xref: /qemu/hw/i2c/smbus_eeprom.c (revision 954a6c4f7862b45617ff3b65609f0f290dcd5077)
1  /*
2   * QEMU SMBus EEPROM device
3   *
4   * Copyright (c) 2007 Arastra, Inc.
5   *
6   * Permission is hereby granted, free of charge, to any person obtaining a copy
7   * of this software and associated documentation files (the "Software"), to deal
8   * in the Software without restriction, including without limitation the rights
9   * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10   * copies of the Software, and to permit persons to whom the Software is
11   * furnished to do so, subject to the following conditions:
12   *
13   * The above copyright notice and this permission notice shall be included in
14   * all copies or substantial portions of the Software.
15   *
16   * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17   * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18   * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19   * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20   * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21   * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22   * THE SOFTWARE.
23   */
24  
25  #include "qemu/osdep.h"
26  #include "qemu/units.h"
27  #include "qapi/error.h"
28  #include "hw/boards.h"
29  #include "hw/i2c/i2c.h"
30  #include "hw/i2c/smbus_slave.h"
31  #include "hw/qdev-properties.h"
32  #include "migration/vmstate.h"
33  #include "hw/i2c/smbus_eeprom.h"
34  #include "qom/object.h"
35  
36  //#define DEBUG
37  
38  #define TYPE_SMBUS_EEPROM "smbus-eeprom"
39  
40  OBJECT_DECLARE_SIMPLE_TYPE(SMBusEEPROMDevice, SMBUS_EEPROM)
41  
42  #define SMBUS_EEPROM_SIZE 256
43  
44  struct SMBusEEPROMDevice {
45      SMBusDevice smbusdev;
46      uint8_t data[SMBUS_EEPROM_SIZE];
47      uint8_t *init_data;
48      uint8_t offset;
49      bool accessed;
50  };
51  
52  static uint8_t eeprom_receive_byte(SMBusDevice *dev)
53  {
54      SMBusEEPROMDevice *eeprom = SMBUS_EEPROM(dev);
55      uint8_t *data = eeprom->data;
56      uint8_t val = data[eeprom->offset++];
57  
58      eeprom->accessed = true;
59  #ifdef DEBUG
60      printf("eeprom_receive_byte: addr=0x%02x val=0x%02x\n",
61             dev->i2c.address, val);
62  #endif
63      return val;
64  }
65  
66  static int eeprom_write_data(SMBusDevice *dev, uint8_t *buf, uint8_t len)
67  {
68      SMBusEEPROMDevice *eeprom = SMBUS_EEPROM(dev);
69      uint8_t *data = eeprom->data;
70  
71      eeprom->accessed = true;
72  #ifdef DEBUG
73      printf("eeprom_write_byte: addr=0x%02x cmd=0x%02x val=0x%02x\n",
74             dev->i2c.address, buf[0], buf[1]);
75  #endif
76      /* len is guaranteed to be > 0 */
77      eeprom->offset = buf[0];
78      buf++;
79      len--;
80  
81      for (; len > 0; len--) {
82          data[eeprom->offset] = *buf++;
83          eeprom->offset = (eeprom->offset + 1) % SMBUS_EEPROM_SIZE;
84      }
85  
86      return 0;
87  }
88  
89  static bool smbus_eeprom_vmstate_needed(void *opaque)
90  {
91      MachineClass *mc = MACHINE_GET_CLASS(qdev_get_machine());
92      SMBusEEPROMDevice *eeprom = opaque;
93  
94      return (eeprom->accessed || smbus_vmstate_needed(&eeprom->smbusdev)) &&
95          !mc->smbus_no_migration_support;
96  }
97  
98  static const VMStateDescription vmstate_smbus_eeprom = {
99      .name = "smbus-eeprom",
100      .version_id = 1,
101      .minimum_version_id = 1,
102      .needed = smbus_eeprom_vmstate_needed,
103      .fields      = (VMStateField[]) {
104          VMSTATE_SMBUS_DEVICE(smbusdev, SMBusEEPROMDevice),
105          VMSTATE_UINT8_ARRAY(data, SMBusEEPROMDevice, SMBUS_EEPROM_SIZE),
106          VMSTATE_UINT8(offset, SMBusEEPROMDevice),
107          VMSTATE_BOOL(accessed, SMBusEEPROMDevice),
108          VMSTATE_END_OF_LIST()
109      }
110  };
111  
112  /*
113   * Reset the EEPROM contents to the initial state on a reset.  This
114   * isn't really how an EEPROM works, of course, but the general
115   * principle of QEMU is to restore function on reset to what it would
116   * be if QEMU was stopped and started.
117   *
118   * The proper thing to do would be to have a backing blockdev to hold
119   * the contents and restore that on startup, and not do this on reset.
120   * But until that time, act as if we had been stopped and restarted.
121   */
122  static void smbus_eeprom_reset(DeviceState *dev)
123  {
124      SMBusEEPROMDevice *eeprom = SMBUS_EEPROM(dev);
125  
126      memcpy(eeprom->data, eeprom->init_data, SMBUS_EEPROM_SIZE);
127      eeprom->offset = 0;
128  }
129  
130  static void smbus_eeprom_realize(DeviceState *dev, Error **errp)
131  {
132      SMBusEEPROMDevice *eeprom = SMBUS_EEPROM(dev);
133  
134      smbus_eeprom_reset(dev);
135      if (eeprom->init_data == NULL) {
136          error_setg(errp, "init_data cannot be NULL");
137      }
138  }
139  
140  static void smbus_eeprom_class_initfn(ObjectClass *klass, void *data)
141  {
142      DeviceClass *dc = DEVICE_CLASS(klass);
143      SMBusDeviceClass *sc = SMBUS_DEVICE_CLASS(klass);
144  
145      dc->realize = smbus_eeprom_realize;
146      dc->reset = smbus_eeprom_reset;
147      sc->receive_byte = eeprom_receive_byte;
148      sc->write_data = eeprom_write_data;
149      dc->vmsd = &vmstate_smbus_eeprom;
150      /* Reason: init_data */
151      dc->user_creatable = false;
152  }
153  
154  static const TypeInfo smbus_eeprom_info = {
155      .name          = TYPE_SMBUS_EEPROM,
156      .parent        = TYPE_SMBUS_DEVICE,
157      .instance_size = sizeof(SMBusEEPROMDevice),
158      .class_init    = smbus_eeprom_class_initfn,
159  };
160  
161  static void smbus_eeprom_register_types(void)
162  {
163      type_register_static(&smbus_eeprom_info);
164  }
165  
166  type_init(smbus_eeprom_register_types)
167  
168  void smbus_eeprom_init_one(I2CBus *smbus, uint8_t address, uint8_t *eeprom_buf)
169  {
170      DeviceState *dev;
171  
172      dev = qdev_new(TYPE_SMBUS_EEPROM);
173      qdev_prop_set_uint8(dev, "address", address);
174      /* FIXME: use an array of byte or block backend property? */
175      SMBUS_EEPROM(dev)->init_data = eeprom_buf;
176      qdev_realize_and_unref(dev, (BusState *)smbus, &error_fatal);
177  }
178  
179  void smbus_eeprom_init(I2CBus *smbus, int nb_eeprom,
180                         const uint8_t *eeprom_spd, int eeprom_spd_size)
181  {
182      int i;
183       /* XXX: make this persistent */
184  
185      assert(nb_eeprom <= 8);
186      uint8_t *eeprom_buf = g_malloc0(8 * SMBUS_EEPROM_SIZE);
187      if (eeprom_spd_size > 0) {
188          memcpy(eeprom_buf, eeprom_spd, eeprom_spd_size);
189      }
190  
191      for (i = 0; i < nb_eeprom; i++) {
192          smbus_eeprom_init_one(smbus, 0x50 + i,
193                                eeprom_buf + (i * SMBUS_EEPROM_SIZE));
194      }
195  }
196  
197  /* Generate SDRAM SPD EEPROM data describing a module of type and size */
198  uint8_t *spd_data_generate(enum sdram_type type, ram_addr_t ram_size)
199  {
200      uint8_t *spd;
201      uint8_t nbanks;
202      uint16_t density;
203      uint32_t size;
204      int min_log2, max_log2, sz_log2;
205      int i;
206  
207      switch (type) {
208      case SDR:
209          min_log2 = 2;
210          max_log2 = 9;
211          break;
212      case DDR:
213          min_log2 = 5;
214          max_log2 = 12;
215          break;
216      case DDR2:
217          min_log2 = 7;
218          max_log2 = 14;
219          break;
220      default:
221          g_assert_not_reached();
222      }
223      size = ram_size >> 20; /* work in terms of megabytes */
224      sz_log2 = 31 - clz32(size);
225      size = 1U << sz_log2;
226      assert(ram_size == size * MiB);
227      assert(sz_log2 >= min_log2);
228  
229      nbanks = 1;
230      while (sz_log2 > max_log2 && nbanks < 8) {
231          sz_log2--;
232          nbanks *= 2;
233      }
234  
235      assert(size == (1ULL << sz_log2) * nbanks);
236  
237      /* split to 2 banks if possible to avoid a bug in MIPS Malta firmware */
238      if (nbanks == 1 && sz_log2 > min_log2) {
239          sz_log2--;
240          nbanks++;
241      }
242  
243      density = 1ULL << (sz_log2 - 2);
244      switch (type) {
245      case DDR2:
246          density = (density & 0xe0) | (density >> 8 & 0x1f);
247          break;
248      case DDR:
249          density = (density & 0xf8) | (density >> 8 & 0x07);
250          break;
251      case SDR:
252      default:
253          density &= 0xff;
254          break;
255      }
256  
257      spd = g_malloc0(256);
258      spd[0] = 128;   /* data bytes in EEPROM */
259      spd[1] = 8;     /* log2 size of EEPROM */
260      spd[2] = type;
261      spd[3] = 13;    /* row address bits */
262      spd[4] = 10;    /* column address bits */
263      spd[5] = (type == DDR2 ? nbanks - 1 : nbanks);
264      spd[6] = 64;    /* module data width */
265                      /* reserved / data width high */
266      spd[8] = 4;     /* interface voltage level */
267      spd[9] = 0x25;  /* highest CAS latency */
268      spd[10] = 1;    /* access time */
269                      /* DIMM configuration 0 = non-ECC */
270      spd[12] = 0x82; /* refresh requirements */
271      spd[13] = 8;    /* primary SDRAM width */
272                      /* ECC SDRAM width */
273      spd[15] = (type == DDR2 ? 0 : 1); /* reserved / delay for random col rd */
274      spd[16] = 12;   /* burst lengths supported */
275      spd[17] = 4;    /* banks per SDRAM device */
276      spd[18] = 12;   /* ~CAS latencies supported */
277      spd[19] = (type == DDR2 ? 0 : 1); /* reserved / ~CS latencies supported */
278      spd[20] = 2;    /* DIMM type / ~WE latencies */
279      spd[21] = (type < DDR2 ? 0x20 : 0); /* module features */
280                      /* memory chip features */
281      spd[23] = 0x12; /* clock cycle time @ medium CAS latency */
282                      /* data access time */
283                      /* clock cycle time @ short CAS latency */
284                      /* data access time */
285      spd[27] = 20;   /* min. row precharge time */
286      spd[28] = 15;   /* min. row active row delay */
287      spd[29] = 20;   /* min. ~RAS to ~CAS delay */
288      spd[30] = 45;   /* min. active to precharge time */
289      spd[31] = density;
290      spd[32] = 20;   /* addr/cmd setup time */
291      spd[33] = 8;    /* addr/cmd hold time */
292      spd[34] = 20;   /* data input setup time */
293      spd[35] = 8;    /* data input hold time */
294  
295      /* checksum */
296      for (i = 0; i < 63; i++) {
297          spd[63] += spd[i];
298      }
299      return spd;
300  }
301