1 /* 2 * QEMU Executable loader 3 * 4 * Copyright (c) 2006 Fabrice Bellard 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a copy 7 * of this software and associated documentation files (the "Software"), to deal 8 * in the Software without restriction, including without limitation the rights 9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 10 * copies of the Software, and to permit persons to whom the Software is 11 * furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 22 * THE SOFTWARE. 23 * 24 * Gunzip functionality in this file is derived from u-boot: 25 * 26 * (C) Copyright 2008 Semihalf 27 * 28 * (C) Copyright 2000-2005 29 * Wolfgang Denk, DENX Software Engineering, wd@denx.de. 30 * 31 * This program is free software; you can redistribute it and/or 32 * modify it under the terms of the GNU General Public License as 33 * published by the Free Software Foundation; either version 2 of 34 * the License, or (at your option) any later version. 35 * 36 * This program is distributed in the hope that it will be useful, 37 * but WITHOUT ANY WARRANTY; without even the implied warranty of 38 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 39 * GNU General Public License for more details. 40 * 41 * You should have received a copy of the GNU General Public License along 42 * with this program; if not, see <http://www.gnu.org/licenses/>. 43 */ 44 45 #include "qemu/osdep.h" 46 #include "qemu/datadir.h" 47 #include "qemu/error-report.h" 48 #include "qapi/error.h" 49 #include "qapi/qapi-commands-machine.h" 50 #include "qapi/type-helpers.h" 51 #include "trace.h" 52 #include "hw/hw.h" 53 #include "disas/disas.h" 54 #include "migration/cpr.h" 55 #include "migration/vmstate.h" 56 #include "monitor/monitor.h" 57 #include "system/reset.h" 58 #include "system/system.h" 59 #include "uboot_image.h" 60 #include "hw/loader.h" 61 #include "hw/nvram/fw_cfg.h" 62 #include "system/memory.h" 63 #include "hw/boards.h" 64 #include "qemu/cutils.h" 65 #include "system/runstate.h" 66 #include "tcg/debuginfo.h" 67 68 #include <zlib.h> 69 70 static int roms_loaded; 71 72 /* return the size or -1 if error */ 73 int64_t get_image_size(const char *filename) 74 { 75 int fd; 76 int64_t size; 77 fd = open(filename, O_RDONLY | O_BINARY); 78 if (fd < 0) 79 return -1; 80 size = lseek(fd, 0, SEEK_END); 81 close(fd); 82 return size; 83 } 84 85 /* return the size or -1 if error */ 86 ssize_t load_image_size(const char *filename, void *addr, size_t size) 87 { 88 int fd; 89 ssize_t actsize, l = 0; 90 91 fd = open(filename, O_RDONLY | O_BINARY); 92 if (fd < 0) { 93 return -1; 94 } 95 96 while ((actsize = read(fd, addr + l, size - l)) > 0) { 97 l += actsize; 98 } 99 100 close(fd); 101 102 return actsize < 0 ? -1 : l; 103 } 104 105 /* read()-like version */ 106 ssize_t read_targphys(const char *name, 107 int fd, hwaddr dst_addr, size_t nbytes) 108 { 109 uint8_t *buf; 110 ssize_t did; 111 112 buf = g_malloc(nbytes); 113 did = read(fd, buf, nbytes); 114 if (did > 0) 115 rom_add_blob_fixed("read", buf, did, dst_addr); 116 g_free(buf); 117 return did; 118 } 119 120 ssize_t load_image_targphys(const char *filename, 121 hwaddr addr, uint64_t max_sz) 122 { 123 return load_image_targphys_as(filename, addr, max_sz, NULL); 124 } 125 126 /* return the size or -1 if error */ 127 ssize_t load_image_targphys_as(const char *filename, 128 hwaddr addr, uint64_t max_sz, AddressSpace *as) 129 { 130 ssize_t size; 131 132 size = get_image_size(filename); 133 if (size < 0 || size > max_sz) { 134 return -1; 135 } 136 if (size > 0) { 137 if (rom_add_file_fixed_as(filename, addr, -1, as) < 0) { 138 return -1; 139 } 140 } 141 return size; 142 } 143 144 ssize_t load_image_mr(const char *filename, MemoryRegion *mr) 145 { 146 ssize_t size; 147 148 if (!memory_access_is_direct(mr, false, MEMTXATTRS_UNSPECIFIED)) { 149 /* Can only load an image into RAM or ROM */ 150 return -1; 151 } 152 153 size = get_image_size(filename); 154 155 if (size < 0 || size > memory_region_size(mr)) { 156 return -1; 157 } 158 if (size > 0) { 159 if (rom_add_file_mr(filename, mr, -1) < 0) { 160 return -1; 161 } 162 } 163 return size; 164 } 165 166 void pstrcpy_targphys(const char *name, hwaddr dest, int buf_size, 167 const char *source) 168 { 169 const char *nulp; 170 char *ptr; 171 172 if (buf_size <= 0) return; 173 nulp = memchr(source, 0, buf_size); 174 if (nulp) { 175 rom_add_blob_fixed(name, source, (nulp - source) + 1, dest); 176 } else { 177 rom_add_blob_fixed(name, source, buf_size, dest); 178 ptr = rom_ptr(dest + buf_size - 1, sizeof(*ptr)); 179 *ptr = 0; 180 } 181 } 182 183 /* A.OUT loader */ 184 185 struct exec 186 { 187 uint32_t a_info; /* Use macros N_MAGIC, etc for access */ 188 uint32_t a_text; /* length of text, in bytes */ 189 uint32_t a_data; /* length of data, in bytes */ 190 uint32_t a_bss; /* length of uninitialized data area, in bytes */ 191 uint32_t a_syms; /* length of symbol table data in file, in bytes */ 192 uint32_t a_entry; /* start address */ 193 uint32_t a_trsize; /* length of relocation info for text, in bytes */ 194 uint32_t a_drsize; /* length of relocation info for data, in bytes */ 195 }; 196 197 static void bswap_ahdr(struct exec *e) 198 { 199 bswap32s(&e->a_info); 200 bswap32s(&e->a_text); 201 bswap32s(&e->a_data); 202 bswap32s(&e->a_bss); 203 bswap32s(&e->a_syms); 204 bswap32s(&e->a_entry); 205 bswap32s(&e->a_trsize); 206 bswap32s(&e->a_drsize); 207 } 208 209 #define N_MAGIC(exec) ((exec).a_info & 0xffff) 210 #define OMAGIC 0407 211 #define NMAGIC 0410 212 #define ZMAGIC 0413 213 #define QMAGIC 0314 214 #define _N_HDROFF(x) (1024 - sizeof (struct exec)) 215 #define N_TXTOFF(x) \ 216 (N_MAGIC(x) == ZMAGIC ? _N_HDROFF((x)) + sizeof (struct exec) : \ 217 (N_MAGIC(x) == QMAGIC ? 0 : sizeof (struct exec))) 218 #define N_TXTADDR(x, target_page_size) (N_MAGIC(x) == QMAGIC ? target_page_size : 0) 219 #define _N_SEGMENT_ROUND(x, target_page_size) (((x) + target_page_size - 1) & ~(target_page_size - 1)) 220 221 #define _N_TXTENDADDR(x, target_page_size) (N_TXTADDR(x, target_page_size)+(x).a_text) 222 223 #define N_DATADDR(x, target_page_size) \ 224 (N_MAGIC(x)==OMAGIC? (_N_TXTENDADDR(x, target_page_size)) \ 225 : (_N_SEGMENT_ROUND (_N_TXTENDADDR(x, target_page_size), target_page_size))) 226 227 228 ssize_t load_aout(const char *filename, hwaddr addr, int max_sz, 229 bool big_endian, hwaddr target_page_size) 230 { 231 int fd; 232 ssize_t size, ret; 233 struct exec e; 234 uint32_t magic; 235 236 fd = open(filename, O_RDONLY | O_BINARY); 237 if (fd < 0) 238 return -1; 239 240 size = read(fd, &e, sizeof(e)); 241 if (size < 0) 242 goto fail; 243 244 if (big_endian != HOST_BIG_ENDIAN) { 245 bswap_ahdr(&e); 246 } 247 248 magic = N_MAGIC(e); 249 switch (magic) { 250 case ZMAGIC: 251 case QMAGIC: 252 case OMAGIC: 253 if (e.a_text + e.a_data > max_sz) 254 goto fail; 255 lseek(fd, N_TXTOFF(e), SEEK_SET); 256 size = read_targphys(filename, fd, addr, e.a_text + e.a_data); 257 if (size < 0) 258 goto fail; 259 break; 260 case NMAGIC: 261 if (N_DATADDR(e, target_page_size) + e.a_data > max_sz) 262 goto fail; 263 lseek(fd, N_TXTOFF(e), SEEK_SET); 264 size = read_targphys(filename, fd, addr, e.a_text); 265 if (size < 0) 266 goto fail; 267 ret = read_targphys(filename, fd, addr + N_DATADDR(e, target_page_size), 268 e.a_data); 269 if (ret < 0) 270 goto fail; 271 size += ret; 272 break; 273 default: 274 goto fail; 275 } 276 close(fd); 277 return size; 278 fail: 279 close(fd); 280 return -1; 281 } 282 283 /* ELF loader */ 284 285 static void *load_at(int fd, off_t offset, size_t size) 286 { 287 void *ptr; 288 if (lseek(fd, offset, SEEK_SET) < 0) 289 return NULL; 290 ptr = g_malloc(size); 291 if (read(fd, ptr, size) != size) { 292 g_free(ptr); 293 return NULL; 294 } 295 return ptr; 296 } 297 298 #ifdef ELF_CLASS 299 #undef ELF_CLASS 300 #endif 301 302 #define ELF_CLASS ELFCLASS32 303 #include "elf.h" 304 305 #define SZ 32 306 #define elf_word uint32_t 307 #define elf_sword int32_t 308 #define bswapSZs bswap32s 309 #include "hw/elf_ops.h.inc" 310 311 #undef elfhdr 312 #undef elf_phdr 313 #undef elf_shdr 314 #undef elf_sym 315 #undef elf_rela 316 #undef elf_note 317 #undef elf_word 318 #undef elf_sword 319 #undef bswapSZs 320 #undef SZ 321 #define elfhdr elf64_hdr 322 #define elf_phdr elf64_phdr 323 #define elf_note elf64_note 324 #define elf_shdr elf64_shdr 325 #define elf_sym elf64_sym 326 #define elf_rela elf64_rela 327 #define elf_word uint64_t 328 #define elf_sword int64_t 329 #define bswapSZs bswap64s 330 #define SZ 64 331 #include "hw/elf_ops.h.inc" 332 333 const char *load_elf_strerror(ssize_t error) 334 { 335 switch (error) { 336 case 0: 337 return "No error"; 338 case ELF_LOAD_FAILED: 339 return "Failed to load ELF"; 340 case ELF_LOAD_NOT_ELF: 341 return "The image is not ELF"; 342 case ELF_LOAD_WRONG_ARCH: 343 return "The image is from incompatible architecture"; 344 case ELF_LOAD_WRONG_ENDIAN: 345 return "The image has incorrect endianness"; 346 case ELF_LOAD_TOO_BIG: 347 return "The image segments are too big to load"; 348 default: 349 return "Unknown error"; 350 } 351 } 352 353 void load_elf_hdr(const char *filename, void *hdr, bool *is64, Error **errp) 354 { 355 int fd; 356 uint8_t e_ident_local[EI_NIDENT]; 357 uint8_t *e_ident; 358 size_t hdr_size, off; 359 bool is64l; 360 361 if (!hdr) { 362 hdr = e_ident_local; 363 } 364 e_ident = hdr; 365 366 fd = open(filename, O_RDONLY | O_BINARY); 367 if (fd < 0) { 368 error_setg_errno(errp, errno, "Failed to open file: %s", filename); 369 return; 370 } 371 if (read(fd, hdr, EI_NIDENT) != EI_NIDENT) { 372 error_setg_errno(errp, errno, "Failed to read file: %s", filename); 373 goto fail; 374 } 375 if (e_ident[0] != ELFMAG0 || 376 e_ident[1] != ELFMAG1 || 377 e_ident[2] != ELFMAG2 || 378 e_ident[3] != ELFMAG3) { 379 error_setg(errp, "Bad ELF magic"); 380 goto fail; 381 } 382 383 is64l = e_ident[EI_CLASS] == ELFCLASS64; 384 hdr_size = is64l ? sizeof(Elf64_Ehdr) : sizeof(Elf32_Ehdr); 385 if (is64) { 386 *is64 = is64l; 387 } 388 389 off = EI_NIDENT; 390 while (hdr != e_ident_local && off < hdr_size) { 391 size_t br = read(fd, hdr + off, hdr_size - off); 392 switch (br) { 393 case 0: 394 error_setg(errp, "File too short: %s", filename); 395 goto fail; 396 case -1: 397 error_setg_errno(errp, errno, "Failed to read file: %s", 398 filename); 399 goto fail; 400 } 401 off += br; 402 } 403 404 fail: 405 close(fd); 406 } 407 408 /* return < 0 if error, otherwise the number of bytes loaded in memory */ 409 ssize_t load_elf(const char *filename, 410 uint64_t (*elf_note_fn)(void *, void *, bool), 411 uint64_t (*translate_fn)(void *, uint64_t), 412 void *translate_opaque, uint64_t *pentry, uint64_t *lowaddr, 413 uint64_t *highaddr, uint32_t *pflags, int elf_data_order, 414 int elf_machine, int clear_lsb, int data_swab) 415 { 416 return load_elf_as(filename, elf_note_fn, translate_fn, translate_opaque, 417 pentry, lowaddr, highaddr, pflags, elf_data_order, 418 elf_machine, clear_lsb, data_swab, NULL); 419 } 420 421 /* return < 0 if error, otherwise the number of bytes loaded in memory */ 422 ssize_t load_elf_as(const char *filename, 423 uint64_t (*elf_note_fn)(void *, void *, bool), 424 uint64_t (*translate_fn)(void *, uint64_t), 425 void *translate_opaque, uint64_t *pentry, uint64_t *lowaddr, 426 uint64_t *highaddr, uint32_t *pflags, int elf_data_order, 427 int elf_machine, int clear_lsb, int data_swab, 428 AddressSpace *as) 429 { 430 return load_elf_ram_sym(filename, elf_note_fn, 431 translate_fn, translate_opaque, 432 pentry, lowaddr, highaddr, pflags, elf_data_order, 433 elf_machine, clear_lsb, data_swab, as, 434 true, NULL); 435 } 436 437 /* return < 0 if error, otherwise the number of bytes loaded in memory */ 438 ssize_t load_elf_ram_sym(const char *filename, 439 uint64_t (*elf_note_fn)(void *, void *, bool), 440 uint64_t (*translate_fn)(void *, uint64_t), 441 void *translate_opaque, uint64_t *pentry, 442 uint64_t *lowaddr, uint64_t *highaddr, 443 uint32_t *pflags, int elf_data_order, int elf_machine, 444 int clear_lsb, int data_swab, 445 AddressSpace *as, bool load_rom, symbol_fn_t sym_cb) 446 { 447 const int host_data_order = HOST_BIG_ENDIAN ? ELFDATA2MSB : ELFDATA2LSB; 448 int fd, must_swab; 449 ssize_t ret = ELF_LOAD_FAILED; 450 uint8_t e_ident[EI_NIDENT]; 451 452 fd = open(filename, O_RDONLY | O_BINARY); 453 if (fd < 0) { 454 perror(filename); 455 return -1; 456 } 457 if (read(fd, e_ident, sizeof(e_ident)) != sizeof(e_ident)) 458 goto fail; 459 if (e_ident[0] != ELFMAG0 || 460 e_ident[1] != ELFMAG1 || 461 e_ident[2] != ELFMAG2 || 462 e_ident[3] != ELFMAG3) { 463 ret = ELF_LOAD_NOT_ELF; 464 goto fail; 465 } 466 467 if (elf_data_order != ELFDATANONE && elf_data_order != e_ident[EI_DATA]) { 468 ret = ELF_LOAD_WRONG_ENDIAN; 469 goto fail; 470 } 471 472 must_swab = host_data_order != e_ident[EI_DATA]; 473 474 lseek(fd, 0, SEEK_SET); 475 if (e_ident[EI_CLASS] == ELFCLASS64) { 476 ret = load_elf64(filename, fd, elf_note_fn, 477 translate_fn, translate_opaque, must_swab, 478 pentry, lowaddr, highaddr, pflags, elf_machine, 479 clear_lsb, data_swab, as, load_rom, sym_cb); 480 } else { 481 ret = load_elf32(filename, fd, elf_note_fn, 482 translate_fn, translate_opaque, must_swab, 483 pentry, lowaddr, highaddr, pflags, elf_machine, 484 clear_lsb, data_swab, as, load_rom, sym_cb); 485 } 486 487 if (ret > 0) { 488 debuginfo_report_elf(filename, fd, 0); 489 } 490 491 fail: 492 close(fd); 493 return ret; 494 } 495 496 static void bswap_uboot_header(uboot_image_header_t *hdr) 497 { 498 #if !HOST_BIG_ENDIAN 499 bswap32s(&hdr->ih_magic); 500 bswap32s(&hdr->ih_hcrc); 501 bswap32s(&hdr->ih_time); 502 bswap32s(&hdr->ih_size); 503 bswap32s(&hdr->ih_load); 504 bswap32s(&hdr->ih_ep); 505 bswap32s(&hdr->ih_dcrc); 506 #endif 507 } 508 509 510 #define ZALLOC_ALIGNMENT 16 511 512 static void *zalloc(void *x, unsigned items, unsigned size) 513 { 514 void *p; 515 516 size *= items; 517 size = (size + ZALLOC_ALIGNMENT - 1) & ~(ZALLOC_ALIGNMENT - 1); 518 519 p = g_malloc(size); 520 521 return (p); 522 } 523 524 static void zfree(void *x, void *addr) 525 { 526 g_free(addr); 527 } 528 529 530 #define HEAD_CRC 2 531 #define EXTRA_FIELD 4 532 #define ORIG_NAME 8 533 #define COMMENT 0x10 534 #define RESERVED 0xe0 535 536 #define DEFLATED 8 537 538 ssize_t gunzip(void *dst, size_t dstlen, uint8_t *src, size_t srclen) 539 { 540 z_stream s = {}; 541 ssize_t dstbytes; 542 int r, i, flags; 543 544 /* skip header */ 545 i = 10; 546 if (srclen < 4) { 547 goto toosmall; 548 } 549 flags = src[3]; 550 if (src[2] != DEFLATED || (flags & RESERVED) != 0) { 551 puts ("Error: Bad gzipped data\n"); 552 return -1; 553 } 554 if ((flags & EXTRA_FIELD) != 0) { 555 if (srclen < 12) { 556 goto toosmall; 557 } 558 i = 12 + src[10] + (src[11] << 8); 559 } 560 if ((flags & ORIG_NAME) != 0) { 561 while (i < srclen && src[i++] != 0) { 562 /* do nothing */ 563 } 564 } 565 if ((flags & COMMENT) != 0) { 566 while (i < srclen && src[i++] != 0) { 567 /* do nothing */ 568 } 569 } 570 if ((flags & HEAD_CRC) != 0) { 571 i += 2; 572 } 573 if (i >= srclen) { 574 goto toosmall; 575 } 576 577 s.zalloc = zalloc; 578 s.zfree = zfree; 579 580 r = inflateInit2(&s, -MAX_WBITS); 581 if (r != Z_OK) { 582 printf ("Error: inflateInit2() returned %d\n", r); 583 return (-1); 584 } 585 s.next_in = src + i; 586 s.avail_in = srclen - i; 587 s.next_out = dst; 588 s.avail_out = dstlen; 589 r = inflate(&s, Z_FINISH); 590 if (r != Z_OK && r != Z_STREAM_END) { 591 printf ("Error: inflate() returned %d\n", r); 592 inflateEnd(&s); 593 return -1; 594 } 595 dstbytes = s.next_out - (unsigned char *) dst; 596 inflateEnd(&s); 597 598 return dstbytes; 599 600 toosmall: 601 puts("Error: gunzip out of data in header\n"); 602 return -1; 603 } 604 605 /* Load a U-Boot image. */ 606 static ssize_t load_uboot_image(const char *filename, hwaddr *ep, 607 hwaddr *loadaddr, int *is_linux, 608 uint8_t image_type, 609 uint64_t (*translate_fn)(void *, uint64_t), 610 void *translate_opaque, AddressSpace *as) 611 { 612 int fd; 613 ssize_t size; 614 hwaddr address; 615 uboot_image_header_t h; 616 uboot_image_header_t *hdr = &h; 617 uint8_t *data = NULL; 618 int ret = -1; 619 int do_uncompress = 0; 620 621 fd = open(filename, O_RDONLY | O_BINARY); 622 if (fd < 0) 623 return -1; 624 625 size = read(fd, hdr, sizeof(uboot_image_header_t)); 626 if (size < sizeof(uboot_image_header_t)) { 627 goto out; 628 } 629 630 bswap_uboot_header(hdr); 631 632 if (hdr->ih_magic != IH_MAGIC) 633 goto out; 634 635 if (hdr->ih_type != image_type) { 636 if (!(image_type == IH_TYPE_KERNEL && 637 hdr->ih_type == IH_TYPE_KERNEL_NOLOAD)) { 638 fprintf(stderr, "Wrong image type %d, expected %d\n", hdr->ih_type, 639 image_type); 640 goto out; 641 } 642 } 643 644 /* TODO: Implement other image types. */ 645 switch (hdr->ih_type) { 646 case IH_TYPE_KERNEL_NOLOAD: 647 if (!loadaddr || *loadaddr == LOAD_UIMAGE_LOADADDR_INVALID) { 648 fprintf(stderr, "this image format (kernel_noload) cannot be " 649 "loaded on this machine type"); 650 goto out; 651 } 652 653 hdr->ih_load = *loadaddr + sizeof(*hdr); 654 hdr->ih_ep += hdr->ih_load; 655 /* fall through */ 656 case IH_TYPE_KERNEL: 657 address = hdr->ih_load; 658 if (translate_fn) { 659 address = translate_fn(translate_opaque, address); 660 } 661 if (loadaddr) { 662 *loadaddr = hdr->ih_load; 663 } 664 665 switch (hdr->ih_comp) { 666 case IH_COMP_NONE: 667 break; 668 case IH_COMP_GZIP: 669 do_uncompress = 1; 670 break; 671 default: 672 fprintf(stderr, 673 "Unable to load u-boot images with compression type %d\n", 674 hdr->ih_comp); 675 goto out; 676 } 677 678 if (ep) { 679 *ep = hdr->ih_ep; 680 } 681 682 /* TODO: Check CPU type. */ 683 if (is_linux) { 684 if (hdr->ih_os == IH_OS_LINUX) { 685 *is_linux = 1; 686 } else if (hdr->ih_os == IH_OS_VXWORKS) { 687 /* 688 * VxWorks 7 uses the same boot interface as the Linux kernel 689 * on Arm (64-bit only), PowerPC and RISC-V architectures. 690 */ 691 switch (hdr->ih_arch) { 692 case IH_ARCH_ARM64: 693 case IH_ARCH_PPC: 694 case IH_ARCH_RISCV: 695 *is_linux = 1; 696 break; 697 default: 698 *is_linux = 0; 699 break; 700 } 701 } else { 702 *is_linux = 0; 703 } 704 } 705 706 break; 707 case IH_TYPE_RAMDISK: 708 address = *loadaddr; 709 break; 710 default: 711 fprintf(stderr, "Unsupported u-boot image type %d\n", hdr->ih_type); 712 goto out; 713 } 714 715 data = g_malloc(hdr->ih_size); 716 717 if (read(fd, data, hdr->ih_size) != hdr->ih_size) { 718 fprintf(stderr, "Error reading file\n"); 719 goto out; 720 } 721 722 if (do_uncompress) { 723 uint8_t *compressed_data; 724 size_t max_bytes; 725 ssize_t bytes; 726 727 compressed_data = data; 728 max_bytes = UBOOT_MAX_GUNZIP_BYTES; 729 data = g_malloc(max_bytes); 730 731 bytes = gunzip(data, max_bytes, compressed_data, hdr->ih_size); 732 g_free(compressed_data); 733 if (bytes < 0) { 734 fprintf(stderr, "Unable to decompress gzipped image!\n"); 735 goto out; 736 } 737 hdr->ih_size = bytes; 738 } 739 740 rom_add_blob_fixed_as(filename, data, hdr->ih_size, address, as); 741 742 ret = hdr->ih_size; 743 744 out: 745 g_free(data); 746 close(fd); 747 return ret; 748 } 749 750 ssize_t load_uimage(const char *filename, hwaddr *ep, hwaddr *loadaddr, 751 int *is_linux, 752 uint64_t (*translate_fn)(void *, uint64_t), 753 void *translate_opaque) 754 { 755 return load_uboot_image(filename, ep, loadaddr, is_linux, IH_TYPE_KERNEL, 756 translate_fn, translate_opaque, NULL); 757 } 758 759 ssize_t load_uimage_as(const char *filename, hwaddr *ep, hwaddr *loadaddr, 760 int *is_linux, 761 uint64_t (*translate_fn)(void *, uint64_t), 762 void *translate_opaque, AddressSpace *as) 763 { 764 return load_uboot_image(filename, ep, loadaddr, is_linux, IH_TYPE_KERNEL, 765 translate_fn, translate_opaque, as); 766 } 767 768 /* Load a ramdisk. */ 769 ssize_t load_ramdisk(const char *filename, hwaddr addr, uint64_t max_sz) 770 { 771 return load_ramdisk_as(filename, addr, max_sz, NULL); 772 } 773 774 ssize_t load_ramdisk_as(const char *filename, hwaddr addr, uint64_t max_sz, 775 AddressSpace *as) 776 { 777 return load_uboot_image(filename, NULL, &addr, NULL, IH_TYPE_RAMDISK, 778 NULL, NULL, as); 779 } 780 781 /* Load a gzip-compressed kernel to a dynamically allocated buffer. */ 782 ssize_t load_image_gzipped_buffer(const char *filename, uint64_t max_sz, 783 uint8_t **buffer) 784 { 785 uint8_t *compressed_data = NULL; 786 uint8_t *data = NULL; 787 gsize len; 788 ssize_t bytes; 789 int ret = -1; 790 791 if (!g_file_get_contents(filename, (char **) &compressed_data, &len, 792 NULL)) { 793 goto out; 794 } 795 796 /* Is it a gzip-compressed file? */ 797 if (len < 2 || 798 compressed_data[0] != 0x1f || 799 compressed_data[1] != 0x8b) { 800 goto out; 801 } 802 803 if (max_sz > LOAD_IMAGE_MAX_GUNZIP_BYTES) { 804 max_sz = LOAD_IMAGE_MAX_GUNZIP_BYTES; 805 } 806 807 data = g_malloc(max_sz); 808 bytes = gunzip(data, max_sz, compressed_data, len); 809 if (bytes < 0) { 810 fprintf(stderr, "%s: unable to decompress gzipped kernel file\n", 811 filename); 812 goto out; 813 } 814 815 /* trim to actual size and return to caller */ 816 *buffer = g_realloc(data, bytes); 817 ret = bytes; 818 /* ownership has been transferred to caller */ 819 data = NULL; 820 821 out: 822 g_free(compressed_data); 823 g_free(data); 824 return ret; 825 } 826 827 828 /* The PE/COFF MS-DOS stub magic number */ 829 #define EFI_PE_MSDOS_MAGIC "MZ" 830 831 /* 832 * The Linux header magic number for a EFI PE/COFF 833 * image targeting an unspecified architecture. 834 */ 835 #define EFI_PE_LINUX_MAGIC "\xcd\x23\x82\x81" 836 837 /* 838 * Bootable Linux kernel images may be packaged as EFI zboot images, which are 839 * self-decompressing executables when loaded via EFI. The compressed payload 840 * can also be extracted from the image and decompressed by a non-EFI loader. 841 * 842 * The de facto specification for this format is at the following URL: 843 * 844 * https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/drivers/firmware/efi/libstub/zboot-header.S 845 * 846 * This definition is based on Linux upstream commit 29636a5ce87beba. 847 */ 848 struct linux_efi_zboot_header { 849 uint8_t msdos_magic[2]; /* PE/COFF 'MZ' magic number */ 850 uint8_t reserved0[2]; 851 uint8_t zimg[4]; /* "zimg" for Linux EFI zboot images */ 852 uint32_t payload_offset; /* LE offset to compressed payload */ 853 uint32_t payload_size; /* LE size of the compressed payload */ 854 uint8_t reserved1[8]; 855 char compression_type[32]; /* Compression type, NUL terminated */ 856 uint8_t linux_magic[4]; /* Linux header magic */ 857 uint32_t pe_header_offset; /* LE offset to the PE header */ 858 }; 859 860 /* 861 * Check whether *buffer points to a Linux EFI zboot image in memory. 862 * 863 * If it does, attempt to decompress it to a new buffer, and free the old one. 864 * If any of this fails, return an error to the caller. 865 * 866 * If the image is not a Linux EFI zboot image, do nothing and return success. 867 */ 868 ssize_t unpack_efi_zboot_image(uint8_t **buffer, ssize_t *size) 869 { 870 const struct linux_efi_zboot_header *header; 871 uint8_t *data = NULL; 872 ssize_t ploff, plsize; 873 ssize_t bytes; 874 875 /* ignore if this is too small to be a EFI zboot image */ 876 if (*size < sizeof(*header)) { 877 return 0; 878 } 879 880 header = (struct linux_efi_zboot_header *)*buffer; 881 882 /* ignore if this is not a Linux EFI zboot image */ 883 if (memcmp(&header->msdos_magic, EFI_PE_MSDOS_MAGIC, 2) != 0 || 884 memcmp(&header->zimg, "zimg", 4) != 0 || 885 memcmp(&header->linux_magic, EFI_PE_LINUX_MAGIC, 4) != 0) { 886 return 0; 887 } 888 889 if (strcmp(header->compression_type, "gzip") != 0) { 890 fprintf(stderr, 891 "unable to handle EFI zboot image with \"%.*s\" compression\n", 892 (int)sizeof(header->compression_type) - 1, 893 header->compression_type); 894 return -1; 895 } 896 897 ploff = ldl_le_p(&header->payload_offset); 898 plsize = ldl_le_p(&header->payload_size); 899 900 if (ploff < 0 || plsize < 0 || ploff + plsize > *size) { 901 fprintf(stderr, "unable to handle corrupt EFI zboot image\n"); 902 return -1; 903 } 904 905 data = g_malloc(LOAD_IMAGE_MAX_GUNZIP_BYTES); 906 bytes = gunzip(data, LOAD_IMAGE_MAX_GUNZIP_BYTES, *buffer + ploff, plsize); 907 if (bytes < 0) { 908 fprintf(stderr, "failed to decompress EFI zboot image\n"); 909 g_free(data); 910 return -1; 911 } 912 913 g_free(*buffer); 914 *buffer = g_realloc(data, bytes); 915 *size = bytes; 916 return bytes; 917 } 918 919 /* 920 * Functions for reboot-persistent memory regions. 921 * - used for vga bios and option roms. 922 * - also linux kernel (-kernel / -initrd). 923 */ 924 925 typedef struct Rom Rom; 926 927 struct Rom { 928 char *name; 929 char *path; 930 931 /* datasize is the amount of memory allocated in "data". If datasize is less 932 * than romsize, it means that the area from datasize to romsize is filled 933 * with zeros. 934 */ 935 size_t romsize; 936 size_t datasize; 937 938 uint8_t *data; 939 MemoryRegion *mr; 940 AddressSpace *as; 941 int isrom; 942 char *fw_dir; 943 char *fw_file; 944 GMappedFile *mapped_file; 945 946 bool committed; 947 948 hwaddr addr; 949 QTAILQ_ENTRY(Rom) next; 950 }; 951 952 static FWCfgState *fw_cfg; 953 static QTAILQ_HEAD(, Rom) roms = QTAILQ_HEAD_INITIALIZER(roms); 954 955 /* 956 * rom->data can be heap-allocated or memory-mapped (e.g. when added with 957 * rom_add_elf_program()) 958 */ 959 static void rom_free_data(Rom *rom) 960 { 961 if (rom->mapped_file) { 962 g_mapped_file_unref(rom->mapped_file); 963 rom->mapped_file = NULL; 964 } else { 965 g_free(rom->data); 966 } 967 968 rom->data = NULL; 969 } 970 971 static void rom_free(Rom *rom) 972 { 973 rom_free_data(rom); 974 g_free(rom->path); 975 g_free(rom->name); 976 g_free(rom->fw_dir); 977 g_free(rom->fw_file); 978 g_free(rom); 979 } 980 981 static inline bool rom_order_compare(Rom *rom, Rom *item) 982 { 983 return ((uintptr_t)(void *)rom->as > (uintptr_t)(void *)item->as) || 984 (rom->as == item->as && rom->addr >= item->addr); 985 } 986 987 static void rom_insert(Rom *rom) 988 { 989 Rom *item; 990 991 if (roms_loaded) { 992 hw_error ("ROM images must be loaded at startup\n"); 993 } 994 995 /* The user didn't specify an address space, this is the default */ 996 if (!rom->as) { 997 rom->as = &address_space_memory; 998 } 999 1000 rom->committed = false; 1001 1002 /* List is ordered by load address in the same address space */ 1003 QTAILQ_FOREACH(item, &roms, next) { 1004 if (rom_order_compare(rom, item)) { 1005 continue; 1006 } 1007 QTAILQ_INSERT_BEFORE(item, rom, next); 1008 return; 1009 } 1010 QTAILQ_INSERT_TAIL(&roms, rom, next); 1011 } 1012 1013 static void fw_cfg_resized(const char *id, uint64_t length, void *host) 1014 { 1015 if (fw_cfg) { 1016 fw_cfg_modify_file(fw_cfg, id + strlen("/rom@"), host, length); 1017 } 1018 } 1019 1020 static void *rom_set_mr(Rom *rom, Object *owner, const char *name, bool ro) 1021 { 1022 void *data; 1023 1024 rom->mr = g_malloc(sizeof(*rom->mr)); 1025 memory_region_init_resizeable_ram(rom->mr, owner, name, 1026 rom->datasize, rom->romsize, 1027 fw_cfg_resized, 1028 &error_fatal); 1029 memory_region_set_readonly(rom->mr, ro); 1030 vmstate_register_ram_global(rom->mr); 1031 1032 data = memory_region_get_ram_ptr(rom->mr); 1033 if (!cpr_is_incoming()) { 1034 memcpy(data, rom->data, rom->datasize); 1035 } 1036 1037 return data; 1038 } 1039 1040 ssize_t rom_add_file(const char *file, const char *fw_dir, 1041 hwaddr addr, int32_t bootindex, 1042 bool has_option_rom, MemoryRegion *mr, 1043 AddressSpace *as) 1044 { 1045 MachineClass *mc = MACHINE_GET_CLASS(qdev_get_machine()); 1046 Rom *rom; 1047 gsize size; 1048 g_autoptr(GError) gerr = NULL; 1049 char devpath[100]; 1050 1051 if (as && mr) { 1052 fprintf(stderr, "Specifying an Address Space and Memory Region is " \ 1053 "not valid when loading a rom\n"); 1054 /* We haven't allocated anything so we don't need any cleanup */ 1055 return -1; 1056 } 1057 1058 rom = g_malloc0(sizeof(*rom)); 1059 rom->name = g_strdup(file); 1060 rom->path = qemu_find_file(QEMU_FILE_TYPE_BIOS, rom->name); 1061 rom->as = as; 1062 if (rom->path == NULL) { 1063 rom->path = g_strdup(file); 1064 } 1065 1066 if (!g_file_get_contents(rom->path, (gchar **) &rom->data, 1067 &size, &gerr)) { 1068 fprintf(stderr, "rom: file %-20s: error %s\n", 1069 rom->name, gerr->message); 1070 goto err; 1071 } 1072 1073 if (fw_dir) { 1074 rom->fw_dir = g_strdup(fw_dir); 1075 rom->fw_file = g_strdup(file); 1076 } 1077 rom->addr = addr; 1078 rom->romsize = size; 1079 rom->datasize = rom->romsize; 1080 rom_insert(rom); 1081 if (rom->fw_file && fw_cfg) { 1082 const char *basename; 1083 char fw_file_name[FW_CFG_MAX_FILE_PATH]; 1084 void *data; 1085 1086 basename = strrchr(rom->fw_file, '/'); 1087 if (basename) { 1088 basename++; 1089 } else { 1090 basename = rom->fw_file; 1091 } 1092 snprintf(fw_file_name, sizeof(fw_file_name), "%s/%s", rom->fw_dir, 1093 basename); 1094 snprintf(devpath, sizeof(devpath), "/rom@%s", fw_file_name); 1095 1096 if ((!has_option_rom || mc->option_rom_has_mr) && mc->rom_file_has_mr) { 1097 data = rom_set_mr(rom, OBJECT(fw_cfg), devpath, true); 1098 } else { 1099 data = rom->data; 1100 } 1101 1102 fw_cfg_add_file(fw_cfg, fw_file_name, data, rom->romsize); 1103 } else { 1104 if (mr) { 1105 rom->mr = mr; 1106 snprintf(devpath, sizeof(devpath), "/rom@%s", file); 1107 } else { 1108 snprintf(devpath, sizeof(devpath), "/rom@" HWADDR_FMT_plx, addr); 1109 } 1110 } 1111 1112 add_boot_device_path(bootindex, NULL, devpath); 1113 return 0; 1114 1115 err: 1116 rom_free(rom); 1117 return -1; 1118 } 1119 1120 MemoryRegion *rom_add_blob(const char *name, const void *blob, size_t len, 1121 size_t max_len, hwaddr addr, const char *fw_file_name, 1122 FWCfgCallback fw_callback, void *callback_opaque, 1123 AddressSpace *as, bool read_only) 1124 { 1125 MachineClass *mc = MACHINE_GET_CLASS(qdev_get_machine()); 1126 Rom *rom; 1127 MemoryRegion *mr = NULL; 1128 1129 rom = g_malloc0(sizeof(*rom)); 1130 rom->name = g_strdup(name); 1131 rom->as = as; 1132 rom->addr = addr; 1133 rom->romsize = max_len ? max_len : len; 1134 rom->datasize = len; 1135 g_assert(rom->romsize >= rom->datasize); 1136 rom->data = g_malloc0(rom->datasize); 1137 memcpy(rom->data, blob, len); 1138 rom_insert(rom); 1139 if (fw_file_name && fw_cfg) { 1140 char devpath[100]; 1141 void *data; 1142 1143 if (read_only) { 1144 snprintf(devpath, sizeof(devpath), "/rom@%s", fw_file_name); 1145 } else { 1146 snprintf(devpath, sizeof(devpath), "/ram@%s", fw_file_name); 1147 } 1148 1149 if (mc->rom_file_has_mr) { 1150 data = rom_set_mr(rom, OBJECT(fw_cfg), devpath, read_only); 1151 mr = rom->mr; 1152 } else { 1153 data = rom->data; 1154 } 1155 1156 fw_cfg_add_file_callback(fw_cfg, fw_file_name, 1157 fw_callback, NULL, callback_opaque, 1158 data, rom->datasize, read_only); 1159 } 1160 return mr; 1161 } 1162 1163 /* This function is specific for elf program because we don't need to allocate 1164 * all the rom. We just allocate the first part and the rest is just zeros. This 1165 * is why romsize and datasize are different. Also, this function takes its own 1166 * reference to "mapped_file", so we don't have to allocate and copy the buffer. 1167 */ 1168 int rom_add_elf_program(const char *name, GMappedFile *mapped_file, void *data, 1169 size_t datasize, size_t romsize, hwaddr addr, 1170 AddressSpace *as) 1171 { 1172 Rom *rom; 1173 1174 rom = g_malloc0(sizeof(*rom)); 1175 rom->name = g_strdup(name); 1176 rom->addr = addr; 1177 rom->datasize = datasize; 1178 rom->romsize = romsize; 1179 rom->data = data; 1180 rom->as = as; 1181 1182 if (mapped_file && data) { 1183 g_mapped_file_ref(mapped_file); 1184 rom->mapped_file = mapped_file; 1185 } 1186 1187 rom_insert(rom); 1188 return 0; 1189 } 1190 1191 ssize_t rom_add_vga(const char *file) 1192 { 1193 return rom_add_file(file, "vgaroms", 0, -1, true, NULL, NULL); 1194 } 1195 1196 ssize_t rom_add_option(const char *file, int32_t bootindex) 1197 { 1198 return rom_add_file(file, "genroms", 0, bootindex, true, NULL, NULL); 1199 } 1200 1201 static void rom_reset(void *unused) 1202 { 1203 Rom *rom; 1204 1205 QTAILQ_FOREACH(rom, &roms, next) { 1206 if (rom->fw_file) { 1207 continue; 1208 } 1209 /* 1210 * We don't need to fill in the RAM with ROM data because we'll fill 1211 * the data in during the next incoming migration in all cases. Note 1212 * that some of those RAMs can actually be modified by the guest. 1213 */ 1214 if (runstate_check(RUN_STATE_INMIGRATE)) { 1215 if (rom->data && rom->isrom) { 1216 /* 1217 * Free it so that a rom_reset after migration doesn't 1218 * overwrite a potentially modified 'rom'. 1219 */ 1220 rom_free_data(rom); 1221 } 1222 continue; 1223 } 1224 1225 if (rom->data == NULL) { 1226 continue; 1227 } 1228 if (rom->mr) { 1229 void *host = memory_region_get_ram_ptr(rom->mr); 1230 memcpy(host, rom->data, rom->datasize); 1231 memset(host + rom->datasize, 0, rom->romsize - rom->datasize); 1232 } else { 1233 address_space_write_rom(rom->as, rom->addr, MEMTXATTRS_UNSPECIFIED, 1234 rom->data, rom->datasize); 1235 address_space_set(rom->as, rom->addr + rom->datasize, 0, 1236 rom->romsize - rom->datasize, 1237 MEMTXATTRS_UNSPECIFIED); 1238 } 1239 if (rom->isrom) { 1240 /* rom needs to be written only once */ 1241 rom_free_data(rom); 1242 } 1243 /* 1244 * The rom loader is really on the same level as firmware in the guest 1245 * shadowing a ROM into RAM. Such a shadowing mechanism needs to ensure 1246 * that the instruction cache for that new region is clear, so that the 1247 * CPU definitely fetches its instructions from the just written data. 1248 */ 1249 cpu_flush_icache_range(rom->addr, rom->datasize); 1250 1251 trace_loader_write_rom(rom->name, rom->addr, rom->datasize, rom->isrom); 1252 } 1253 } 1254 1255 /* Return true if two consecutive ROMs in the ROM list overlap */ 1256 static bool roms_overlap(Rom *last_rom, Rom *this_rom) 1257 { 1258 if (!last_rom) { 1259 return false; 1260 } 1261 return last_rom->as == this_rom->as && 1262 last_rom->addr + last_rom->romsize > this_rom->addr; 1263 } 1264 1265 static const char *rom_as_name(Rom *rom) 1266 { 1267 const char *name = rom->as ? rom->as->name : NULL; 1268 return name ?: "anonymous"; 1269 } 1270 1271 static void rom_print_overlap_error_header(void) 1272 { 1273 error_report("Some ROM regions are overlapping"); 1274 error_printf( 1275 "These ROM regions might have been loaded by " 1276 "direct user request or by default.\n" 1277 "They could be BIOS/firmware images, a guest kernel, " 1278 "initrd or some other file loaded into guest memory.\n" 1279 "Check whether you intended to load all this guest code, and " 1280 "whether it has been built to load to the correct addresses.\n"); 1281 } 1282 1283 static void rom_print_one_overlap_error(Rom *last_rom, Rom *rom) 1284 { 1285 error_printf( 1286 "\nThe following two regions overlap (in the %s address space):\n", 1287 rom_as_name(rom)); 1288 error_printf( 1289 " %s (addresses 0x" HWADDR_FMT_plx " - 0x" HWADDR_FMT_plx ")\n", 1290 last_rom->name, last_rom->addr, last_rom->addr + last_rom->romsize); 1291 error_printf( 1292 " %s (addresses 0x" HWADDR_FMT_plx " - 0x" HWADDR_FMT_plx ")\n", 1293 rom->name, rom->addr, rom->addr + rom->romsize); 1294 } 1295 1296 int rom_check_and_register_reset(void) 1297 { 1298 MemoryRegionSection section; 1299 Rom *rom, *last_rom = NULL; 1300 bool found_overlap = false; 1301 1302 QTAILQ_FOREACH(rom, &roms, next) { 1303 if (rom->fw_file) { 1304 continue; 1305 } 1306 if (!rom->mr) { 1307 if (roms_overlap(last_rom, rom)) { 1308 if (!found_overlap) { 1309 found_overlap = true; 1310 rom_print_overlap_error_header(); 1311 } 1312 rom_print_one_overlap_error(last_rom, rom); 1313 /* Keep going through the list so we report all overlaps */ 1314 } 1315 last_rom = rom; 1316 } 1317 section = memory_region_find(rom->mr ? rom->mr : get_system_memory(), 1318 rom->addr, 1); 1319 rom->isrom = int128_nz(section.size) && memory_region_is_rom(section.mr); 1320 memory_region_unref(section.mr); 1321 } 1322 if (found_overlap) { 1323 return -1; 1324 } 1325 1326 qemu_register_reset(rom_reset, NULL); 1327 roms_loaded = 1; 1328 return 0; 1329 } 1330 1331 void rom_set_fw(FWCfgState *f) 1332 { 1333 fw_cfg = f; 1334 } 1335 1336 void rom_set_order_override(int order) 1337 { 1338 if (!fw_cfg) 1339 return; 1340 fw_cfg_set_order_override(fw_cfg, order); 1341 } 1342 1343 void rom_reset_order_override(void) 1344 { 1345 if (!fw_cfg) 1346 return; 1347 fw_cfg_reset_order_override(fw_cfg); 1348 } 1349 1350 void rom_transaction_begin(void) 1351 { 1352 Rom *rom; 1353 1354 /* Ignore ROMs added without the transaction API */ 1355 QTAILQ_FOREACH(rom, &roms, next) { 1356 rom->committed = true; 1357 } 1358 } 1359 1360 void rom_transaction_end(bool commit) 1361 { 1362 Rom *rom; 1363 Rom *tmp; 1364 1365 QTAILQ_FOREACH_SAFE(rom, &roms, next, tmp) { 1366 if (rom->committed) { 1367 continue; 1368 } 1369 if (commit) { 1370 rom->committed = true; 1371 } else { 1372 QTAILQ_REMOVE(&roms, rom, next); 1373 rom_free(rom); 1374 } 1375 } 1376 } 1377 1378 static Rom *find_rom(hwaddr addr, size_t size) 1379 { 1380 Rom *rom; 1381 1382 QTAILQ_FOREACH(rom, &roms, next) { 1383 if (rom->fw_file) { 1384 continue; 1385 } 1386 if (rom->mr) { 1387 continue; 1388 } 1389 if (rom->addr > addr) { 1390 continue; 1391 } 1392 if (rom->addr + rom->romsize < addr + size) { 1393 continue; 1394 } 1395 return rom; 1396 } 1397 return NULL; 1398 } 1399 1400 typedef struct RomSec { 1401 hwaddr base; 1402 int se; /* start/end flag */ 1403 } RomSec; 1404 1405 1406 /* 1407 * Sort into address order. We break ties between rom-startpoints 1408 * and rom-endpoints in favour of the startpoint, by sorting the 0->1 1409 * transition before the 1->0 transition. Either way round would 1410 * work, but this way saves a little work later by avoiding 1411 * dealing with "gaps" of 0 length. 1412 */ 1413 static gint sort_secs(gconstpointer a, gconstpointer b, gpointer d) 1414 { 1415 RomSec *ra = (RomSec *) a; 1416 RomSec *rb = (RomSec *) b; 1417 1418 if (ra->base == rb->base) { 1419 return ra->se - rb->se; 1420 } 1421 return ra->base > rb->base ? 1 : -1; 1422 } 1423 1424 static GList *add_romsec_to_list(GList *secs, hwaddr base, int se) 1425 { 1426 RomSec *cand = g_new(RomSec, 1); 1427 cand->base = base; 1428 cand->se = se; 1429 return g_list_prepend(secs, cand); 1430 } 1431 1432 RomGap rom_find_largest_gap_between(hwaddr base, size_t size) 1433 { 1434 Rom *rom; 1435 RomSec *cand; 1436 RomGap res = {0, 0}; 1437 hwaddr gapstart = base; 1438 GList *it, *secs = NULL; 1439 int count = 0; 1440 1441 QTAILQ_FOREACH(rom, &roms, next) { 1442 /* Ignore blobs being loaded to special places */ 1443 if (rom->mr || rom->fw_file) { 1444 continue; 1445 } 1446 /* ignore anything finishing below base */ 1447 if (rom->addr + rom->romsize <= base) { 1448 continue; 1449 } 1450 /* ignore anything starting above the region */ 1451 if (rom->addr >= base + size) { 1452 continue; 1453 } 1454 1455 /* Save the start and end of each relevant ROM */ 1456 secs = add_romsec_to_list(secs, rom->addr, 1); 1457 1458 if (rom->addr + rom->romsize < base + size) { 1459 secs = add_romsec_to_list(secs, rom->addr + rom->romsize, -1); 1460 } 1461 } 1462 1463 /* sentinel */ 1464 secs = add_romsec_to_list(secs, base + size, 1); 1465 1466 secs = g_list_sort_with_data(secs, sort_secs, NULL); 1467 1468 for (it = g_list_first(secs); it; it = g_list_next(it)) { 1469 cand = (RomSec *) it->data; 1470 if (count == 0 && count + cand->se == 1) { 1471 size_t gap = cand->base - gapstart; 1472 if (gap > res.size) { 1473 res.base = gapstart; 1474 res.size = gap; 1475 } 1476 } else if (count == 1 && count + cand->se == 0) { 1477 gapstart = cand->base; 1478 } 1479 count += cand->se; 1480 } 1481 1482 g_list_free_full(secs, g_free); 1483 return res; 1484 } 1485 1486 /* 1487 * Copies memory from registered ROMs to dest. Any memory that is contained in 1488 * a ROM between addr and addr + size is copied. Note that this can involve 1489 * multiple ROMs, which need not start at addr and need not end at addr + size. 1490 */ 1491 int rom_copy(uint8_t *dest, hwaddr addr, size_t size) 1492 { 1493 hwaddr end = addr + size; 1494 uint8_t *s, *d = dest; 1495 size_t l = 0; 1496 Rom *rom; 1497 1498 QTAILQ_FOREACH(rom, &roms, next) { 1499 if (rom->fw_file) { 1500 continue; 1501 } 1502 if (rom->mr) { 1503 continue; 1504 } 1505 if (rom->addr + rom->romsize < addr) { 1506 continue; 1507 } 1508 if (rom->addr > end || rom->addr < addr) { 1509 break; 1510 } 1511 1512 d = dest + (rom->addr - addr); 1513 s = rom->data; 1514 l = rom->datasize; 1515 1516 if ((d + l) > (dest + size)) { 1517 l = dest - d; 1518 } 1519 1520 if (l > 0) { 1521 memcpy(d, s, l); 1522 } 1523 1524 if (rom->romsize > rom->datasize) { 1525 /* If datasize is less than romsize, it means that we didn't 1526 * allocate all the ROM because the trailing data are only zeros. 1527 */ 1528 1529 d += l; 1530 l = rom->romsize - rom->datasize; 1531 1532 if ((d + l) > (dest + size)) { 1533 /* Rom size doesn't fit in the destination area. Adjust to avoid 1534 * overflow. 1535 */ 1536 l = dest - d; 1537 } 1538 1539 if (l > 0) { 1540 memset(d, 0x0, l); 1541 } 1542 } 1543 } 1544 1545 return (d + l) - dest; 1546 } 1547 1548 void *rom_ptr(hwaddr addr, size_t size) 1549 { 1550 Rom *rom; 1551 1552 rom = find_rom(addr, size); 1553 if (!rom || !rom->data) 1554 return NULL; 1555 return rom->data + (addr - rom->addr); 1556 } 1557 1558 typedef struct FindRomCBData { 1559 size_t size; /* Amount of data we want from ROM, in bytes */ 1560 MemoryRegion *mr; /* MR at the unaliased guest addr */ 1561 hwaddr xlat; /* Offset of addr within mr */ 1562 void *rom; /* Output: rom data pointer, if found */ 1563 } FindRomCBData; 1564 1565 static bool find_rom_cb(Int128 start, Int128 len, const MemoryRegion *mr, 1566 hwaddr offset_in_region, void *opaque) 1567 { 1568 FindRomCBData *cbdata = opaque; 1569 hwaddr alias_addr; 1570 1571 if (mr != cbdata->mr) { 1572 return false; 1573 } 1574 1575 alias_addr = int128_get64(start) + cbdata->xlat - offset_in_region; 1576 cbdata->rom = rom_ptr(alias_addr, cbdata->size); 1577 if (!cbdata->rom) { 1578 return false; 1579 } 1580 /* Found a match, stop iterating */ 1581 return true; 1582 } 1583 1584 void *rom_ptr_for_as(AddressSpace *as, hwaddr addr, size_t size) 1585 { 1586 /* 1587 * Find any ROM data for the given guest address range. If there 1588 * is a ROM blob then return a pointer to the host memory 1589 * corresponding to 'addr'; otherwise return NULL. 1590 * 1591 * We look not only for ROM blobs that were loaded directly to 1592 * addr, but also for ROM blobs that were loaded to aliases of 1593 * that memory at other addresses within the AddressSpace. 1594 * 1595 * Note that we do not check @as against the 'as' member in the 1596 * 'struct Rom' returned by rom_ptr(). The Rom::as is the 1597 * AddressSpace which the rom blob should be written to, whereas 1598 * our @as argument is the AddressSpace which we are (effectively) 1599 * reading from, and the same underlying RAM will often be visible 1600 * in multiple AddressSpaces. (A common example is a ROM blob 1601 * written to the 'system' address space but then read back via a 1602 * CPU's cpu->as pointer.) This does mean we might potentially 1603 * return a false-positive match if a ROM blob was loaded into an 1604 * AS which is entirely separate and distinct from the one we're 1605 * querying, but this issue exists also for rom_ptr() and hasn't 1606 * caused any problems in practice. 1607 */ 1608 FlatView *fv; 1609 void *rom; 1610 hwaddr len_unused; 1611 FindRomCBData cbdata = {}; 1612 1613 /* Easy case: there's data at the actual address */ 1614 rom = rom_ptr(addr, size); 1615 if (rom) { 1616 return rom; 1617 } 1618 1619 RCU_READ_LOCK_GUARD(); 1620 1621 fv = address_space_to_flatview(as); 1622 cbdata.mr = flatview_translate(fv, addr, &cbdata.xlat, &len_unused, 1623 false, MEMTXATTRS_UNSPECIFIED); 1624 if (!cbdata.mr) { 1625 /* Nothing at this address, so there can't be any aliasing */ 1626 return NULL; 1627 } 1628 cbdata.size = size; 1629 flatview_for_each_range(fv, find_rom_cb, &cbdata); 1630 return cbdata.rom; 1631 } 1632 1633 HumanReadableText *qmp_x_query_roms(Error **errp) 1634 { 1635 Rom *rom; 1636 g_autoptr(GString) buf = g_string_new(""); 1637 1638 QTAILQ_FOREACH(rom, &roms, next) { 1639 if (rom->mr) { 1640 g_string_append_printf(buf, "%s" 1641 " size=0x%06zx name=\"%s\"\n", 1642 memory_region_name(rom->mr), 1643 rom->romsize, 1644 rom->name); 1645 } else if (!rom->fw_file) { 1646 g_string_append_printf(buf, "addr=" HWADDR_FMT_plx 1647 " size=0x%06zx mem=%s name=\"%s\"\n", 1648 rom->addr, rom->romsize, 1649 rom->isrom ? "rom" : "ram", 1650 rom->name); 1651 } else { 1652 g_string_append_printf(buf, "fw=%s/%s" 1653 " size=0x%06zx name=\"%s\"\n", 1654 rom->fw_dir, 1655 rom->fw_file, 1656 rom->romsize, 1657 rom->name); 1658 } 1659 } 1660 1661 return human_readable_text_from_str(buf); 1662 } 1663 1664 typedef enum HexRecord HexRecord; 1665 enum HexRecord { 1666 DATA_RECORD = 0, 1667 EOF_RECORD, 1668 EXT_SEG_ADDR_RECORD, 1669 START_SEG_ADDR_RECORD, 1670 EXT_LINEAR_ADDR_RECORD, 1671 START_LINEAR_ADDR_RECORD, 1672 }; 1673 1674 /* Each record contains a 16-bit address which is combined with the upper 16 1675 * bits of the implicit "next address" to form a 32-bit address. 1676 */ 1677 #define NEXT_ADDR_MASK 0xffff0000 1678 1679 #define DATA_FIELD_MAX_LEN 0xff 1680 #define LEN_EXCEPT_DATA 0x5 1681 /* 0x5 = sizeof(byte_count) + sizeof(address) + sizeof(record_type) + 1682 * sizeof(checksum) */ 1683 typedef struct { 1684 uint8_t byte_count; 1685 uint16_t address; 1686 uint8_t record_type; 1687 uint8_t data[DATA_FIELD_MAX_LEN]; 1688 uint8_t checksum; 1689 } HexLine; 1690 1691 /* return 0 or -1 if error */ 1692 static bool parse_record(HexLine *line, uint8_t *our_checksum, const uint8_t c, 1693 uint32_t *index, const bool in_process) 1694 { 1695 /* +-------+---------------+-------+---------------------+--------+ 1696 * | byte | |record | | | 1697 * | count | address | type | data |checksum| 1698 * +-------+---------------+-------+---------------------+--------+ 1699 * ^ ^ ^ ^ ^ ^ 1700 * |1 byte | 2 bytes |1 byte | 0-255 bytes | 1 byte | 1701 */ 1702 uint8_t value = 0; 1703 uint32_t idx = *index; 1704 /* ignore space */ 1705 if (g_ascii_isspace(c)) { 1706 return true; 1707 } 1708 if (!g_ascii_isxdigit(c) || !in_process) { 1709 return false; 1710 } 1711 value = g_ascii_xdigit_value(c); 1712 value = (idx & 0x1) ? (value & 0xf) : (value << 4); 1713 if (idx < 2) { 1714 line->byte_count |= value; 1715 } else if (2 <= idx && idx < 6) { 1716 line->address <<= 4; 1717 line->address += g_ascii_xdigit_value(c); 1718 } else if (6 <= idx && idx < 8) { 1719 line->record_type |= value; 1720 } else if (8 <= idx && idx < 8 + 2 * line->byte_count) { 1721 line->data[(idx - 8) >> 1] |= value; 1722 } else if (8 + 2 * line->byte_count <= idx && 1723 idx < 10 + 2 * line->byte_count) { 1724 line->checksum |= value; 1725 } else { 1726 return false; 1727 } 1728 *our_checksum += value; 1729 ++(*index); 1730 return true; 1731 } 1732 1733 typedef struct { 1734 const char *filename; 1735 HexLine line; 1736 uint8_t *bin_buf; 1737 hwaddr *start_addr; 1738 int total_size; 1739 uint32_t next_address_to_write; 1740 uint32_t current_address; 1741 uint32_t current_rom_index; 1742 uint32_t rom_start_address; 1743 AddressSpace *as; 1744 bool complete; 1745 } HexParser; 1746 1747 /* return size or -1 if error */ 1748 static int handle_record_type(HexParser *parser) 1749 { 1750 HexLine *line = &(parser->line); 1751 switch (line->record_type) { 1752 case DATA_RECORD: 1753 parser->current_address = 1754 (parser->next_address_to_write & NEXT_ADDR_MASK) | line->address; 1755 /* verify this is a contiguous block of memory */ 1756 if (parser->current_address != parser->next_address_to_write) { 1757 if (parser->current_rom_index != 0) { 1758 rom_add_blob_fixed_as(parser->filename, parser->bin_buf, 1759 parser->current_rom_index, 1760 parser->rom_start_address, parser->as); 1761 } 1762 parser->rom_start_address = parser->current_address; 1763 parser->current_rom_index = 0; 1764 } 1765 1766 /* copy from line buffer to output bin_buf */ 1767 memcpy(parser->bin_buf + parser->current_rom_index, line->data, 1768 line->byte_count); 1769 parser->current_rom_index += line->byte_count; 1770 parser->total_size += line->byte_count; 1771 /* save next address to write */ 1772 parser->next_address_to_write = 1773 parser->current_address + line->byte_count; 1774 break; 1775 1776 case EOF_RECORD: 1777 if (parser->current_rom_index != 0) { 1778 rom_add_blob_fixed_as(parser->filename, parser->bin_buf, 1779 parser->current_rom_index, 1780 parser->rom_start_address, parser->as); 1781 } 1782 parser->complete = true; 1783 return parser->total_size; 1784 case EXT_SEG_ADDR_RECORD: 1785 case EXT_LINEAR_ADDR_RECORD: 1786 if (line->byte_count != 2 && line->address != 0) { 1787 return -1; 1788 } 1789 1790 if (parser->current_rom_index != 0) { 1791 rom_add_blob_fixed_as(parser->filename, parser->bin_buf, 1792 parser->current_rom_index, 1793 parser->rom_start_address, parser->as); 1794 } 1795 1796 /* save next address to write, 1797 * in case of non-contiguous block of memory */ 1798 parser->next_address_to_write = (line->data[0] << 12) | 1799 (line->data[1] << 4); 1800 if (line->record_type == EXT_LINEAR_ADDR_RECORD) { 1801 parser->next_address_to_write <<= 12; 1802 } 1803 1804 parser->rom_start_address = parser->next_address_to_write; 1805 parser->current_rom_index = 0; 1806 break; 1807 1808 case START_SEG_ADDR_RECORD: 1809 if (line->byte_count != 4 && line->address != 0) { 1810 return -1; 1811 } 1812 1813 /* x86 16-bit CS:IP segmented addressing */ 1814 *(parser->start_addr) = (((line->data[0] << 8) | line->data[1]) << 4) + 1815 ((line->data[2] << 8) | line->data[3]); 1816 break; 1817 1818 case START_LINEAR_ADDR_RECORD: 1819 if (line->byte_count != 4 && line->address != 0) { 1820 return -1; 1821 } 1822 1823 *(parser->start_addr) = ldl_be_p(line->data); 1824 break; 1825 1826 default: 1827 return -1; 1828 } 1829 1830 return parser->total_size; 1831 } 1832 1833 /* return size or -1 if error */ 1834 static int parse_hex_blob(const char *filename, hwaddr *addr, uint8_t *hex_blob, 1835 size_t hex_blob_size, AddressSpace *as) 1836 { 1837 bool in_process = false; /* avoid re-enter and 1838 * check whether record begin with ':' */ 1839 uint8_t *end = hex_blob + hex_blob_size; 1840 uint8_t our_checksum = 0; 1841 uint32_t record_index = 0; 1842 HexParser parser = { 1843 .filename = filename, 1844 .bin_buf = g_malloc(hex_blob_size), 1845 .start_addr = addr, 1846 .as = as, 1847 .complete = false 1848 }; 1849 1850 rom_transaction_begin(); 1851 1852 for (; hex_blob < end && !parser.complete; ++hex_blob) { 1853 switch (*hex_blob) { 1854 case '\r': 1855 case '\n': 1856 if (!in_process) { 1857 break; 1858 } 1859 1860 in_process = false; 1861 if ((LEN_EXCEPT_DATA + parser.line.byte_count) * 2 != 1862 record_index || 1863 our_checksum != 0) { 1864 parser.total_size = -1; 1865 goto out; 1866 } 1867 1868 if (handle_record_type(&parser) == -1) { 1869 parser.total_size = -1; 1870 goto out; 1871 } 1872 break; 1873 1874 /* start of a new record. */ 1875 case ':': 1876 memset(&parser.line, 0, sizeof(HexLine)); 1877 in_process = true; 1878 record_index = 0; 1879 break; 1880 1881 /* decoding lines */ 1882 default: 1883 if (!parse_record(&parser.line, &our_checksum, *hex_blob, 1884 &record_index, in_process)) { 1885 parser.total_size = -1; 1886 goto out; 1887 } 1888 break; 1889 } 1890 } 1891 1892 out: 1893 g_free(parser.bin_buf); 1894 rom_transaction_end(parser.total_size != -1); 1895 return parser.total_size; 1896 } 1897 1898 /* return size or -1 if error */ 1899 ssize_t load_targphys_hex_as(const char *filename, hwaddr *entry, 1900 AddressSpace *as) 1901 { 1902 gsize hex_blob_size; 1903 gchar *hex_blob; 1904 ssize_t total_size = 0; 1905 1906 if (!g_file_get_contents(filename, &hex_blob, &hex_blob_size, NULL)) { 1907 return -1; 1908 } 1909 1910 total_size = parse_hex_blob(filename, entry, (uint8_t *)hex_blob, 1911 hex_blob_size, as); 1912 1913 g_free(hex_blob); 1914 return total_size; 1915 } 1916