xref: /qemu/hw/char/cadence_uart.c (revision e86da3cb40d6f70ce99d8e64952c49df8ad78848)
1 /*
2  * Device model for Cadence UART
3  *
4  * Copyright (c) 2010 Xilinx Inc.
5  * Copyright (c) 2012 Peter A.G. Crosthwaite (peter.crosthwaite@petalogix.com)
6  * Copyright (c) 2012 PetaLogix Pty Ltd.
7  * Written by Haibing Ma
8  *            M.Habib
9  *
10  * This program is free software; you can redistribute it and/or
11  * modify it under the terms of the GNU General Public License
12  * as published by the Free Software Foundation; either version
13  * 2 of the License, or (at your option) any later version.
14  *
15  * You should have received a copy of the GNU General Public License along
16  * with this program; if not, see <http://www.gnu.org/licenses/>.
17  */
18 
19 #include "hw/sysbus.h"
20 #include "sysemu/char.h"
21 #include "qemu/timer.h"
22 
23 #ifdef CADENCE_UART_ERR_DEBUG
24 #define DB_PRINT(...) do { \
25     fprintf(stderr,  ": %s: ", __func__); \
26     fprintf(stderr, ## __VA_ARGS__); \
27     } while (0);
28 #else
29     #define DB_PRINT(...)
30 #endif
31 
32 #define UART_SR_INTR_RTRIG     0x00000001
33 #define UART_SR_INTR_REMPTY    0x00000002
34 #define UART_SR_INTR_RFUL      0x00000004
35 #define UART_SR_INTR_TEMPTY    0x00000008
36 #define UART_SR_INTR_TFUL      0x00000010
37 /* somewhat awkwardly, TTRIG is misaligned between SR and ISR */
38 #define UART_SR_TTRIG          0x00002000
39 #define UART_INTR_TTRIG        0x00000400
40 /* bits fields in CSR that correlate to CISR. If any of these bits are set in
41  * SR, then the same bit in CISR is set high too */
42 #define UART_SR_TO_CISR_MASK   0x0000001F
43 
44 #define UART_INTR_ROVR         0x00000020
45 #define UART_INTR_FRAME        0x00000040
46 #define UART_INTR_PARE         0x00000080
47 #define UART_INTR_TIMEOUT      0x00000100
48 #define UART_INTR_DMSI         0x00000200
49 #define UART_INTR_TOVR         0x00001000
50 
51 #define UART_SR_RACTIVE    0x00000400
52 #define UART_SR_TACTIVE    0x00000800
53 #define UART_SR_FDELT      0x00001000
54 
55 #define UART_CR_RXRST       0x00000001
56 #define UART_CR_TXRST       0x00000002
57 #define UART_CR_RX_EN       0x00000004
58 #define UART_CR_RX_DIS      0x00000008
59 #define UART_CR_TX_EN       0x00000010
60 #define UART_CR_TX_DIS      0x00000020
61 #define UART_CR_RST_TO      0x00000040
62 #define UART_CR_STARTBRK    0x00000080
63 #define UART_CR_STOPBRK     0x00000100
64 
65 #define UART_MR_CLKS            0x00000001
66 #define UART_MR_CHRL            0x00000006
67 #define UART_MR_CHRL_SH         1
68 #define UART_MR_PAR             0x00000038
69 #define UART_MR_PAR_SH          3
70 #define UART_MR_NBSTOP          0x000000C0
71 #define UART_MR_NBSTOP_SH       6
72 #define UART_MR_CHMODE          0x00000300
73 #define UART_MR_CHMODE_SH       8
74 #define UART_MR_UCLKEN          0x00000400
75 #define UART_MR_IRMODE          0x00000800
76 
77 #define UART_DATA_BITS_6       (0x3 << UART_MR_CHRL_SH)
78 #define UART_DATA_BITS_7       (0x2 << UART_MR_CHRL_SH)
79 #define UART_PARITY_ODD        (0x1 << UART_MR_PAR_SH)
80 #define UART_PARITY_EVEN       (0x0 << UART_MR_PAR_SH)
81 #define UART_STOP_BITS_1       (0x3 << UART_MR_NBSTOP_SH)
82 #define UART_STOP_BITS_2       (0x2 << UART_MR_NBSTOP_SH)
83 #define NORMAL_MODE            (0x0 << UART_MR_CHMODE_SH)
84 #define ECHO_MODE              (0x1 << UART_MR_CHMODE_SH)
85 #define LOCAL_LOOPBACK         (0x2 << UART_MR_CHMODE_SH)
86 #define REMOTE_LOOPBACK        (0x3 << UART_MR_CHMODE_SH)
87 
88 #define CADENCE_UART_RX_FIFO_SIZE           16
89 #define CADENCE_UART_TX_FIFO_SIZE           16
90 #define UART_INPUT_CLK         50000000
91 
92 #define R_CR       (0x00/4)
93 #define R_MR       (0x04/4)
94 #define R_IER      (0x08/4)
95 #define R_IDR      (0x0C/4)
96 #define R_IMR      (0x10/4)
97 #define R_CISR     (0x14/4)
98 #define R_BRGR     (0x18/4)
99 #define R_RTOR     (0x1C/4)
100 #define R_RTRIG    (0x20/4)
101 #define R_MCR      (0x24/4)
102 #define R_MSR      (0x28/4)
103 #define R_SR       (0x2C/4)
104 #define R_TX_RX    (0x30/4)
105 #define R_BDIV     (0x34/4)
106 #define R_FDEL     (0x38/4)
107 #define R_PMIN     (0x3C/4)
108 #define R_PWID     (0x40/4)
109 #define R_TTRIG    (0x44/4)
110 
111 #define CADENCE_UART_R_MAX (0x48/4)
112 
113 #define TYPE_CADENCE_UART "cadence_uart"
114 #define CADENCE_UART(obj) OBJECT_CHECK(CadenceUARTState, (obj), \
115                                        TYPE_CADENCE_UART)
116 
117 typedef struct {
118     /*< private >*/
119     SysBusDevice parent_obj;
120     /*< public >*/
121 
122     MemoryRegion iomem;
123     uint32_t r[CADENCE_UART_R_MAX];
124     uint8_t rx_fifo[CADENCE_UART_RX_FIFO_SIZE];
125     uint8_t tx_fifo[CADENCE_UART_TX_FIFO_SIZE];
126     uint32_t rx_wpos;
127     uint32_t rx_count;
128     uint32_t tx_count;
129     uint64_t char_tx_time;
130     CharDriverState *chr;
131     qemu_irq irq;
132     QEMUTimer *fifo_trigger_handle;
133 } CadenceUARTState;
134 
135 static void uart_update_status(CadenceUARTState *s)
136 {
137     s->r[R_SR] = 0;
138 
139     s->r[R_SR] |= s->rx_count == CADENCE_UART_RX_FIFO_SIZE ? UART_SR_INTR_RFUL
140                                                            : 0;
141     s->r[R_SR] |= !s->rx_count ? UART_SR_INTR_REMPTY : 0;
142     s->r[R_SR] |= s->rx_count >= s->r[R_RTRIG] ? UART_SR_INTR_RTRIG : 0;
143 
144     s->r[R_SR] |= s->tx_count == CADENCE_UART_TX_FIFO_SIZE ? UART_SR_INTR_TFUL
145                                                            : 0;
146     s->r[R_SR] |= !s->tx_count ? UART_SR_INTR_TEMPTY : 0;
147     s->r[R_SR] |= s->tx_count >= s->r[R_TTRIG] ? UART_SR_TTRIG : 0;
148 
149     s->r[R_CISR] |= s->r[R_SR] & UART_SR_TO_CISR_MASK;
150     s->r[R_CISR] |= s->r[R_SR] & UART_SR_TTRIG ? UART_INTR_TTRIG : 0;
151     qemu_set_irq(s->irq, !!(s->r[R_IMR] & s->r[R_CISR]));
152 }
153 
154 static void fifo_trigger_update(void *opaque)
155 {
156     CadenceUARTState *s = opaque;
157 
158     s->r[R_CISR] |= UART_INTR_TIMEOUT;
159 
160     uart_update_status(s);
161 }
162 
163 static void uart_rx_reset(CadenceUARTState *s)
164 {
165     s->rx_wpos = 0;
166     s->rx_count = 0;
167     if (s->chr) {
168         qemu_chr_accept_input(s->chr);
169     }
170 }
171 
172 static void uart_tx_reset(CadenceUARTState *s)
173 {
174     s->tx_count = 0;
175 }
176 
177 static void uart_send_breaks(CadenceUARTState *s)
178 {
179     int break_enabled = 1;
180 
181     if (s->chr) {
182         qemu_chr_fe_ioctl(s->chr, CHR_IOCTL_SERIAL_SET_BREAK,
183                                    &break_enabled);
184     }
185 }
186 
187 static void uart_parameters_setup(CadenceUARTState *s)
188 {
189     QEMUSerialSetParams ssp;
190     unsigned int baud_rate, packet_size;
191 
192     baud_rate = (s->r[R_MR] & UART_MR_CLKS) ?
193             UART_INPUT_CLK / 8 : UART_INPUT_CLK;
194 
195     ssp.speed = baud_rate / (s->r[R_BRGR] * (s->r[R_BDIV] + 1));
196     packet_size = 1;
197 
198     switch (s->r[R_MR] & UART_MR_PAR) {
199     case UART_PARITY_EVEN:
200         ssp.parity = 'E';
201         packet_size++;
202         break;
203     case UART_PARITY_ODD:
204         ssp.parity = 'O';
205         packet_size++;
206         break;
207     default:
208         ssp.parity = 'N';
209         break;
210     }
211 
212     switch (s->r[R_MR] & UART_MR_CHRL) {
213     case UART_DATA_BITS_6:
214         ssp.data_bits = 6;
215         break;
216     case UART_DATA_BITS_7:
217         ssp.data_bits = 7;
218         break;
219     default:
220         ssp.data_bits = 8;
221         break;
222     }
223 
224     switch (s->r[R_MR] & UART_MR_NBSTOP) {
225     case UART_STOP_BITS_1:
226         ssp.stop_bits = 1;
227         break;
228     default:
229         ssp.stop_bits = 2;
230         break;
231     }
232 
233     packet_size += ssp.data_bits + ssp.stop_bits;
234     s->char_tx_time = (get_ticks_per_sec() / ssp.speed) * packet_size;
235     if (s->chr) {
236         qemu_chr_fe_ioctl(s->chr, CHR_IOCTL_SERIAL_SET_PARAMS, &ssp);
237     }
238 }
239 
240 static int uart_can_receive(void *opaque)
241 {
242     CadenceUARTState *s = opaque;
243     int ret = MAX(CADENCE_UART_RX_FIFO_SIZE, CADENCE_UART_TX_FIFO_SIZE);
244     uint32_t ch_mode = s->r[R_MR] & UART_MR_CHMODE;
245 
246     if (ch_mode == NORMAL_MODE || ch_mode == ECHO_MODE) {
247         ret = MIN(ret, CADENCE_UART_RX_FIFO_SIZE - s->rx_count);
248     }
249     if (ch_mode == REMOTE_LOOPBACK || ch_mode == ECHO_MODE) {
250         ret = MIN(ret, CADENCE_UART_TX_FIFO_SIZE - s->tx_count);
251     }
252     return ret;
253 }
254 
255 static void uart_ctrl_update(CadenceUARTState *s)
256 {
257     if (s->r[R_CR] & UART_CR_TXRST) {
258         uart_tx_reset(s);
259     }
260 
261     if (s->r[R_CR] & UART_CR_RXRST) {
262         uart_rx_reset(s);
263     }
264 
265     s->r[R_CR] &= ~(UART_CR_TXRST | UART_CR_RXRST);
266 
267     if (s->r[R_CR] & UART_CR_STARTBRK && !(s->r[R_CR] & UART_CR_STOPBRK)) {
268         uart_send_breaks(s);
269     }
270 }
271 
272 static void uart_write_rx_fifo(void *opaque, const uint8_t *buf, int size)
273 {
274     CadenceUARTState *s = opaque;
275     uint64_t new_rx_time = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
276     int i;
277 
278     if ((s->r[R_CR] & UART_CR_RX_DIS) || !(s->r[R_CR] & UART_CR_RX_EN)) {
279         return;
280     }
281 
282     if (s->rx_count == CADENCE_UART_RX_FIFO_SIZE) {
283         s->r[R_CISR] |= UART_INTR_ROVR;
284     } else {
285         for (i = 0; i < size; i++) {
286             s->rx_fifo[s->rx_wpos] = buf[i];
287             s->rx_wpos = (s->rx_wpos + 1) % CADENCE_UART_RX_FIFO_SIZE;
288             s->rx_count++;
289         }
290         timer_mod(s->fifo_trigger_handle, new_rx_time +
291                                                 (s->char_tx_time * 4));
292     }
293     uart_update_status(s);
294 }
295 
296 static gboolean cadence_uart_xmit(GIOChannel *chan, GIOCondition cond,
297                                   void *opaque)
298 {
299     CadenceUARTState *s = opaque;
300     int ret;
301 
302     /* instant drain the fifo when there's no back-end */
303     if (!s->chr) {
304         s->tx_count = 0;
305         return FALSE;
306     }
307 
308     if (!s->tx_count) {
309         return FALSE;
310     }
311 
312     ret = qemu_chr_fe_write(s->chr, s->tx_fifo, s->tx_count);
313     s->tx_count -= ret;
314     memmove(s->tx_fifo, s->tx_fifo + ret, s->tx_count);
315 
316     if (s->tx_count) {
317         int r = qemu_chr_fe_add_watch(s->chr, G_IO_OUT|G_IO_HUP,
318                                       cadence_uart_xmit, s);
319         assert(r);
320     }
321 
322     uart_update_status(s);
323     return FALSE;
324 }
325 
326 static void uart_write_tx_fifo(CadenceUARTState *s, const uint8_t *buf,
327                                int size)
328 {
329     if ((s->r[R_CR] & UART_CR_TX_DIS) || !(s->r[R_CR] & UART_CR_TX_EN)) {
330         return;
331     }
332 
333     if (size > CADENCE_UART_TX_FIFO_SIZE - s->tx_count) {
334         size = CADENCE_UART_TX_FIFO_SIZE - s->tx_count;
335         /*
336          * This can only be a guest error via a bad tx fifo register push,
337          * as can_receive() should stop remote loop and echo modes ever getting
338          * us to here.
339          */
340         qemu_log_mask(LOG_GUEST_ERROR, "cadence_uart: TxFIFO overflow");
341         s->r[R_CISR] |= UART_INTR_ROVR;
342     }
343 
344     memcpy(s->tx_fifo + s->tx_count, buf, size);
345     s->tx_count += size;
346 
347     cadence_uart_xmit(NULL, G_IO_OUT, s);
348 }
349 
350 static void uart_receive(void *opaque, const uint8_t *buf, int size)
351 {
352     CadenceUARTState *s = opaque;
353     uint32_t ch_mode = s->r[R_MR] & UART_MR_CHMODE;
354 
355     if (ch_mode == NORMAL_MODE || ch_mode == ECHO_MODE) {
356         uart_write_rx_fifo(opaque, buf, size);
357     }
358     if (ch_mode == REMOTE_LOOPBACK || ch_mode == ECHO_MODE) {
359         uart_write_tx_fifo(s, buf, size);
360     }
361 }
362 
363 static void uart_event(void *opaque, int event)
364 {
365     CadenceUARTState *s = opaque;
366     uint8_t buf = '\0';
367 
368     if (event == CHR_EVENT_BREAK) {
369         uart_write_rx_fifo(opaque, &buf, 1);
370     }
371 
372     uart_update_status(s);
373 }
374 
375 static void uart_read_rx_fifo(CadenceUARTState *s, uint32_t *c)
376 {
377     if ((s->r[R_CR] & UART_CR_RX_DIS) || !(s->r[R_CR] & UART_CR_RX_EN)) {
378         return;
379     }
380 
381     if (s->rx_count) {
382         uint32_t rx_rpos = (CADENCE_UART_RX_FIFO_SIZE + s->rx_wpos -
383                             s->rx_count) % CADENCE_UART_RX_FIFO_SIZE;
384         *c = s->rx_fifo[rx_rpos];
385         s->rx_count--;
386 
387         if (s->chr) {
388             qemu_chr_accept_input(s->chr);
389         }
390     } else {
391         *c = 0;
392     }
393 
394     uart_update_status(s);
395 }
396 
397 static void uart_write(void *opaque, hwaddr offset,
398                           uint64_t value, unsigned size)
399 {
400     CadenceUARTState *s = opaque;
401 
402     DB_PRINT(" offset:%x data:%08x\n", (unsigned)offset, (unsigned)value);
403     offset >>= 2;
404     switch (offset) {
405     case R_IER: /* ier (wts imr) */
406         s->r[R_IMR] |= value;
407         break;
408     case R_IDR: /* idr (wtc imr) */
409         s->r[R_IMR] &= ~value;
410         break;
411     case R_IMR: /* imr (read only) */
412         break;
413     case R_CISR: /* cisr (wtc) */
414         s->r[R_CISR] &= ~value;
415         break;
416     case R_TX_RX: /* UARTDR */
417         switch (s->r[R_MR] & UART_MR_CHMODE) {
418         case NORMAL_MODE:
419             uart_write_tx_fifo(s, (uint8_t *) &value, 1);
420             break;
421         case LOCAL_LOOPBACK:
422             uart_write_rx_fifo(opaque, (uint8_t *) &value, 1);
423             break;
424         }
425         break;
426     default:
427         s->r[offset] = value;
428     }
429 
430     switch (offset) {
431     case R_CR:
432         uart_ctrl_update(s);
433         break;
434     case R_MR:
435         uart_parameters_setup(s);
436         break;
437     }
438     uart_update_status(s);
439 }
440 
441 static uint64_t uart_read(void *opaque, hwaddr offset,
442         unsigned size)
443 {
444     CadenceUARTState *s = opaque;
445     uint32_t c = 0;
446 
447     offset >>= 2;
448     if (offset >= CADENCE_UART_R_MAX) {
449         c = 0;
450     } else if (offset == R_TX_RX) {
451         uart_read_rx_fifo(s, &c);
452     } else {
453        c = s->r[offset];
454     }
455 
456     DB_PRINT(" offset:%x data:%08x\n", (unsigned)(offset << 2), (unsigned)c);
457     return c;
458 }
459 
460 static const MemoryRegionOps uart_ops = {
461     .read = uart_read,
462     .write = uart_write,
463     .endianness = DEVICE_NATIVE_ENDIAN,
464 };
465 
466 static void cadence_uart_reset(DeviceState *dev)
467 {
468     CadenceUARTState *s = CADENCE_UART(dev);
469 
470     s->r[R_CR] = 0x00000128;
471     s->r[R_IMR] = 0;
472     s->r[R_CISR] = 0;
473     s->r[R_RTRIG] = 0x00000020;
474     s->r[R_BRGR] = 0x0000000F;
475     s->r[R_TTRIG] = 0x00000020;
476 
477     uart_rx_reset(s);
478     uart_tx_reset(s);
479 
480     uart_update_status(s);
481 }
482 
483 static void cadence_uart_realize(DeviceState *dev, Error **errp)
484 {
485     CadenceUARTState *s = CADENCE_UART(dev);
486 
487     s->fifo_trigger_handle = timer_new_ns(QEMU_CLOCK_VIRTUAL,
488                                           fifo_trigger_update, s);
489 
490     /* FIXME use a qdev chardev prop instead of qemu_char_get_next_serial() */
491     s->chr = qemu_char_get_next_serial();
492 
493     if (s->chr) {
494         qemu_chr_add_handlers(s->chr, uart_can_receive, uart_receive,
495                               uart_event, s);
496     }
497 }
498 
499 static void cadence_uart_init(Object *obj)
500 {
501     SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
502     CadenceUARTState *s = CADENCE_UART(obj);
503 
504     memory_region_init_io(&s->iomem, obj, &uart_ops, s, "uart", 0x1000);
505     sysbus_init_mmio(sbd, &s->iomem);
506     sysbus_init_irq(sbd, &s->irq);
507 
508     s->char_tx_time = (get_ticks_per_sec() / 9600) * 10;
509 }
510 
511 static int cadence_uart_post_load(void *opaque, int version_id)
512 {
513     CadenceUARTState *s = opaque;
514 
515     uart_parameters_setup(s);
516     uart_update_status(s);
517     return 0;
518 }
519 
520 static const VMStateDescription vmstate_cadence_uart = {
521     .name = "cadence_uart",
522     .version_id = 2,
523     .minimum_version_id = 2,
524     .post_load = cadence_uart_post_load,
525     .fields = (VMStateField[]) {
526         VMSTATE_UINT32_ARRAY(r, CadenceUARTState, CADENCE_UART_R_MAX),
527         VMSTATE_UINT8_ARRAY(rx_fifo, CadenceUARTState,
528                             CADENCE_UART_RX_FIFO_SIZE),
529         VMSTATE_UINT8_ARRAY(tx_fifo, CadenceUARTState,
530                             CADENCE_UART_TX_FIFO_SIZE),
531         VMSTATE_UINT32(rx_count, CadenceUARTState),
532         VMSTATE_UINT32(tx_count, CadenceUARTState),
533         VMSTATE_UINT32(rx_wpos, CadenceUARTState),
534         VMSTATE_TIMER_PTR(fifo_trigger_handle, CadenceUARTState),
535         VMSTATE_END_OF_LIST()
536     }
537 };
538 
539 static void cadence_uart_class_init(ObjectClass *klass, void *data)
540 {
541     DeviceClass *dc = DEVICE_CLASS(klass);
542 
543     dc->realize = cadence_uart_realize;
544     dc->vmsd = &vmstate_cadence_uart;
545     dc->reset = cadence_uart_reset;
546     /* Reason: realize() method uses qemu_char_get_next_serial() */
547     dc->cannot_instantiate_with_device_add_yet = true;
548 }
549 
550 static const TypeInfo cadence_uart_info = {
551     .name          = TYPE_CADENCE_UART,
552     .parent        = TYPE_SYS_BUS_DEVICE,
553     .instance_size = sizeof(CadenceUARTState),
554     .instance_init = cadence_uart_init,
555     .class_init    = cadence_uart_class_init,
556 };
557 
558 static void cadence_uart_register_types(void)
559 {
560     type_register_static(&cadence_uart_info);
561 }
562 
563 type_init(cadence_uart_register_types)
564