd_reg_write_iectl(iectl_reg);
2667 
2668     if ((iectl_reg & VTD_IECTL_IP) && !(iectl_reg & VTD_IECTL_IM)) {
2669         vtd_generate_interrupt(s, DMAR_IEADDR_REG, DMAR_IEDATA_REG);
2670         vtd_set_clear_mask_long(s, DMAR_IECTL_REG, VTD_IECTL_IP, 0);
2671     }
2672 }
2673 
2674 static uint64_t vtd_mem_read(void *opaque, hwaddr addr, unsigned size)
2675 {
2676     IntelIOMMUState *s = opaque;
2677     uint64_t val;
2678 
2679     trace_vtd_reg_read(addr, size);
2680 
2681     if (addr + size > DMAR_REG_SIZE) {
2682         error_report_once("%s: MMIO over range: addr=0x%" PRIx64
2683                           " size=0x%x", __func__, addr, size);
2684         return (uint64_t)-1;
2685     }
2686 
2687     switch (addr) {
2688     /* Root Table Address Register, 64-bit */
2689     case DMAR_RTADDR_REG:
2690         val = vtd_get_quad_raw(s, DMAR_RTADDR_REG);
2691         if (size == 4) {
2692             val = val & ((1ULL << 32) - 1);
2693         }
2694         break;
2695 
2696     case DMAR_RTADDR_REG_HI:
2697         assert(size == 4);
2698         val = vtd_get_quad_raw(s, DMAR_RTADDR_REG) >> 32;
2699         break;
2700 
2701     /* Invalidation Queue Address Register, 64-bit */
2702     case DMAR_IQA_REG:
2703         val = s->iq | (vtd_get_quad(s, DMAR_IQA_REG) & VTD_IQA_QS);
2704         if (size == 4) {
2705             val = val & ((1ULL << 32) - 1);
2706         }
2707         break;
2708 
2709     case DMAR_IQA_REG_HI:
2710         assert(size == 4);
2711         val = s->iq >> 32;
2712         break;
2713 
2714     default:
2715         if (size == 4) {
2716             val = vtd_get_long(s, addr);
2717         } else {
2718             val = vtd_get_quad(s, addr);
2719         }
2720     }
2721 
2722     return val;
2723 }
2724 
2725 static void vtd_mem_write(void *opaque, hwaddr addr,
2726                           uint64_t val, unsigned size)
2727 {
2728     IntelIOMMUState *s = opaque;
2729 
2730     trace_vtd_reg_write(addr, size, val);
2731 
2732     if (addr + size > DMAR_REG_SIZE) {
2733         error_report_once("%s: MMIO over range: addr=0x%" PRIx64
2734                           " size=0x%x", __func__, addr, size);
2735         return;
2736     }
2737 
2738     switch (addr) {
2739     /* Global Command Register, 32-bit */
2740     case DMAR_GCMD_REG:
2741         vtd_set_long(s, addr, val);
2742         vtd_handle_gcmd_write(s);
2743         break;
2744 
2745     /* Context Command Register, 64-bit */
2746     case DMAR_CCMD_REG:
2747         if (size == 4) {
2748             vtd_set_long(s, addr, val);
2749         } else {
2750             vtd_set_quad(s, addr, val);
2751             vtd_handle_ccmd_write(s);
2752         }
2753         break;
2754 
2755     case DMAR_CCMD_REG_HI:
2756         assert(size == 4);
2757         vtd_set_long(s, addr, val);
2758         vtd_handle_ccmd_write(s);
2759         break;
2760 
2761     /* IOTLB Invalidation Register, 64-bit */
2762     case DMAR_IOTLB_REG:
2763         if (size == 4) {
2764             vtd_set_long(s, addr, val);
2765         } else {
2766             vtd_set_quad(s, addr, val);
2767             vtd_handle_iotlb_write(s);
2768         }
2769         break;
2770 
2771     case DMAR_IOTLB_REG_HI:
2772         assert(size == 4);
2773         vtd_set_long(s, addr, val);
2774         vtd_handle_iotlb_write(s);
2775         break;
2776 
2777     /* Invalidate Address Register, 64-bit */
2778     case DMAR_IVA_REG:
2779         if (size == 4) {
2780             vtd_set_long(s, addr, val);
2781         } else {
2782             vtd_set_quad(s, addr, val);
2783         }
2784         break;
2785 
2786     case DMAR_IVA_REG_HI:
2787         assert(size == 4);
2788         vtd_set_long(s, addr, val);
2789         break;
2790 
2791     /* Fault Status Register, 32-bit */
2792     case DMAR_FSTS_REG:
2793         assert(size == 4);
2794         vtd_set_long(s, addr, val);
2795         vtd_handle_fsts_write(s);
2796         break;
2797 
2798     /* Fault Event Control Register, 32-bit */
2799     case DMAR_FECTL_REG:
2800         assert(size == 4);
2801         vtd_set_long(s, addr, val);
2802         vtd_handle_fectl_write(s);
2803         break;
2804 
2805     /* Fault Event Data Register, 32-bit */
2806     case DMAR_FEDATA_REG:
2807         assert(size == 4);
2808         vtd_set_long(s, addr, val);
2809         break;
2810 
2811     /* Fault Event Address Register, 32-bit */
2812     case DMAR_FEADDR_REG:
2813         if (size == 4) {
2814             vtd_set_long(s, addr, val);
2815         } else {
2816             /*
2817              * While the register is 32-bit only, some guests (Xen...) write to
2818              * it with 64-bit.
2819              */
2820             vtd_set_quad(s, addr, val);
2821         }
2822         break;
2823 
2824     /* Fault Event Upper Address Register, 32-bit */
2825     case DMAR_FEUADDR_REG:
2826         assert(size == 4);
2827         vtd_set_long(s, addr, val);
2828         break;
2829 
2830     /* Protected Memory Enable Register, 32-bit */
2831     case DMAR_PMEN_REG:
2832         assert(size == 4);
2833         vtd_set_long(s, addr, val);
2834         break;
2835 
2836     /* Root Table Address Register, 64-bit */
2837     case DMAR_RTADDR_REG:
2838         if (size == 4) {
2839             vtd_set_long(s, addr, val);
2840         } else {
2841             vtd_set_quad(s, addr, val);
2842         }
2843         break;
2844 
2845     case DMAR_RTADDR_REG_HI:
2846         assert(size == 4);
2847         vtd_set_long(s, addr, val);
2848         break;
2849 
2850     /* Invalidation Queue Tail Register, 64-bit */
2851     case DMAR_IQT_REG:
2852         if (size == 4) {
2853             vtd_set_long(s, addr, val);
2854         } else {
2855             vtd_set_quad(s, addr, val);
2856         }
2857         vtd_handle_iqt_write(s);
2858         break;
2859 
2860     case DMAR_IQT_REG_HI:
2861         assert(size == 4);
2862         vtd_set_long(s, addr, val);
2863         /* 19:63 of IQT_REG is RsvdZ, do nothing here */
2864         break;
2865 
2866     /* Invalidation Queue Address Register, 64-bit */
2867     case DMAR_IQA_REG:
2868         if (size == 4) {
2869             vtd_set_long(s, addr, val);
2870         } else {
2871             vtd_set_quad(s, addr, val);
2872         }
2873         if (s->ecap & VTD_ECAP_SMTS &&
2874             val & VTD_IQA_DW_MASK) {
2875             s->iq_dw = true;
2876         } else {
2877             s->iq_dw = false;
2878         }
2879         break;
2880 
2881     case DMAR_IQA_REG_HI:
2882         assert(size == 4);
2883         vtd_set_long(s, addr, val);
2884         break;
2885 
2886     /* Invalidation Completion Status Register, 32-bit */
2887     case DMAR_ICS_REG:
2888         assert(size == 4);
2889         vtd_set_long(s, addr, val);
2890         vtd_handle_ics_write(s);
2891         break;
2892 
2893     /* Invalidation Event Control Register, 32-bit */
2894     case DMAR_IECTL_REG:
2895         assert(size == 4);
2896         vtd_set_long(s, addr, val);
2897         vtd_handle_iectl_write(s);
2898         break;
2899 
2900     /* Invalidation Event Data Register, 32-bit */
2901     case DMAR_IEDATA_REG:
2902         assert(size == 4);
2903         vtd_set_long(s, addr, val);
2904         break;
2905 
2906     /* Invalidation Event Address Register, 32-bit */
2907     case DMAR_IEADDR_REG:
2908         assert(size == 4);
2909         vtd_set_long(s, addr, val);
2910         break;
2911 
2912     /* Invalidation Event Upper Address Register, 32-bit */
2913     case DMAR_IEUADDR_REG:
2914         assert(size == 4);
2915         vtd_set_long(s, addr, val);
2916         break;
2917 
2918     /* Fault Recording Registers, 128-bit */
2919     case DMAR_FRCD_REG_0_0:
2920         if (size == 4) {
2921             vtd_set_long(s, addr, val);
2922         } else {
2923             vtd_set_quad(s, addr, val);
2924         }
2925         break;
2926 
2927     case DMAR_FRCD_REG_0_1:
2928         assert(size == 4);
2929         vtd_set_long(s, addr, val);
2930         break;
2931 
2932     case DMAR_FRCD_REG_0_2:
2933         if (size == 4) {
2934             vtd_set_long(s, addr, val);
2935         } else {
2936             vtd_set_quad(s, addr, val);
2937             /* May clear bit 127 (Fault), update PPF */
2938             vtd_update_fsts_ppf(s);
2939         }
2940         break;
2941 
2942     case DMAR_FRCD_REG_0_3:
2943         assert(size == 4);
2944         vtd_set_long(s, addr, val);
2945         /* May clear bit 127 (Fault), update PPF */
2946         vtd_update_fsts_ppf(s);
2947         break;
2948 
2949     case DMAR_IRTA_REG:
2950         if (size == 4) {
2951             vtd_set_long(s, addr, val);
2952         } else {
2953             vtd_set_quad(s, addr, val);
2954         }
2955         break;
2956 
2957     case DMAR_IRTA_REG_HI:
2958         assert(size == 4);
2959         vtd_set_long(s, addr, val);
2960         break;
2961 
2962     default:
2963         if (size == 4) {
2964             vtd_set_long(s, addr, val);
2965         } else {
2966             vtd_set_quad(s, addr, val);
2967         }
2968     }
2969 }
2970 
2971 static IOMMUTLBEntry vtd_iommu_translate(IOMMUMemoryRegion *iommu, hwaddr addr,
2972                                          IOMMUAccessFlags flag, int iommu_idx)
2973 {
2974     VTDAddressSpace *vtd_as = container_of(iommu, VTDAddressSpace, iommu);
2975     IntelIOMMUState *s = vtd_as->iommu_state;
2976     IOMMUTLBEntry iotlb = {
2977         /* We'll fill in the rest later. */
2978         .target_as = &address_space_memory,
2979     };
2980     bool success;
2981 
2982     if (likely(s->dmar_enabled)) {
2983         success = vtd_do_iommu_translate(vtd_as, vtd_as->bus, vtd_as->devfn,
2984                                          addr, flag & IOMMU_WO, &iotlb);
2985     } else {
2986         /* DMAR disabled, passthrough, use 4k-page*/
2987         iotlb.iova = addr & VTD_PAGE_MASK_4K;
2988         iotlb.translated_addr = addr & VTD_PAGE_MASK_4K;
2989         iotlb.addr_mask = ~VTD_PAGE_MASK_4K;
2990         iotlb.perm = IOMMU_RW;
2991         success = true;
2992     }
2993 
2994     if (likely(success)) {
2995         trace_vtd_dmar_translate(pci_bus_num(vtd_as->bus),
2996                                  VTD_PCI_SLOT(vtd_as->devfn),
2997                                  VTD_PCI_FUNC(vtd_as->devfn),
2998                                  iotlb.iova, iotlb.translated_addr,
2999                                  iotlb.addr_mask);
3000     } else {
3001         error_report_once("%s: detected translation failure "
3002                           "(dev=%02x:%02x:%02x, iova=0x%" PRIx64 ")",
3003                           __func__, pci_bus_num(vtd_as->bus),
3004                           VTD_PCI_SLOT(vtd_as->devfn),
3005                           VTD_PCI_FUNC(vtd_as->devfn),
3006                           addr);
3007     }
3008 
3009     return iotlb;
3010 }
3011 
3012 static int vtd_iommu_notify_flag_changed(IOMMUMemoryRegion *iommu,
3013                                          IOMMUNotifierFlag old,
3014                                          IOMMUNotifierFlag new,
3015                                          Error **errp)
3016 {
3017     VTDAddressSpace *vtd_as = container_of(iommu, VTDAddressSpace, iommu);
3018     IntelIOMMUState *s = vtd_as->iommu_state;
3019 
3020     /* Update per-address-space notifier flags */
3021     vtd_as->notifier_flags = new;
3022 
3023     if (old == IOMMU_NOTIFIER_NONE) {
3024         QLIST_INSERT_HEAD(&s->vtd_as_with_notifiers, vtd_as, next);
3025     } else if (new == IOMMU_NOTIFIER_NONE) {
3026         QLIST_REMOVE(vtd_as, next);
3027     }
3028     return 0;
3029 }
3030 
3031 static int vtd_post_load(void *opaque, int version_id)
3032 {
3033     IntelIOMMUState *iommu = opaque;
3034 
3035     /*
3036      * Memory regions are dynamically turned on/off depending on
3037      * context entry configurations from the guest. After migration,
3038      * we need to make sure the memory regions are still correct.
3039      */
3040     vtd_switch_address_space_all(iommu);
3041 
3042     /*
3043      * We don't need to migrate the root_scalable because we can
3044      * simply do the calculation after the loading is complete.  We
3045      * can actually do similar things with root, dmar_enabled, etc.
3046      * however since we've had them already so we'd better keep them
3047      * for compatibility of migration.
3048      */
3049     vtd_update_scalable_state(iommu);
3050 
3051     return 0;
3052 }
3053 
3054 static const VMStateDescription vtd_vmstate = {
3055     .name = "iommu-intel",
3056     .version_id = 1,
3057     .minimum_version_id = 1,
3058     .priority = MIG_PRI_IOMMU,
3059     .post_load = vtd_post_load,
3060     .fields = (VMStateField[]) {
3061         VMSTATE_UINT64(root, IntelIOMMUState),
3062         VMSTATE_UINT64(intr_root, IntelIOMMUState),
3063         VMSTATE_UINT64(iq, IntelIOMMUState),
3064         VMSTATE_UINT32(intr_size, IntelIOMMUState),
3065         VMSTATE_UINT16(iq_head, IntelIOMMUState),
3066         VMSTATE_UINT16(iq_tail, IntelIOMMUState),
3067         VMSTATE_UINT16(iq_size, IntelIOMMUState),
3068         VMSTATE_UINT16(next_frcd_reg, IntelIOMMUState),
3069         VMSTATE_UINT8_ARRAY(csr, IntelIOMMUState, DMAR_REG_SIZE),
3070         VMSTATE_UINT8(iq_last_desc_type, IntelIOMMUState),
3071         VMSTATE_UNUSED(1),      /* bool root_extended is obsolete by VT-d */
3072         VMSTATE_BOOL(dmar_enabled, IntelIOMMUState),
3073         VMSTATE_BOOL(qi_enabled, IntelIOMMUState),
3074         VMSTATE_BOOL(intr_enabled, IntelIOMMUState),
3075         VMSTATE_BOOL(intr_eime, IntelIOMMUState),
3076         VMSTATE_END_OF_LIST()
3077     }
3078 };
3079 
3080 static const MemoryRegionOps vtd_mem_ops = {
3081     .read = vtd_mem_read,
3082     .write = vtd_mem_write,
3083     .endianness = DEVICE_LITTLE_ENDIAN,
3084     .impl = {
3085         .min_access_size = 4,
3086         .max_access_size = 8,
3087     },
3088     .valid = {
3089         .min_access_size = 4,
3090         .max_access_size = 8,
3091     },
3092 };
3093 
3094 static Property vtd_properties[] = {
3095     DEFINE_PROP_UINT32("version", IntelIOMMUState, version, 0),
3096     DEFINE_PROP_ON_OFF_AUTO("eim", IntelIOMMUState, intr_eim,
3097                             ON_OFF_AUTO_AUTO),
3098     DEFINE_PROP_BOOL("x-buggy-eim", IntelIOMMUState, buggy_eim, false),
3099     DEFINE_PROP_UINT8("aw-bits", IntelIOMMUState, aw_bits,
3100                       VTD_HOST_ADDRESS_WIDTH),
3101     DEFINE_PROP_BOOL("caching-mode", IntelIOMMUState, caching_mode, FALSE),
3102     DEFINE_PROP_BOOL("x-scalable-mode", IntelIOMMUState, scalable_mode, FALSE),
3103     DEFINE_PROP_BOOL("dma-drain", IntelIOMMUState, dma_drain, true),
3104     DEFINE_PROP_END_OF_LIST(),
3105 };
3106 
3107 /* Read IRTE entry with specific index */
3108 static int vtd_irte_get(IntelIOMMUState *iommu, uint16_t index,
3109                         VTD_IR_TableEntry *entry, uint16_t sid)
3110 {
3111     static const uint16_t vtd_svt_mask[VTD_SQ_MAX] = \
3112         {0xffff, 0xfffb, 0xfff9, 0xfff8};
3113     dma_addr_t addr = 0x00;
3114     uint16_t mask, source_id;
3115     uint8_t bus, bus_max, bus_min;
3116 
3117     if (index >= iommu->intr_size) {
3118         error_report_once("%s: index too large: ind=0x%x",
3119                           __func__, index);
3120         return -VTD_FR_IR_INDEX_OVER;
3121     }
3122 
3123     addr = iommu->intr_root + index * sizeof(*entry);
3124     if (dma_memory_read(&address_space_memory, addr, entry,
3125                         sizeof(*entry))) {
3126         error_report_once("%s: read failed: ind=0x%x addr=0x%" PRIx64,
3127                           __func__, index, addr);
3128         return -VTD_FR_IR_ROOT_INVAL;
3129     }
3130 
3131     trace_vtd_ir_irte_get(index, le64_to_cpu(entry->data[1]),
3132                           le64_to_cpu(entry->data[0]));
3133 
3134     if (!entry->irte.present) {
3135         error_report_once("%s: detected non-present IRTE "
3136                           "(index=%u, high=0x%" PRIx64 ", low=0x%" PRIx64 ")",
3137                           __func__, index, le64_to_cpu(entry->data[1]),
3138                           le64_to_cpu(entry->data[0]));
3139         return -VTD_FR_IR_ENTRY_P;
3140     }
3141 
3142     if (entry->irte.__reserved_0 || entry->irte.__reserved_1 ||
3143         entry->irte.__reserved_2) {
3144         error_report_once("%s: detected non-zero reserved IRTE "
3145                           "(index=%u, high=0x%" PRIx64 ", low=0x%" PRIx64 ")",
3146                           __func__, index, le64_to_cpu(entry->data[1]),
3147                           le64_to_cpu(entry->data[0]));
3148         return -VTD_FR_IR_IRTE_RSVD;
3149     }
3150 
3151     if (sid != X86_IOMMU_SID_INVALID) {
3152         /* Validate IRTE SID */
3153         source_id = le32_to_cpu(entry->irte.source_id);
3154         switch (entry->irte.sid_vtype) {
3155         case VTD_SVT_NONE:
3156             break;
3157 
3158         case VTD_SVT_ALL:
3159             mask = vtd_svt_mask[entry->irte.sid_q];
3160             if ((source_id & mask) != (sid & mask)) {
3161                 error_report_once("%s: invalid IRTE SID "
3162                                   "(index=%u, sid=%u, source_id=%u)",
3163                                   __func__, index, sid, source_id);
3164                 return -VTD_FR_IR_SID_ERR;
3165             }
3166             break;
3167 
3168         case VTD_SVT_BUS:
3169             bus_max = source_id >> 8;
3170             bus_min = source_id & 0xff;
3171             bus = sid >> 8;
3172             if (bus > bus_max || bus < bus_min) {
3173                 error_report_once("%s: invalid SVT_BUS "
3174                                   "(index=%u, bus=%u, min=%u, max=%u)",
3175                                   __func__, index, bus, bus_min, bus_max);
3176                 return -VTD_FR_IR_SID_ERR;
3177             }
3178             break;
3179 
3180         default:
3181             error_report_once("%s: detected invalid IRTE SVT "
3182                               "(index=%u, type=%d)", __func__,
3183                               index, entry->irte.sid_vtype);
3184             /* Take this as verification failure. */
3185             return -VTD_FR_IR_SID_ERR;
3186         }
3187     }
3188 
3189     return 0;
3190 }
3191 
3192 /* Fetch IRQ information of specific IR index */
3193 static int vtd_remap_irq_get(IntelIOMMUState *iommu, uint16_t index,
3194                              X86IOMMUIrq *irq, uint16_t sid)
3195 {
3196     VTD_IR_TableEntry irte = {};
3197     int ret = 0;
3198 
3199     ret = vtd_irte_get(iommu, index, &irte, sid);
3200     if (ret) {
3201         return ret;
3202     }
3203 
3204     irq->trigger_mode = irte.irte.trigger_mode;
3205     irq->vector = irte.irte.vector;
3206     irq->delivery_mode = irte.irte.delivery_mode;
3207     irq->dest = le32_to_cpu(irte.irte.dest_id);
3208     if (!iommu->intr_eime) {
3209 #define  VTD_IR_APIC_DEST_MASK         (0xff00ULL)
3210 #define  VTD_IR_APIC_DEST_SHIFT        (8)
3211         irq->dest = (irq->dest & VTD_IR_APIC_DEST_MASK) >>
3212             VTD_IR_APIC_DEST_SHIFT;
3213     }
3214     irq->dest_mode = irte.irte.dest_mode;
3215     irq->redir_hint = irte.irte.redir_hint;
3216 
3217     trace_vtd_ir_remap(index, irq->trigger_mode, irq->vector,
3218                        irq->delivery_mode, irq->dest, irq->dest_mode);
3219 
3220     return 0;
3221 }
3222 
3223 /* Interrupt remapping for MSI/MSI-X entry */
3224 static int vtd_interrupt_remap_msi(IntelIOMMUState *iommu,
3225                                    MSIMessage *origin,
3226                                    MSIMessage *translated,
3227                                    uint16_t sid)
3228 {
3229     int ret = 0;
3230     VTD_IR_MSIAddress addr;
3231     uint16_t index;
3232     X86IOMMUIrq irq = {};
3233 
3234     assert(origin && translated);
3235 
3236     trace_vtd_ir_remap_msi_req(origin->address, origin->data);
3237 
3238     if (!iommu || !iommu->intr_enabled) {
3239         memcpy(translated, origin, sizeof(*origin));
3240         goto out;
3241     }
3242 
3243     if (origin->address & VTD_MSI_ADDR_HI_MASK) {
3244         error_report_once("%s: MSI address high 32 bits non-zero detected: "
3245                           "address=0x%" PRIx64, __func__, origin->address);
3246         return -VTD_FR_IR_REQ_RSVD;
3247     }
3248 
3249     addr.data = origin->address & VTD_MSI_ADDR_LO_MASK;
3250     if (addr.addr.__head != 0xfee) {
3251         error_report_once("%s: MSI address low 32 bit invalid: 0x%" PRIx32,
3252                           __func__, addr.data);
3253         return -VTD_FR_IR_REQ_RSVD;
3254     }
3255 
3256     /* This is compatible mode. */
3257     if (addr.addr.int_mode != VTD_IR_INT_FORMAT_REMAP) {
3258         memcpy(translated, origin, sizeof(*origin));
3259         goto out;
3260     }
3261 
3262     index = addr.addr.index_h << 15 | le16_to_cpu(addr.addr.index_l);
3263 
3264 #define  VTD_IR_MSI_DATA_SUBHANDLE       (0x0000ffff)
3265 #define  VTD_IR_MSI_DATA_RESERVED        (0xffff0000)
3266 
3267     if (addr.addr.sub_valid) {
3268         /* See VT-d spec 5.1.2.2 and 5.1.3 on subhandle */
3269         index += origin->data & VTD_IR_MSI_DATA_SUBHANDLE;
3270     }
3271 
3272     ret = vtd_remap_irq_get(iommu, index, &irq, sid);
3273     if (ret) {
3274         return ret;
3275     }
3276 
3277     if (addr.addr.sub_valid) {
3278         trace_vtd_ir_remap_type("MSI");
3279         if (origin->data & VTD_IR_MSI_DATA_RESERVED) {
3280             error_report_once("%s: invalid IR MSI "
3281                               "(sid=%u, address=0x%" PRIx64
3282                               ", data=0x%" PRIx32 ")",
3283                               __func__, sid, origin->address, origin->data);
3284             return -VTD_FR_IR_REQ_RSVD;
3285         }
3286     } else {
3287         uint8_t vector = origin->data & 0xff;
3288         uint8_t trigger_mode = (origin->data >> MSI_DATA_TRIGGER_SHIFT) & 0x1;
3289 
3290         trace_vtd_ir_remap_type("IOAPIC");
3291         /* IOAPIC entry vector should be aligned with IRTE vector
3292          * (see vt-d spec 5.1.5.1). */
3293         if (vector != irq.vector) {
3294             trace_vtd_warn_ir_vector(sid, index, vector, irq.vector);
3295         }
3296 
3297         /* The Trigger Mode field must match the Trigger Mode in the IRTE.
3298          * (see vt-d spec 5.1.5.1). */
3299         if (trigger_mode != irq.trigger_mode) {
3300             trace_vtd_warn_ir_trigger(sid, index, trigger_mode,
3301                                       irq.trigger_mode);
3302         }
3303     }
3304 
3305     /*
3306      * We'd better keep the last two bits, assuming that guest OS
3307      * might modify it. Keep it does not hurt after all.
3308      */
3309     irq.msi_addr_last_bits = addr.addr.__not_care;
3310 
3311     /* Translate X86IOMMUIrq to MSI message */
3312     x86_iommu_irq_to_msi_message(&irq, translated);
3313 
3314 out:
3315     trace_vtd_ir_remap_msi(origin->address, origin->data,
3316                            translated->address, translated->data);
3317     return 0;
3318 }
3319 
3320 static int vtd_int_remap(X86IOMMUState *iommu, MSIMessage *src,
3321                          MSIMessage *dst, uint16_t sid)
3322 {
3323     return vtd_interrupt_remap_msi(INTEL_IOMMU_DEVICE(iommu),
3324                                    src, dst, sid);
3325 }
3326 
3327 static MemTxResult vtd_mem_ir_read(void *opaque, hwaddr addr,
3328                                    uint64_t *data, unsigned size,
3329                                    MemTxAttrs attrs)
3330 {
3331     return MEMTX_OK;
3332 }
3333 
3334 static MemTxResult vtd_mem_ir_write(void *opaque, hwaddr addr,
3335                                     uint64_t value, unsigned size,
3336                                     MemTxAttrs attrs)
3337 {
3338     int ret = 0;
3339     MSIMessage from = {}, to = {};
3340     uint16_t sid = X86_IOMMU_SID_INVALID;
3341 
3342     from.address = (uint64_t) addr + VTD_INTERRUPT_ADDR_FIRST;
3343     from.data = (uint32_t) value;
3344 
3345     if (!attrs.unspecified) {
3346         /* We have explicit Source ID */
3347         sid = attrs.requester_id;
3348     }
3349 
3350     ret = vtd_interrupt_remap_msi(opaque, &from, &to, sid);
3351     if (ret) {
3352         /* TODO: report error */
3353         /* Drop this interrupt */
3354         return MEMTX_ERROR;
3355     }
3356 
3357     apic_get_class()->send_msi(&to);
3358 
3359     return MEMTX_OK;
3360 }
3361 
3362 static const MemoryRegionOps vtd_mem_ir_ops = {
3363     .read_with_attrs = vtd_mem_ir_read,
3364     .write_with_attrs = vtd_mem_ir_write,
3365     .endianness = DEVICE_LITTLE_ENDIAN,
3366     .impl = {
3367         .min_access_size = 4,
3368         .max_access_size = 4,
3369     },
3370     .valid = {
3371         .min_access_size = 4,
3372         .max_access_size = 4,
3373     },
3374 };
3375 
3376 VTDAddressSpace *vtd_find_add_as(IntelIOMMUState *s, PCIBus *bus, int devfn)
3377 {
3378     uintptr_t key = (uintptr_t)bus;
3379     VTDBus *vtd_bus = g_hash_table_lookup(s->vtd_as_by_busptr, &key);
3380     VTDAddressSpace *vtd_dev_as;
3381     char name[128];
3382 
3383     if (!vtd_bus) {
3384         uintptr_t *new_key = g_malloc(sizeof(*new_key));
3385         *new_key = (uintptr_t)bus;
3386         /* No corresponding free() */
3387         vtd_bus = g_malloc0(sizeof(VTDBus) + sizeof(VTDAddressSpace *) * \
3388                             PCI_DEVFN_MAX);
3389         vtd_bus->bus = bus;
3390         g_hash_table_insert(s->vtd_as_by_busptr, new_key, vtd_bus);
3391     }
3392 
3393     vtd_dev_as = vtd_bus->dev_as[devfn];
3394 
3395     if (!vtd_dev_as) {
3396         snprintf(name, sizeof(name), "vtd-%02x.%x", PCI_SLOT(devfn),
3397                  PCI_FUNC(devfn));
3398         vtd_bus->dev_as[devfn] = vtd_dev_as = g_malloc0(sizeof(VTDAddressSpace));
3399 
3400         vtd_dev_as->bus = bus;
3401         vtd_dev_as->devfn = (uint8_t)devfn;
3402         vtd_dev_as->iommu_state = s;
3403         vtd_dev_as->context_cache_entry.context_cache_gen = 0;
3404         vtd_dev_as->iova_tree = iova_tree_new();
3405 
3406         memory_region_init(&vtd_dev_as->root, OBJECT(s), name, UINT64_MAX);
3407         address_space_init(&vtd_dev_as->as, &vtd_dev_as->root, "vtd-root");
3408 
3409         /*
3410          * Build the DMAR-disabled container with aliases to the
3411          * shared MRs.  Note that aliasing to a shared memory region
3412          * could help the memory API to detect same FlatViews so we
3413          * can have devices to share the same FlatView when DMAR is
3414          * disabled (either by not providing "intel_iommu=on" or with
3415          * "iommu=pt").  It will greatly reduce the total number of
3416          * FlatViews of the system hence VM runs faster.
3417          */
3418         memory_region_init_alias(&vtd_dev_as->nodmar, OBJECT(s),
3419                                  "vtd-nodmar", &s->mr_nodmar, 0,
3420                                  memory_region_size(&s->mr_nodmar));
3421 
3422         /*
3423          * Build the per-device DMAR-enabled container.
3424          *
3425          * TODO: currently we have per-device IOMMU memory region only
3426          * because we have per-device IOMMU notifiers for devices.  If
3427          * one day we can abstract the IOMMU notifiers out of the
3428          * memory regions then we can also share the same memory
3429          * region here just like what we've done above with the nodmar
3430          * region.
3431          */
3432         strcat(name, "-dmar");
3433         memory_region_init_iommu(&vtd_dev_as->iommu, sizeof(vtd_dev_as->iommu),
3434                                  TYPE_INTEL_IOMMU_MEMORY_REGION, OBJECT(s),
3435                                  name, UINT64_MAX);
3436         memory_region_init_alias(&vtd_dev_as->iommu_ir, OBJECT(s), "vtd-ir",
3437                                  &s->mr_ir, 0, memory_region_size(&s->mr_ir));
3438         memory_region_add_subregion_overlap(MEMORY_REGION(&vtd_dev_as->iommu),
3439                                             VTD_INTERRUPT_ADDR_FIRST,
3440                                             &vtd_dev_as->iommu_ir, 1);
3441 
3442         /*
3443          * Hook both the containers under the root container, we
3444          * switch between DMAR & noDMAR by enable/disable
3445          * corresponding sub-containers
3446          */
3447         memory_region_add_subregion_overlap(&vtd_dev_as->root, 0,
3448                                             MEMORY_REGION(&vtd_dev_as->iommu),
3449                                             0);
3450         memory_region_add_subregion_overlap(&vtd_dev_as->root, 0,
3451                                             &vtd_dev_as->nodmar, 0);
3452 
3453         vtd_switch_address_space(vtd_dev_as);
3454     }
3455     return vtd_dev_as;
3456 }
3457 
3458 /* Unmap the whole range in the notifier's scope. */
3459 static void vtd_address_space_unmap(VTDAddressSpace *as, IOMMUNotifier *n)
3460 {
3461     hwaddr size, remain;
3462     hwaddr start = n->start;
3463     hwaddr end = n->end;
3464     IntelIOMMUState *s = as->iommu_state;
3465     DMAMap map;
3466 
3467     /*
3468      * Note: all the codes in this function has a assumption that IOVA
3469      * bits are no more than VTD_MGAW bits (which is restricted by
3470      * VT-d spec), otherwise we need to consider overflow of 64 bits.
3471      */
3472 
3473     if (end > VTD_ADDRESS_SIZE(s->aw_bits) - 1) {
3474         /*
3475          * Don't need to unmap regions that is bigger than the whole
3476          * VT-d supported address space size
3477          */
3478         end = VTD_ADDRESS_SIZE(s->aw_bits) - 1;
3479     }
3480 
3481     assert(start <= end);
3482     size = remain = end - start + 1;
3483 
3484     while (remain >= VTD_PAGE_SIZE) {
3485         IOMMUTLBEvent event;
3486         uint64_t mask = dma_aligned_pow2_mask(start, end, s->aw_bits);
3487         uint64_t size = mask + 1;
3488 
3489         assert(size);
3490 
3491         event.type = IOMMU_NOTIFIER_UNMAP;
3492         event.entry.iova = start;
3493         event.entry.addr_mask = mask;
3494         event.entry.target_as = &address_space_memory;
3495         event.entry.perm = IOMMU_NONE;
3496         /* This field is meaningless for unmap */
3497         event.entry.translated_addr = 0;
3498 
3499         memory_region_notify_iommu_one(n, &event);
3500 
3501         start += size;
3502         remain -= size;
3503     }
3504 
3505     assert(!remain);
3506 
3507     trace_vtd_as_unmap_whole(pci_bus_num(as->bus),
3508                              VTD_PCI_SLOT(as->devfn),
3509                              VTD_PCI_FUNC(as->devfn),
3510                              n->start, size);
3511 
3512     map.iova = n->start;
3513     map.size = size;
3514     iova_tree_remove(as->iova_tree, &map);
3515 }
3516 
3517 static void vtd_address_space_unmap_all(IntelIOMMUState *s)
3518 {
3519     VTDAddressSpace *vtd_as;
3520     IOMMUNotifier *n;
3521 
3522     QLIST_FOREACH(vtd_as, &s->vtd_as_with_notifiers, next) {
3523         IOMMU_NOTIFIER_FOREACH(n, &vtd_as->iommu) {
3524             vtd_address_space_unmap(vtd_as, n);
3525         }
3526     }
3527 }
3528 
3529 static void vtd_address_space_refresh_all(IntelIOMMUState *s)
3530 {
3531     vtd_address_space_unmap_all(s);
3532     vtd_switch_address_space_all(s);
3533 }
3534 
3535 static int vtd_replay_hook(IOMMUTLBEvent *event, void *private)
3536 {
3537     memory_region_notify_iommu_one(private, event);
3538     return 0;
3539 }
3540 
3541 static void vtd_iommu_replay(IOMMUMemoryRegion *iommu_mr, IOMMUNotifier *n)
3542 {
3543     VTDAddressSpace *vtd_as = container_of(iommu_mr, VTDAddressSpace, iommu);
3544     IntelIOMMUState *s = vtd_as->iommu_state;
3545     uint8_t bus_n = pci_bus_num(vtd_as->bus);
3546     VTDContextEntry ce;
3547 
3548     /*
3549      * The replay can be triggered by either a invalidation or a newly
3550      * created entry. No matter what, we release existing mappings
3551      * (it means flushing caches for UNMAP-only registers).
3552      */
3553     vtd_address_space_unmap(vtd_as, n);
3554 
3555     if (vtd_dev_to_context_entry(s, bus_n, vtd_as->devfn, &ce) == 0) {
3556         trace_vtd_replay_ce_valid(s->root_scalable ? "scalable mode" :
3557                                   "legacy mode",
3558                                   bus_n, PCI_SLOT(vtd_as->devfn),
3559                                   PCI_FUNC(vtd_as->devfn),
3560                                   vtd_get_domain_id(s, &ce),
3561                                   ce.hi, ce.lo);
3562         if (vtd_as_has_map_notifier(vtd_as)) {
3563             /* This is required only for MAP typed notifiers */
3564             vtd_page_walk_info info = {
3565                 .hook_fn = vtd_replay_hook,
3566                 .private = (void *)n,
3567                 .notify_unmap = false,
3568                 .aw = s->aw_bits,
3569                 .as = vtd_as,
3570                 .domain_id = vtd_get_domain_id(s, &ce),
3571             };
3572 
3573             vtd_page_walk(s, &ce, 0, ~0ULL, &info);
3574         }
3575     } else {
3576         trace_vtd_replay_ce_invalid(bus_n, PCI_SLOT(vtd_as->devfn),
3577                                     PCI_FUNC(vtd_as->devfn));
3578     }
3579 
3580     return;
3581 }
3582 
3583 /* Do the initialization. It will also be called when reset, so pay
3584  * attention when adding new initialization stuff.
3585  */
3586 static void vtd_init(IntelIOMMUState *s)
3587 {
3588     X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(s);
3589 
3590     memset(s->csr, 0, DMAR_REG_SIZE);
3591     memset(s->wmask, 0, DMAR_REG_SIZE);
3592     memset(s->w1cmask, 0, DMAR_REG_SIZE);
3593     memset(s->womask, 0, DMAR_REG_SIZE);
3594 
3595     s->root = 0;
3596     s->root_scalable = false;
3597     s->dmar_enabled = false;
3598     s->intr_enabled = false;
3599     s->iq_head = 0;
3600     s->iq_tail = 0;
3601     s->iq = 0;
3602     s->iq_size = 0;
3603     s->qi_enabled = false;
3604     s->iq_last_desc_type = VTD_INV_DESC_NONE;
3605     s->iq_dw = false;
3606     s->next_frcd_reg = 0;
3607     s->cap = VTD_CAP_FRO | VTD_CAP_NFR | VTD_CAP_ND |
3608              VTD_CAP_MAMV | VTD_CAP_PSI | VTD_CAP_SLLPS |
3609              VTD_CAP_SAGAW_39bit | VTD_CAP_MGAW(s->aw_bits);
3610     if (s->dma_drain) {
3611         s->cap |= VTD_CAP_DRAIN;
3612     }
3613     if (s->aw_bits == VTD_HOST_AW_48BIT) {
3614         s->cap |= VTD_CAP_SAGAW_48bit;
3615     }
3616     s->ecap = VTD_ECAP_QI | VTD_ECAP_IRO;
3617 
3618     /*
3619      * Rsvd field masks for spte
3620      */
3621     vtd_spte_rsvd[0] = ~0ULL;
3622     vtd_spte_rsvd[1] = VTD_SPTE_PAGE_L1_RSVD_MASK(s->aw_bits,
3623                                                   x86_iommu->dt_supported);
3624     vtd_spte_rsvd[2] = VTD_SPTE_PAGE_L2_RSVD_MASK(s->aw_bits);
3625     vtd_spte_rsvd[3] = VTD_SPTE_PAGE_L3_RSVD_MASK(s->aw_bits);
3626     vtd_spte_rsvd[4] = VTD_SPTE_PAGE_L4_RSVD_MASK(s->aw_bits);
3627 
3628     vtd_spte_rsvd_large[2] = VTD_SPTE_LPAGE_L2_RSVD_MASK(s->aw_bits,
3629                                                          x86_iommu->dt_supported);
3630     vtd_spte_rsvd_large[3] = VTD_SPTE_LPAGE_L3_RSVD_MASK(s->aw_bits,
3631                                                          x86_iommu->dt_supported);
3632 
3633     if (x86_iommu_ir_supported(x86_iommu)) {
3634         s->ecap |= VTD_ECAP_IR | VTD_ECAP_MHMV;
3635         if (s->intr_eim == ON_OFF_AUTO_ON) {
3636             s->ecap |= VTD_ECAP_EIM;
3637         }
3638         assert(s->intr_eim != ON_OFF_AUTO_AUTO);
3639     }
3640 
3641     if (x86_iommu->dt_supported) {
3642         s->ecap |= VTD_ECAP_DT;
3643     }
3644 
3645     if (x86_iommu->pt_supported) {
3646         s->ecap |= VTD_ECAP_PT;
3647     }
3648 
3649     if (s->caching_mode) {
3650         s->cap |= VTD_CAP_CM;
3651     }
3652 
3653     /* TODO: read cap/ecap from host to decide which cap to be exposed. */
3654     if (s->scalable_mode) {
3655         s->ecap |= VTD_ECAP_SMTS | VTD_ECAP_SRS | VTD_ECAP_SLTS;
3656     }
3657 
3658     vtd_reset_caches(s);
3659 
3660     /* Define registers with default values and bit semantics */
3661     vtd_define_long(s, DMAR_VER_REG, 0x10UL, 0, 0);
3662     vtd_define_quad(s, DMAR_CAP_REG, s->cap, 0, 0);
3663     vtd_define_quad(s, DMAR_ECAP_REG, s->ecap, 0, 0);
3664     vtd_define_long(s, DMAR_GCMD_REG, 0, 0xff800000UL, 0);
3665     vtd_define_long_wo(s, DMAR_GCMD_REG, 0xff800000UL);
3666     vtd_define_long(s, DMAR_GSTS_REG, 0, 0, 0);
3667     vtd_define_quad(s, DMAR_RTADDR_REG, 0, 0xfffffffffffffc00ULL, 0);
3668     vtd_define_quad(s, DMAR_CCMD_REG, 0, 0xe0000003ffffffffULL, 0);
3669     vtd_define_quad_wo(s, DMAR_CCMD_REG, 0x3ffff0000ULL);
3670 
3671     /* Advanced Fault Logging not supported */
3672     vtd_define_long(s, DMAR_FSTS_REG, 0, 0, 0x11UL);
3673     vtd_define_long(s, DMAR_FECTL_REG, 0x80000000UL, 0x80000000UL, 0);
3674     vtd_define_long(s, DMAR_FEDATA_REG, 0, 0x0000ffffUL, 0);
3675     vtd_define_long(s, DMAR_FEADDR_REG, 0, 0xfffffffcUL, 0);
3676 
3677     /* Treated as RsvdZ when EIM in ECAP_REG is not supported
3678      * vtd_define_long(s, DMAR_FEUADDR_REG, 0, 0xffffffffUL, 0);
3679      */
3680     vtd_define_long(s, DMAR_FEUADDR_REG, 0, 0, 0);
3681 
3682     /* Treated as RO for implementations that PLMR and PHMR fields reported
3683      * as Clear in the CAP_REG.
3684      * vtd_define_long(s, DMAR_PMEN_REG, 0, 0x80000000UL, 0);
3685      */
3686     vtd_define_long(s, DMAR_PMEN_REG, 0, 0, 0);
3687 
3688     vtd_define_quad(s, DMAR_IQH_REG, 0, 0, 0);
3689     vtd_define_quad(s, DMAR_IQT_REG, 0, 0x7fff0ULL, 0);
3690     vtd_define_quad(s, DMAR_IQA_REG, 0, 0xfffffffffffff807ULL, 0);
3691     vtd_define_long(s, DMAR_ICS_REG, 0, 0, 0x1UL);
3692     vtd_define_long(s, DMAR_IECTL_REG, 0x80000000UL, 0x80000000UL, 0);
3693     vtd_define_long(s, DMAR_IEDATA_REG, 0, 0xffffffffUL, 0);
3694     vtd_define_long(s, DMAR_IEADDR_REG, 0, 0xfffffffcUL, 0);
3695     /* Treadted as RsvdZ when EIM in ECAP_REG is not supported */
3696     vtd_define_long(s, DMAR_IEUADDR_REG, 0, 0, 0);
3697 
3698     /* IOTLB registers */
3699     vtd_define_quad(s, DMAR_IOTLB_REG, 0, 0Xb003ffff00000000ULL, 0);
3700     vtd_define_quad(s, DMAR_IVA_REG, 0, 0xfffffffffffff07fULL, 0);
3701     vtd_define_quad_wo(s, DMAR_IVA_REG, 0xfffffffffffff07fULL);
3702 
3703     /* Fault Recording Registers, 128-bit */
3704     vtd_define_quad(s, DMAR_FRCD_REG_0_0, 0, 0, 0);
3705     vtd_define_quad(s, DMAR_FRCD_REG_0_2, 0, 0, 0x8000000000000000ULL);
3706 
3707     /*
3708      * Interrupt remapping registers.
3709      */
3710     vtd_define_quad(s, DMAR_IRTA_REG, 0, 0xfffffffffffff80fULL, 0);
3711 }
3712 
3713 /* Should not reset address_spaces when reset because devices will still use
3714  * the address space they got at first (won't ask the bus again).
3715  */
3716 static void vtd_reset(DeviceState *dev)
3717 {
3718     IntelIOMMUState *s = INTEL_IOMMU_DEVICE(dev);
3719 
3720     vtd_init(s);
3721     vtd_address_space_refresh_all(s);
3722 }
3723 
3724 static AddressSpace *vtd_host_dma_iommu(PCIBus *bus, void *opaque, int devfn)
3725 {
3726     IntelIOMMUState *s = opaque;
3727     VTDAddressSpace *vtd_as;
3728 
3729     assert(0 <= devfn && devfn < PCI_DEVFN_MAX);
3730 
3731     vtd_as = vtd_find_add_as(s, bus, devfn);
3732     return &vtd_as->as;
3733 }
3734 
3735 static bool vtd_decide_config(IntelIOMMUState *s, Error **errp)
3736 {
3737     X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(s);
3738 
3739     if (s->intr_eim == ON_OFF_AUTO_ON && !x86_iommu_ir_supported(x86_iommu)) {
3740         error_setg(errp, "eim=on cannot be selected without intremap=on");
3741         return false;
3742     }
3743 
3744     if (s->intr_eim == ON_OFF_AUTO_AUTO) {
3745         s->intr_eim = (kvm_irqchip_in_kernel() || s->buggy_eim)
3746                       && x86_iommu_ir_supported(x86_iommu) ?
3747                                               ON_OFF_AUTO_ON : ON_OFF_AUTO_OFF;
3748     }
3749     if (s->intr_eim == ON_OFF_AUTO_ON && !s->buggy_eim) {
3750         if (!kvm_irqchip_in_kernel()) {
3751             error_setg(errp, "eim=on requires accel=kvm,kernel-irqchip=split");
3752             return false;
3753         }
3754         if (!kvm_enable_x2apic()) {
3755             error_setg(errp, "eim=on requires support on the KVM side"
3756                              "(X2APIC_API, first shipped in v4.7)");
3757             return false;
3758         }
3759     }
3760 
3761     /* Currently only address widths supported are 39 and 48 bits */
3762     if ((s->aw_bits != VTD_HOST_AW_39BIT) &&
3763         (s->aw_bits != VTD_HOST_AW_48BIT)) {
3764         error_setg(errp, "Supported values for aw-bits are: %d, %d",
3765                    VTD_HOST_AW_39BIT, VTD_HOST_AW_48BIT);
3766         return false;
3767     }
3768 
3769     if (s->scalable_mode && !s->dma_drain) {
3770         error_setg(errp, "Need to set dma_drain for scalable mode");
3771         return false;
3772     }
3773 
3774     return true;
3775 }
3776 
3777 static int vtd_machine_done_notify_one(Object *child, void *unused)
3778 {
3779     IntelIOMMUState *iommu = INTEL_IOMMU_DEVICE(x86_iommu_get_default());
3780 
3781     /*
3782      * We hard-coded here because vfio-pci is the only special case
3783      * here.  Let's be more elegant in the future when we can, but so
3784      * far there seems to be no better way.
3785      */
3786     if (object_dynamic_cast(child, "vfio-pci") && !iommu->caching_mode) {
3787         vtd_panic_require_caching_mode();
3788     }
3789 
3790     return 0;
3791 }
3792 
3793 static void vtd_machine_done_hook(Notifier *notifier, void *unused)
3794 {
3795     object_child_foreach_recursive(object_get_root(),
3796                                    vtd_machine_done_notify_one, NULL);
3797 }
3798 
3799 static Notifier vtd_machine_done_notify = {
3800     .notify = vtd_machine_done_hook,
3801 };
3802 
3803 static void vtd_realize(DeviceState *dev, Error **errp)
3804 {
3805     MachineState *ms = MACHINE(qdev_get_machine());
3806     PCMachineState *pcms = PC_MACHINE(ms);
3807     X86MachineState *x86ms = X86_MACHINE(ms);
3808     PCIBus *bus = pcms->bus;
3809     IntelIOMMUState *s = INTEL_IOMMU_DEVICE(dev);
3810     X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(dev);
3811 
3812     x86_iommu->type = TYPE_INTEL;
3813 
3814     if (!vtd_decide_config(s, errp)) {
3815         return;
3816     }
3817 
3818     QLIST_INIT(&s->vtd_as_with_notifiers);
3819     qemu_mutex_init(&s->iommu_lock);
3820     memset(s->vtd_as_by_bus_num, 0, sizeof(s->vtd_as_by_bus_num));
3821     memory_region_init_io(&s->csrmem, OBJECT(s), &vtd_mem_ops, s,
3822                           "intel_iommu", DMAR_REG_SIZE);
3823 
3824     /* Create the shared memory regions by all devices */
3825     memory_region_init(&s->mr_nodmar, OBJECT(s), "vtd-nodmar",
3826                        UINT64_MAX);
3827     memory_region_init_io(&s->mr_ir, OBJECT(s), &vtd_mem_ir_ops,
3828                           s, "vtd-ir", VTD_INTERRUPT_ADDR_SIZE);
3829     memory_region_init_alias(&s->mr_sys_alias, OBJECT(s),
3830                              "vtd-sys-alias", get_system_memory(), 0,
3831                              memory_region_size(get_system_memory()));
3832     memory_region_add_subregion_overlap(&s->mr_nodmar, 0,
3833                                         &s->mr_sys_alias, 0);
3834     memory_region_add_subregion_overlap(&s->mr_nodmar,
3835                                         VTD_INTERRUPT_ADDR_FIRST,
3836                                         &s->mr_ir, 1);
3837 
3838     sysbus_init_mmio(SYS_BUS_DEVICE(s), &s->csrmem);
3839     /* No corresponding destroy */
3840     s->iotlb = g_hash_table_new_full(vtd_uint64_hash, vtd_uint64_equal,
3841                                      g_free, g_free);
3842     s->vtd_as_by_busptr = g_hash_table_new_full(vtd_uint64_hash, vtd_uint64_equal,
3843                                               g_free, g_free);
3844     vtd_init(s);
3845     sysbus_mmio_map(SYS_BUS_DEVICE(s), 0, Q35_HOST_BRIDGE_IOMMU_ADDR);
3846     pci_setup_iommu(bus, vtd_host_dma_iommu, dev);
3847     /* Pseudo address space under root PCI bus. */
3848     x86ms->ioapic_as = vtd_host_dma_iommu(bus, s, Q35_PSEUDO_DEVFN_IOAPIC);
3849     qemu_add_machine_init_done_notifier(&vtd_machine_done_notify);
3850 }
3851 
3852 static void vtd_class_init(ObjectClass *klass, void *data)
3853 {
3854     DeviceClass *dc = DEVICE_CLASS(klass);
3855     X86IOMMUClass *x86_class = X86_IOMMU_DEVICE_CLASS(klass);
3856 
3857     dc->reset = vtd_reset;
3858     dc->vmsd = &vtd_vmstate;
3859     device_class_set_props(dc, vtd_properties);
3860     dc->hotpluggable = false;
3861     x86_class->realize = vtd_realize;
3862     x86_class->int_remap = vtd_int_remap;
3863     /* Supported by the pc-q35-* machine types */
3864     dc->user_creatable = true;
3865     set_bit(DEVICE_CATEGORY_MISC, dc->categories);
3866     dc->desc = "Intel IOMMU (VT-d) DMA Remapping device";
3867 }
3868 
3869 static const TypeInfo vtd_info = {
3870     .name          = TYPE_INTEL_IOMMU_DEVICE,
3871     .parent        = TYPE_X86_IOMMU_DEVICE,
3872     .instance_size = sizeof(IntelIOMMUState),
3873     .class_init    = vtd_class_init,
3874 };
3875 
3876 static void vtd_iommu_memory_region_class_init(ObjectClass *klass,
3877                                                      void *data)
3878 {
3879     IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_CLASS(klass);
3880 
3881     imrc->translate = vtd_iommu_translate;
3882     imrc->notify_flag_changed = vtd_iommu_notify_flag_changed;
3883     imrc->replay = vtd_iommu_replay;
3884 }
3885 
3886 static const TypeInfo vtd_iommu_memory_region_info = {
3887     .parent = TYPE_IOMMU_MEMORY_REGION,
3888     .name = TYPE_INTEL_IOMMU_MEMORY_REGION,
3889     .class_init = vtd_iommu_memory_region_class_init,
3890 };
3891 
3892 static void vtd_register_types(void)
3893 {
3894     type_register_static(&vtd_info);
3895     type_register_static(&vtd_iommu_memory_region_info);
3896 }
3897 
3898 type_init(vtd_register_types)
3899