xref: /qemu/hw/char/escc.c (revision 67b9a83daf384f3dc24e83f22da40e34da49021d)
1  /*
2   * QEMU ESCC (Z8030/Z8530/Z85C30/SCC/ESCC) serial port emulation
3   *
4   * Copyright (c) 2003-2005 Fabrice Bellard
5   *
6   * Permission is hereby granted, free of charge, to any person obtaining a copy
7   * of this software and associated documentation files (the "Software"), to deal
8   * in the Software without restriction, including without limitation the rights
9   * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10   * copies of the Software, and to permit persons to whom the Software is
11   * furnished to do so, subject to the following conditions:
12   *
13   * The above copyright notice and this permission notice shall be included in
14   * all copies or substantial portions of the Software.
15   *
16   * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17   * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18   * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19   * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20   * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21   * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22   * THE SOFTWARE.
23   */
24  
25  #include "qemu/osdep.h"
26  #include "hw/irq.h"
27  #include "hw/qdev-properties.h"
28  #include "hw/qdev-properties-system.h"
29  #include "hw/sysbus.h"
30  #include "migration/vmstate.h"
31  #include "qemu/module.h"
32  #include "hw/char/escc.h"
33  #include "ui/console.h"
34  
35  #include "qemu/cutils.h"
36  #include "trace.h"
37  
38  /*
39   * Chipset docs:
40   * "Z80C30/Z85C30/Z80230/Z85230/Z85233 SCC/ESCC User Manual",
41   * http://www.zilog.com/docs/serial/scc_escc_um.pdf
42   *
43   * On Sparc32 this is the serial port, mouse and keyboard part of chip STP2001
44   * (Slave I/O), also produced as NCR89C105. See
45   * http://www.ibiblio.org/pub/historic-linux/early-ports/Sparc/NCR/NCR89C105.txt
46   *
47   * The serial ports implement full AMD AM8530 or Zilog Z8530 chips,
48   * mouse and keyboard ports don't implement all functions and they are
49   * only asynchronous. There is no DMA.
50   *
51   * Z85C30 is also used on PowerMacs and m68k Macs.
52   *
53   * There are some small differences between Sparc version (sunzilog)
54   * and PowerMac (pmac):
55   *  Offset between control and data registers
56   *  There is some kind of lockup bug, but we can ignore it
57   *  CTS is inverted
58   *  DMA on pmac using DBDMA chip
59   *  pmac can do IRDA and faster rates, sunzilog can only do 38400
60   *  pmac baud rate generator clock is 3.6864 MHz, sunzilog 4.9152 MHz
61   *
62   * Linux driver for m68k Macs is the same as for PowerMac (pmac_zilog),
63   * but registers are grouped by type and not by channel:
64   * channel is selected by bit 0 of the address (instead of bit 1)
65   * and register is selected by bit 1 of the address (instead of bit 0).
66   */
67  
68  /*
69   * Modifications:
70   *  2006-Aug-10  Igor Kovalenko :   Renamed KBDQueue to SERIOQueue, implemented
71   *                                  serial mouse queue.
72   *                                  Implemented serial mouse protocol.
73   *
74   *  2010-May-23  Artyom Tarasenko:  Reworked IUS logic
75   */
76  
77  #define CHN_C(s) ((s)->chn == escc_chn_b ? 'b' : 'a')
78  
79  #define SERIAL_CTRL 0
80  #define SERIAL_DATA 1
81  
82  #define W_CMD     0
83  #define CMD_PTR_MASK   0x07
84  #define CMD_CMD_MASK   0x38
85  #define CMD_HI         0x08
86  #define CMD_CLR_TXINT  0x28
87  #define CMD_CLR_IUS    0x38
88  #define W_INTR    1
89  #define INTR_INTALL    0x01
90  #define INTR_TXINT     0x02
91  #define INTR_PAR_SPEC  0x04
92  #define INTR_RXMODEMSK 0x18
93  #define INTR_RXINT1ST  0x08
94  #define INTR_RXINTALL  0x10
95  #define INTR_WTRQ_TXRX 0x20
96  #define W_IVEC    2
97  #define W_RXCTRL  3
98  #define RXCTRL_RXEN    0x01
99  #define RXCTRL_HUNT    0x10
100  #define W_TXCTRL1 4
101  #define TXCTRL1_PAREN  0x01
102  #define TXCTRL1_PAREV  0x02
103  #define TXCTRL1_1STOP  0x04
104  #define TXCTRL1_1HSTOP 0x08
105  #define TXCTRL1_2STOP  0x0c
106  #define TXCTRL1_STPMSK 0x0c
107  #define TXCTRL1_CLK1X  0x00
108  #define TXCTRL1_CLK16X 0x40
109  #define TXCTRL1_CLK32X 0x80
110  #define TXCTRL1_CLK64X 0xc0
111  #define TXCTRL1_CLKMSK 0xc0
112  #define W_TXCTRL2 5
113  #define TXCTRL2_TXCRC  0x01
114  #define TXCTRL2_TXEN   0x08
115  #define TXCTRL2_BITMSK 0x60
116  #define TXCTRL2_5BITS  0x00
117  #define TXCTRL2_7BITS  0x20
118  #define TXCTRL2_6BITS  0x40
119  #define TXCTRL2_8BITS  0x60
120  #define W_SYNC1   6
121  #define W_SYNC2   7
122  #define W_TXBUF   8
123  #define W_MINTR   9
124  #define MINTR_VIS      0x01
125  #define MINTR_NV       0x02
126  #define MINTR_STATUSHI 0x10
127  #define MINTR_SOFTIACK 0x20
128  #define MINTR_RST_MASK 0xc0
129  #define MINTR_RST_B    0x40
130  #define MINTR_RST_A    0x80
131  #define MINTR_RST_ALL  0xc0
132  #define W_MISC1  10
133  #define MISC1_ENC_MASK 0x60
134  #define W_CLOCK  11
135  #define CLOCK_TRXC     0x08
136  #define W_BRGLO  12
137  #define W_BRGHI  13
138  #define W_MISC2  14
139  #define MISC2_BRG_EN   0x01
140  #define MISC2_BRG_SRC  0x02
141  #define MISC2_LCL_LOOP 0x10
142  #define MISC2_PLLCMD0  0x20
143  #define MISC2_PLLCMD1  0x40
144  #define MISC2_PLLCMD2  0x80
145  #define W_EXTINT 15
146  #define EXTINT_DCD     0x08
147  #define EXTINT_SYNCINT 0x10
148  #define EXTINT_CTSINT  0x20
149  #define EXTINT_TXUNDRN 0x40
150  #define EXTINT_BRKINT  0x80
151  
152  #define R_STATUS  0
153  #define STATUS_RXAV    0x01
154  #define STATUS_ZERO    0x02
155  #define STATUS_TXEMPTY 0x04
156  #define STATUS_DCD     0x08
157  #define STATUS_SYNC    0x10
158  #define STATUS_CTS     0x20
159  #define STATUS_TXUNDRN 0x40
160  #define STATUS_BRK     0x80
161  #define R_SPEC    1
162  #define SPEC_ALLSENT   0x01
163  #define SPEC_BITS8     0x06
164  #define R_IVEC    2
165  #define IVEC_TXINTB    0x00
166  #define IVEC_LONOINT   0x06
167  #define IVEC_LORXINTA  0x0c
168  #define IVEC_LORXINTB  0x04
169  #define IVEC_LOTXINTA  0x08
170  #define IVEC_HINOINT   0x60
171  #define IVEC_HIRXINTA  0x30
172  #define IVEC_HIRXINTB  0x20
173  #define IVEC_HITXINTA  0x10
174  #define R_INTR    3
175  #define INTR_EXTINTB   0x01
176  #define INTR_TXINTB    0x02
177  #define INTR_RXINTB    0x04
178  #define INTR_EXTINTA   0x08
179  #define INTR_TXINTA    0x10
180  #define INTR_RXINTA    0x20
181  #define R_IPEN    4
182  #define R_TXCTRL1 5
183  #define R_TXCTRL2 6
184  #define R_BC      7
185  #define R_RXBUF   8
186  #define R_RXCTRL  9
187  #define R_MISC   10
188  #define MISC_2CLKMISS  0x40
189  #define R_MISC1  11
190  #define R_BRGLO  12
191  #define R_BRGHI  13
192  #define R_MISC1I 14
193  #define R_EXTINT 15
194  
195  static uint8_t sunkbd_layout_dip_switch(const char *sunkbd_layout);
196  static void handle_kbd_command(ESCCChannelState *s, int val);
197  static int serial_can_receive(void *opaque);
198  static void serial_receive_byte(ESCCChannelState *s, int ch);
199  
200  static int reg_shift(ESCCState *s)
201  {
202      return s->bit_swap ? s->it_shift + 1 : s->it_shift;
203  }
204  
205  static int chn_shift(ESCCState *s)
206  {
207      return s->bit_swap ? s->it_shift : s->it_shift + 1;
208  }
209  
210  static void clear_queue(void *opaque)
211  {
212      ESCCChannelState *s = opaque;
213      ESCCSERIOQueue *q = &s->queue;
214      q->rptr = q->wptr = q->count = 0;
215  }
216  
217  static void put_queue(void *opaque, int b)
218  {
219      ESCCChannelState *s = opaque;
220      ESCCSERIOQueue *q = &s->queue;
221  
222      trace_escc_put_queue(CHN_C(s), b);
223      if (q->count >= ESCC_SERIO_QUEUE_SIZE) {
224          return;
225      }
226      q->data[q->wptr] = b;
227      if (++q->wptr == ESCC_SERIO_QUEUE_SIZE) {
228          q->wptr = 0;
229      }
230      q->count++;
231      serial_receive_byte(s, 0);
232  }
233  
234  static uint32_t get_queue(void *opaque)
235  {
236      ESCCChannelState *s = opaque;
237      ESCCSERIOQueue *q = &s->queue;
238      int val;
239  
240      if (q->count == 0) {
241          return 0;
242      } else {
243          val = q->data[q->rptr];
244          if (++q->rptr == ESCC_SERIO_QUEUE_SIZE) {
245              q->rptr = 0;
246          }
247          q->count--;
248      }
249      trace_escc_get_queue(CHN_C(s), val);
250      if (q->count > 0) {
251          serial_receive_byte(s, 0);
252      }
253      return val;
254  }
255  
256  static int escc_update_irq_chn(ESCCChannelState *s)
257  {
258      if ((((s->wregs[W_INTR] & INTR_TXINT) && (s->txint == 1)) ||
259          /* tx ints enabled, pending */
260          ((((s->wregs[W_INTR] & INTR_RXMODEMSK) == INTR_RXINT1ST) ||
261          ((s->wregs[W_INTR] & INTR_RXMODEMSK) == INTR_RXINTALL)) &&
262              s->rxint == 1) ||
263          /* rx ints enabled, pending */
264          ((s->wregs[W_EXTINT] & EXTINT_BRKINT) &&
265              (s->rregs[R_STATUS] & STATUS_BRK)))) {
266          /* break int e&p */
267          return 1;
268      }
269      return 0;
270  }
271  
272  static void escc_update_irq(ESCCChannelState *s)
273  {
274      int irq;
275  
276      irq = escc_update_irq_chn(s);
277      irq |= escc_update_irq_chn(s->otherchn);
278  
279      trace_escc_update_irq(irq);
280      qemu_set_irq(s->irq, irq);
281  }
282  
283  static void escc_reset_chn(ESCCChannelState *s)
284  {
285      s->reg = 0;
286      s->rx = s->tx = 0;
287      s->rxint = s->txint = 0;
288      s->rxint_under_svc = s->txint_under_svc = 0;
289      s->e0_mode = s->led_mode = s->caps_lock_mode = s->num_lock_mode = 0;
290      clear_queue(s);
291  }
292  
293  static void escc_soft_reset_chn(ESCCChannelState *s)
294  {
295      escc_reset_chn(s);
296  
297      s->wregs[W_CMD] = 0;
298      s->wregs[W_INTR] &= INTR_PAR_SPEC | INTR_WTRQ_TXRX;
299      s->wregs[W_RXCTRL] &= ~RXCTRL_RXEN;
300      /* 1 stop bit */
301      s->wregs[W_TXCTRL1] |= TXCTRL1_1STOP;
302      s->wregs[W_TXCTRL2] &= TXCTRL2_TXCRC | TXCTRL2_8BITS;
303      s->wregs[W_MINTR] &= ~MINTR_SOFTIACK;
304      s->wregs[W_MISC1] &= MISC1_ENC_MASK;
305      /* PLL disabled */
306      s->wregs[W_MISC2] &= MISC2_BRG_EN | MISC2_BRG_SRC |
307                           MISC2_PLLCMD1 | MISC2_PLLCMD2;
308      s->wregs[W_MISC2] |= MISC2_PLLCMD0;
309      /* Enable most interrupts */
310      s->wregs[W_EXTINT] = EXTINT_DCD | EXTINT_SYNCINT | EXTINT_CTSINT |
311                           EXTINT_TXUNDRN | EXTINT_BRKINT;
312  
313      s->rregs[R_STATUS] &= STATUS_DCD | STATUS_SYNC | STATUS_CTS | STATUS_BRK;
314      s->rregs[R_STATUS] |= STATUS_TXEMPTY | STATUS_TXUNDRN;
315      if (s->disabled) {
316          s->rregs[R_STATUS] |= STATUS_DCD | STATUS_SYNC | STATUS_CTS;
317      }
318      s->rregs[R_SPEC] &= SPEC_ALLSENT;
319      s->rregs[R_SPEC] |= SPEC_BITS8;
320      s->rregs[R_INTR] = 0;
321      s->rregs[R_MISC] &= MISC_2CLKMISS;
322  }
323  
324  static void escc_hard_reset_chn(ESCCChannelState *s)
325  {
326      escc_soft_reset_chn(s);
327  
328      /*
329       * Hard reset is almost identical to soft reset above, except that the
330       * values of WR9 (W_MINTR), WR10 (W_MISC1), WR11 (W_CLOCK) and WR14
331       * (W_MISC2) have extra bits forced to 0/1
332       */
333      s->wregs[W_MINTR] &= MINTR_VIS | MINTR_NV;
334      s->wregs[W_MINTR] |= MINTR_RST_B | MINTR_RST_A;
335      s->wregs[W_MISC1] = 0;
336      s->wregs[W_CLOCK] = CLOCK_TRXC;
337      s->wregs[W_MISC2] &= MISC2_PLLCMD1 | MISC2_PLLCMD2;
338      s->wregs[W_MISC2] |= MISC2_LCL_LOOP | MISC2_PLLCMD0;
339  }
340  
341  static void escc_reset(DeviceState *d)
342  {
343      ESCCState *s = ESCC(d);
344      int i, j;
345  
346      for (i = 0; i < 2; i++) {
347          ESCCChannelState *cs = &s->chn[i];
348  
349          /*
350           * According to the ESCC datasheet "Miscellaneous Questions" section
351           * on page 384, the values of the ESCC registers are not guaranteed on
352           * power-on until an explicit hardware or software reset has been
353           * issued. For now we zero the registers so that a device reset always
354           * returns the emulated device to a fixed state.
355           */
356          for (j = 0; j < ESCC_SERIAL_REGS; j++) {
357              cs->rregs[j] = 0;
358              cs->wregs[j] = 0;
359          }
360  
361          /*
362           * ...but there is an exception. The "Transmit Interrupts and Transmit
363           * Buffer Empty Bit" section on page 50 of the ESCC datasheet says of
364           * the STATUS_TXEMPTY bit in R_STATUS: "After a hardware reset
365           * (including a hardware reset by software), or a channel reset, this
366           * bit is set to 1". The Sun PROM checks this bit early on startup and
367           * gets stuck in an infinite loop if it is not set.
368           */
369          cs->rregs[R_STATUS] |= STATUS_TXEMPTY;
370  
371          escc_reset_chn(cs);
372      }
373  }
374  
375  static inline void set_rxint(ESCCChannelState *s)
376  {
377      s->rxint = 1;
378      /*
379       * XXX: missing daisy chaining: escc_chn_b rx should have a lower priority
380       * than chn_a rx/tx/special_condition service
381       */
382      s->rxint_under_svc = 1;
383      if (s->chn == escc_chn_a) {
384          s->rregs[R_INTR] |= INTR_RXINTA;
385          if (s->wregs[W_MINTR] & MINTR_STATUSHI) {
386              s->otherchn->rregs[R_IVEC] = IVEC_HIRXINTA;
387          } else {
388              s->otherchn->rregs[R_IVEC] = IVEC_LORXINTA;
389          }
390      } else {
391          s->otherchn->rregs[R_INTR] |= INTR_RXINTB;
392          if (s->wregs[W_MINTR] & MINTR_STATUSHI) {
393              s->rregs[R_IVEC] = IVEC_HIRXINTB;
394          } else {
395              s->rregs[R_IVEC] = IVEC_LORXINTB;
396          }
397      }
398      escc_update_irq(s);
399  }
400  
401  static inline void set_txint(ESCCChannelState *s)
402  {
403      s->txint = 1;
404      if (!s->rxint_under_svc) {
405          s->txint_under_svc = 1;
406          if (s->chn == escc_chn_a) {
407              if (s->wregs[W_INTR] & INTR_TXINT) {
408                  s->rregs[R_INTR] |= INTR_TXINTA;
409              }
410              if (s->wregs[W_MINTR] & MINTR_STATUSHI) {
411                  s->otherchn->rregs[R_IVEC] = IVEC_HITXINTA;
412              } else {
413                  s->otherchn->rregs[R_IVEC] = IVEC_LOTXINTA;
414              }
415          } else {
416              s->rregs[R_IVEC] = IVEC_TXINTB;
417              if (s->wregs[W_INTR] & INTR_TXINT) {
418                  s->otherchn->rregs[R_INTR] |= INTR_TXINTB;
419              }
420          }
421          escc_update_irq(s);
422      }
423  }
424  
425  static inline void clr_rxint(ESCCChannelState *s)
426  {
427      s->rxint = 0;
428      s->rxint_under_svc = 0;
429      if (s->chn == escc_chn_a) {
430          if (s->wregs[W_MINTR] & MINTR_STATUSHI) {
431              s->otherchn->rregs[R_IVEC] = IVEC_HINOINT;
432          } else {
433              s->otherchn->rregs[R_IVEC] = IVEC_LONOINT;
434          }
435          s->rregs[R_INTR] &= ~INTR_RXINTA;
436      } else {
437          if (s->wregs[W_MINTR] & MINTR_STATUSHI) {
438              s->rregs[R_IVEC] = IVEC_HINOINT;
439          } else {
440              s->rregs[R_IVEC] = IVEC_LONOINT;
441          }
442          s->otherchn->rregs[R_INTR] &= ~INTR_RXINTB;
443      }
444      if (s->txint) {
445          set_txint(s);
446      }
447      escc_update_irq(s);
448  }
449  
450  static inline void clr_txint(ESCCChannelState *s)
451  {
452      s->txint = 0;
453      s->txint_under_svc = 0;
454      if (s->chn == escc_chn_a) {
455          if (s->wregs[W_MINTR] & MINTR_STATUSHI) {
456              s->otherchn->rregs[R_IVEC] = IVEC_HINOINT;
457          } else {
458              s->otherchn->rregs[R_IVEC] = IVEC_LONOINT;
459          }
460          s->rregs[R_INTR] &= ~INTR_TXINTA;
461      } else {
462          s->otherchn->rregs[R_INTR] &= ~INTR_TXINTB;
463          if (s->wregs[W_MINTR] & MINTR_STATUSHI) {
464              s->rregs[R_IVEC] = IVEC_HINOINT;
465          } else {
466              s->rregs[R_IVEC] = IVEC_LONOINT;
467          }
468          s->otherchn->rregs[R_INTR] &= ~INTR_TXINTB;
469      }
470      if (s->rxint) {
471          set_rxint(s);
472      }
473      escc_update_irq(s);
474  }
475  
476  static void escc_update_parameters(ESCCChannelState *s)
477  {
478      int speed, parity, data_bits, stop_bits;
479      QEMUSerialSetParams ssp;
480  
481      if (!qemu_chr_fe_backend_connected(&s->chr) || s->type != escc_serial) {
482          return;
483      }
484  
485      if (s->wregs[W_TXCTRL1] & TXCTRL1_PAREN) {
486          if (s->wregs[W_TXCTRL1] & TXCTRL1_PAREV) {
487              parity = 'E';
488          } else {
489              parity = 'O';
490          }
491      } else {
492          parity = 'N';
493      }
494      if ((s->wregs[W_TXCTRL1] & TXCTRL1_STPMSK) == TXCTRL1_2STOP) {
495          stop_bits = 2;
496      } else {
497          stop_bits = 1;
498      }
499      switch (s->wregs[W_TXCTRL2] & TXCTRL2_BITMSK) {
500      case TXCTRL2_5BITS:
501          data_bits = 5;
502          break;
503      case TXCTRL2_7BITS:
504          data_bits = 7;
505          break;
506      case TXCTRL2_6BITS:
507          data_bits = 6;
508          break;
509      default:
510      case TXCTRL2_8BITS:
511          data_bits = 8;
512          break;
513      }
514      speed = s->clock / ((s->wregs[W_BRGLO] | (s->wregs[W_BRGHI] << 8)) + 2);
515      switch (s->wregs[W_TXCTRL1] & TXCTRL1_CLKMSK) {
516      case TXCTRL1_CLK1X:
517          break;
518      case TXCTRL1_CLK16X:
519          speed /= 16;
520          break;
521      case TXCTRL1_CLK32X:
522          speed /= 32;
523          break;
524      default:
525      case TXCTRL1_CLK64X:
526          speed /= 64;
527          break;
528      }
529      ssp.speed = speed;
530      ssp.parity = parity;
531      ssp.data_bits = data_bits;
532      ssp.stop_bits = stop_bits;
533      trace_escc_update_parameters(CHN_C(s), speed, parity, data_bits, stop_bits);
534      qemu_chr_fe_ioctl(&s->chr, CHR_IOCTL_SERIAL_SET_PARAMS, &ssp);
535  }
536  
537  static void escc_mem_write(void *opaque, hwaddr addr,
538                             uint64_t val, unsigned size)
539  {
540      ESCCState *serial = opaque;
541      ESCCChannelState *s;
542      uint32_t saddr;
543      int newreg, channel;
544  
545      val &= 0xff;
546      saddr = (addr >> reg_shift(serial)) & 1;
547      channel = (addr >> chn_shift(serial)) & 1;
548      s = &serial->chn[channel];
549      switch (saddr) {
550      case SERIAL_CTRL:
551          trace_escc_mem_writeb_ctrl(CHN_C(s), s->reg, val & 0xff);
552          newreg = 0;
553          switch (s->reg) {
554          case W_CMD:
555              newreg = val & CMD_PTR_MASK;
556              val &= CMD_CMD_MASK;
557              switch (val) {
558              case CMD_HI:
559                  newreg |= CMD_HI;
560                  break;
561              case CMD_CLR_TXINT:
562                  clr_txint(s);
563                  break;
564              case CMD_CLR_IUS:
565                  if (s->rxint_under_svc) {
566                      s->rxint_under_svc = 0;
567                      if (s->txint) {
568                          set_txint(s);
569                      }
570                  } else if (s->txint_under_svc) {
571                      s->txint_under_svc = 0;
572                  }
573                  escc_update_irq(s);
574                  break;
575              default:
576                  break;
577              }
578              break;
579          case W_RXCTRL:
580              s->wregs[s->reg] = val;
581              if (val & RXCTRL_HUNT) {
582                  s->rregs[R_STATUS] |= STATUS_SYNC;
583              }
584              break;
585          case W_INTR ... W_IVEC:
586          case W_SYNC1 ... W_TXBUF:
587          case W_MISC1 ... W_CLOCK:
588          case W_MISC2 ... W_EXTINT:
589              s->wregs[s->reg] = val;
590              break;
591          case W_TXCTRL1:
592              s->wregs[s->reg] = val;
593              /*
594               * The ESCC datasheet states that SPEC_ALLSENT is always set in
595               * sync mode, and set in async mode when all characters have
596               * cleared the transmitter. Since writes to SERIAL_DATA use the
597               * blocking qemu_chr_fe_write_all() function to write each
598               * character, the guest can never see the state when async data
599               * is in the process of being transmitted so we can set this bit
600               * unconditionally regardless of the state of the W_TXCTRL1 mode
601               * bits.
602               */
603              s->rregs[R_SPEC] |= SPEC_ALLSENT;
604              escc_update_parameters(s);
605              break;
606          case W_TXCTRL2:
607              s->wregs[s->reg] = val;
608              escc_update_parameters(s);
609              break;
610          case W_BRGLO:
611          case W_BRGHI:
612              s->wregs[s->reg] = val;
613              s->rregs[s->reg] = val;
614              escc_update_parameters(s);
615              break;
616          case W_MINTR:
617              switch (val & MINTR_RST_MASK) {
618              case 0:
619              default:
620                  break;
621              case MINTR_RST_B:
622                  trace_escc_soft_reset_chn(CHN_C(&serial->chn[0]));
623                  escc_soft_reset_chn(&serial->chn[0]);
624                  return;
625              case MINTR_RST_A:
626                  trace_escc_soft_reset_chn(CHN_C(&serial->chn[1]));
627                  escc_soft_reset_chn(&serial->chn[1]);
628                  return;
629              case MINTR_RST_ALL:
630                  trace_escc_hard_reset();
631                  escc_hard_reset_chn(&serial->chn[0]);
632                  escc_hard_reset_chn(&serial->chn[1]);
633                  return;
634              }
635              break;
636          default:
637              break;
638          }
639          if (s->reg == 0) {
640              s->reg = newreg;
641          } else {
642              s->reg = 0;
643          }
644          break;
645      case SERIAL_DATA:
646          trace_escc_mem_writeb_data(CHN_C(s), val);
647          /*
648           * Lower the irq when data is written to the Tx buffer and no other
649           * interrupts are currently pending. The irq will be raised again once
650           * the Tx buffer becomes empty below.
651           */
652          s->txint = 0;
653          escc_update_irq(s);
654          s->tx = val;
655          if (s->wregs[W_TXCTRL2] & TXCTRL2_TXEN) { /* tx enabled */
656              if (s->wregs[W_MISC2] & MISC2_LCL_LOOP) {
657                  serial_receive_byte(s, s->tx);
658              } else if (qemu_chr_fe_backend_connected(&s->chr)) {
659                  /*
660                   * XXX this blocks entire thread. Rewrite to use
661                   * qemu_chr_fe_write and background I/O callbacks
662                   */
663                  qemu_chr_fe_write_all(&s->chr, &s->tx, 1);
664              } else if (s->type == escc_kbd && !s->disabled) {
665                  handle_kbd_command(s, val);
666              }
667          }
668          s->rregs[R_STATUS] |= STATUS_TXEMPTY; /* Tx buffer empty */
669          s->rregs[R_SPEC] |= SPEC_ALLSENT; /* All sent */
670          set_txint(s);
671          break;
672      default:
673          break;
674      }
675  }
676  
677  static uint64_t escc_mem_read(void *opaque, hwaddr addr,
678                                unsigned size)
679  {
680      ESCCState *serial = opaque;
681      ESCCChannelState *s;
682      uint32_t saddr;
683      uint32_t ret;
684      int channel;
685  
686      saddr = (addr >> reg_shift(serial)) & 1;
687      channel = (addr >> chn_shift(serial)) & 1;
688      s = &serial->chn[channel];
689      switch (saddr) {
690      case SERIAL_CTRL:
691          trace_escc_mem_readb_ctrl(CHN_C(s), s->reg, s->rregs[s->reg]);
692          ret = s->rregs[s->reg];
693          s->reg = 0;
694          return ret;
695      case SERIAL_DATA:
696          s->rregs[R_STATUS] &= ~STATUS_RXAV;
697          clr_rxint(s);
698          if (s->type == escc_kbd || s->type == escc_mouse) {
699              ret = get_queue(s);
700          } else {
701              ret = s->rx;
702          }
703          trace_escc_mem_readb_data(CHN_C(s), ret);
704          qemu_chr_fe_accept_input(&s->chr);
705          return ret;
706      default:
707          break;
708      }
709      return 0;
710  }
711  
712  static const MemoryRegionOps escc_mem_ops = {
713      .read = escc_mem_read,
714      .write = escc_mem_write,
715      .endianness = DEVICE_NATIVE_ENDIAN,
716      .valid = {
717          .min_access_size = 1,
718          .max_access_size = 1,
719      },
720  };
721  
722  static int serial_can_receive(void *opaque)
723  {
724      ESCCChannelState *s = opaque;
725      int ret;
726  
727      if (((s->wregs[W_RXCTRL] & RXCTRL_RXEN) == 0) /* Rx not enabled */
728          || ((s->rregs[R_STATUS] & STATUS_RXAV) == STATUS_RXAV)) {
729          /* char already available */
730          ret = 0;
731      } else {
732          ret = 1;
733      }
734      return ret;
735  }
736  
737  static void serial_receive_byte(ESCCChannelState *s, int ch)
738  {
739      trace_escc_serial_receive_byte(CHN_C(s), ch);
740      s->rregs[R_STATUS] |= STATUS_RXAV;
741      s->rx = ch;
742      set_rxint(s);
743  }
744  
745  static void serial_receive_break(ESCCChannelState *s)
746  {
747      s->rregs[R_STATUS] |= STATUS_BRK;
748      escc_update_irq(s);
749  }
750  
751  static void serial_receive1(void *opaque, const uint8_t *buf, int size)
752  {
753      ESCCChannelState *s = opaque;
754      serial_receive_byte(s, buf[0]);
755  }
756  
757  static void serial_event(void *opaque, QEMUChrEvent event)
758  {
759      ESCCChannelState *s = opaque;
760      if (event == CHR_EVENT_BREAK) {
761          serial_receive_break(s);
762      }
763  }
764  
765  static const VMStateDescription vmstate_escc_chn = {
766      .name = "escc_chn",
767      .version_id = 2,
768      .minimum_version_id = 1,
769      .fields = (VMStateField[]) {
770          VMSTATE_UINT32(vmstate_dummy, ESCCChannelState),
771          VMSTATE_UINT32(reg, ESCCChannelState),
772          VMSTATE_UINT32(rxint, ESCCChannelState),
773          VMSTATE_UINT32(txint, ESCCChannelState),
774          VMSTATE_UINT32(rxint_under_svc, ESCCChannelState),
775          VMSTATE_UINT32(txint_under_svc, ESCCChannelState),
776          VMSTATE_UINT8(rx, ESCCChannelState),
777          VMSTATE_UINT8(tx, ESCCChannelState),
778          VMSTATE_BUFFER(wregs, ESCCChannelState),
779          VMSTATE_BUFFER(rregs, ESCCChannelState),
780          VMSTATE_END_OF_LIST()
781      }
782  };
783  
784  static const VMStateDescription vmstate_escc = {
785      .name = "escc",
786      .version_id = 2,
787      .minimum_version_id = 1,
788      .fields = (VMStateField[]) {
789          VMSTATE_STRUCT_ARRAY(chn, ESCCState, 2, 2, vmstate_escc_chn,
790                               ESCCChannelState),
791          VMSTATE_END_OF_LIST()
792      }
793  };
794  
795  static void sunkbd_handle_event(DeviceState *dev, QemuConsole *src,
796                                  InputEvent *evt)
797  {
798      ESCCChannelState *s = (ESCCChannelState *)dev;
799      int qcode, keycode;
800      InputKeyEvent *key;
801  
802      assert(evt->type == INPUT_EVENT_KIND_KEY);
803      key = evt->u.key.data;
804      qcode = qemu_input_key_value_to_qcode(key->key);
805      trace_escc_sunkbd_event_in(qcode, QKeyCode_str(qcode),
806                                 key->down);
807  
808      if (qcode == Q_KEY_CODE_CAPS_LOCK) {
809          if (key->down) {
810              s->caps_lock_mode ^= 1;
811              if (s->caps_lock_mode == 2) {
812                  return; /* Drop second press */
813              }
814          } else {
815              s->caps_lock_mode ^= 2;
816              if (s->caps_lock_mode == 3) {
817                  return; /* Drop first release */
818              }
819          }
820      }
821  
822      if (qcode == Q_KEY_CODE_NUM_LOCK) {
823          if (key->down) {
824              s->num_lock_mode ^= 1;
825              if (s->num_lock_mode == 2) {
826                  return; /* Drop second press */
827              }
828          } else {
829              s->num_lock_mode ^= 2;
830              if (s->num_lock_mode == 3) {
831                  return; /* Drop first release */
832              }
833          }
834      }
835  
836      if (qcode >= qemu_input_map_qcode_to_sun_len) {
837          return;
838      }
839  
840      keycode = qemu_input_map_qcode_to_sun[qcode];
841      if (!key->down) {
842          keycode |= 0x80;
843      }
844      trace_escc_sunkbd_event_out(keycode);
845      put_queue(s, keycode);
846  }
847  
848  static QemuInputHandler sunkbd_handler = {
849      .name  = "sun keyboard",
850      .mask  = INPUT_EVENT_MASK_KEY,
851      .event = sunkbd_handle_event,
852  };
853  
854  static uint8_t sunkbd_layout_dip_switch(const char *kbd_layout)
855  {
856      /* Return the value of the dip-switches in a SUN Type 5 keyboard */
857      static uint8_t ret = 0xff;
858  
859      if ((ret == 0xff) && kbd_layout) {
860          int i;
861          struct layout_values {
862              const char *lang;
863              uint8_t dip;
864          } languages[] =
865              /*
866               * Dip values from table 3-16 Layouts for Type 4, 5 and 5c Keyboards
867               */
868              {
869                  {"en-us", 0x21}, /* U.S.A. (US5.kt) */
870                                   /* 0x22 is some other US (US_UNIX5.kt) */
871                  {"fr",    0x23}, /* France (France5.kt) */
872                  {"da",    0x24}, /* Denmark (Denmark5.kt) */
873                  {"de",    0x25}, /* Germany (Germany5.kt) */
874                  {"it",    0x26}, /* Italy (Italy5.kt) */
875                  {"nl",    0x27}, /* The Netherlands (Netherland5.kt) */
876                  {"no",    0x28}, /* Norway (Norway.kt) */
877                  {"pt",    0x29}, /* Portugal (Portugal5.kt) */
878                  {"es",    0x2a}, /* Spain (Spain5.kt) */
879                  {"sv",    0x2b}, /* Sweden (Sweden5.kt) */
880                  {"fr-ch", 0x2c}, /* Switzerland/French (Switzer_Fr5.kt) */
881                  {"de-ch", 0x2d}, /* Switzerland/German (Switzer_Ge5.kt) */
882                  {"en-gb", 0x2e}, /* Great Britain (UK5.kt) */
883                  {"ko",    0x2f}, /* Korea (Korea5.kt) */
884                  {"tw",    0x30}, /* Taiwan (Taiwan5.kt) */
885                  {"ja",    0x31}, /* Japan (Japan5.kt) */
886                  {"fr-ca", 0x32}, /* Canada/French (Canada_Fr5.kt) */
887                  {"hu",    0x33}, /* Hungary (Hungary5.kt) */
888                  {"pl",    0x34}, /* Poland (Poland5.kt) */
889                  {"cz",    0x35}, /* Czech (Czech5.kt) */
890                  {"ru",    0x36}, /* Russia (Russia5.kt) */
891                  {"lv",    0x37}, /* Latvia (Latvia5.kt) */
892                  {"tr",    0x38}, /* Turkey-Q5 (TurkeyQ5.kt) */
893                  {"gr",    0x39}, /* Greece (Greece5.kt) */
894                  {"ar",    0x3a}, /* Arabic (Arabic5.kt) */
895                  {"lt",    0x3b}, /* Lithuania (Lithuania5.kt) */
896                  {"nl-be", 0x3c}, /* Belgium (Belgian5.kt) */
897                  {"be",    0x3c}, /* Belgium (Belgian5.kt) */
898              };
899  
900          for (i = 0;
901               i < sizeof(languages) / sizeof(struct layout_values);
902               i++) {
903              if (!strcmp(kbd_layout, languages[i].lang)) {
904                  ret = languages[i].dip;
905                  return ret;
906              }
907          }
908  
909          /* Found no known language code */
910          if ((kbd_layout[0] >= '0') && (kbd_layout[0] <= '9')) {
911              unsigned int tmp;
912  
913              /* As a fallback we also accept numeric dip switch value */
914              if (!qemu_strtoui(kbd_layout, NULL, 0, &tmp)) {
915                  ret = tmp;
916              }
917          }
918      }
919  
920      if (ret == 0xff) {
921          /* Final fallback if keyboard_layout was not set or recognized */
922          ret = 0x21; /* en-us layout */
923      }
924      return ret;
925  }
926  
927  static void handle_kbd_command(ESCCChannelState *s, int val)
928  {
929      trace_escc_kbd_command(val);
930      if (s->led_mode) { /* Ignore led byte */
931          s->led_mode = 0;
932          return;
933      }
934      switch (val) {
935      case 1: /* Reset, return type code */
936          clear_queue(s);
937          put_queue(s, 0xff);
938          put_queue(s, 4); /* Type 4 */
939          put_queue(s, 0x7f);
940          break;
941      case 0xe: /* Set leds */
942          s->led_mode = 1;
943          break;
944      case 7: /* Query layout */
945      case 0xf:
946          clear_queue(s);
947          put_queue(s, 0xfe);
948          put_queue(s, sunkbd_layout_dip_switch(s->sunkbd_layout));
949          break;
950      default:
951          break;
952      }
953  }
954  
955  static void sunmouse_event(void *opaque,
956                                 int dx, int dy, int dz, int buttons_state)
957  {
958      ESCCChannelState *s = opaque;
959      int ch;
960  
961      trace_escc_sunmouse_event(dx, dy, buttons_state);
962      ch = 0x80 | 0x7; /* protocol start byte, no buttons pressed */
963  
964      if (buttons_state & MOUSE_EVENT_LBUTTON) {
965          ch ^= 0x4;
966      }
967      if (buttons_state & MOUSE_EVENT_MBUTTON) {
968          ch ^= 0x2;
969      }
970      if (buttons_state & MOUSE_EVENT_RBUTTON) {
971          ch ^= 0x1;
972      }
973  
974      put_queue(s, ch);
975  
976      ch = dx;
977  
978      if (ch > 127) {
979          ch = 127;
980      } else if (ch < -127) {
981          ch = -127;
982      }
983  
984      put_queue(s, ch & 0xff);
985  
986      ch = -dy;
987  
988      if (ch > 127) {
989          ch = 127;
990      } else if (ch < -127) {
991          ch = -127;
992      }
993  
994      put_queue(s, ch & 0xff);
995  
996      /* MSC protocol specifies two extra motion bytes */
997  
998      put_queue(s, 0);
999      put_queue(s, 0);
1000  }
1001  
1002  static void escc_init1(Object *obj)
1003  {
1004      ESCCState *s = ESCC(obj);
1005      SysBusDevice *dev = SYS_BUS_DEVICE(obj);
1006      unsigned int i;
1007  
1008      for (i = 0; i < 2; i++) {
1009          sysbus_init_irq(dev, &s->chn[i].irq);
1010          s->chn[i].chn = 1 - i;
1011      }
1012      s->chn[0].otherchn = &s->chn[1];
1013      s->chn[1].otherchn = &s->chn[0];
1014  
1015      sysbus_init_mmio(dev, &s->mmio);
1016  }
1017  
1018  static void escc_realize(DeviceState *dev, Error **errp)
1019  {
1020      ESCCState *s = ESCC(dev);
1021      unsigned int i;
1022  
1023      s->chn[0].disabled = s->disabled;
1024      s->chn[1].disabled = s->disabled;
1025  
1026      memory_region_init_io(&s->mmio, OBJECT(dev), &escc_mem_ops, s, "escc",
1027                            ESCC_SIZE << s->it_shift);
1028  
1029      for (i = 0; i < 2; i++) {
1030          if (qemu_chr_fe_backend_connected(&s->chn[i].chr)) {
1031              s->chn[i].clock = s->frequency / 2;
1032              qemu_chr_fe_set_handlers(&s->chn[i].chr, serial_can_receive,
1033                                       serial_receive1, serial_event, NULL,
1034                                       &s->chn[i], NULL, true);
1035          }
1036      }
1037  
1038      if (s->chn[0].type == escc_mouse) {
1039          qemu_add_mouse_event_handler(sunmouse_event, &s->chn[0], 0,
1040                                       "QEMU Sun Mouse");
1041      }
1042      if (s->chn[1].type == escc_kbd) {
1043          s->chn[1].hs = qemu_input_handler_register((DeviceState *)(&s->chn[1]),
1044                                                     &sunkbd_handler);
1045      }
1046  }
1047  
1048  static Property escc_properties[] = {
1049      DEFINE_PROP_UINT32("frequency", ESCCState, frequency,   0),
1050      DEFINE_PROP_UINT32("it_shift",  ESCCState, it_shift,    0),
1051      DEFINE_PROP_BOOL("bit_swap",    ESCCState, bit_swap,    false),
1052      DEFINE_PROP_UINT32("disabled",  ESCCState, disabled,    0),
1053      DEFINE_PROP_UINT32("chnBtype",  ESCCState, chn[0].type, 0),
1054      DEFINE_PROP_UINT32("chnAtype",  ESCCState, chn[1].type, 0),
1055      DEFINE_PROP_CHR("chrB", ESCCState, chn[0].chr),
1056      DEFINE_PROP_CHR("chrA", ESCCState, chn[1].chr),
1057      DEFINE_PROP_STRING("chnA-sunkbd-layout", ESCCState, chn[1].sunkbd_layout),
1058      DEFINE_PROP_END_OF_LIST(),
1059  };
1060  
1061  static void escc_class_init(ObjectClass *klass, void *data)
1062  {
1063      DeviceClass *dc = DEVICE_CLASS(klass);
1064  
1065      dc->reset = escc_reset;
1066      dc->realize = escc_realize;
1067      dc->vmsd = &vmstate_escc;
1068      device_class_set_props(dc, escc_properties);
1069      set_bit(DEVICE_CATEGORY_INPUT, dc->categories);
1070  }
1071  
1072  static const TypeInfo escc_info = {
1073      .name          = TYPE_ESCC,
1074      .parent        = TYPE_SYS_BUS_DEVICE,
1075      .instance_size = sizeof(ESCCState),
1076      .instance_init = escc_init1,
1077      .class_init    = escc_class_init,
1078  };
1079  
1080  static void escc_register_types(void)
1081  {
1082      type_register_static(&escc_info);
1083  }
1084  
1085  type_init(escc_register_types)
1086