1 /* 2 * General purpose implementation of a simple periodic countdown timer. 3 * 4 * Copyright (c) 2007 CodeSourcery. 5 * 6 * This code is licensed under the GNU LGPL. 7 */ 8 #include "qemu/osdep.h" 9 #include "hw/hw.h" 10 #include "qemu/timer.h" 11 #include "hw/ptimer.h" 12 #include "qemu/host-utils.h" 13 #include "sysemu/replay.h" 14 #include "sysemu/qtest.h" 15 #include "block/aio.h" 16 17 #define DELTA_ADJUST 1 18 #define DELTA_NO_ADJUST -1 19 20 struct ptimer_state 21 { 22 uint8_t enabled; /* 0 = disabled, 1 = periodic, 2 = oneshot. */ 23 uint64_t limit; 24 uint64_t delta; 25 uint32_t period_frac; 26 int64_t period; 27 int64_t last_event; 28 int64_t next_event; 29 uint8_t policy_mask; 30 QEMUBH *bh; 31 QEMUTimer *timer; 32 }; 33 34 /* Use a bottom-half routine to avoid reentrancy issues. */ 35 static void ptimer_trigger(ptimer_state *s) 36 { 37 if (s->bh) { 38 replay_bh_schedule_event(s->bh); 39 } 40 } 41 42 static void ptimer_reload(ptimer_state *s, int delta_adjust) 43 { 44 uint32_t period_frac = s->period_frac; 45 uint64_t period = s->period; 46 uint64_t delta = s->delta; 47 48 if (delta == 0 && !(s->policy_mask & PTIMER_POLICY_NO_IMMEDIATE_TRIGGER)) { 49 ptimer_trigger(s); 50 } 51 52 if (delta == 0 && !(s->policy_mask & PTIMER_POLICY_NO_IMMEDIATE_RELOAD)) { 53 delta = s->delta = s->limit; 54 } 55 56 if (s->period == 0) { 57 if (!qtest_enabled()) { 58 fprintf(stderr, "Timer with period zero, disabling\n"); 59 } 60 timer_del(s->timer); 61 s->enabled = 0; 62 return; 63 } 64 65 if (s->policy_mask & PTIMER_POLICY_WRAP_AFTER_ONE_PERIOD) { 66 if (delta_adjust != DELTA_NO_ADJUST) { 67 delta += delta_adjust; 68 } 69 } 70 71 if (delta == 0 && (s->policy_mask & PTIMER_POLICY_CONTINUOUS_TRIGGER)) { 72 if (s->enabled == 1 && s->limit == 0) { 73 delta = 1; 74 } 75 } 76 77 if (delta == 0 && (s->policy_mask & PTIMER_POLICY_NO_IMMEDIATE_TRIGGER)) { 78 if (delta_adjust != DELTA_NO_ADJUST) { 79 delta = 1; 80 } 81 } 82 83 if (delta == 0 && (s->policy_mask & PTIMER_POLICY_NO_IMMEDIATE_RELOAD)) { 84 if (s->enabled == 1 && s->limit != 0) { 85 delta = 1; 86 } 87 } 88 89 if (delta == 0) { 90 if (!qtest_enabled()) { 91 fprintf(stderr, "Timer with delta zero, disabling\n"); 92 } 93 timer_del(s->timer); 94 s->enabled = 0; 95 return; 96 } 97 98 /* 99 * Artificially limit timeout rate to something 100 * achievable under QEMU. Otherwise, QEMU spends all 101 * its time generating timer interrupts, and there 102 * is no forward progress. 103 * About ten microseconds is the fastest that really works 104 * on the current generation of host machines. 105 */ 106 107 if (s->enabled == 1 && (delta * period < 10000) && !use_icount) { 108 period = 10000 / delta; 109 period_frac = 0; 110 } 111 112 s->last_event = s->next_event; 113 s->next_event = s->last_event + delta * period; 114 if (period_frac) { 115 s->next_event += ((int64_t)period_frac * delta) >> 32; 116 } 117 timer_mod(s->timer, s->next_event); 118 } 119 120 static void ptimer_tick(void *opaque) 121 { 122 ptimer_state *s = (ptimer_state *)opaque; 123 bool trigger = true; 124 125 if (s->enabled == 2) { 126 s->delta = 0; 127 s->enabled = 0; 128 } else { 129 int delta_adjust = DELTA_ADJUST; 130 131 if (s->delta == 0 || s->limit == 0) { 132 /* If a "continuous trigger" policy is not used and limit == 0, 133 we should error out. delta == 0 means that this tick is 134 caused by a "no immediate reload" policy, so it shouldn't 135 be adjusted. */ 136 delta_adjust = DELTA_NO_ADJUST; 137 } 138 139 if (!(s->policy_mask & PTIMER_POLICY_NO_IMMEDIATE_TRIGGER)) { 140 /* Avoid re-trigger on deferred reload if "no immediate trigger" 141 policy isn't used. */ 142 trigger = (delta_adjust == DELTA_ADJUST); 143 } 144 145 s->delta = s->limit; 146 147 ptimer_reload(s, delta_adjust); 148 } 149 150 if (trigger) { 151 ptimer_trigger(s); 152 } 153 } 154 155 uint64_t ptimer_get_count(ptimer_state *s) 156 { 157 uint64_t counter; 158 159 if (s->enabled && s->delta != 0) { 160 int64_t now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL); 161 int64_t next = s->next_event; 162 int64_t last = s->last_event; 163 bool expired = (now - next >= 0); 164 bool oneshot = (s->enabled == 2); 165 166 /* Figure out the current counter value. */ 167 if (expired) { 168 /* Prevent timer underflowing if it should already have 169 triggered. */ 170 counter = 0; 171 } else { 172 uint64_t rem; 173 uint64_t div; 174 int clz1, clz2; 175 int shift; 176 uint32_t period_frac = s->period_frac; 177 uint64_t period = s->period; 178 179 if (!oneshot && (s->delta * period < 10000) && !use_icount) { 180 period = 10000 / s->delta; 181 period_frac = 0; 182 } 183 184 /* We need to divide time by period, where time is stored in 185 rem (64-bit integer) and period is stored in period/period_frac 186 (64.32 fixed point). 187 188 Doing full precision division is hard, so scale values and 189 do a 64-bit division. The result should be rounded down, 190 so that the rounding error never causes the timer to go 191 backwards. 192 */ 193 194 rem = next - now; 195 div = period; 196 197 clz1 = clz64(rem); 198 clz2 = clz64(div); 199 shift = clz1 < clz2 ? clz1 : clz2; 200 201 rem <<= shift; 202 div <<= shift; 203 if (shift >= 32) { 204 div |= ((uint64_t)period_frac << (shift - 32)); 205 } else { 206 if (shift != 0) 207 div |= (period_frac >> (32 - shift)); 208 /* Look at remaining bits of period_frac and round div up if 209 necessary. */ 210 if ((uint32_t)(period_frac << shift)) 211 div += 1; 212 } 213 counter = rem / div; 214 215 if (s->policy_mask & PTIMER_POLICY_WRAP_AFTER_ONE_PERIOD) { 216 /* Before wrapping around, timer should stay with counter = 0 217 for a one period. */ 218 if (!oneshot && s->delta == s->limit) { 219 if (now == last) { 220 /* Counter == delta here, check whether it was 221 adjusted and if it was, then right now it is 222 that "one period". */ 223 if (counter == s->limit + DELTA_ADJUST) { 224 return 0; 225 } 226 } else if (counter == s->limit) { 227 /* Since the counter is rounded down and now != last, 228 the counter == limit means that delta was adjusted 229 by +1 and right now it is that adjusted period. */ 230 return 0; 231 } 232 } 233 } 234 } 235 236 if (s->policy_mask & PTIMER_POLICY_NO_COUNTER_ROUND_DOWN) { 237 /* If now == last then delta == limit, i.e. the counter already 238 represents the correct value. It would be rounded down a 1ns 239 later. */ 240 if (now != last) { 241 counter += 1; 242 } 243 } 244 } else { 245 counter = s->delta; 246 } 247 return counter; 248 } 249 250 void ptimer_set_count(ptimer_state *s, uint64_t count) 251 { 252 s->delta = count; 253 if (s->enabled) { 254 s->next_event = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL); 255 ptimer_reload(s, 0); 256 } 257 } 258 259 void ptimer_run(ptimer_state *s, int oneshot) 260 { 261 bool was_disabled = !s->enabled; 262 263 if (was_disabled && s->period == 0) { 264 if (!qtest_enabled()) { 265 fprintf(stderr, "Timer with period zero, disabling\n"); 266 } 267 return; 268 } 269 s->enabled = oneshot ? 2 : 1; 270 if (was_disabled) { 271 s->next_event = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL); 272 ptimer_reload(s, 0); 273 } 274 } 275 276 /* Pause a timer. Note that this may cause it to "lose" time, even if it 277 is immediately restarted. */ 278 void ptimer_stop(ptimer_state *s) 279 { 280 if (!s->enabled) 281 return; 282 283 s->delta = ptimer_get_count(s); 284 timer_del(s->timer); 285 s->enabled = 0; 286 } 287 288 /* Set counter increment interval in nanoseconds. */ 289 void ptimer_set_period(ptimer_state *s, int64_t period) 290 { 291 s->delta = ptimer_get_count(s); 292 s->period = period; 293 s->period_frac = 0; 294 if (s->enabled) { 295 s->next_event = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL); 296 ptimer_reload(s, 0); 297 } 298 } 299 300 /* Set counter frequency in Hz. */ 301 void ptimer_set_freq(ptimer_state *s, uint32_t freq) 302 { 303 s->delta = ptimer_get_count(s); 304 s->period = 1000000000ll / freq; 305 s->period_frac = (1000000000ll << 32) / freq; 306 if (s->enabled) { 307 s->next_event = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL); 308 ptimer_reload(s, 0); 309 } 310 } 311 312 /* Set the initial countdown value. If reload is nonzero then also set 313 count = limit. */ 314 void ptimer_set_limit(ptimer_state *s, uint64_t limit, int reload) 315 { 316 s->limit = limit; 317 if (reload) 318 s->delta = limit; 319 if (s->enabled && reload) { 320 s->next_event = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL); 321 ptimer_reload(s, 0); 322 } 323 } 324 325 uint64_t ptimer_get_limit(ptimer_state *s) 326 { 327 return s->limit; 328 } 329 330 const VMStateDescription vmstate_ptimer = { 331 .name = "ptimer", 332 .version_id = 1, 333 .minimum_version_id = 1, 334 .fields = (VMStateField[]) { 335 VMSTATE_UINT8(enabled, ptimer_state), 336 VMSTATE_UINT64(limit, ptimer_state), 337 VMSTATE_UINT64(delta, ptimer_state), 338 VMSTATE_UINT32(period_frac, ptimer_state), 339 VMSTATE_INT64(period, ptimer_state), 340 VMSTATE_INT64(last_event, ptimer_state), 341 VMSTATE_INT64(next_event, ptimer_state), 342 VMSTATE_TIMER_PTR(timer, ptimer_state), 343 VMSTATE_END_OF_LIST() 344 } 345 }; 346 347 ptimer_state *ptimer_init(QEMUBH *bh, uint8_t policy_mask) 348 { 349 ptimer_state *s; 350 351 s = (ptimer_state *)g_malloc0(sizeof(ptimer_state)); 352 s->bh = bh; 353 s->timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, ptimer_tick, s); 354 s->policy_mask = policy_mask; 355 return s; 356 } 357 358 void ptimer_free(ptimer_state *s) 359 { 360 qemu_bh_delete(s->bh); 361 timer_free(s->timer); 362 g_free(s); 363 } 364