xref: /qemu/hw/i2c/smbus_eeprom.c (revision b9751d205febdfefdb9bb9828fef07ae9a966f1b)
13fffc223Sths /*
23fffc223Sths  * QEMU SMBus EEPROM device
33fffc223Sths  *
43fffc223Sths  * Copyright (c) 2007 Arastra, Inc.
53fffc223Sths  *
63fffc223Sths  * Permission is hereby granted, free of charge, to any person obtaining a copy
73fffc223Sths  * of this software and associated documentation files (the "Software"), to deal
83fffc223Sths  * in the Software without restriction, including without limitation the rights
93fffc223Sths  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
103fffc223Sths  * copies of the Software, and to permit persons to whom the Software is
113fffc223Sths  * furnished to do so, subject to the following conditions:
123fffc223Sths  *
133fffc223Sths  * The above copyright notice and this permission notice shall be included in
143fffc223Sths  * all copies or substantial portions of the Software.
153fffc223Sths  *
163fffc223Sths  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
173fffc223Sths  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
183fffc223Sths  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
193fffc223Sths  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
203fffc223Sths  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
213fffc223Sths  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
223fffc223Sths  * THE SOFTWARE.
233fffc223Sths  */
243fffc223Sths 
250430891cSPeter Maydell #include "qemu/osdep.h"
26b296b664SBALATON Zoltan #include "qemu/units.h"
27b296b664SBALATON Zoltan #include "qapi/error.h"
28fd9df33fSCorey Minyard #include "hw/boards.h"
290d09e41aSPaolo Bonzini #include "hw/i2c/i2c.h"
3093198b6cSCorey Minyard #include "hw/i2c/smbus_slave.h"
31a27bd6c7SMarkus Armbruster #include "hw/qdev-properties.h"
32d6454270SMarkus Armbruster #include "migration/vmstate.h"
3393198b6cSCorey Minyard #include "hw/i2c/smbus_eeprom.h"
343fffc223Sths 
353fffc223Sths //#define DEBUG
363fffc223Sths 
37b398a924SCorey Minyard #define TYPE_SMBUS_EEPROM "smbus-eeprom"
38b398a924SCorey Minyard 
39b398a924SCorey Minyard #define SMBUS_EEPROM(obj) \
40b398a924SCorey Minyard     OBJECT_CHECK(SMBusEEPROMDevice, (obj), TYPE_SMBUS_EEPROM)
41b398a924SCorey Minyard 
420cf487e5SCorey Minyard #define SMBUS_EEPROM_SIZE 256
430cf487e5SCorey Minyard 
443fffc223Sths typedef struct SMBusEEPROMDevice {
451ea96673SPaul Brook     SMBusDevice smbusdev;
46fd9df33fSCorey Minyard     uint8_t data[SMBUS_EEPROM_SIZE];
47*b9751d20SMarc-André Lureau     uint8_t *init_data;
483fffc223Sths     uint8_t offset;
49fd9df33fSCorey Minyard     bool accessed;
503fffc223Sths } SMBusEEPROMDevice;
513fffc223Sths 
523fffc223Sths static uint8_t eeprom_receive_byte(SMBusDevice *dev)
533fffc223Sths {
54b398a924SCorey Minyard     SMBusEEPROMDevice *eeprom = SMBUS_EEPROM(dev);
55bf2782d7SGerd Hoffmann     uint8_t *data = eeprom->data;
56bf2782d7SGerd Hoffmann     uint8_t val = data[eeprom->offset++];
578b38e532SCorey Minyard 
58fd9df33fSCorey Minyard     eeprom->accessed = true;
593fffc223Sths #ifdef DEBUG
60ab7d9131Sbalrog     printf("eeprom_receive_byte: addr=0x%02x val=0x%02x\n",
61ab7d9131Sbalrog            dev->i2c.address, val);
623fffc223Sths #endif
633fffc223Sths     return val;
643fffc223Sths }
653fffc223Sths 
669cf27d74SCorey Minyard static int eeprom_write_data(SMBusDevice *dev, uint8_t *buf, uint8_t len)
673fffc223Sths {
68b398a924SCorey Minyard     SMBusEEPROMDevice *eeprom = SMBUS_EEPROM(dev);
699cf27d74SCorey Minyard     uint8_t *data = eeprom->data;
709cf27d74SCorey Minyard 
71fd9df33fSCorey Minyard     eeprom->accessed = true;
723fffc223Sths #ifdef DEBUG
73ab7d9131Sbalrog     printf("eeprom_write_byte: addr=0x%02x cmd=0x%02x val=0x%02x\n",
749cf27d74SCorey Minyard            dev->i2c.address, buf[0], buf[1]);
753fffc223Sths #endif
769cf27d74SCorey Minyard     /* len is guaranteed to be > 0 */
779cf27d74SCorey Minyard     eeprom->offset = buf[0];
789cf27d74SCorey Minyard     buf++;
799cf27d74SCorey Minyard     len--;
809cf27d74SCorey Minyard 
819cf27d74SCorey Minyard     for (; len > 0; len--) {
829cf27d74SCorey Minyard         data[eeprom->offset] = *buf++;
830cf487e5SCorey Minyard         eeprom->offset = (eeprom->offset + 1) % SMBUS_EEPROM_SIZE;
843fffc223Sths     }
853fffc223Sths 
869cf27d74SCorey Minyard     return 0;
879cf27d74SCorey Minyard }
889cf27d74SCorey Minyard 
89fd9df33fSCorey Minyard static bool smbus_eeprom_vmstate_needed(void *opaque)
90fd9df33fSCorey Minyard {
91fd9df33fSCorey Minyard     MachineClass *mc = MACHINE_GET_CLASS(qdev_get_machine());
92fd9df33fSCorey Minyard     SMBusEEPROMDevice *eeprom = opaque;
93fd9df33fSCorey Minyard 
94fd9df33fSCorey Minyard     return (eeprom->accessed || smbus_vmstate_needed(&eeprom->smbusdev)) &&
95fd9df33fSCorey Minyard         !mc->smbus_no_migration_support;
96fd9df33fSCorey Minyard }
97fd9df33fSCorey Minyard 
98fd9df33fSCorey Minyard static const VMStateDescription vmstate_smbus_eeprom = {
99fd9df33fSCorey Minyard     .name = "smbus-eeprom",
100fd9df33fSCorey Minyard     .version_id = 1,
101fd9df33fSCorey Minyard     .minimum_version_id = 1,
102fd9df33fSCorey Minyard     .needed = smbus_eeprom_vmstate_needed,
103fd9df33fSCorey Minyard     .fields      = (VMStateField[]) {
104fd9df33fSCorey Minyard         VMSTATE_SMBUS_DEVICE(smbusdev, SMBusEEPROMDevice),
105fd9df33fSCorey Minyard         VMSTATE_UINT8_ARRAY(data, SMBusEEPROMDevice, SMBUS_EEPROM_SIZE),
106fd9df33fSCorey Minyard         VMSTATE_UINT8(offset, SMBusEEPROMDevice),
107fd9df33fSCorey Minyard         VMSTATE_BOOL(accessed, SMBusEEPROMDevice),
108fd9df33fSCorey Minyard         VMSTATE_END_OF_LIST()
109fd9df33fSCorey Minyard     }
110fd9df33fSCorey Minyard };
111fd9df33fSCorey Minyard 
1121042b22dSCorey Minyard /*
1131042b22dSCorey Minyard  * Reset the EEPROM contents to the initial state on a reset.  This
1141042b22dSCorey Minyard  * isn't really how an EEPROM works, of course, but the general
1151042b22dSCorey Minyard  * principle of QEMU is to restore function on reset to what it would
1161042b22dSCorey Minyard  * be if QEMU was stopped and started.
1171042b22dSCorey Minyard  *
1181042b22dSCorey Minyard  * The proper thing to do would be to have a backing blockdev to hold
1191042b22dSCorey Minyard  * the contents and restore that on startup, and not do this on reset.
1201042b22dSCorey Minyard  * But until that time, act as if we had been stopped and restarted.
1211042b22dSCorey Minyard  */
1221042b22dSCorey Minyard static void smbus_eeprom_reset(DeviceState *dev)
1233fffc223Sths {
124b398a924SCorey Minyard     SMBusEEPROMDevice *eeprom = SMBUS_EEPROM(dev);
1250ff596d0Spbrook 
126fd9df33fSCorey Minyard     memcpy(eeprom->data, eeprom->init_data, SMBUS_EEPROM_SIZE);
1273fffc223Sths     eeprom->offset = 0;
1283fffc223Sths }
1291ea96673SPaul Brook 
1301042b22dSCorey Minyard static void smbus_eeprom_realize(DeviceState *dev, Error **errp)
1311042b22dSCorey Minyard {
132*b9751d20SMarc-André Lureau     SMBusEEPROMDevice *eeprom = SMBUS_EEPROM(dev);
1331042b22dSCorey Minyard 
134*b9751d20SMarc-André Lureau     smbus_eeprom_reset(dev);
135*b9751d20SMarc-André Lureau     if (eeprom->init_data == NULL) {
136*b9751d20SMarc-André Lureau         error_setg(errp, "init_data cannot be NULL");
137*b9751d20SMarc-André Lureau     }
138*b9751d20SMarc-André Lureau }
13939bffca2SAnthony Liguori 
140b5ea9327SAnthony Liguori static void smbus_eeprom_class_initfn(ObjectClass *klass, void *data)
141b5ea9327SAnthony Liguori {
14239bffca2SAnthony Liguori     DeviceClass *dc = DEVICE_CLASS(klass);
143b5ea9327SAnthony Liguori     SMBusDeviceClass *sc = SMBUS_DEVICE_CLASS(klass);
144b5ea9327SAnthony Liguori 
14519473e51SPhilippe Mathieu-Daudé     dc->realize = smbus_eeprom_realize;
1461042b22dSCorey Minyard     dc->reset = smbus_eeprom_reset;
147b5ea9327SAnthony Liguori     sc->receive_byte = eeprom_receive_byte;
148b5ea9327SAnthony Liguori     sc->write_data = eeprom_write_data;
149fd9df33fSCorey Minyard     dc->vmsd = &vmstate_smbus_eeprom;
150*b9751d20SMarc-André Lureau     /* Reason: init_data */
151e90f2a8cSEduardo Habkost     dc->user_creatable = false;
152b5ea9327SAnthony Liguori }
153b5ea9327SAnthony Liguori 
1548c43a6f0SAndreas Färber static const TypeInfo smbus_eeprom_info = {
155b398a924SCorey Minyard     .name          = TYPE_SMBUS_EEPROM,
15639bffca2SAnthony Liguori     .parent        = TYPE_SMBUS_DEVICE,
15739bffca2SAnthony Liguori     .instance_size = sizeof(SMBusEEPROMDevice),
158b5ea9327SAnthony Liguori     .class_init    = smbus_eeprom_class_initfn,
1591ea96673SPaul Brook };
1601ea96673SPaul Brook 
16183f7d43aSAndreas Färber static void smbus_eeprom_register_types(void)
1621ea96673SPaul Brook {
16339bffca2SAnthony Liguori     type_register_static(&smbus_eeprom_info);
1641ea96673SPaul Brook }
1651ea96673SPaul Brook 
16683f7d43aSAndreas Färber type_init(smbus_eeprom_register_types)
167a88df0b9SIsaku Yamahata 
168e2224214SCédric Le Goater void smbus_eeprom_init_one(I2CBus *smbus, uint8_t address, uint8_t *eeprom_buf)
169e2224214SCédric Le Goater {
170e2224214SCédric Le Goater     DeviceState *dev;
171e2224214SCédric Le Goater 
172b398a924SCorey Minyard     dev = qdev_create((BusState *) smbus, TYPE_SMBUS_EEPROM);
173e2224214SCédric Le Goater     qdev_prop_set_uint8(dev, "address", address);
174*b9751d20SMarc-André Lureau     /* FIXME: use an array of byte or block backend property? */
175*b9751d20SMarc-André Lureau     SMBUS_EEPROM(dev)->init_data = eeprom_buf;
176e2224214SCédric Le Goater     qdev_init_nofail(dev);
177e2224214SCédric Le Goater }
178e2224214SCédric Le Goater 
179a5c82852SAndreas Färber void smbus_eeprom_init(I2CBus *smbus, int nb_eeprom,
180a88df0b9SIsaku Yamahata                        const uint8_t *eeprom_spd, int eeprom_spd_size)
181a88df0b9SIsaku Yamahata {
182a88df0b9SIsaku Yamahata     int i;
1830cf487e5SCorey Minyard      /* XXX: make this persistent */
184c203d451SCorey Minyard 
185c203d451SCorey Minyard     assert(nb_eeprom <= 8);
1860cf487e5SCorey Minyard     uint8_t *eeprom_buf = g_malloc0(8 * SMBUS_EEPROM_SIZE);
187a88df0b9SIsaku Yamahata     if (eeprom_spd_size > 0) {
188a88df0b9SIsaku Yamahata         memcpy(eeprom_buf, eeprom_spd, eeprom_spd_size);
189a88df0b9SIsaku Yamahata     }
190a88df0b9SIsaku Yamahata 
191a88df0b9SIsaku Yamahata     for (i = 0; i < nb_eeprom; i++) {
1920cf487e5SCorey Minyard         smbus_eeprom_init_one(smbus, 0x50 + i,
1930cf487e5SCorey Minyard                               eeprom_buf + (i * SMBUS_EEPROM_SIZE));
194a88df0b9SIsaku Yamahata     }
195a88df0b9SIsaku Yamahata }
196b296b664SBALATON Zoltan 
197b296b664SBALATON Zoltan /* Generate SDRAM SPD EEPROM data describing a module of type and size */
198b296b664SBALATON Zoltan uint8_t *spd_data_generate(enum sdram_type type, ram_addr_t ram_size,
199b296b664SBALATON Zoltan                            Error **errp)
200b296b664SBALATON Zoltan {
201b296b664SBALATON Zoltan     uint8_t *spd;
202b296b664SBALATON Zoltan     uint8_t nbanks;
203b296b664SBALATON Zoltan     uint16_t density;
204b296b664SBALATON Zoltan     uint32_t size;
205b296b664SBALATON Zoltan     int min_log2, max_log2, sz_log2;
206b296b664SBALATON Zoltan     int i;
207b296b664SBALATON Zoltan 
208b296b664SBALATON Zoltan     switch (type) {
209b296b664SBALATON Zoltan     case SDR:
210b296b664SBALATON Zoltan         min_log2 = 2;
211b296b664SBALATON Zoltan         max_log2 = 9;
212b296b664SBALATON Zoltan         break;
213b296b664SBALATON Zoltan     case DDR:
214b296b664SBALATON Zoltan         min_log2 = 5;
215b296b664SBALATON Zoltan         max_log2 = 12;
216b296b664SBALATON Zoltan         break;
217b296b664SBALATON Zoltan     case DDR2:
218b296b664SBALATON Zoltan         min_log2 = 7;
219b296b664SBALATON Zoltan         max_log2 = 14;
220b296b664SBALATON Zoltan         break;
221b296b664SBALATON Zoltan     default:
222b296b664SBALATON Zoltan         g_assert_not_reached();
223b296b664SBALATON Zoltan     }
224b296b664SBALATON Zoltan     size = ram_size >> 20; /* work in terms of megabytes */
225b296b664SBALATON Zoltan     if (size < 4) {
226b296b664SBALATON Zoltan         error_setg(errp, "SDRAM size is too small");
227b296b664SBALATON Zoltan         return NULL;
228b296b664SBALATON Zoltan     }
229b296b664SBALATON Zoltan     sz_log2 = 31 - clz32(size);
230b296b664SBALATON Zoltan     size = 1U << sz_log2;
231b296b664SBALATON Zoltan     if (ram_size > size * MiB) {
232b296b664SBALATON Zoltan         error_setg(errp, "SDRAM size 0x"RAM_ADDR_FMT" is not a power of 2, "
233b296b664SBALATON Zoltan                    "truncating to %u MB", ram_size, size);
234b296b664SBALATON Zoltan     }
235b296b664SBALATON Zoltan     if (sz_log2 < min_log2) {
236b296b664SBALATON Zoltan         error_setg(errp,
237b296b664SBALATON Zoltan                    "Memory size is too small for SDRAM type, adjusting type");
238b296b664SBALATON Zoltan         if (size >= 32) {
239b296b664SBALATON Zoltan             type = DDR;
240b296b664SBALATON Zoltan             min_log2 = 5;
241b296b664SBALATON Zoltan             max_log2 = 12;
242b296b664SBALATON Zoltan         } else {
243b296b664SBALATON Zoltan             type = SDR;
244b296b664SBALATON Zoltan             min_log2 = 2;
245b296b664SBALATON Zoltan             max_log2 = 9;
246b296b664SBALATON Zoltan         }
247b296b664SBALATON Zoltan     }
248b296b664SBALATON Zoltan 
249b296b664SBALATON Zoltan     nbanks = 1;
250b296b664SBALATON Zoltan     while (sz_log2 > max_log2 && nbanks < 8) {
251b296b664SBALATON Zoltan         sz_log2--;
252b296b664SBALATON Zoltan         nbanks++;
253b296b664SBALATON Zoltan     }
254b296b664SBALATON Zoltan 
255b296b664SBALATON Zoltan     if (size > (1ULL << sz_log2) * nbanks) {
256b296b664SBALATON Zoltan         error_setg(errp, "Memory size is too big for SDRAM, truncating");
257b296b664SBALATON Zoltan     }
258b296b664SBALATON Zoltan 
259b296b664SBALATON Zoltan     /* split to 2 banks if possible to avoid a bug in MIPS Malta firmware */
260b296b664SBALATON Zoltan     if (nbanks == 1 && sz_log2 > min_log2) {
261b296b664SBALATON Zoltan         sz_log2--;
262b296b664SBALATON Zoltan         nbanks++;
263b296b664SBALATON Zoltan     }
264b296b664SBALATON Zoltan 
265b296b664SBALATON Zoltan     density = 1ULL << (sz_log2 - 2);
266b296b664SBALATON Zoltan     switch (type) {
267b296b664SBALATON Zoltan     case DDR2:
268b296b664SBALATON Zoltan         density = (density & 0xe0) | (density >> 8 & 0x1f);
269b296b664SBALATON Zoltan         break;
270b296b664SBALATON Zoltan     case DDR:
271b296b664SBALATON Zoltan         density = (density & 0xf8) | (density >> 8 & 0x07);
272b296b664SBALATON Zoltan         break;
273b296b664SBALATON Zoltan     case SDR:
274b296b664SBALATON Zoltan     default:
275b296b664SBALATON Zoltan         density &= 0xff;
276b296b664SBALATON Zoltan         break;
277b296b664SBALATON Zoltan     }
278b296b664SBALATON Zoltan 
279b296b664SBALATON Zoltan     spd = g_malloc0(256);
280b296b664SBALATON Zoltan     spd[0] = 128;   /* data bytes in EEPROM */
281b296b664SBALATON Zoltan     spd[1] = 8;     /* log2 size of EEPROM */
282b296b664SBALATON Zoltan     spd[2] = type;
283b296b664SBALATON Zoltan     spd[3] = 13;    /* row address bits */
284b296b664SBALATON Zoltan     spd[4] = 10;    /* column address bits */
285b296b664SBALATON Zoltan     spd[5] = (type == DDR2 ? nbanks - 1 : nbanks);
286b296b664SBALATON Zoltan     spd[6] = 64;    /* module data width */
287b296b664SBALATON Zoltan                     /* reserved / data width high */
288b296b664SBALATON Zoltan     spd[8] = 4;     /* interface voltage level */
289b296b664SBALATON Zoltan     spd[9] = 0x25;  /* highest CAS latency */
290b296b664SBALATON Zoltan     spd[10] = 1;    /* access time */
291b296b664SBALATON Zoltan                     /* DIMM configuration 0 = non-ECC */
292b296b664SBALATON Zoltan     spd[12] = 0x82; /* refresh requirements */
293b296b664SBALATON Zoltan     spd[13] = 8;    /* primary SDRAM width */
294b296b664SBALATON Zoltan                     /* ECC SDRAM width */
295b296b664SBALATON Zoltan     spd[15] = (type == DDR2 ? 0 : 1); /* reserved / delay for random col rd */
296b296b664SBALATON Zoltan     spd[16] = 12;   /* burst lengths supported */
297b296b664SBALATON Zoltan     spd[17] = 4;    /* banks per SDRAM device */
298b296b664SBALATON Zoltan     spd[18] = 12;   /* ~CAS latencies supported */
299b296b664SBALATON Zoltan     spd[19] = (type == DDR2 ? 0 : 1); /* reserved / ~CS latencies supported */
300b296b664SBALATON Zoltan     spd[20] = 2;    /* DIMM type / ~WE latencies */
301b296b664SBALATON Zoltan                     /* module features */
302b296b664SBALATON Zoltan                     /* memory chip features */
303b296b664SBALATON Zoltan     spd[23] = 0x12; /* clock cycle time @ medium CAS latency */
304b296b664SBALATON Zoltan                     /* data access time */
305b296b664SBALATON Zoltan                     /* clock cycle time @ short CAS latency */
306b296b664SBALATON Zoltan                     /* data access time */
307b296b664SBALATON Zoltan     spd[27] = 20;   /* min. row precharge time */
308b296b664SBALATON Zoltan     spd[28] = 15;   /* min. row active row delay */
309b296b664SBALATON Zoltan     spd[29] = 20;   /* min. ~RAS to ~CAS delay */
310b296b664SBALATON Zoltan     spd[30] = 45;   /* min. active to precharge time */
311b296b664SBALATON Zoltan     spd[31] = density;
312b296b664SBALATON Zoltan     spd[32] = 20;   /* addr/cmd setup time */
313b296b664SBALATON Zoltan     spd[33] = 8;    /* addr/cmd hold time */
314b296b664SBALATON Zoltan     spd[34] = 20;   /* data input setup time */
315b296b664SBALATON Zoltan     spd[35] = 8;    /* data input hold time */
316b296b664SBALATON Zoltan 
317b296b664SBALATON Zoltan     /* checksum */
318b296b664SBALATON Zoltan     for (i = 0; i < 63; i++) {
319b296b664SBALATON Zoltan         spd[63] += spd[i];
320b296b664SBALATON Zoltan     }
321b296b664SBALATON Zoltan     return spd;
322b296b664SBALATON Zoltan }
323