xref: /qemu/hw/char/cadence_uart.c (revision f6cf41932edf260c2574346a08358ad2d20c357e)
1 /*
2  * Device model for Cadence UART
3  *
4  * Copyright (c) 2010 Xilinx Inc.
5  * Copyright (c) 2012 Peter A.G. Crosthwaite (peter.crosthwaite@petalogix.com)
6  * Copyright (c) 2012 PetaLogix Pty Ltd.
7  * Written by Haibing Ma
8  *            M.Habib
9  *
10  * This program is free software; you can redistribute it and/or
11  * modify it under the terms of the GNU General Public License
12  * as published by the Free Software Foundation; either version
13  * 2 of the License, or (at your option) any later version.
14  *
15  * You should have received a copy of the GNU General Public License along
16  * with this program; if not, see <http://www.gnu.org/licenses/>.
17  */
18 
19 #include "qemu/osdep.h"
20 #include "hw/sysbus.h"
21 #include "sysemu/char.h"
22 #include "qemu/timer.h"
23 #include "qemu/log.h"
24 #include "hw/char/cadence_uart.h"
25 
26 #ifdef CADENCE_UART_ERR_DEBUG
27 #define DB_PRINT(...) do { \
28     fprintf(stderr,  ": %s: ", __func__); \
29     fprintf(stderr, ## __VA_ARGS__); \
30     } while (0);
31 #else
32     #define DB_PRINT(...)
33 #endif
34 
35 #define UART_SR_INTR_RTRIG     0x00000001
36 #define UART_SR_INTR_REMPTY    0x00000002
37 #define UART_SR_INTR_RFUL      0x00000004
38 #define UART_SR_INTR_TEMPTY    0x00000008
39 #define UART_SR_INTR_TFUL      0x00000010
40 /* somewhat awkwardly, TTRIG is misaligned between SR and ISR */
41 #define UART_SR_TTRIG          0x00002000
42 #define UART_INTR_TTRIG        0x00000400
43 /* bits fields in CSR that correlate to CISR. If any of these bits are set in
44  * SR, then the same bit in CISR is set high too */
45 #define UART_SR_TO_CISR_MASK   0x0000001F
46 
47 #define UART_INTR_ROVR         0x00000020
48 #define UART_INTR_FRAME        0x00000040
49 #define UART_INTR_PARE         0x00000080
50 #define UART_INTR_TIMEOUT      0x00000100
51 #define UART_INTR_DMSI         0x00000200
52 #define UART_INTR_TOVR         0x00001000
53 
54 #define UART_SR_RACTIVE    0x00000400
55 #define UART_SR_TACTIVE    0x00000800
56 #define UART_SR_FDELT      0x00001000
57 
58 #define UART_CR_RXRST       0x00000001
59 #define UART_CR_TXRST       0x00000002
60 #define UART_CR_RX_EN       0x00000004
61 #define UART_CR_RX_DIS      0x00000008
62 #define UART_CR_TX_EN       0x00000010
63 #define UART_CR_TX_DIS      0x00000020
64 #define UART_CR_RST_TO      0x00000040
65 #define UART_CR_STARTBRK    0x00000080
66 #define UART_CR_STOPBRK     0x00000100
67 
68 #define UART_MR_CLKS            0x00000001
69 #define UART_MR_CHRL            0x00000006
70 #define UART_MR_CHRL_SH         1
71 #define UART_MR_PAR             0x00000038
72 #define UART_MR_PAR_SH          3
73 #define UART_MR_NBSTOP          0x000000C0
74 #define UART_MR_NBSTOP_SH       6
75 #define UART_MR_CHMODE          0x00000300
76 #define UART_MR_CHMODE_SH       8
77 #define UART_MR_UCLKEN          0x00000400
78 #define UART_MR_IRMODE          0x00000800
79 
80 #define UART_DATA_BITS_6       (0x3 << UART_MR_CHRL_SH)
81 #define UART_DATA_BITS_7       (0x2 << UART_MR_CHRL_SH)
82 #define UART_PARITY_ODD        (0x1 << UART_MR_PAR_SH)
83 #define UART_PARITY_EVEN       (0x0 << UART_MR_PAR_SH)
84 #define UART_STOP_BITS_1       (0x3 << UART_MR_NBSTOP_SH)
85 #define UART_STOP_BITS_2       (0x2 << UART_MR_NBSTOP_SH)
86 #define NORMAL_MODE            (0x0 << UART_MR_CHMODE_SH)
87 #define ECHO_MODE              (0x1 << UART_MR_CHMODE_SH)
88 #define LOCAL_LOOPBACK         (0x2 << UART_MR_CHMODE_SH)
89 #define REMOTE_LOOPBACK        (0x3 << UART_MR_CHMODE_SH)
90 
91 #define UART_INPUT_CLK         50000000
92 
93 #define R_CR       (0x00/4)
94 #define R_MR       (0x04/4)
95 #define R_IER      (0x08/4)
96 #define R_IDR      (0x0C/4)
97 #define R_IMR      (0x10/4)
98 #define R_CISR     (0x14/4)
99 #define R_BRGR     (0x18/4)
100 #define R_RTOR     (0x1C/4)
101 #define R_RTRIG    (0x20/4)
102 #define R_MCR      (0x24/4)
103 #define R_MSR      (0x28/4)
104 #define R_SR       (0x2C/4)
105 #define R_TX_RX    (0x30/4)
106 #define R_BDIV     (0x34/4)
107 #define R_FDEL     (0x38/4)
108 #define R_PMIN     (0x3C/4)
109 #define R_PWID     (0x40/4)
110 #define R_TTRIG    (0x44/4)
111 
112 
113 static void uart_update_status(CadenceUARTState *s)
114 {
115     s->r[R_SR] = 0;
116 
117     s->r[R_SR] |= s->rx_count == CADENCE_UART_RX_FIFO_SIZE ? UART_SR_INTR_RFUL
118                                                            : 0;
119     s->r[R_SR] |= !s->rx_count ? UART_SR_INTR_REMPTY : 0;
120     s->r[R_SR] |= s->rx_count >= s->r[R_RTRIG] ? UART_SR_INTR_RTRIG : 0;
121 
122     s->r[R_SR] |= s->tx_count == CADENCE_UART_TX_FIFO_SIZE ? UART_SR_INTR_TFUL
123                                                            : 0;
124     s->r[R_SR] |= !s->tx_count ? UART_SR_INTR_TEMPTY : 0;
125     s->r[R_SR] |= s->tx_count >= s->r[R_TTRIG] ? UART_SR_TTRIG : 0;
126 
127     s->r[R_CISR] |= s->r[R_SR] & UART_SR_TO_CISR_MASK;
128     s->r[R_CISR] |= s->r[R_SR] & UART_SR_TTRIG ? UART_INTR_TTRIG : 0;
129     qemu_set_irq(s->irq, !!(s->r[R_IMR] & s->r[R_CISR]));
130 }
131 
132 static void fifo_trigger_update(void *opaque)
133 {
134     CadenceUARTState *s = opaque;
135 
136     s->r[R_CISR] |= UART_INTR_TIMEOUT;
137 
138     uart_update_status(s);
139 }
140 
141 static void uart_rx_reset(CadenceUARTState *s)
142 {
143     s->rx_wpos = 0;
144     s->rx_count = 0;
145     if (s->chr) {
146         qemu_chr_accept_input(s->chr);
147     }
148 }
149 
150 static void uart_tx_reset(CadenceUARTState *s)
151 {
152     s->tx_count = 0;
153 }
154 
155 static void uart_send_breaks(CadenceUARTState *s)
156 {
157     int break_enabled = 1;
158 
159     if (s->chr) {
160         qemu_chr_fe_ioctl(s->chr, CHR_IOCTL_SERIAL_SET_BREAK,
161                                    &break_enabled);
162     }
163 }
164 
165 static void uart_parameters_setup(CadenceUARTState *s)
166 {
167     QEMUSerialSetParams ssp;
168     unsigned int baud_rate, packet_size;
169 
170     baud_rate = (s->r[R_MR] & UART_MR_CLKS) ?
171             UART_INPUT_CLK / 8 : UART_INPUT_CLK;
172 
173     ssp.speed = baud_rate / (s->r[R_BRGR] * (s->r[R_BDIV] + 1));
174     packet_size = 1;
175 
176     switch (s->r[R_MR] & UART_MR_PAR) {
177     case UART_PARITY_EVEN:
178         ssp.parity = 'E';
179         packet_size++;
180         break;
181     case UART_PARITY_ODD:
182         ssp.parity = 'O';
183         packet_size++;
184         break;
185     default:
186         ssp.parity = 'N';
187         break;
188     }
189 
190     switch (s->r[R_MR] & UART_MR_CHRL) {
191     case UART_DATA_BITS_6:
192         ssp.data_bits = 6;
193         break;
194     case UART_DATA_BITS_7:
195         ssp.data_bits = 7;
196         break;
197     default:
198         ssp.data_bits = 8;
199         break;
200     }
201 
202     switch (s->r[R_MR] & UART_MR_NBSTOP) {
203     case UART_STOP_BITS_1:
204         ssp.stop_bits = 1;
205         break;
206     default:
207         ssp.stop_bits = 2;
208         break;
209     }
210 
211     packet_size += ssp.data_bits + ssp.stop_bits;
212     s->char_tx_time = (NANOSECONDS_PER_SECOND / ssp.speed) * packet_size;
213     if (s->chr) {
214         qemu_chr_fe_ioctl(s->chr, CHR_IOCTL_SERIAL_SET_PARAMS, &ssp);
215     }
216 }
217 
218 static int uart_can_receive(void *opaque)
219 {
220     CadenceUARTState *s = opaque;
221     int ret = MAX(CADENCE_UART_RX_FIFO_SIZE, CADENCE_UART_TX_FIFO_SIZE);
222     uint32_t ch_mode = s->r[R_MR] & UART_MR_CHMODE;
223 
224     if (ch_mode == NORMAL_MODE || ch_mode == ECHO_MODE) {
225         ret = MIN(ret, CADENCE_UART_RX_FIFO_SIZE - s->rx_count);
226     }
227     if (ch_mode == REMOTE_LOOPBACK || ch_mode == ECHO_MODE) {
228         ret = MIN(ret, CADENCE_UART_TX_FIFO_SIZE - s->tx_count);
229     }
230     return ret;
231 }
232 
233 static void uart_ctrl_update(CadenceUARTState *s)
234 {
235     if (s->r[R_CR] & UART_CR_TXRST) {
236         uart_tx_reset(s);
237     }
238 
239     if (s->r[R_CR] & UART_CR_RXRST) {
240         uart_rx_reset(s);
241     }
242 
243     s->r[R_CR] &= ~(UART_CR_TXRST | UART_CR_RXRST);
244 
245     if (s->r[R_CR] & UART_CR_STARTBRK && !(s->r[R_CR] & UART_CR_STOPBRK)) {
246         uart_send_breaks(s);
247     }
248 }
249 
250 static void uart_write_rx_fifo(void *opaque, const uint8_t *buf, int size)
251 {
252     CadenceUARTState *s = opaque;
253     uint64_t new_rx_time = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
254     int i;
255 
256     if ((s->r[R_CR] & UART_CR_RX_DIS) || !(s->r[R_CR] & UART_CR_RX_EN)) {
257         return;
258     }
259 
260     if (s->rx_count == CADENCE_UART_RX_FIFO_SIZE) {
261         s->r[R_CISR] |= UART_INTR_ROVR;
262     } else {
263         for (i = 0; i < size; i++) {
264             s->rx_fifo[s->rx_wpos] = buf[i];
265             s->rx_wpos = (s->rx_wpos + 1) % CADENCE_UART_RX_FIFO_SIZE;
266             s->rx_count++;
267         }
268         timer_mod(s->fifo_trigger_handle, new_rx_time +
269                                                 (s->char_tx_time * 4));
270     }
271     uart_update_status(s);
272 }
273 
274 static gboolean cadence_uart_xmit(GIOChannel *chan, GIOCondition cond,
275                                   void *opaque)
276 {
277     CadenceUARTState *s = opaque;
278     int ret;
279 
280     /* instant drain the fifo when there's no back-end */
281     if (!s->chr) {
282         s->tx_count = 0;
283         return FALSE;
284     }
285 
286     if (!s->tx_count) {
287         return FALSE;
288     }
289 
290     ret = qemu_chr_fe_write(s->chr, s->tx_fifo, s->tx_count);
291 
292     if (ret >= 0) {
293         s->tx_count -= ret;
294         memmove(s->tx_fifo, s->tx_fifo + ret, s->tx_count);
295     }
296 
297     if (s->tx_count) {
298         int r = qemu_chr_fe_add_watch(s->chr, G_IO_OUT|G_IO_HUP,
299                                       cadence_uart_xmit, s);
300         assert(r);
301     }
302 
303     uart_update_status(s);
304     return FALSE;
305 }
306 
307 static void uart_write_tx_fifo(CadenceUARTState *s, const uint8_t *buf,
308                                int size)
309 {
310     if ((s->r[R_CR] & UART_CR_TX_DIS) || !(s->r[R_CR] & UART_CR_TX_EN)) {
311         return;
312     }
313 
314     if (size > CADENCE_UART_TX_FIFO_SIZE - s->tx_count) {
315         size = CADENCE_UART_TX_FIFO_SIZE - s->tx_count;
316         /*
317          * This can only be a guest error via a bad tx fifo register push,
318          * as can_receive() should stop remote loop and echo modes ever getting
319          * us to here.
320          */
321         qemu_log_mask(LOG_GUEST_ERROR, "cadence_uart: TxFIFO overflow");
322         s->r[R_CISR] |= UART_INTR_ROVR;
323     }
324 
325     memcpy(s->tx_fifo + s->tx_count, buf, size);
326     s->tx_count += size;
327 
328     cadence_uart_xmit(NULL, G_IO_OUT, s);
329 }
330 
331 static void uart_receive(void *opaque, const uint8_t *buf, int size)
332 {
333     CadenceUARTState *s = opaque;
334     uint32_t ch_mode = s->r[R_MR] & UART_MR_CHMODE;
335 
336     if (ch_mode == NORMAL_MODE || ch_mode == ECHO_MODE) {
337         uart_write_rx_fifo(opaque, buf, size);
338     }
339     if (ch_mode == REMOTE_LOOPBACK || ch_mode == ECHO_MODE) {
340         uart_write_tx_fifo(s, buf, size);
341     }
342 }
343 
344 static void uart_event(void *opaque, int event)
345 {
346     CadenceUARTState *s = opaque;
347     uint8_t buf = '\0';
348 
349     if (event == CHR_EVENT_BREAK) {
350         uart_write_rx_fifo(opaque, &buf, 1);
351     }
352 
353     uart_update_status(s);
354 }
355 
356 static void uart_read_rx_fifo(CadenceUARTState *s, uint32_t *c)
357 {
358     if ((s->r[R_CR] & UART_CR_RX_DIS) || !(s->r[R_CR] & UART_CR_RX_EN)) {
359         return;
360     }
361 
362     if (s->rx_count) {
363         uint32_t rx_rpos = (CADENCE_UART_RX_FIFO_SIZE + s->rx_wpos -
364                             s->rx_count) % CADENCE_UART_RX_FIFO_SIZE;
365         *c = s->rx_fifo[rx_rpos];
366         s->rx_count--;
367 
368         if (s->chr) {
369             qemu_chr_accept_input(s->chr);
370         }
371     } else {
372         *c = 0;
373     }
374 
375     uart_update_status(s);
376 }
377 
378 static void uart_write(void *opaque, hwaddr offset,
379                           uint64_t value, unsigned size)
380 {
381     CadenceUARTState *s = opaque;
382 
383     DB_PRINT(" offset:%x data:%08x\n", (unsigned)offset, (unsigned)value);
384     offset >>= 2;
385     if (offset >= CADENCE_UART_R_MAX) {
386         return;
387     }
388     switch (offset) {
389     case R_IER: /* ier (wts imr) */
390         s->r[R_IMR] |= value;
391         break;
392     case R_IDR: /* idr (wtc imr) */
393         s->r[R_IMR] &= ~value;
394         break;
395     case R_IMR: /* imr (read only) */
396         break;
397     case R_CISR: /* cisr (wtc) */
398         s->r[R_CISR] &= ~value;
399         break;
400     case R_TX_RX: /* UARTDR */
401         switch (s->r[R_MR] & UART_MR_CHMODE) {
402         case NORMAL_MODE:
403             uart_write_tx_fifo(s, (uint8_t *) &value, 1);
404             break;
405         case LOCAL_LOOPBACK:
406             uart_write_rx_fifo(opaque, (uint8_t *) &value, 1);
407             break;
408         }
409         break;
410     default:
411         s->r[offset] = value;
412     }
413 
414     switch (offset) {
415     case R_CR:
416         uart_ctrl_update(s);
417         break;
418     case R_MR:
419         uart_parameters_setup(s);
420         break;
421     }
422     uart_update_status(s);
423 }
424 
425 static uint64_t uart_read(void *opaque, hwaddr offset,
426         unsigned size)
427 {
428     CadenceUARTState *s = opaque;
429     uint32_t c = 0;
430 
431     offset >>= 2;
432     if (offset >= CADENCE_UART_R_MAX) {
433         c = 0;
434     } else if (offset == R_TX_RX) {
435         uart_read_rx_fifo(s, &c);
436     } else {
437        c = s->r[offset];
438     }
439 
440     DB_PRINT(" offset:%x data:%08x\n", (unsigned)(offset << 2), (unsigned)c);
441     return c;
442 }
443 
444 static const MemoryRegionOps uart_ops = {
445     .read = uart_read,
446     .write = uart_write,
447     .endianness = DEVICE_NATIVE_ENDIAN,
448 };
449 
450 static void cadence_uart_reset(DeviceState *dev)
451 {
452     CadenceUARTState *s = CADENCE_UART(dev);
453 
454     s->r[R_CR] = 0x00000128;
455     s->r[R_IMR] = 0;
456     s->r[R_CISR] = 0;
457     s->r[R_RTRIG] = 0x00000020;
458     s->r[R_BRGR] = 0x0000000F;
459     s->r[R_TTRIG] = 0x00000020;
460 
461     uart_rx_reset(s);
462     uart_tx_reset(s);
463 
464     uart_update_status(s);
465 }
466 
467 static void cadence_uart_realize(DeviceState *dev, Error **errp)
468 {
469     CadenceUARTState *s = CADENCE_UART(dev);
470 
471     s->fifo_trigger_handle = timer_new_ns(QEMU_CLOCK_VIRTUAL,
472                                           fifo_trigger_update, s);
473 
474     if (s->chr) {
475         qemu_chr_add_handlers(s->chr, uart_can_receive, uart_receive,
476                               uart_event, s);
477     }
478 }
479 
480 static void cadence_uart_init(Object *obj)
481 {
482     SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
483     CadenceUARTState *s = CADENCE_UART(obj);
484 
485     memory_region_init_io(&s->iomem, obj, &uart_ops, s, "uart", 0x1000);
486     sysbus_init_mmio(sbd, &s->iomem);
487     sysbus_init_irq(sbd, &s->irq);
488 
489     s->char_tx_time = (NANOSECONDS_PER_SECOND / 9600) * 10;
490 }
491 
492 static int cadence_uart_post_load(void *opaque, int version_id)
493 {
494     CadenceUARTState *s = opaque;
495 
496     uart_parameters_setup(s);
497     uart_update_status(s);
498     return 0;
499 }
500 
501 static const VMStateDescription vmstate_cadence_uart = {
502     .name = "cadence_uart",
503     .version_id = 2,
504     .minimum_version_id = 2,
505     .post_load = cadence_uart_post_load,
506     .fields = (VMStateField[]) {
507         VMSTATE_UINT32_ARRAY(r, CadenceUARTState, CADENCE_UART_R_MAX),
508         VMSTATE_UINT8_ARRAY(rx_fifo, CadenceUARTState,
509                             CADENCE_UART_RX_FIFO_SIZE),
510         VMSTATE_UINT8_ARRAY(tx_fifo, CadenceUARTState,
511                             CADENCE_UART_TX_FIFO_SIZE),
512         VMSTATE_UINT32(rx_count, CadenceUARTState),
513         VMSTATE_UINT32(tx_count, CadenceUARTState),
514         VMSTATE_UINT32(rx_wpos, CadenceUARTState),
515         VMSTATE_TIMER_PTR(fifo_trigger_handle, CadenceUARTState),
516         VMSTATE_END_OF_LIST()
517     }
518 };
519 
520 static Property cadence_uart_properties[] = {
521     DEFINE_PROP_CHR("chardev", CadenceUARTState, chr),
522     DEFINE_PROP_END_OF_LIST(),
523 };
524 
525 static void cadence_uart_class_init(ObjectClass *klass, void *data)
526 {
527     DeviceClass *dc = DEVICE_CLASS(klass);
528 
529     dc->realize = cadence_uart_realize;
530     dc->vmsd = &vmstate_cadence_uart;
531     dc->reset = cadence_uart_reset;
532     dc->props = cadence_uart_properties;
533   }
534 
535 static const TypeInfo cadence_uart_info = {
536     .name          = TYPE_CADENCE_UART,
537     .parent        = TYPE_SYS_BUS_DEVICE,
538     .instance_size = sizeof(CadenceUARTState),
539     .instance_init = cadence_uart_init,
540     .class_init    = cadence_uart_class_init,
541 };
542 
543 static void cadence_uart_register_types(void)
544 {
545     type_register_static(&cadence_uart_info);
546 }
547 
548 type_init(cadence_uart_register_types)
549