1 /* 2 * QEMU Executable loader 3 * 4 * Copyright (c) 2006 Fabrice Bellard 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a copy 7 * of this software and associated documentation files (the "Software"), to deal 8 * in the Software without restriction, including without limitation the rights 9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 10 * copies of the Software, and to permit persons to whom the Software is 11 * furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 22 * THE SOFTWARE. 23 * 24 * Gunzip functionality in this file is derived from u-boot: 25 * 26 * (C) Copyright 2008 Semihalf 27 * 28 * (C) Copyright 2000-2005 29 * Wolfgang Denk, DENX Software Engineering, wd@denx.de. 30 * 31 * This program is free software; you can redistribute it and/or 32 * modify it under the terms of the GNU General Public License as 33 * published by the Free Software Foundation; either version 2 of 34 * the License, or (at your option) any later version. 35 * 36 * This program is distributed in the hope that it will be useful, 37 * but WITHOUT ANY WARRANTY; without even the implied warranty of 38 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 39 * GNU General Public License for more details. 40 * 41 * You should have received a copy of the GNU General Public License along 42 * with this program; if not, see <http://www.gnu.org/licenses/>. 43 */ 44 45 #include "qemu/osdep.h" 46 #include "qemu/datadir.h" 47 #include "qemu/error-report.h" 48 #include "qapi/error.h" 49 #include "qapi/qapi-commands-machine.h" 50 #include "qapi/type-helpers.h" 51 #include "trace.h" 52 #include "hw/hw.h" 53 #include "disas/disas.h" 54 #include "migration/vmstate.h" 55 #include "monitor/monitor.h" 56 #include "system/reset.h" 57 #include "system/system.h" 58 #include "uboot_image.h" 59 #include "hw/loader.h" 60 #include "hw/nvram/fw_cfg.h" 61 #include "exec/memory.h" 62 #include "hw/boards.h" 63 #include "qemu/cutils.h" 64 #include "system/runstate.h" 65 #include "tcg/debuginfo.h" 66 67 #include <zlib.h> 68 69 static int roms_loaded; 70 71 /* return the size or -1 if error */ 72 int64_t get_image_size(const char *filename) 73 { 74 int fd; 75 int64_t size; 76 fd = open(filename, O_RDONLY | O_BINARY); 77 if (fd < 0) 78 return -1; 79 size = lseek(fd, 0, SEEK_END); 80 close(fd); 81 return size; 82 } 83 84 /* return the size or -1 if error */ 85 ssize_t load_image_size(const char *filename, void *addr, size_t size) 86 { 87 int fd; 88 ssize_t actsize, l = 0; 89 90 fd = open(filename, O_RDONLY | O_BINARY); 91 if (fd < 0) { 92 return -1; 93 } 94 95 while ((actsize = read(fd, addr + l, size - l)) > 0) { 96 l += actsize; 97 } 98 99 close(fd); 100 101 return actsize < 0 ? -1 : l; 102 } 103 104 /* read()-like version */ 105 ssize_t read_targphys(const char *name, 106 int fd, hwaddr dst_addr, size_t nbytes) 107 { 108 uint8_t *buf; 109 ssize_t did; 110 111 buf = g_malloc(nbytes); 112 did = read(fd, buf, nbytes); 113 if (did > 0) 114 rom_add_blob_fixed("read", buf, did, dst_addr); 115 g_free(buf); 116 return did; 117 } 118 119 ssize_t load_image_targphys(const char *filename, 120 hwaddr addr, uint64_t max_sz) 121 { 122 return load_image_targphys_as(filename, addr, max_sz, NULL); 123 } 124 125 /* return the size or -1 if error */ 126 ssize_t load_image_targphys_as(const char *filename, 127 hwaddr addr, uint64_t max_sz, AddressSpace *as) 128 { 129 ssize_t size; 130 131 size = get_image_size(filename); 132 if (size < 0 || size > max_sz) { 133 return -1; 134 } 135 if (size > 0) { 136 if (rom_add_file_fixed_as(filename, addr, -1, as) < 0) { 137 return -1; 138 } 139 } 140 return size; 141 } 142 143 ssize_t load_image_mr(const char *filename, MemoryRegion *mr) 144 { 145 ssize_t size; 146 147 if (!memory_access_is_direct(mr, false, MEMTXATTRS_UNSPECIFIED)) { 148 /* Can only load an image into RAM or ROM */ 149 return -1; 150 } 151 152 size = get_image_size(filename); 153 154 if (size < 0 || size > memory_region_size(mr)) { 155 return -1; 156 } 157 if (size > 0) { 158 if (rom_add_file_mr(filename, mr, -1) < 0) { 159 return -1; 160 } 161 } 162 return size; 163 } 164 165 void pstrcpy_targphys(const char *name, hwaddr dest, int buf_size, 166 const char *source) 167 { 168 const char *nulp; 169 char *ptr; 170 171 if (buf_size <= 0) return; 172 nulp = memchr(source, 0, buf_size); 173 if (nulp) { 174 rom_add_blob_fixed(name, source, (nulp - source) + 1, dest); 175 } else { 176 rom_add_blob_fixed(name, source, buf_size, dest); 177 ptr = rom_ptr(dest + buf_size - 1, sizeof(*ptr)); 178 *ptr = 0; 179 } 180 } 181 182 /* A.OUT loader */ 183 184 struct exec 185 { 186 uint32_t a_info; /* Use macros N_MAGIC, etc for access */ 187 uint32_t a_text; /* length of text, in bytes */ 188 uint32_t a_data; /* length of data, in bytes */ 189 uint32_t a_bss; /* length of uninitialized data area, in bytes */ 190 uint32_t a_syms; /* length of symbol table data in file, in bytes */ 191 uint32_t a_entry; /* start address */ 192 uint32_t a_trsize; /* length of relocation info for text, in bytes */ 193 uint32_t a_drsize; /* length of relocation info for data, in bytes */ 194 }; 195 196 static void bswap_ahdr(struct exec *e) 197 { 198 bswap32s(&e->a_info); 199 bswap32s(&e->a_text); 200 bswap32s(&e->a_data); 201 bswap32s(&e->a_bss); 202 bswap32s(&e->a_syms); 203 bswap32s(&e->a_entry); 204 bswap32s(&e->a_trsize); 205 bswap32s(&e->a_drsize); 206 } 207 208 #define N_MAGIC(exec) ((exec).a_info & 0xffff) 209 #define OMAGIC 0407 210 #define NMAGIC 0410 211 #define ZMAGIC 0413 212 #define QMAGIC 0314 213 #define _N_HDROFF(x) (1024 - sizeof (struct exec)) 214 #define N_TXTOFF(x) \ 215 (N_MAGIC(x) == ZMAGIC ? _N_HDROFF((x)) + sizeof (struct exec) : \ 216 (N_MAGIC(x) == QMAGIC ? 0 : sizeof (struct exec))) 217 #define N_TXTADDR(x, target_page_size) (N_MAGIC(x) == QMAGIC ? target_page_size : 0) 218 #define _N_SEGMENT_ROUND(x, target_page_size) (((x) + target_page_size - 1) & ~(target_page_size - 1)) 219 220 #define _N_TXTENDADDR(x, target_page_size) (N_TXTADDR(x, target_page_size)+(x).a_text) 221 222 #define N_DATADDR(x, target_page_size) \ 223 (N_MAGIC(x)==OMAGIC? (_N_TXTENDADDR(x, target_page_size)) \ 224 : (_N_SEGMENT_ROUND (_N_TXTENDADDR(x, target_page_size), target_page_size))) 225 226 227 ssize_t load_aout(const char *filename, hwaddr addr, int max_sz, 228 int bswap_needed, hwaddr target_page_size) 229 { 230 int fd; 231 ssize_t size, ret; 232 struct exec e; 233 uint32_t magic; 234 235 fd = open(filename, O_RDONLY | O_BINARY); 236 if (fd < 0) 237 return -1; 238 239 size = read(fd, &e, sizeof(e)); 240 if (size < 0) 241 goto fail; 242 243 if (bswap_needed) { 244 bswap_ahdr(&e); 245 } 246 247 magic = N_MAGIC(e); 248 switch (magic) { 249 case ZMAGIC: 250 case QMAGIC: 251 case OMAGIC: 252 if (e.a_text + e.a_data > max_sz) 253 goto fail; 254 lseek(fd, N_TXTOFF(e), SEEK_SET); 255 size = read_targphys(filename, fd, addr, e.a_text + e.a_data); 256 if (size < 0) 257 goto fail; 258 break; 259 case NMAGIC: 260 if (N_DATADDR(e, target_page_size) + e.a_data > max_sz) 261 goto fail; 262 lseek(fd, N_TXTOFF(e), SEEK_SET); 263 size = read_targphys(filename, fd, addr, e.a_text); 264 if (size < 0) 265 goto fail; 266 ret = read_targphys(filename, fd, addr + N_DATADDR(e, target_page_size), 267 e.a_data); 268 if (ret < 0) 269 goto fail; 270 size += ret; 271 break; 272 default: 273 goto fail; 274 } 275 close(fd); 276 return size; 277 fail: 278 close(fd); 279 return -1; 280 } 281 282 /* ELF loader */ 283 284 static void *load_at(int fd, off_t offset, size_t size) 285 { 286 void *ptr; 287 if (lseek(fd, offset, SEEK_SET) < 0) 288 return NULL; 289 ptr = g_malloc(size); 290 if (read(fd, ptr, size) != size) { 291 g_free(ptr); 292 return NULL; 293 } 294 return ptr; 295 } 296 297 #ifdef ELF_CLASS 298 #undef ELF_CLASS 299 #endif 300 301 #define ELF_CLASS ELFCLASS32 302 #include "elf.h" 303 304 #define SZ 32 305 #define elf_word uint32_t 306 #define elf_sword int32_t 307 #define bswapSZs bswap32s 308 #include "hw/elf_ops.h.inc" 309 310 #undef elfhdr 311 #undef elf_phdr 312 #undef elf_shdr 313 #undef elf_sym 314 #undef elf_rela 315 #undef elf_note 316 #undef elf_word 317 #undef elf_sword 318 #undef bswapSZs 319 #undef SZ 320 #define elfhdr elf64_hdr 321 #define elf_phdr elf64_phdr 322 #define elf_note elf64_note 323 #define elf_shdr elf64_shdr 324 #define elf_sym elf64_sym 325 #define elf_rela elf64_rela 326 #define elf_word uint64_t 327 #define elf_sword int64_t 328 #define bswapSZs bswap64s 329 #define SZ 64 330 #include "hw/elf_ops.h.inc" 331 332 const char *load_elf_strerror(ssize_t error) 333 { 334 switch (error) { 335 case 0: 336 return "No error"; 337 case ELF_LOAD_FAILED: 338 return "Failed to load ELF"; 339 case ELF_LOAD_NOT_ELF: 340 return "The image is not ELF"; 341 case ELF_LOAD_WRONG_ARCH: 342 return "The image is from incompatible architecture"; 343 case ELF_LOAD_WRONG_ENDIAN: 344 return "The image has incorrect endianness"; 345 case ELF_LOAD_TOO_BIG: 346 return "The image segments are too big to load"; 347 default: 348 return "Unknown error"; 349 } 350 } 351 352 void load_elf_hdr(const char *filename, void *hdr, bool *is64, Error **errp) 353 { 354 int fd; 355 uint8_t e_ident_local[EI_NIDENT]; 356 uint8_t *e_ident; 357 size_t hdr_size, off; 358 bool is64l; 359 360 if (!hdr) { 361 hdr = e_ident_local; 362 } 363 e_ident = hdr; 364 365 fd = open(filename, O_RDONLY | O_BINARY); 366 if (fd < 0) { 367 error_setg_errno(errp, errno, "Failed to open file: %s", filename); 368 return; 369 } 370 if (read(fd, hdr, EI_NIDENT) != EI_NIDENT) { 371 error_setg_errno(errp, errno, "Failed to read file: %s", filename); 372 goto fail; 373 } 374 if (e_ident[0] != ELFMAG0 || 375 e_ident[1] != ELFMAG1 || 376 e_ident[2] != ELFMAG2 || 377 e_ident[3] != ELFMAG3) { 378 error_setg(errp, "Bad ELF magic"); 379 goto fail; 380 } 381 382 is64l = e_ident[EI_CLASS] == ELFCLASS64; 383 hdr_size = is64l ? sizeof(Elf64_Ehdr) : sizeof(Elf32_Ehdr); 384 if (is64) { 385 *is64 = is64l; 386 } 387 388 off = EI_NIDENT; 389 while (hdr != e_ident_local && off < hdr_size) { 390 size_t br = read(fd, hdr + off, hdr_size - off); 391 switch (br) { 392 case 0: 393 error_setg(errp, "File too short: %s", filename); 394 goto fail; 395 case -1: 396 error_setg_errno(errp, errno, "Failed to read file: %s", 397 filename); 398 goto fail; 399 } 400 off += br; 401 } 402 403 fail: 404 close(fd); 405 } 406 407 /* return < 0 if error, otherwise the number of bytes loaded in memory */ 408 ssize_t load_elf(const char *filename, 409 uint64_t (*elf_note_fn)(void *, void *, bool), 410 uint64_t (*translate_fn)(void *, uint64_t), 411 void *translate_opaque, uint64_t *pentry, uint64_t *lowaddr, 412 uint64_t *highaddr, uint32_t *pflags, int elf_data_order, 413 int elf_machine, int clear_lsb, int data_swab) 414 { 415 return load_elf_as(filename, elf_note_fn, translate_fn, translate_opaque, 416 pentry, lowaddr, highaddr, pflags, elf_data_order, 417 elf_machine, clear_lsb, data_swab, NULL); 418 } 419 420 /* return < 0 if error, otherwise the number of bytes loaded in memory */ 421 ssize_t load_elf_as(const char *filename, 422 uint64_t (*elf_note_fn)(void *, void *, bool), 423 uint64_t (*translate_fn)(void *, uint64_t), 424 void *translate_opaque, uint64_t *pentry, uint64_t *lowaddr, 425 uint64_t *highaddr, uint32_t *pflags, int elf_data_order, 426 int elf_machine, int clear_lsb, int data_swab, 427 AddressSpace *as) 428 { 429 return load_elf_ram_sym(filename, elf_note_fn, 430 translate_fn, translate_opaque, 431 pentry, lowaddr, highaddr, pflags, elf_data_order, 432 elf_machine, clear_lsb, data_swab, as, 433 true, NULL); 434 } 435 436 /* return < 0 if error, otherwise the number of bytes loaded in memory */ 437 ssize_t load_elf_ram_sym(const char *filename, 438 uint64_t (*elf_note_fn)(void *, void *, bool), 439 uint64_t (*translate_fn)(void *, uint64_t), 440 void *translate_opaque, uint64_t *pentry, 441 uint64_t *lowaddr, uint64_t *highaddr, 442 uint32_t *pflags, int elf_data_order, int elf_machine, 443 int clear_lsb, int data_swab, 444 AddressSpace *as, bool load_rom, symbol_fn_t sym_cb) 445 { 446 const int host_data_order = HOST_BIG_ENDIAN ? ELFDATA2MSB : ELFDATA2LSB; 447 int fd, must_swab; 448 ssize_t ret = ELF_LOAD_FAILED; 449 uint8_t e_ident[EI_NIDENT]; 450 451 fd = open(filename, O_RDONLY | O_BINARY); 452 if (fd < 0) { 453 perror(filename); 454 return -1; 455 } 456 if (read(fd, e_ident, sizeof(e_ident)) != sizeof(e_ident)) 457 goto fail; 458 if (e_ident[0] != ELFMAG0 || 459 e_ident[1] != ELFMAG1 || 460 e_ident[2] != ELFMAG2 || 461 e_ident[3] != ELFMAG3) { 462 ret = ELF_LOAD_NOT_ELF; 463 goto fail; 464 } 465 466 if (elf_data_order != ELFDATANONE && elf_data_order != e_ident[EI_DATA]) { 467 ret = ELF_LOAD_WRONG_ENDIAN; 468 goto fail; 469 } 470 471 must_swab = host_data_order != e_ident[EI_DATA]; 472 473 lseek(fd, 0, SEEK_SET); 474 if (e_ident[EI_CLASS] == ELFCLASS64) { 475 ret = load_elf64(filename, fd, elf_note_fn, 476 translate_fn, translate_opaque, must_swab, 477 pentry, lowaddr, highaddr, pflags, elf_machine, 478 clear_lsb, data_swab, as, load_rom, sym_cb); 479 } else { 480 ret = load_elf32(filename, fd, elf_note_fn, 481 translate_fn, translate_opaque, must_swab, 482 pentry, lowaddr, highaddr, pflags, elf_machine, 483 clear_lsb, data_swab, as, load_rom, sym_cb); 484 } 485 486 if (ret > 0) { 487 debuginfo_report_elf(filename, fd, 0); 488 } 489 490 fail: 491 close(fd); 492 return ret; 493 } 494 495 static void bswap_uboot_header(uboot_image_header_t *hdr) 496 { 497 #if !HOST_BIG_ENDIAN 498 bswap32s(&hdr->ih_magic); 499 bswap32s(&hdr->ih_hcrc); 500 bswap32s(&hdr->ih_time); 501 bswap32s(&hdr->ih_size); 502 bswap32s(&hdr->ih_load); 503 bswap32s(&hdr->ih_ep); 504 bswap32s(&hdr->ih_dcrc); 505 #endif 506 } 507 508 509 #define ZALLOC_ALIGNMENT 16 510 511 static void *zalloc(void *x, unsigned items, unsigned size) 512 { 513 void *p; 514 515 size *= items; 516 size = (size + ZALLOC_ALIGNMENT - 1) & ~(ZALLOC_ALIGNMENT - 1); 517 518 p = g_malloc(size); 519 520 return (p); 521 } 522 523 static void zfree(void *x, void *addr) 524 { 525 g_free(addr); 526 } 527 528 529 #define HEAD_CRC 2 530 #define EXTRA_FIELD 4 531 #define ORIG_NAME 8 532 #define COMMENT 0x10 533 #define RESERVED 0xe0 534 535 #define DEFLATED 8 536 537 ssize_t gunzip(void *dst, size_t dstlen, uint8_t *src, size_t srclen) 538 { 539 z_stream s = {}; 540 ssize_t dstbytes; 541 int r, i, flags; 542 543 /* skip header */ 544 i = 10; 545 if (srclen < 4) { 546 goto toosmall; 547 } 548 flags = src[3]; 549 if (src[2] != DEFLATED || (flags & RESERVED) != 0) { 550 puts ("Error: Bad gzipped data\n"); 551 return -1; 552 } 553 if ((flags & EXTRA_FIELD) != 0) { 554 if (srclen < 12) { 555 goto toosmall; 556 } 557 i = 12 + src[10] + (src[11] << 8); 558 } 559 if ((flags & ORIG_NAME) != 0) { 560 while (i < srclen && src[i++] != 0) { 561 /* do nothing */ 562 } 563 } 564 if ((flags & COMMENT) != 0) { 565 while (i < srclen && src[i++] != 0) { 566 /* do nothing */ 567 } 568 } 569 if ((flags & HEAD_CRC) != 0) { 570 i += 2; 571 } 572 if (i >= srclen) { 573 goto toosmall; 574 } 575 576 s.zalloc = zalloc; 577 s.zfree = zfree; 578 579 r = inflateInit2(&s, -MAX_WBITS); 580 if (r != Z_OK) { 581 printf ("Error: inflateInit2() returned %d\n", r); 582 return (-1); 583 } 584 s.next_in = src + i; 585 s.avail_in = srclen - i; 586 s.next_out = dst; 587 s.avail_out = dstlen; 588 r = inflate(&s, Z_FINISH); 589 if (r != Z_OK && r != Z_STREAM_END) { 590 printf ("Error: inflate() returned %d\n", r); 591 inflateEnd(&s); 592 return -1; 593 } 594 dstbytes = s.next_out - (unsigned char *) dst; 595 inflateEnd(&s); 596 597 return dstbytes; 598 599 toosmall: 600 puts("Error: gunzip out of data in header\n"); 601 return -1; 602 } 603 604 /* Load a U-Boot image. */ 605 static ssize_t load_uboot_image(const char *filename, hwaddr *ep, 606 hwaddr *loadaddr, int *is_linux, 607 uint8_t image_type, 608 uint64_t (*translate_fn)(void *, uint64_t), 609 void *translate_opaque, AddressSpace *as) 610 { 611 int fd; 612 ssize_t size; 613 hwaddr address; 614 uboot_image_header_t h; 615 uboot_image_header_t *hdr = &h; 616 uint8_t *data = NULL; 617 int ret = -1; 618 int do_uncompress = 0; 619 620 fd = open(filename, O_RDONLY | O_BINARY); 621 if (fd < 0) 622 return -1; 623 624 size = read(fd, hdr, sizeof(uboot_image_header_t)); 625 if (size < sizeof(uboot_image_header_t)) { 626 goto out; 627 } 628 629 bswap_uboot_header(hdr); 630 631 if (hdr->ih_magic != IH_MAGIC) 632 goto out; 633 634 if (hdr->ih_type != image_type) { 635 if (!(image_type == IH_TYPE_KERNEL && 636 hdr->ih_type == IH_TYPE_KERNEL_NOLOAD)) { 637 fprintf(stderr, "Wrong image type %d, expected %d\n", hdr->ih_type, 638 image_type); 639 goto out; 640 } 641 } 642 643 /* TODO: Implement other image types. */ 644 switch (hdr->ih_type) { 645 case IH_TYPE_KERNEL_NOLOAD: 646 if (!loadaddr || *loadaddr == LOAD_UIMAGE_LOADADDR_INVALID) { 647 fprintf(stderr, "this image format (kernel_noload) cannot be " 648 "loaded on this machine type"); 649 goto out; 650 } 651 652 hdr->ih_load = *loadaddr + sizeof(*hdr); 653 hdr->ih_ep += hdr->ih_load; 654 /* fall through */ 655 case IH_TYPE_KERNEL: 656 address = hdr->ih_load; 657 if (translate_fn) { 658 address = translate_fn(translate_opaque, address); 659 } 660 if (loadaddr) { 661 *loadaddr = hdr->ih_load; 662 } 663 664 switch (hdr->ih_comp) { 665 case IH_COMP_NONE: 666 break; 667 case IH_COMP_GZIP: 668 do_uncompress = 1; 669 break; 670 default: 671 fprintf(stderr, 672 "Unable to load u-boot images with compression type %d\n", 673 hdr->ih_comp); 674 goto out; 675 } 676 677 if (ep) { 678 *ep = hdr->ih_ep; 679 } 680 681 /* TODO: Check CPU type. */ 682 if (is_linux) { 683 if (hdr->ih_os == IH_OS_LINUX) { 684 *is_linux = 1; 685 } else if (hdr->ih_os == IH_OS_VXWORKS) { 686 /* 687 * VxWorks 7 uses the same boot interface as the Linux kernel 688 * on Arm (64-bit only), PowerPC and RISC-V architectures. 689 */ 690 switch (hdr->ih_arch) { 691 case IH_ARCH_ARM64: 692 case IH_ARCH_PPC: 693 case IH_ARCH_RISCV: 694 *is_linux = 1; 695 break; 696 default: 697 *is_linux = 0; 698 break; 699 } 700 } else { 701 *is_linux = 0; 702 } 703 } 704 705 break; 706 case IH_TYPE_RAMDISK: 707 address = *loadaddr; 708 break; 709 default: 710 fprintf(stderr, "Unsupported u-boot image type %d\n", hdr->ih_type); 711 goto out; 712 } 713 714 data = g_malloc(hdr->ih_size); 715 716 if (read(fd, data, hdr->ih_size) != hdr->ih_size) { 717 fprintf(stderr, "Error reading file\n"); 718 goto out; 719 } 720 721 if (do_uncompress) { 722 uint8_t *compressed_data; 723 size_t max_bytes; 724 ssize_t bytes; 725 726 compressed_data = data; 727 max_bytes = UBOOT_MAX_GUNZIP_BYTES; 728 data = g_malloc(max_bytes); 729 730 bytes = gunzip(data, max_bytes, compressed_data, hdr->ih_size); 731 g_free(compressed_data); 732 if (bytes < 0) { 733 fprintf(stderr, "Unable to decompress gzipped image!\n"); 734 goto out; 735 } 736 hdr->ih_size = bytes; 737 } 738 739 rom_add_blob_fixed_as(filename, data, hdr->ih_size, address, as); 740 741 ret = hdr->ih_size; 742 743 out: 744 g_free(data); 745 close(fd); 746 return ret; 747 } 748 749 ssize_t load_uimage(const char *filename, hwaddr *ep, hwaddr *loadaddr, 750 int *is_linux, 751 uint64_t (*translate_fn)(void *, uint64_t), 752 void *translate_opaque) 753 { 754 return load_uboot_image(filename, ep, loadaddr, is_linux, IH_TYPE_KERNEL, 755 translate_fn, translate_opaque, NULL); 756 } 757 758 ssize_t load_uimage_as(const char *filename, hwaddr *ep, hwaddr *loadaddr, 759 int *is_linux, 760 uint64_t (*translate_fn)(void *, uint64_t), 761 void *translate_opaque, AddressSpace *as) 762 { 763 return load_uboot_image(filename, ep, loadaddr, is_linux, IH_TYPE_KERNEL, 764 translate_fn, translate_opaque, as); 765 } 766 767 /* Load a ramdisk. */ 768 ssize_t load_ramdisk(const char *filename, hwaddr addr, uint64_t max_sz) 769 { 770 return load_ramdisk_as(filename, addr, max_sz, NULL); 771 } 772 773 ssize_t load_ramdisk_as(const char *filename, hwaddr addr, uint64_t max_sz, 774 AddressSpace *as) 775 { 776 return load_uboot_image(filename, NULL, &addr, NULL, IH_TYPE_RAMDISK, 777 NULL, NULL, as); 778 } 779 780 /* Load a gzip-compressed kernel to a dynamically allocated buffer. */ 781 ssize_t load_image_gzipped_buffer(const char *filename, uint64_t max_sz, 782 uint8_t **buffer) 783 { 784 uint8_t *compressed_data = NULL; 785 uint8_t *data = NULL; 786 gsize len; 787 ssize_t bytes; 788 int ret = -1; 789 790 if (!g_file_get_contents(filename, (char **) &compressed_data, &len, 791 NULL)) { 792 goto out; 793 } 794 795 /* Is it a gzip-compressed file? */ 796 if (len < 2 || 797 compressed_data[0] != 0x1f || 798 compressed_data[1] != 0x8b) { 799 goto out; 800 } 801 802 if (max_sz > LOAD_IMAGE_MAX_GUNZIP_BYTES) { 803 max_sz = LOAD_IMAGE_MAX_GUNZIP_BYTES; 804 } 805 806 data = g_malloc(max_sz); 807 bytes = gunzip(data, max_sz, compressed_data, len); 808 if (bytes < 0) { 809 fprintf(stderr, "%s: unable to decompress gzipped kernel file\n", 810 filename); 811 goto out; 812 } 813 814 /* trim to actual size and return to caller */ 815 *buffer = g_realloc(data, bytes); 816 ret = bytes; 817 /* ownership has been transferred to caller */ 818 data = NULL; 819 820 out: 821 g_free(compressed_data); 822 g_free(data); 823 return ret; 824 } 825 826 827 /* The PE/COFF MS-DOS stub magic number */ 828 #define EFI_PE_MSDOS_MAGIC "MZ" 829 830 /* 831 * The Linux header magic number for a EFI PE/COFF 832 * image targeting an unspecified architecture. 833 */ 834 #define EFI_PE_LINUX_MAGIC "\xcd\x23\x82\x81" 835 836 /* 837 * Bootable Linux kernel images may be packaged as EFI zboot images, which are 838 * self-decompressing executables when loaded via EFI. The compressed payload 839 * can also be extracted from the image and decompressed by a non-EFI loader. 840 * 841 * The de facto specification for this format is at the following URL: 842 * 843 * https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/drivers/firmware/efi/libstub/zboot-header.S 844 * 845 * This definition is based on Linux upstream commit 29636a5ce87beba. 846 */ 847 struct linux_efi_zboot_header { 848 uint8_t msdos_magic[2]; /* PE/COFF 'MZ' magic number */ 849 uint8_t reserved0[2]; 850 uint8_t zimg[4]; /* "zimg" for Linux EFI zboot images */ 851 uint32_t payload_offset; /* LE offset to compressed payload */ 852 uint32_t payload_size; /* LE size of the compressed payload */ 853 uint8_t reserved1[8]; 854 char compression_type[32]; /* Compression type, NUL terminated */ 855 uint8_t linux_magic[4]; /* Linux header magic */ 856 uint32_t pe_header_offset; /* LE offset to the PE header */ 857 }; 858 859 /* 860 * Check whether *buffer points to a Linux EFI zboot image in memory. 861 * 862 * If it does, attempt to decompress it to a new buffer, and free the old one. 863 * If any of this fails, return an error to the caller. 864 * 865 * If the image is not a Linux EFI zboot image, do nothing and return success. 866 */ 867 ssize_t unpack_efi_zboot_image(uint8_t **buffer, ssize_t *size) 868 { 869 const struct linux_efi_zboot_header *header; 870 uint8_t *data = NULL; 871 ssize_t ploff, plsize; 872 ssize_t bytes; 873 874 /* ignore if this is too small to be a EFI zboot image */ 875 if (*size < sizeof(*header)) { 876 return 0; 877 } 878 879 header = (struct linux_efi_zboot_header *)*buffer; 880 881 /* ignore if this is not a Linux EFI zboot image */ 882 if (memcmp(&header->msdos_magic, EFI_PE_MSDOS_MAGIC, 2) != 0 || 883 memcmp(&header->zimg, "zimg", 4) != 0 || 884 memcmp(&header->linux_magic, EFI_PE_LINUX_MAGIC, 4) != 0) { 885 return 0; 886 } 887 888 if (strcmp(header->compression_type, "gzip") != 0) { 889 fprintf(stderr, 890 "unable to handle EFI zboot image with \"%.*s\" compression\n", 891 (int)sizeof(header->compression_type) - 1, 892 header->compression_type); 893 return -1; 894 } 895 896 ploff = ldl_le_p(&header->payload_offset); 897 plsize = ldl_le_p(&header->payload_size); 898 899 if (ploff < 0 || plsize < 0 || ploff + plsize > *size) { 900 fprintf(stderr, "unable to handle corrupt EFI zboot image\n"); 901 return -1; 902 } 903 904 data = g_malloc(LOAD_IMAGE_MAX_GUNZIP_BYTES); 905 bytes = gunzip(data, LOAD_IMAGE_MAX_GUNZIP_BYTES, *buffer + ploff, plsize); 906 if (bytes < 0) { 907 fprintf(stderr, "failed to decompress EFI zboot image\n"); 908 g_free(data); 909 return -1; 910 } 911 912 g_free(*buffer); 913 *buffer = g_realloc(data, bytes); 914 *size = bytes; 915 return bytes; 916 } 917 918 /* 919 * Functions for reboot-persistent memory regions. 920 * - used for vga bios and option roms. 921 * - also linux kernel (-kernel / -initrd). 922 */ 923 924 typedef struct Rom Rom; 925 926 struct Rom { 927 char *name; 928 char *path; 929 930 /* datasize is the amount of memory allocated in "data". If datasize is less 931 * than romsize, it means that the area from datasize to romsize is filled 932 * with zeros. 933 */ 934 size_t romsize; 935 size_t datasize; 936 937 uint8_t *data; 938 MemoryRegion *mr; 939 AddressSpace *as; 940 int isrom; 941 char *fw_dir; 942 char *fw_file; 943 GMappedFile *mapped_file; 944 945 bool committed; 946 947 hwaddr addr; 948 QTAILQ_ENTRY(Rom) next; 949 }; 950 951 static FWCfgState *fw_cfg; 952 static QTAILQ_HEAD(, Rom) roms = QTAILQ_HEAD_INITIALIZER(roms); 953 954 /* 955 * rom->data can be heap-allocated or memory-mapped (e.g. when added with 956 * rom_add_elf_program()) 957 */ 958 static void rom_free_data(Rom *rom) 959 { 960 if (rom->mapped_file) { 961 g_mapped_file_unref(rom->mapped_file); 962 rom->mapped_file = NULL; 963 } else { 964 g_free(rom->data); 965 } 966 967 rom->data = NULL; 968 } 969 970 static void rom_free(Rom *rom) 971 { 972 rom_free_data(rom); 973 g_free(rom->path); 974 g_free(rom->name); 975 g_free(rom->fw_dir); 976 g_free(rom->fw_file); 977 g_free(rom); 978 } 979 980 static inline bool rom_order_compare(Rom *rom, Rom *item) 981 { 982 return ((uintptr_t)(void *)rom->as > (uintptr_t)(void *)item->as) || 983 (rom->as == item->as && rom->addr >= item->addr); 984 } 985 986 static void rom_insert(Rom *rom) 987 { 988 Rom *item; 989 990 if (roms_loaded) { 991 hw_error ("ROM images must be loaded at startup\n"); 992 } 993 994 /* The user didn't specify an address space, this is the default */ 995 if (!rom->as) { 996 rom->as = &address_space_memory; 997 } 998 999 rom->committed = false; 1000 1001 /* List is ordered by load address in the same address space */ 1002 QTAILQ_FOREACH(item, &roms, next) { 1003 if (rom_order_compare(rom, item)) { 1004 continue; 1005 } 1006 QTAILQ_INSERT_BEFORE(item, rom, next); 1007 return; 1008 } 1009 QTAILQ_INSERT_TAIL(&roms, rom, next); 1010 } 1011 1012 static void fw_cfg_resized(const char *id, uint64_t length, void *host) 1013 { 1014 if (fw_cfg) { 1015 fw_cfg_modify_file(fw_cfg, id + strlen("/rom@"), host, length); 1016 } 1017 } 1018 1019 static void *rom_set_mr(Rom *rom, Object *owner, const char *name, bool ro) 1020 { 1021 void *data; 1022 1023 rom->mr = g_malloc(sizeof(*rom->mr)); 1024 memory_region_init_resizeable_ram(rom->mr, owner, name, 1025 rom->datasize, rom->romsize, 1026 fw_cfg_resized, 1027 &error_fatal); 1028 memory_region_set_readonly(rom->mr, ro); 1029 vmstate_register_ram_global(rom->mr); 1030 1031 data = memory_region_get_ram_ptr(rom->mr); 1032 memcpy(data, rom->data, rom->datasize); 1033 1034 return data; 1035 } 1036 1037 ssize_t rom_add_file(const char *file, const char *fw_dir, 1038 hwaddr addr, int32_t bootindex, 1039 bool has_option_rom, MemoryRegion *mr, 1040 AddressSpace *as) 1041 { 1042 MachineClass *mc = MACHINE_GET_CLASS(qdev_get_machine()); 1043 Rom *rom; 1044 gsize size; 1045 g_autoptr(GError) gerr = NULL; 1046 char devpath[100]; 1047 1048 if (as && mr) { 1049 fprintf(stderr, "Specifying an Address Space and Memory Region is " \ 1050 "not valid when loading a rom\n"); 1051 /* We haven't allocated anything so we don't need any cleanup */ 1052 return -1; 1053 } 1054 1055 rom = g_malloc0(sizeof(*rom)); 1056 rom->name = g_strdup(file); 1057 rom->path = qemu_find_file(QEMU_FILE_TYPE_BIOS, rom->name); 1058 rom->as = as; 1059 if (rom->path == NULL) { 1060 rom->path = g_strdup(file); 1061 } 1062 1063 if (!g_file_get_contents(rom->path, (gchar **) &rom->data, 1064 &size, &gerr)) { 1065 fprintf(stderr, "rom: file %-20s: error %s\n", 1066 rom->name, gerr->message); 1067 goto err; 1068 } 1069 1070 if (fw_dir) { 1071 rom->fw_dir = g_strdup(fw_dir); 1072 rom->fw_file = g_strdup(file); 1073 } 1074 rom->addr = addr; 1075 rom->romsize = size; 1076 rom->datasize = rom->romsize; 1077 rom_insert(rom); 1078 if (rom->fw_file && fw_cfg) { 1079 const char *basename; 1080 char fw_file_name[FW_CFG_MAX_FILE_PATH]; 1081 void *data; 1082 1083 basename = strrchr(rom->fw_file, '/'); 1084 if (basename) { 1085 basename++; 1086 } else { 1087 basename = rom->fw_file; 1088 } 1089 snprintf(fw_file_name, sizeof(fw_file_name), "%s/%s", rom->fw_dir, 1090 basename); 1091 snprintf(devpath, sizeof(devpath), "/rom@%s", fw_file_name); 1092 1093 if ((!has_option_rom || mc->option_rom_has_mr) && mc->rom_file_has_mr) { 1094 data = rom_set_mr(rom, OBJECT(fw_cfg), devpath, true); 1095 } else { 1096 data = rom->data; 1097 } 1098 1099 fw_cfg_add_file(fw_cfg, fw_file_name, data, rom->romsize); 1100 } else { 1101 if (mr) { 1102 rom->mr = mr; 1103 snprintf(devpath, sizeof(devpath), "/rom@%s", file); 1104 } else { 1105 snprintf(devpath, sizeof(devpath), "/rom@" HWADDR_FMT_plx, addr); 1106 } 1107 } 1108 1109 add_boot_device_path(bootindex, NULL, devpath); 1110 return 0; 1111 1112 err: 1113 rom_free(rom); 1114 return -1; 1115 } 1116 1117 MemoryRegion *rom_add_blob(const char *name, const void *blob, size_t len, 1118 size_t max_len, hwaddr addr, const char *fw_file_name, 1119 FWCfgCallback fw_callback, void *callback_opaque, 1120 AddressSpace *as, bool read_only) 1121 { 1122 MachineClass *mc = MACHINE_GET_CLASS(qdev_get_machine()); 1123 Rom *rom; 1124 MemoryRegion *mr = NULL; 1125 1126 rom = g_malloc0(sizeof(*rom)); 1127 rom->name = g_strdup(name); 1128 rom->as = as; 1129 rom->addr = addr; 1130 rom->romsize = max_len ? max_len : len; 1131 rom->datasize = len; 1132 g_assert(rom->romsize >= rom->datasize); 1133 rom->data = g_malloc0(rom->datasize); 1134 memcpy(rom->data, blob, len); 1135 rom_insert(rom); 1136 if (fw_file_name && fw_cfg) { 1137 char devpath[100]; 1138 void *data; 1139 1140 if (read_only) { 1141 snprintf(devpath, sizeof(devpath), "/rom@%s", fw_file_name); 1142 } else { 1143 snprintf(devpath, sizeof(devpath), "/ram@%s", fw_file_name); 1144 } 1145 1146 if (mc->rom_file_has_mr) { 1147 data = rom_set_mr(rom, OBJECT(fw_cfg), devpath, read_only); 1148 mr = rom->mr; 1149 } else { 1150 data = rom->data; 1151 } 1152 1153 fw_cfg_add_file_callback(fw_cfg, fw_file_name, 1154 fw_callback, NULL, callback_opaque, 1155 data, rom->datasize, read_only); 1156 } 1157 return mr; 1158 } 1159 1160 /* This function is specific for elf program because we don't need to allocate 1161 * all the rom. We just allocate the first part and the rest is just zeros. This 1162 * is why romsize and datasize are different. Also, this function takes its own 1163 * reference to "mapped_file", so we don't have to allocate and copy the buffer. 1164 */ 1165 int rom_add_elf_program(const char *name, GMappedFile *mapped_file, void *data, 1166 size_t datasize, size_t romsize, hwaddr addr, 1167 AddressSpace *as) 1168 { 1169 Rom *rom; 1170 1171 rom = g_malloc0(sizeof(*rom)); 1172 rom->name = g_strdup(name); 1173 rom->addr = addr; 1174 rom->datasize = datasize; 1175 rom->romsize = romsize; 1176 rom->data = data; 1177 rom->as = as; 1178 1179 if (mapped_file && data) { 1180 g_mapped_file_ref(mapped_file); 1181 rom->mapped_file = mapped_file; 1182 } 1183 1184 rom_insert(rom); 1185 return 0; 1186 } 1187 1188 ssize_t rom_add_vga(const char *file) 1189 { 1190 return rom_add_file(file, "vgaroms", 0, -1, true, NULL, NULL); 1191 } 1192 1193 ssize_t rom_add_option(const char *file, int32_t bootindex) 1194 { 1195 return rom_add_file(file, "genroms", 0, bootindex, true, NULL, NULL); 1196 } 1197 1198 static void rom_reset(void *unused) 1199 { 1200 Rom *rom; 1201 1202 QTAILQ_FOREACH(rom, &roms, next) { 1203 if (rom->fw_file) { 1204 continue; 1205 } 1206 /* 1207 * We don't need to fill in the RAM with ROM data because we'll fill 1208 * the data in during the next incoming migration in all cases. Note 1209 * that some of those RAMs can actually be modified by the guest. 1210 */ 1211 if (runstate_check(RUN_STATE_INMIGRATE)) { 1212 if (rom->data && rom->isrom) { 1213 /* 1214 * Free it so that a rom_reset after migration doesn't 1215 * overwrite a potentially modified 'rom'. 1216 */ 1217 rom_free_data(rom); 1218 } 1219 continue; 1220 } 1221 1222 if (rom->data == NULL) { 1223 continue; 1224 } 1225 if (rom->mr) { 1226 void *host = memory_region_get_ram_ptr(rom->mr); 1227 memcpy(host, rom->data, rom->datasize); 1228 memset(host + rom->datasize, 0, rom->romsize - rom->datasize); 1229 } else { 1230 address_space_write_rom(rom->as, rom->addr, MEMTXATTRS_UNSPECIFIED, 1231 rom->data, rom->datasize); 1232 address_space_set(rom->as, rom->addr + rom->datasize, 0, 1233 rom->romsize - rom->datasize, 1234 MEMTXATTRS_UNSPECIFIED); 1235 } 1236 if (rom->isrom) { 1237 /* rom needs to be written only once */ 1238 rom_free_data(rom); 1239 } 1240 /* 1241 * The rom loader is really on the same level as firmware in the guest 1242 * shadowing a ROM into RAM. Such a shadowing mechanism needs to ensure 1243 * that the instruction cache for that new region is clear, so that the 1244 * CPU definitely fetches its instructions from the just written data. 1245 */ 1246 cpu_flush_icache_range(rom->addr, rom->datasize); 1247 1248 trace_loader_write_rom(rom->name, rom->addr, rom->datasize, rom->isrom); 1249 } 1250 } 1251 1252 /* Return true if two consecutive ROMs in the ROM list overlap */ 1253 static bool roms_overlap(Rom *last_rom, Rom *this_rom) 1254 { 1255 if (!last_rom) { 1256 return false; 1257 } 1258 return last_rom->as == this_rom->as && 1259 last_rom->addr + last_rom->romsize > this_rom->addr; 1260 } 1261 1262 static const char *rom_as_name(Rom *rom) 1263 { 1264 const char *name = rom->as ? rom->as->name : NULL; 1265 return name ?: "anonymous"; 1266 } 1267 1268 static void rom_print_overlap_error_header(void) 1269 { 1270 error_report("Some ROM regions are overlapping"); 1271 error_printf( 1272 "These ROM regions might have been loaded by " 1273 "direct user request or by default.\n" 1274 "They could be BIOS/firmware images, a guest kernel, " 1275 "initrd or some other file loaded into guest memory.\n" 1276 "Check whether you intended to load all this guest code, and " 1277 "whether it has been built to load to the correct addresses.\n"); 1278 } 1279 1280 static void rom_print_one_overlap_error(Rom *last_rom, Rom *rom) 1281 { 1282 error_printf( 1283 "\nThe following two regions overlap (in the %s address space):\n", 1284 rom_as_name(rom)); 1285 error_printf( 1286 " %s (addresses 0x" HWADDR_FMT_plx " - 0x" HWADDR_FMT_plx ")\n", 1287 last_rom->name, last_rom->addr, last_rom->addr + last_rom->romsize); 1288 error_printf( 1289 " %s (addresses 0x" HWADDR_FMT_plx " - 0x" HWADDR_FMT_plx ")\n", 1290 rom->name, rom->addr, rom->addr + rom->romsize); 1291 } 1292 1293 int rom_check_and_register_reset(void) 1294 { 1295 MemoryRegionSection section; 1296 Rom *rom, *last_rom = NULL; 1297 bool found_overlap = false; 1298 1299 QTAILQ_FOREACH(rom, &roms, next) { 1300 if (rom->fw_file) { 1301 continue; 1302 } 1303 if (!rom->mr) { 1304 if (roms_overlap(last_rom, rom)) { 1305 if (!found_overlap) { 1306 found_overlap = true; 1307 rom_print_overlap_error_header(); 1308 } 1309 rom_print_one_overlap_error(last_rom, rom); 1310 /* Keep going through the list so we report all overlaps */ 1311 } 1312 last_rom = rom; 1313 } 1314 section = memory_region_find(rom->mr ? rom->mr : get_system_memory(), 1315 rom->addr, 1); 1316 rom->isrom = int128_nz(section.size) && memory_region_is_rom(section.mr); 1317 memory_region_unref(section.mr); 1318 } 1319 if (found_overlap) { 1320 return -1; 1321 } 1322 1323 qemu_register_reset(rom_reset, NULL); 1324 roms_loaded = 1; 1325 return 0; 1326 } 1327 1328 void rom_set_fw(FWCfgState *f) 1329 { 1330 fw_cfg = f; 1331 } 1332 1333 void rom_set_order_override(int order) 1334 { 1335 if (!fw_cfg) 1336 return; 1337 fw_cfg_set_order_override(fw_cfg, order); 1338 } 1339 1340 void rom_reset_order_override(void) 1341 { 1342 if (!fw_cfg) 1343 return; 1344 fw_cfg_reset_order_override(fw_cfg); 1345 } 1346 1347 void rom_transaction_begin(void) 1348 { 1349 Rom *rom; 1350 1351 /* Ignore ROMs added without the transaction API */ 1352 QTAILQ_FOREACH(rom, &roms, next) { 1353 rom->committed = true; 1354 } 1355 } 1356 1357 void rom_transaction_end(bool commit) 1358 { 1359 Rom *rom; 1360 Rom *tmp; 1361 1362 QTAILQ_FOREACH_SAFE(rom, &roms, next, tmp) { 1363 if (rom->committed) { 1364 continue; 1365 } 1366 if (commit) { 1367 rom->committed = true; 1368 } else { 1369 QTAILQ_REMOVE(&roms, rom, next); 1370 rom_free(rom); 1371 } 1372 } 1373 } 1374 1375 static Rom *find_rom(hwaddr addr, size_t size) 1376 { 1377 Rom *rom; 1378 1379 QTAILQ_FOREACH(rom, &roms, next) { 1380 if (rom->fw_file) { 1381 continue; 1382 } 1383 if (rom->mr) { 1384 continue; 1385 } 1386 if (rom->addr > addr) { 1387 continue; 1388 } 1389 if (rom->addr + rom->romsize < addr + size) { 1390 continue; 1391 } 1392 return rom; 1393 } 1394 return NULL; 1395 } 1396 1397 typedef struct RomSec { 1398 hwaddr base; 1399 int se; /* start/end flag */ 1400 } RomSec; 1401 1402 1403 /* 1404 * Sort into address order. We break ties between rom-startpoints 1405 * and rom-endpoints in favour of the startpoint, by sorting the 0->1 1406 * transition before the 1->0 transition. Either way round would 1407 * work, but this way saves a little work later by avoiding 1408 * dealing with "gaps" of 0 length. 1409 */ 1410 static gint sort_secs(gconstpointer a, gconstpointer b) 1411 { 1412 RomSec *ra = (RomSec *) a; 1413 RomSec *rb = (RomSec *) b; 1414 1415 if (ra->base == rb->base) { 1416 return ra->se - rb->se; 1417 } 1418 return ra->base > rb->base ? 1 : -1; 1419 } 1420 1421 static GList *add_romsec_to_list(GList *secs, hwaddr base, int se) 1422 { 1423 RomSec *cand = g_new(RomSec, 1); 1424 cand->base = base; 1425 cand->se = se; 1426 return g_list_prepend(secs, cand); 1427 } 1428 1429 RomGap rom_find_largest_gap_between(hwaddr base, size_t size) 1430 { 1431 Rom *rom; 1432 RomSec *cand; 1433 RomGap res = {0, 0}; 1434 hwaddr gapstart = base; 1435 GList *it, *secs = NULL; 1436 int count = 0; 1437 1438 QTAILQ_FOREACH(rom, &roms, next) { 1439 /* Ignore blobs being loaded to special places */ 1440 if (rom->mr || rom->fw_file) { 1441 continue; 1442 } 1443 /* ignore anything finishing below base */ 1444 if (rom->addr + rom->romsize <= base) { 1445 continue; 1446 } 1447 /* ignore anything starting above the region */ 1448 if (rom->addr >= base + size) { 1449 continue; 1450 } 1451 1452 /* Save the start and end of each relevant ROM */ 1453 secs = add_romsec_to_list(secs, rom->addr, 1); 1454 1455 if (rom->addr + rom->romsize < base + size) { 1456 secs = add_romsec_to_list(secs, rom->addr + rom->romsize, -1); 1457 } 1458 } 1459 1460 /* sentinel */ 1461 secs = add_romsec_to_list(secs, base + size, 1); 1462 1463 secs = g_list_sort(secs, sort_secs); 1464 1465 for (it = g_list_first(secs); it; it = g_list_next(it)) { 1466 cand = (RomSec *) it->data; 1467 if (count == 0 && count + cand->se == 1) { 1468 size_t gap = cand->base - gapstart; 1469 if (gap > res.size) { 1470 res.base = gapstart; 1471 res.size = gap; 1472 } 1473 } else if (count == 1 && count + cand->se == 0) { 1474 gapstart = cand->base; 1475 } 1476 count += cand->se; 1477 } 1478 1479 g_list_free_full(secs, g_free); 1480 return res; 1481 } 1482 1483 /* 1484 * Copies memory from registered ROMs to dest. Any memory that is contained in 1485 * a ROM between addr and addr + size is copied. Note that this can involve 1486 * multiple ROMs, which need not start at addr and need not end at addr + size. 1487 */ 1488 int rom_copy(uint8_t *dest, hwaddr addr, size_t size) 1489 { 1490 hwaddr end = addr + size; 1491 uint8_t *s, *d = dest; 1492 size_t l = 0; 1493 Rom *rom; 1494 1495 QTAILQ_FOREACH(rom, &roms, next) { 1496 if (rom->fw_file) { 1497 continue; 1498 } 1499 if (rom->mr) { 1500 continue; 1501 } 1502 if (rom->addr + rom->romsize < addr) { 1503 continue; 1504 } 1505 if (rom->addr > end || rom->addr < addr) { 1506 break; 1507 } 1508 1509 d = dest + (rom->addr - addr); 1510 s = rom->data; 1511 l = rom->datasize; 1512 1513 if ((d + l) > (dest + size)) { 1514 l = dest - d; 1515 } 1516 1517 if (l > 0) { 1518 memcpy(d, s, l); 1519 } 1520 1521 if (rom->romsize > rom->datasize) { 1522 /* If datasize is less than romsize, it means that we didn't 1523 * allocate all the ROM because the trailing data are only zeros. 1524 */ 1525 1526 d += l; 1527 l = rom->romsize - rom->datasize; 1528 1529 if ((d + l) > (dest + size)) { 1530 /* Rom size doesn't fit in the destination area. Adjust to avoid 1531 * overflow. 1532 */ 1533 l = dest - d; 1534 } 1535 1536 if (l > 0) { 1537 memset(d, 0x0, l); 1538 } 1539 } 1540 } 1541 1542 return (d + l) - dest; 1543 } 1544 1545 void *rom_ptr(hwaddr addr, size_t size) 1546 { 1547 Rom *rom; 1548 1549 rom = find_rom(addr, size); 1550 if (!rom || !rom->data) 1551 return NULL; 1552 return rom->data + (addr - rom->addr); 1553 } 1554 1555 typedef struct FindRomCBData { 1556 size_t size; /* Amount of data we want from ROM, in bytes */ 1557 MemoryRegion *mr; /* MR at the unaliased guest addr */ 1558 hwaddr xlat; /* Offset of addr within mr */ 1559 void *rom; /* Output: rom data pointer, if found */ 1560 } FindRomCBData; 1561 1562 static bool find_rom_cb(Int128 start, Int128 len, const MemoryRegion *mr, 1563 hwaddr offset_in_region, void *opaque) 1564 { 1565 FindRomCBData *cbdata = opaque; 1566 hwaddr alias_addr; 1567 1568 if (mr != cbdata->mr) { 1569 return false; 1570 } 1571 1572 alias_addr = int128_get64(start) + cbdata->xlat - offset_in_region; 1573 cbdata->rom = rom_ptr(alias_addr, cbdata->size); 1574 if (!cbdata->rom) { 1575 return false; 1576 } 1577 /* Found a match, stop iterating */ 1578 return true; 1579 } 1580 1581 void *rom_ptr_for_as(AddressSpace *as, hwaddr addr, size_t size) 1582 { 1583 /* 1584 * Find any ROM data for the given guest address range. If there 1585 * is a ROM blob then return a pointer to the host memory 1586 * corresponding to 'addr'; otherwise return NULL. 1587 * 1588 * We look not only for ROM blobs that were loaded directly to 1589 * addr, but also for ROM blobs that were loaded to aliases of 1590 * that memory at other addresses within the AddressSpace. 1591 * 1592 * Note that we do not check @as against the 'as' member in the 1593 * 'struct Rom' returned by rom_ptr(). The Rom::as is the 1594 * AddressSpace which the rom blob should be written to, whereas 1595 * our @as argument is the AddressSpace which we are (effectively) 1596 * reading from, and the same underlying RAM will often be visible 1597 * in multiple AddressSpaces. (A common example is a ROM blob 1598 * written to the 'system' address space but then read back via a 1599 * CPU's cpu->as pointer.) This does mean we might potentially 1600 * return a false-positive match if a ROM blob was loaded into an 1601 * AS which is entirely separate and distinct from the one we're 1602 * querying, but this issue exists also for rom_ptr() and hasn't 1603 * caused any problems in practice. 1604 */ 1605 FlatView *fv; 1606 void *rom; 1607 hwaddr len_unused; 1608 FindRomCBData cbdata = {}; 1609 1610 /* Easy case: there's data at the actual address */ 1611 rom = rom_ptr(addr, size); 1612 if (rom) { 1613 return rom; 1614 } 1615 1616 RCU_READ_LOCK_GUARD(); 1617 1618 fv = address_space_to_flatview(as); 1619 cbdata.mr = flatview_translate(fv, addr, &cbdata.xlat, &len_unused, 1620 false, MEMTXATTRS_UNSPECIFIED); 1621 if (!cbdata.mr) { 1622 /* Nothing at this address, so there can't be any aliasing */ 1623 return NULL; 1624 } 1625 cbdata.size = size; 1626 flatview_for_each_range(fv, find_rom_cb, &cbdata); 1627 return cbdata.rom; 1628 } 1629 1630 HumanReadableText *qmp_x_query_roms(Error **errp) 1631 { 1632 Rom *rom; 1633 g_autoptr(GString) buf = g_string_new(""); 1634 1635 QTAILQ_FOREACH(rom, &roms, next) { 1636 if (rom->mr) { 1637 g_string_append_printf(buf, "%s" 1638 " size=0x%06zx name=\"%s\"\n", 1639 memory_region_name(rom->mr), 1640 rom->romsize, 1641 rom->name); 1642 } else if (!rom->fw_file) { 1643 g_string_append_printf(buf, "addr=" HWADDR_FMT_plx 1644 " size=0x%06zx mem=%s name=\"%s\"\n", 1645 rom->addr, rom->romsize, 1646 rom->isrom ? "rom" : "ram", 1647 rom->name); 1648 } else { 1649 g_string_append_printf(buf, "fw=%s/%s" 1650 " size=0x%06zx name=\"%s\"\n", 1651 rom->fw_dir, 1652 rom->fw_file, 1653 rom->romsize, 1654 rom->name); 1655 } 1656 } 1657 1658 return human_readable_text_from_str(buf); 1659 } 1660 1661 typedef enum HexRecord HexRecord; 1662 enum HexRecord { 1663 DATA_RECORD = 0, 1664 EOF_RECORD, 1665 EXT_SEG_ADDR_RECORD, 1666 START_SEG_ADDR_RECORD, 1667 EXT_LINEAR_ADDR_RECORD, 1668 START_LINEAR_ADDR_RECORD, 1669 }; 1670 1671 /* Each record contains a 16-bit address which is combined with the upper 16 1672 * bits of the implicit "next address" to form a 32-bit address. 1673 */ 1674 #define NEXT_ADDR_MASK 0xffff0000 1675 1676 #define DATA_FIELD_MAX_LEN 0xff 1677 #define LEN_EXCEPT_DATA 0x5 1678 /* 0x5 = sizeof(byte_count) + sizeof(address) + sizeof(record_type) + 1679 * sizeof(checksum) */ 1680 typedef struct { 1681 uint8_t byte_count; 1682 uint16_t address; 1683 uint8_t record_type; 1684 uint8_t data[DATA_FIELD_MAX_LEN]; 1685 uint8_t checksum; 1686 } HexLine; 1687 1688 /* return 0 or -1 if error */ 1689 static bool parse_record(HexLine *line, uint8_t *our_checksum, const uint8_t c, 1690 uint32_t *index, const bool in_process) 1691 { 1692 /* +-------+---------------+-------+---------------------+--------+ 1693 * | byte | |record | | | 1694 * | count | address | type | data |checksum| 1695 * +-------+---------------+-------+---------------------+--------+ 1696 * ^ ^ ^ ^ ^ ^ 1697 * |1 byte | 2 bytes |1 byte | 0-255 bytes | 1 byte | 1698 */ 1699 uint8_t value = 0; 1700 uint32_t idx = *index; 1701 /* ignore space */ 1702 if (g_ascii_isspace(c)) { 1703 return true; 1704 } 1705 if (!g_ascii_isxdigit(c) || !in_process) { 1706 return false; 1707 } 1708 value = g_ascii_xdigit_value(c); 1709 value = (idx & 0x1) ? (value & 0xf) : (value << 4); 1710 if (idx < 2) { 1711 line->byte_count |= value; 1712 } else if (2 <= idx && idx < 6) { 1713 line->address <<= 4; 1714 line->address += g_ascii_xdigit_value(c); 1715 } else if (6 <= idx && idx < 8) { 1716 line->record_type |= value; 1717 } else if (8 <= idx && idx < 8 + 2 * line->byte_count) { 1718 line->data[(idx - 8) >> 1] |= value; 1719 } else if (8 + 2 * line->byte_count <= idx && 1720 idx < 10 + 2 * line->byte_count) { 1721 line->checksum |= value; 1722 } else { 1723 return false; 1724 } 1725 *our_checksum += value; 1726 ++(*index); 1727 return true; 1728 } 1729 1730 typedef struct { 1731 const char *filename; 1732 HexLine line; 1733 uint8_t *bin_buf; 1734 hwaddr *start_addr; 1735 int total_size; 1736 uint32_t next_address_to_write; 1737 uint32_t current_address; 1738 uint32_t current_rom_index; 1739 uint32_t rom_start_address; 1740 AddressSpace *as; 1741 bool complete; 1742 } HexParser; 1743 1744 /* return size or -1 if error */ 1745 static int handle_record_type(HexParser *parser) 1746 { 1747 HexLine *line = &(parser->line); 1748 switch (line->record_type) { 1749 case DATA_RECORD: 1750 parser->current_address = 1751 (parser->next_address_to_write & NEXT_ADDR_MASK) | line->address; 1752 /* verify this is a contiguous block of memory */ 1753 if (parser->current_address != parser->next_address_to_write) { 1754 if (parser->current_rom_index != 0) { 1755 rom_add_blob_fixed_as(parser->filename, parser->bin_buf, 1756 parser->current_rom_index, 1757 parser->rom_start_address, parser->as); 1758 } 1759 parser->rom_start_address = parser->current_address; 1760 parser->current_rom_index = 0; 1761 } 1762 1763 /* copy from line buffer to output bin_buf */ 1764 memcpy(parser->bin_buf + parser->current_rom_index, line->data, 1765 line->byte_count); 1766 parser->current_rom_index += line->byte_count; 1767 parser->total_size += line->byte_count; 1768 /* save next address to write */ 1769 parser->next_address_to_write = 1770 parser->current_address + line->byte_count; 1771 break; 1772 1773 case EOF_RECORD: 1774 if (parser->current_rom_index != 0) { 1775 rom_add_blob_fixed_as(parser->filename, parser->bin_buf, 1776 parser->current_rom_index, 1777 parser->rom_start_address, parser->as); 1778 } 1779 parser->complete = true; 1780 return parser->total_size; 1781 case EXT_SEG_ADDR_RECORD: 1782 case EXT_LINEAR_ADDR_RECORD: 1783 if (line->byte_count != 2 && line->address != 0) { 1784 return -1; 1785 } 1786 1787 if (parser->current_rom_index != 0) { 1788 rom_add_blob_fixed_as(parser->filename, parser->bin_buf, 1789 parser->current_rom_index, 1790 parser->rom_start_address, parser->as); 1791 } 1792 1793 /* save next address to write, 1794 * in case of non-contiguous block of memory */ 1795 parser->next_address_to_write = (line->data[0] << 12) | 1796 (line->data[1] << 4); 1797 if (line->record_type == EXT_LINEAR_ADDR_RECORD) { 1798 parser->next_address_to_write <<= 12; 1799 } 1800 1801 parser->rom_start_address = parser->next_address_to_write; 1802 parser->current_rom_index = 0; 1803 break; 1804 1805 case START_SEG_ADDR_RECORD: 1806 if (line->byte_count != 4 && line->address != 0) { 1807 return -1; 1808 } 1809 1810 /* x86 16-bit CS:IP segmented addressing */ 1811 *(parser->start_addr) = (((line->data[0] << 8) | line->data[1]) << 4) + 1812 ((line->data[2] << 8) | line->data[3]); 1813 break; 1814 1815 case START_LINEAR_ADDR_RECORD: 1816 if (line->byte_count != 4 && line->address != 0) { 1817 return -1; 1818 } 1819 1820 *(parser->start_addr) = ldl_be_p(line->data); 1821 break; 1822 1823 default: 1824 return -1; 1825 } 1826 1827 return parser->total_size; 1828 } 1829 1830 /* return size or -1 if error */ 1831 static int parse_hex_blob(const char *filename, hwaddr *addr, uint8_t *hex_blob, 1832 size_t hex_blob_size, AddressSpace *as) 1833 { 1834 bool in_process = false; /* avoid re-enter and 1835 * check whether record begin with ':' */ 1836 uint8_t *end = hex_blob + hex_blob_size; 1837 uint8_t our_checksum = 0; 1838 uint32_t record_index = 0; 1839 HexParser parser = { 1840 .filename = filename, 1841 .bin_buf = g_malloc(hex_blob_size), 1842 .start_addr = addr, 1843 .as = as, 1844 .complete = false 1845 }; 1846 1847 rom_transaction_begin(); 1848 1849 for (; hex_blob < end && !parser.complete; ++hex_blob) { 1850 switch (*hex_blob) { 1851 case '\r': 1852 case '\n': 1853 if (!in_process) { 1854 break; 1855 } 1856 1857 in_process = false; 1858 if ((LEN_EXCEPT_DATA + parser.line.byte_count) * 2 != 1859 record_index || 1860 our_checksum != 0) { 1861 parser.total_size = -1; 1862 goto out; 1863 } 1864 1865 if (handle_record_type(&parser) == -1) { 1866 parser.total_size = -1; 1867 goto out; 1868 } 1869 break; 1870 1871 /* start of a new record. */ 1872 case ':': 1873 memset(&parser.line, 0, sizeof(HexLine)); 1874 in_process = true; 1875 record_index = 0; 1876 break; 1877 1878 /* decoding lines */ 1879 default: 1880 if (!parse_record(&parser.line, &our_checksum, *hex_blob, 1881 &record_index, in_process)) { 1882 parser.total_size = -1; 1883 goto out; 1884 } 1885 break; 1886 } 1887 } 1888 1889 out: 1890 g_free(parser.bin_buf); 1891 rom_transaction_end(parser.total_size != -1); 1892 return parser.total_size; 1893 } 1894 1895 /* return size or -1 if error */ 1896 ssize_t load_targphys_hex_as(const char *filename, hwaddr *entry, 1897 AddressSpace *as) 1898 { 1899 gsize hex_blob_size; 1900 gchar *hex_blob; 1901 ssize_t total_size = 0; 1902 1903 if (!g_file_get_contents(filename, &hex_blob, &hex_blob_size, NULL)) { 1904 return -1; 1905 } 1906 1907 total_size = parse_hex_blob(filename, entry, (uint8_t *)hex_blob, 1908 hex_blob_size, as); 1909 1910 g_free(hex_blob); 1911 return total_size; 1912 } 1913