xref: /qemu/hw/char/pl011.c (revision 6ff5da16000f908140723e164d33a0b51a6c4162)
1 /*
2  * Arm PrimeCell PL011 UART
3  *
4  * Copyright (c) 2006 CodeSourcery.
5  * Written by Paul Brook
6  *
7  * This code is licensed under the GPL.
8  */
9 
10 /*
11  * QEMU interface:
12  *  + sysbus MMIO region 0: device registers
13  *  + sysbus IRQ 0: UARTINTR (combined interrupt line)
14  *  + sysbus IRQ 1: UARTRXINTR (receive FIFO interrupt line)
15  *  + sysbus IRQ 2: UARTTXINTR (transmit FIFO interrupt line)
16  *  + sysbus IRQ 3: UARTRTINTR (receive timeout interrupt line)
17  *  + sysbus IRQ 4: UARTMSINTR (momem status interrupt line)
18  *  + sysbus IRQ 5: UARTEINTR (error interrupt line)
19  */
20 
21 #include "qemu/osdep.h"
22 #include "qapi/error.h"
23 #include "hw/char/pl011.h"
24 #include "hw/irq.h"
25 #include "hw/sysbus.h"
26 #include "hw/qdev-clock.h"
27 #include "hw/qdev-properties.h"
28 #include "hw/qdev-properties-system.h"
29 #include "migration/vmstate.h"
30 #include "chardev/char-fe.h"
31 #include "chardev/char-serial.h"
32 #include "qemu/log.h"
33 #include "qemu/module.h"
34 #include "trace.h"
35 
36 DeviceState *pl011_create(hwaddr addr, qemu_irq irq, Chardev *chr)
37 {
38     DeviceState *dev;
39     SysBusDevice *s;
40 
41     dev = qdev_new("pl011");
42     s = SYS_BUS_DEVICE(dev);
43     qdev_prop_set_chr(dev, "chardev", chr);
44     sysbus_realize_and_unref(s, &error_fatal);
45     sysbus_mmio_map(s, 0, addr);
46     sysbus_connect_irq(s, 0, irq);
47 
48     return dev;
49 }
50 
51 /* Flag Register, UARTFR */
52 #define PL011_FLAG_RI   0x100
53 #define PL011_FLAG_TXFE 0x80
54 #define PL011_FLAG_RXFF 0x40
55 #define PL011_FLAG_TXFF 0x20
56 #define PL011_FLAG_RXFE 0x10
57 #define PL011_FLAG_DCD  0x04
58 #define PL011_FLAG_DSR  0x02
59 #define PL011_FLAG_CTS  0x01
60 
61 /* Data Register, UARTDR */
62 #define DR_BE   (1 << 10)
63 
64 /* Interrupt status bits in UARTRIS, UARTMIS, UARTIMSC */
65 #define INT_OE (1 << 10)
66 #define INT_BE (1 << 9)
67 #define INT_PE (1 << 8)
68 #define INT_FE (1 << 7)
69 #define INT_RT (1 << 6)
70 #define INT_TX (1 << 5)
71 #define INT_RX (1 << 4)
72 #define INT_DSR (1 << 3)
73 #define INT_DCD (1 << 2)
74 #define INT_CTS (1 << 1)
75 #define INT_RI (1 << 0)
76 #define INT_E (INT_OE | INT_BE | INT_PE | INT_FE)
77 #define INT_MS (INT_RI | INT_DSR | INT_DCD | INT_CTS)
78 
79 /* Line Control Register, UARTLCR_H */
80 #define LCR_FEN     (1 << 4)
81 #define LCR_BRK     (1 << 0)
82 
83 /* Control Register, UARTCR */
84 #define CR_OUT2     (1 << 13)
85 #define CR_OUT1     (1 << 12)
86 #define CR_RTS      (1 << 11)
87 #define CR_DTR      (1 << 10)
88 #define CR_RXE      (1 << 9)
89 #define CR_TXE      (1 << 8)
90 #define CR_LBE      (1 << 7)
91 #define CR_UARTEN   (1 << 0)
92 
93 /* Integer Baud Rate Divider, UARTIBRD */
94 #define IBRD_MASK 0xffff
95 
96 /* Fractional Baud Rate Divider, UARTFBRD */
97 #define FBRD_MASK 0x3f
98 
99 static const unsigned char pl011_id_arm[8] =
100   { 0x11, 0x10, 0x14, 0x00, 0x0d, 0xf0, 0x05, 0xb1 };
101 static const unsigned char pl011_id_luminary[8] =
102   { 0x11, 0x00, 0x18, 0x01, 0x0d, 0xf0, 0x05, 0xb1 };
103 
104 static const char *pl011_regname(hwaddr offset)
105 {
106     static const char *const rname[] = {
107         [0] = "DR", [1] = "RSR", [6] = "FR", [8] = "ILPR", [9] = "IBRD",
108         [10] = "FBRD", [11] = "LCRH", [12] = "CR", [13] = "IFLS", [14] = "IMSC",
109         [15] = "RIS", [16] = "MIS", [17] = "ICR", [18] = "DMACR",
110     };
111     unsigned idx = offset >> 2;
112 
113     if (idx < ARRAY_SIZE(rname) && rname[idx]) {
114         return rname[idx];
115     }
116     if (idx >= 0x3f8 && idx <= 0x400) {
117         return "ID";
118     }
119     return "UNKN";
120 }
121 
122 /* Which bits in the interrupt status matter for each outbound IRQ line ? */
123 static const uint32_t irqmask[] = {
124     INT_E | INT_MS | INT_RT | INT_TX | INT_RX, /* combined IRQ */
125     INT_RX,
126     INT_TX,
127     INT_RT,
128     INT_MS,
129     INT_E,
130 };
131 
132 static void pl011_update(PL011State *s)
133 {
134     uint32_t flags;
135     int i;
136 
137     flags = s->int_level & s->int_enabled;
138     trace_pl011_irq_state(flags != 0);
139     for (i = 0; i < ARRAY_SIZE(s->irq); i++) {
140         qemu_set_irq(s->irq[i], (flags & irqmask[i]) != 0);
141     }
142 }
143 
144 static bool pl011_loopback_enabled(PL011State *s)
145 {
146     return !!(s->cr & CR_LBE);
147 }
148 
149 static bool pl011_is_fifo_enabled(PL011State *s)
150 {
151     return (s->lcr & LCR_FEN) != 0;
152 }
153 
154 static inline unsigned pl011_get_fifo_depth(PL011State *s)
155 {
156     /* Note: FIFO depth is expected to be power-of-2 */
157     return pl011_is_fifo_enabled(s) ? PL011_FIFO_DEPTH : 1;
158 }
159 
160 static inline void pl011_reset_rx_fifo(PL011State *s)
161 {
162     s->read_count = 0;
163     s->read_pos = 0;
164 
165     /* Reset FIFO flags */
166     s->flags &= ~PL011_FLAG_RXFF;
167     s->flags |= PL011_FLAG_RXFE;
168 }
169 
170 static inline void pl011_reset_tx_fifo(PL011State *s)
171 {
172     /* Reset FIFO flags */
173     s->flags &= ~PL011_FLAG_TXFF;
174     s->flags |= PL011_FLAG_TXFE;
175 }
176 
177 static void pl011_fifo_rx_put(void *opaque, uint32_t value)
178 {
179     PL011State *s = (PL011State *)opaque;
180     int slot;
181     unsigned pipe_depth;
182 
183     pipe_depth = pl011_get_fifo_depth(s);
184     slot = (s->read_pos + s->read_count) & (pipe_depth - 1);
185     s->read_fifo[slot] = value;
186     s->read_count++;
187     s->flags &= ~PL011_FLAG_RXFE;
188     trace_pl011_fifo_rx_put(value, s->read_count, pipe_depth);
189     if (s->read_count == pipe_depth) {
190         trace_pl011_fifo_rx_full();
191         s->flags |= PL011_FLAG_RXFF;
192     }
193     if (s->read_count == s->read_trigger) {
194         s->int_level |= INT_RX;
195         pl011_update(s);
196     }
197 }
198 
199 static void pl011_loopback_tx(PL011State *s, uint32_t value)
200 {
201     if (!pl011_loopback_enabled(s)) {
202         return;
203     }
204 
205     /*
206      * Caveat:
207      *
208      * In real hardware, TX loopback happens at the serial-bit level
209      * and then reassembled by the RX logics back into bytes and placed
210      * into the RX fifo. That is, loopback happens after TX fifo.
211      *
212      * Because the real hardware TX fifo is time-drained at the frame
213      * rate governed by the configured serial format, some loopback
214      * bytes in TX fifo may still be able to get into the RX fifo
215      * that could be full at times while being drained at software
216      * pace.
217      *
218      * In such scenario, the RX draining pace is the major factor
219      * deciding which loopback bytes get into the RX fifo, unless
220      * hardware flow-control is enabled.
221      *
222      * For simplicity, the above described is not emulated.
223      */
224     pl011_fifo_rx_put(s, value);
225 }
226 
227 static void pl011_write_txdata(PL011State *s, uint8_t data)
228 {
229     if (!(s->cr & CR_UARTEN)) {
230         qemu_log_mask(LOG_GUEST_ERROR,
231                       "PL011 data written to disabled UART\n");
232     }
233     if (!(s->cr & CR_TXE)) {
234         qemu_log_mask(LOG_GUEST_ERROR,
235                       "PL011 data written to disabled TX UART\n");
236     }
237 
238     /*
239      * XXX this blocks entire thread. Rewrite to use
240      * qemu_chr_fe_write and background I/O callbacks
241      */
242     qemu_chr_fe_write_all(&s->chr, &data, 1);
243     pl011_loopback_tx(s, data);
244     s->int_level |= INT_TX;
245     pl011_update(s);
246 }
247 
248 static uint32_t pl011_read_rxdata(PL011State *s)
249 {
250     uint32_t c;
251     unsigned fifo_depth = pl011_get_fifo_depth(s);
252 
253     s->flags &= ~PL011_FLAG_RXFF;
254     c = s->read_fifo[s->read_pos];
255     if (s->read_count > 0) {
256         s->read_count--;
257         s->read_pos = (s->read_pos + 1) & (fifo_depth - 1);
258     }
259     if (s->read_count == 0) {
260         s->flags |= PL011_FLAG_RXFE;
261     }
262     if (s->read_count == s->read_trigger - 1) {
263         s->int_level &= ~INT_RX;
264     }
265     trace_pl011_read_fifo(s->read_count, fifo_depth);
266     s->rsr = c >> 8;
267     pl011_update(s);
268     qemu_chr_fe_accept_input(&s->chr);
269     return c;
270 }
271 
272 static uint64_t pl011_read(void *opaque, hwaddr offset,
273                            unsigned size)
274 {
275     PL011State *s = (PL011State *)opaque;
276     uint64_t r;
277 
278     switch (offset >> 2) {
279     case 0: /* UARTDR */
280         r = pl011_read_rxdata(s);
281         break;
282     case 1: /* UARTRSR */
283         r = s->rsr;
284         break;
285     case 6: /* UARTFR */
286         r = s->flags;
287         break;
288     case 8: /* UARTILPR */
289         r = s->ilpr;
290         break;
291     case 9: /* UARTIBRD */
292         r = s->ibrd;
293         break;
294     case 10: /* UARTFBRD */
295         r = s->fbrd;
296         break;
297     case 11: /* UARTLCR_H */
298         r = s->lcr;
299         break;
300     case 12: /* UARTCR */
301         r = s->cr;
302         break;
303     case 13: /* UARTIFLS */
304         r = s->ifl;
305         break;
306     case 14: /* UARTIMSC */
307         r = s->int_enabled;
308         break;
309     case 15: /* UARTRIS */
310         r = s->int_level;
311         break;
312     case 16: /* UARTMIS */
313         r = s->int_level & s->int_enabled;
314         break;
315     case 18: /* UARTDMACR */
316         r = s->dmacr;
317         break;
318     case 0x3f8 ... 0x400:
319         r = s->id[(offset - 0xfe0) >> 2];
320         break;
321     default:
322         qemu_log_mask(LOG_GUEST_ERROR,
323                       "pl011_read: Bad offset 0x%x\n", (int)offset);
324         r = 0;
325         break;
326     }
327 
328     trace_pl011_read(offset, r, pl011_regname(offset));
329     return r;
330 }
331 
332 static void pl011_set_read_trigger(PL011State *s)
333 {
334 #if 0
335     /* The docs say the RX interrupt is triggered when the FIFO exceeds
336        the threshold.  However linux only reads the FIFO in response to an
337        interrupt.  Triggering the interrupt when the FIFO is non-empty seems
338        to make things work.  */
339     if (s->lcr & LCR_FEN)
340         s->read_trigger = (s->ifl >> 1) & 0x1c;
341     else
342 #endif
343         s->read_trigger = 1;
344 }
345 
346 static unsigned int pl011_get_baudrate(const PL011State *s)
347 {
348     uint64_t clk;
349 
350     if (s->ibrd == 0) {
351         return 0;
352     }
353 
354     clk = clock_get_hz(s->clk);
355     return (clk / ((s->ibrd << 6) + s->fbrd)) << 2;
356 }
357 
358 static void pl011_trace_baudrate_change(const PL011State *s)
359 {
360     trace_pl011_baudrate_change(pl011_get_baudrate(s),
361                                 clock_get_hz(s->clk),
362                                 s->ibrd, s->fbrd);
363 }
364 
365 static void pl011_loopback_mdmctrl(PL011State *s)
366 {
367     uint32_t cr, fr, il;
368 
369     if (!pl011_loopback_enabled(s)) {
370         return;
371     }
372 
373     /*
374      * Loopback software-driven modem control outputs to modem status inputs:
375      *   FR.RI  <= CR.Out2
376      *   FR.DCD <= CR.Out1
377      *   FR.CTS <= CR.RTS
378      *   FR.DSR <= CR.DTR
379      *
380      * The loopback happens immediately even if this call is triggered
381      * by setting only CR.LBE.
382      *
383      * CTS/RTS updates due to enabled hardware flow controls are not
384      * dealt with here.
385      */
386     cr = s->cr;
387     fr = s->flags & ~(PL011_FLAG_RI | PL011_FLAG_DCD |
388                       PL011_FLAG_DSR | PL011_FLAG_CTS);
389     fr |= (cr & CR_OUT2) ? PL011_FLAG_RI  : 0;
390     fr |= (cr & CR_OUT1) ? PL011_FLAG_DCD : 0;
391     fr |= (cr & CR_RTS)  ? PL011_FLAG_CTS : 0;
392     fr |= (cr & CR_DTR)  ? PL011_FLAG_DSR : 0;
393 
394     /* Change interrupts based on updated FR */
395     il = s->int_level & ~(INT_DSR | INT_DCD | INT_CTS | INT_RI);
396     il |= (fr & PL011_FLAG_DSR) ? INT_DSR : 0;
397     il |= (fr & PL011_FLAG_DCD) ? INT_DCD : 0;
398     il |= (fr & PL011_FLAG_CTS) ? INT_CTS : 0;
399     il |= (fr & PL011_FLAG_RI)  ? INT_RI  : 0;
400 
401     s->flags = fr;
402     s->int_level = il;
403     pl011_update(s);
404 }
405 
406 static void pl011_loopback_break(PL011State *s, int brk_enable)
407 {
408     if (brk_enable) {
409         pl011_loopback_tx(s, DR_BE);
410     }
411 }
412 
413 static void pl011_write(void *opaque, hwaddr offset,
414                         uint64_t value, unsigned size)
415 {
416     PL011State *s = (PL011State *)opaque;
417     unsigned char ch;
418 
419     trace_pl011_write(offset, value, pl011_regname(offset));
420 
421     switch (offset >> 2) {
422     case 0: /* UARTDR */
423         ch = value;
424         pl011_write_txdata(s, ch);
425         break;
426     case 1: /* UARTRSR/UARTECR */
427         s->rsr = 0;
428         break;
429     case 6: /* UARTFR */
430         /* Writes to Flag register are ignored.  */
431         break;
432     case 8: /* UARTILPR */
433         s->ilpr = value;
434         break;
435     case 9: /* UARTIBRD */
436         s->ibrd = value & IBRD_MASK;
437         pl011_trace_baudrate_change(s);
438         break;
439     case 10: /* UARTFBRD */
440         s->fbrd = value & FBRD_MASK;
441         pl011_trace_baudrate_change(s);
442         break;
443     case 11: /* UARTLCR_H */
444         /* Reset the FIFO state on FIFO enable or disable */
445         if ((s->lcr ^ value) & LCR_FEN) {
446             pl011_reset_rx_fifo(s);
447             pl011_reset_tx_fifo(s);
448         }
449         if ((s->lcr ^ value) & LCR_BRK) {
450             int break_enable = value & LCR_BRK;
451             qemu_chr_fe_ioctl(&s->chr, CHR_IOCTL_SERIAL_SET_BREAK,
452                               &break_enable);
453             pl011_loopback_break(s, break_enable);
454         }
455         s->lcr = value;
456         pl011_set_read_trigger(s);
457         break;
458     case 12: /* UARTCR */
459         /* ??? Need to implement the enable bit.  */
460         s->cr = value;
461         pl011_loopback_mdmctrl(s);
462         break;
463     case 13: /* UARTIFS */
464         s->ifl = value;
465         pl011_set_read_trigger(s);
466         break;
467     case 14: /* UARTIMSC */
468         s->int_enabled = value;
469         pl011_update(s);
470         break;
471     case 17: /* UARTICR */
472         s->int_level &= ~value;
473         pl011_update(s);
474         break;
475     case 18: /* UARTDMACR */
476         s->dmacr = value;
477         if (value & 3) {
478             qemu_log_mask(LOG_UNIMP, "pl011: DMA not implemented\n");
479         }
480         break;
481     default:
482         qemu_log_mask(LOG_GUEST_ERROR,
483                       "pl011_write: Bad offset 0x%x\n", (int)offset);
484     }
485 }
486 
487 static int pl011_can_receive(void *opaque)
488 {
489     PL011State *s = (PL011State *)opaque;
490     unsigned fifo_depth = pl011_get_fifo_depth(s);
491     unsigned fifo_available = fifo_depth - s->read_count;
492 
493     if (!(s->cr & CR_UARTEN)) {
494         qemu_log_mask(LOG_GUEST_ERROR,
495                       "PL011 receiving data on disabled UART\n");
496     }
497     if (!(s->cr & CR_RXE)) {
498         qemu_log_mask(LOG_GUEST_ERROR,
499                       "PL011 receiving data on disabled RX UART\n");
500     }
501     trace_pl011_can_receive(s->lcr, s->read_count, fifo_depth, fifo_available);
502 
503     return fifo_available;
504 }
505 
506 static void pl011_receive(void *opaque, const uint8_t *buf, int size)
507 {
508     trace_pl011_receive(size);
509     /*
510      * In loopback mode, the RX input signal is internally disconnected
511      * from the entire receiving logics; thus, all inputs are ignored,
512      * and BREAK detection on RX input signal is also not performed.
513      */
514     if (pl011_loopback_enabled(opaque)) {
515         return;
516     }
517 
518     for (int i = 0; i < size; i++) {
519         pl011_fifo_rx_put(opaque, buf[i]);
520     }
521 }
522 
523 static void pl011_event(void *opaque, QEMUChrEvent event)
524 {
525     if (event == CHR_EVENT_BREAK && !pl011_loopback_enabled(opaque)) {
526         pl011_fifo_rx_put(opaque, DR_BE);
527     }
528 }
529 
530 static void pl011_clock_update(void *opaque, ClockEvent event)
531 {
532     PL011State *s = PL011(opaque);
533 
534     pl011_trace_baudrate_change(s);
535 }
536 
537 static const MemoryRegionOps pl011_ops = {
538     .read = pl011_read,
539     .write = pl011_write,
540     .endianness = DEVICE_NATIVE_ENDIAN,
541     .impl.min_access_size = 4,
542     .impl.max_access_size = 4,
543 };
544 
545 static bool pl011_clock_needed(void *opaque)
546 {
547     PL011State *s = PL011(opaque);
548 
549     return s->migrate_clk;
550 }
551 
552 static const VMStateDescription vmstate_pl011_clock = {
553     .name = "pl011/clock",
554     .version_id = 1,
555     .minimum_version_id = 1,
556     .needed = pl011_clock_needed,
557     .fields = (const VMStateField[]) {
558         VMSTATE_CLOCK(clk, PL011State),
559         VMSTATE_END_OF_LIST()
560     }
561 };
562 
563 static int pl011_post_load(void *opaque, int version_id)
564 {
565     PL011State* s = opaque;
566 
567     /* Sanity-check input state */
568     if (s->read_pos >= ARRAY_SIZE(s->read_fifo) ||
569         s->read_count > ARRAY_SIZE(s->read_fifo)) {
570         return -1;
571     }
572 
573     if (!pl011_is_fifo_enabled(s) && s->read_count > 0 && s->read_pos > 0) {
574         /*
575          * Older versions of PL011 didn't ensure that the single
576          * character in the FIFO in FIFO-disabled mode is in
577          * element 0 of the array; convert to follow the current
578          * code's assumptions.
579          */
580         s->read_fifo[0] = s->read_fifo[s->read_pos];
581         s->read_pos = 0;
582     }
583 
584     s->ibrd &= IBRD_MASK;
585     s->fbrd &= FBRD_MASK;
586 
587     return 0;
588 }
589 
590 static const VMStateDescription vmstate_pl011 = {
591     .name = "pl011",
592     .version_id = 2,
593     .minimum_version_id = 2,
594     .post_load = pl011_post_load,
595     .fields = (const VMStateField[]) {
596         VMSTATE_UNUSED(sizeof(uint32_t)),
597         VMSTATE_UINT32(flags, PL011State),
598         VMSTATE_UINT32(lcr, PL011State),
599         VMSTATE_UINT32(rsr, PL011State),
600         VMSTATE_UINT32(cr, PL011State),
601         VMSTATE_UINT32(dmacr, PL011State),
602         VMSTATE_UINT32(int_enabled, PL011State),
603         VMSTATE_UINT32(int_level, PL011State),
604         VMSTATE_UINT32_ARRAY(read_fifo, PL011State, PL011_FIFO_DEPTH),
605         VMSTATE_UINT32(ilpr, PL011State),
606         VMSTATE_UINT32(ibrd, PL011State),
607         VMSTATE_UINT32(fbrd, PL011State),
608         VMSTATE_UINT32(ifl, PL011State),
609         VMSTATE_INT32(read_pos, PL011State),
610         VMSTATE_INT32(read_count, PL011State),
611         VMSTATE_INT32(read_trigger, PL011State),
612         VMSTATE_END_OF_LIST()
613     },
614     .subsections = (const VMStateDescription * const []) {
615         &vmstate_pl011_clock,
616         NULL
617     }
618 };
619 
620 static const Property pl011_properties[] = {
621     DEFINE_PROP_CHR("chardev", PL011State, chr),
622     DEFINE_PROP_BOOL("migrate-clk", PL011State, migrate_clk, true),
623 };
624 
625 static void pl011_init(Object *obj)
626 {
627     SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
628     PL011State *s = PL011(obj);
629     int i;
630 
631     memory_region_init_io(&s->iomem, OBJECT(s), &pl011_ops, s, "pl011", 0x1000);
632     sysbus_init_mmio(sbd, &s->iomem);
633     for (i = 0; i < ARRAY_SIZE(s->irq); i++) {
634         sysbus_init_irq(sbd, &s->irq[i]);
635     }
636 
637     s->clk = qdev_init_clock_in(DEVICE(obj), "clk", pl011_clock_update, s,
638                                 ClockUpdate);
639 
640     s->id = pl011_id_arm;
641 }
642 
643 static void pl011_realize(DeviceState *dev, Error **errp)
644 {
645     PL011State *s = PL011(dev);
646 
647     qemu_chr_fe_set_handlers(&s->chr, pl011_can_receive, pl011_receive,
648                              pl011_event, NULL, s, NULL, true);
649 }
650 
651 static void pl011_reset(DeviceState *dev)
652 {
653     PL011State *s = PL011(dev);
654 
655     s->lcr = 0;
656     s->rsr = 0;
657     s->dmacr = 0;
658     s->int_enabled = 0;
659     s->int_level = 0;
660     s->ilpr = 0;
661     s->ibrd = 0;
662     s->fbrd = 0;
663     s->read_trigger = 1;
664     s->ifl = 0x12;
665     s->cr = 0x300;
666     s->flags = 0;
667     pl011_reset_rx_fifo(s);
668     pl011_reset_tx_fifo(s);
669 }
670 
671 static void pl011_class_init(ObjectClass *oc, void *data)
672 {
673     DeviceClass *dc = DEVICE_CLASS(oc);
674 
675     dc->realize = pl011_realize;
676     device_class_set_legacy_reset(dc, pl011_reset);
677     dc->vmsd = &vmstate_pl011;
678     device_class_set_props(dc, pl011_properties);
679 }
680 
681 static const TypeInfo pl011_arm_info = {
682     .name          = TYPE_PL011,
683     .parent        = TYPE_SYS_BUS_DEVICE,
684     .instance_size = sizeof(PL011State),
685     .instance_init = pl011_init,
686     .class_init    = pl011_class_init,
687 };
688 
689 static void pl011_luminary_init(Object *obj)
690 {
691     PL011State *s = PL011(obj);
692 
693     s->id = pl011_id_luminary;
694 }
695 
696 static const TypeInfo pl011_luminary_info = {
697     .name          = TYPE_PL011_LUMINARY,
698     .parent        = TYPE_PL011,
699     .instance_init = pl011_luminary_init,
700 };
701 
702 static void pl011_register_types(void)
703 {
704     type_register_static(&pl011_arm_info);
705     type_register_static(&pl011_luminary_info);
706 }
707 
708 type_init(pl011_register_types)
709