xref: /qemu/hw/char/cadence_uart.c (revision 676f4c095d53841626b1ee2cbc7a53b4f6239e4e)
1 /*
2  * Device model for Cadence UART
3  *
4  * Copyright (c) 2010 Xilinx Inc.
5  * Copyright (c) 2012 Peter A.G. Crosthwaite (peter.crosthwaite@petalogix.com)
6  * Copyright (c) 2012 PetaLogix Pty Ltd.
7  * Written by Haibing Ma
8  *            M.Habib
9  *
10  * This program is free software; you can redistribute it and/or
11  * modify it under the terms of the GNU General Public License
12  * as published by the Free Software Foundation; either version
13  * 2 of the License, or (at your option) any later version.
14  *
15  * You should have received a copy of the GNU General Public License along
16  * with this program; if not, see <http://www.gnu.org/licenses/>.
17  */
18 
19 #include "hw/sysbus.h"
20 #include "sysemu/char.h"
21 #include "qemu/timer.h"
22 
23 #ifdef CADENCE_UART_ERR_DEBUG
24 #define DB_PRINT(...) do { \
25     fprintf(stderr,  ": %s: ", __func__); \
26     fprintf(stderr, ## __VA_ARGS__); \
27     } while (0);
28 #else
29     #define DB_PRINT(...)
30 #endif
31 
32 #define UART_SR_INTR_RTRIG     0x00000001
33 #define UART_SR_INTR_REMPTY    0x00000002
34 #define UART_SR_INTR_RFUL      0x00000004
35 #define UART_SR_INTR_TEMPTY    0x00000008
36 #define UART_SR_INTR_TFUL      0x00000010
37 /* bits fields in CSR that correlate to CISR. If any of these bits are set in
38  * SR, then the same bit in CISR is set high too */
39 #define UART_SR_TO_CISR_MASK   0x0000001F
40 
41 #define UART_INTR_ROVR         0x00000020
42 #define UART_INTR_FRAME        0x00000040
43 #define UART_INTR_PARE         0x00000080
44 #define UART_INTR_TIMEOUT      0x00000100
45 #define UART_INTR_DMSI         0x00000200
46 
47 #define UART_SR_RACTIVE    0x00000400
48 #define UART_SR_TACTIVE    0x00000800
49 #define UART_SR_FDELT      0x00001000
50 
51 #define UART_CR_RXRST       0x00000001
52 #define UART_CR_TXRST       0x00000002
53 #define UART_CR_RX_EN       0x00000004
54 #define UART_CR_RX_DIS      0x00000008
55 #define UART_CR_TX_EN       0x00000010
56 #define UART_CR_TX_DIS      0x00000020
57 #define UART_CR_RST_TO      0x00000040
58 #define UART_CR_STARTBRK    0x00000080
59 #define UART_CR_STOPBRK     0x00000100
60 
61 #define UART_MR_CLKS            0x00000001
62 #define UART_MR_CHRL            0x00000006
63 #define UART_MR_CHRL_SH         1
64 #define UART_MR_PAR             0x00000038
65 #define UART_MR_PAR_SH          3
66 #define UART_MR_NBSTOP          0x000000C0
67 #define UART_MR_NBSTOP_SH       6
68 #define UART_MR_CHMODE          0x00000300
69 #define UART_MR_CHMODE_SH       8
70 #define UART_MR_UCLKEN          0x00000400
71 #define UART_MR_IRMODE          0x00000800
72 
73 #define UART_DATA_BITS_6       (0x3 << UART_MR_CHRL_SH)
74 #define UART_DATA_BITS_7       (0x2 << UART_MR_CHRL_SH)
75 #define UART_PARITY_ODD        (0x1 << UART_MR_PAR_SH)
76 #define UART_PARITY_EVEN       (0x0 << UART_MR_PAR_SH)
77 #define UART_STOP_BITS_1       (0x3 << UART_MR_NBSTOP_SH)
78 #define UART_STOP_BITS_2       (0x2 << UART_MR_NBSTOP_SH)
79 #define NORMAL_MODE            (0x0 << UART_MR_CHMODE_SH)
80 #define ECHO_MODE              (0x1 << UART_MR_CHMODE_SH)
81 #define LOCAL_LOOPBACK         (0x2 << UART_MR_CHMODE_SH)
82 #define REMOTE_LOOPBACK        (0x3 << UART_MR_CHMODE_SH)
83 
84 #define RX_FIFO_SIZE           16
85 #define TX_FIFO_SIZE           16
86 #define UART_INPUT_CLK         50000000
87 
88 #define R_CR       (0x00/4)
89 #define R_MR       (0x04/4)
90 #define R_IER      (0x08/4)
91 #define R_IDR      (0x0C/4)
92 #define R_IMR      (0x10/4)
93 #define R_CISR     (0x14/4)
94 #define R_BRGR     (0x18/4)
95 #define R_RTOR     (0x1C/4)
96 #define R_RTRIG    (0x20/4)
97 #define R_MCR      (0x24/4)
98 #define R_MSR      (0x28/4)
99 #define R_SR       (0x2C/4)
100 #define R_TX_RX    (0x30/4)
101 #define R_BDIV     (0x34/4)
102 #define R_FDEL     (0x38/4)
103 #define R_PMIN     (0x3C/4)
104 #define R_PWID     (0x40/4)
105 #define R_TTRIG    (0x44/4)
106 
107 #define R_MAX (R_TTRIG + 1)
108 
109 #define TYPE_CADENCE_UART "cadence_uart"
110 #define CADENCE_UART(obj) OBJECT_CHECK(UartState, (obj), TYPE_CADENCE_UART)
111 
112 typedef struct {
113     /*< private >*/
114     SysBusDevice parent_obj;
115     /*< public >*/
116 
117     MemoryRegion iomem;
118     uint32_t r[R_MAX];
119     uint8_t rx_fifo[RX_FIFO_SIZE];
120     uint32_t rx_wpos;
121     uint32_t rx_count;
122     uint64_t char_tx_time;
123     CharDriverState *chr;
124     qemu_irq irq;
125     QEMUTimer *fifo_trigger_handle;
126     QEMUTimer *tx_time_handle;
127 } UartState;
128 
129 static void uart_update_status(UartState *s)
130 {
131     s->r[R_SR] = 0;
132 
133     s->r[R_SR] |= s->rx_count == RX_FIFO_SIZE ? UART_SR_INTR_RFUL : 0;
134     s->r[R_SR] |= !s->rx_count ? UART_SR_INTR_REMPTY : 0;
135     s->r[R_SR] |= s->rx_count >= s->r[R_RTRIG] ? UART_SR_INTR_RTRIG : 0;
136 
137     s->r[R_SR] |= UART_SR_INTR_TEMPTY;
138     s->r[R_CISR] |= s->r[R_SR] & UART_SR_TO_CISR_MASK;
139     qemu_set_irq(s->irq, !!(s->r[R_IMR] & s->r[R_CISR]));
140 }
141 
142 static void fifo_trigger_update(void *opaque)
143 {
144     UartState *s = (UartState *)opaque;
145 
146     s->r[R_CISR] |= UART_INTR_TIMEOUT;
147 
148     uart_update_status(s);
149 }
150 
151 static void uart_tx_redo(UartState *s)
152 {
153     uint64_t new_tx_time = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
154 
155     timer_mod(s->tx_time_handle, new_tx_time + s->char_tx_time);
156 
157     s->r[R_SR] |= UART_SR_INTR_TEMPTY;
158 
159     uart_update_status(s);
160 }
161 
162 static void uart_tx_write(void *opaque)
163 {
164     UartState *s = (UartState *)opaque;
165 
166     uart_tx_redo(s);
167 }
168 
169 static void uart_rx_reset(UartState *s)
170 {
171     s->rx_wpos = 0;
172     s->rx_count = 0;
173     if (s->chr) {
174         qemu_chr_accept_input(s->chr);
175     }
176 }
177 
178 static void uart_tx_reset(UartState *s)
179 {
180 }
181 
182 static void uart_send_breaks(UartState *s)
183 {
184     int break_enabled = 1;
185 
186     qemu_chr_fe_ioctl(s->chr, CHR_IOCTL_SERIAL_SET_BREAK,
187                                &break_enabled);
188 }
189 
190 static void uart_parameters_setup(UartState *s)
191 {
192     QEMUSerialSetParams ssp;
193     unsigned int baud_rate, packet_size;
194 
195     baud_rate = (s->r[R_MR] & UART_MR_CLKS) ?
196             UART_INPUT_CLK / 8 : UART_INPUT_CLK;
197 
198     ssp.speed = baud_rate / (s->r[R_BRGR] * (s->r[R_BDIV] + 1));
199     packet_size = 1;
200 
201     switch (s->r[R_MR] & UART_MR_PAR) {
202     case UART_PARITY_EVEN:
203         ssp.parity = 'E';
204         packet_size++;
205         break;
206     case UART_PARITY_ODD:
207         ssp.parity = 'O';
208         packet_size++;
209         break;
210     default:
211         ssp.parity = 'N';
212         break;
213     }
214 
215     switch (s->r[R_MR] & UART_MR_CHRL) {
216     case UART_DATA_BITS_6:
217         ssp.data_bits = 6;
218         break;
219     case UART_DATA_BITS_7:
220         ssp.data_bits = 7;
221         break;
222     default:
223         ssp.data_bits = 8;
224         break;
225     }
226 
227     switch (s->r[R_MR] & UART_MR_NBSTOP) {
228     case UART_STOP_BITS_1:
229         ssp.stop_bits = 1;
230         break;
231     default:
232         ssp.stop_bits = 2;
233         break;
234     }
235 
236     packet_size += ssp.data_bits + ssp.stop_bits;
237     s->char_tx_time = (get_ticks_per_sec() / ssp.speed) * packet_size;
238     qemu_chr_fe_ioctl(s->chr, CHR_IOCTL_SERIAL_SET_PARAMS, &ssp);
239 }
240 
241 static int uart_can_receive(void *opaque)
242 {
243     UartState *s = (UartState *)opaque;
244 
245     return RX_FIFO_SIZE - s->rx_count;
246 }
247 
248 static void uart_ctrl_update(UartState *s)
249 {
250     if (s->r[R_CR] & UART_CR_TXRST) {
251         uart_tx_reset(s);
252     }
253 
254     if (s->r[R_CR] & UART_CR_RXRST) {
255         uart_rx_reset(s);
256     }
257 
258     s->r[R_CR] &= ~(UART_CR_TXRST | UART_CR_RXRST);
259 
260     if ((s->r[R_CR] & UART_CR_TX_EN) && !(s->r[R_CR] & UART_CR_TX_DIS)) {
261             uart_tx_redo(s);
262     }
263 
264     if (s->r[R_CR] & UART_CR_STARTBRK && !(s->r[R_CR] & UART_CR_STOPBRK)) {
265         uart_send_breaks(s);
266     }
267 }
268 
269 static void uart_write_rx_fifo(void *opaque, const uint8_t *buf, int size)
270 {
271     UartState *s = (UartState *)opaque;
272     uint64_t new_rx_time = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
273     int i;
274 
275     if ((s->r[R_CR] & UART_CR_RX_DIS) || !(s->r[R_CR] & UART_CR_RX_EN)) {
276         return;
277     }
278 
279     if (s->rx_count == RX_FIFO_SIZE) {
280         s->r[R_CISR] |= UART_INTR_ROVR;
281     } else {
282         for (i = 0; i < size; i++) {
283             s->rx_fifo[s->rx_wpos] = buf[i];
284             s->rx_wpos = (s->rx_wpos + 1) % RX_FIFO_SIZE;
285             s->rx_count++;
286         }
287         timer_mod(s->fifo_trigger_handle, new_rx_time +
288                                                 (s->char_tx_time * 4));
289     }
290     uart_update_status(s);
291 }
292 
293 static void uart_write_tx_fifo(UartState *s, const uint8_t *buf, int size)
294 {
295     if ((s->r[R_CR] & UART_CR_TX_DIS) || !(s->r[R_CR] & UART_CR_TX_EN)) {
296         return;
297     }
298 
299     qemu_chr_fe_write_all(s->chr, buf, size);
300 }
301 
302 static void uart_receive(void *opaque, const uint8_t *buf, int size)
303 {
304     UartState *s = (UartState *)opaque;
305     uint32_t ch_mode = s->r[R_MR] & UART_MR_CHMODE;
306 
307     if (ch_mode == NORMAL_MODE || ch_mode == ECHO_MODE) {
308         uart_write_rx_fifo(opaque, buf, size);
309     }
310     if (ch_mode == REMOTE_LOOPBACK || ch_mode == ECHO_MODE) {
311         uart_write_tx_fifo(s, buf, size);
312     }
313 }
314 
315 static void uart_event(void *opaque, int event)
316 {
317     UartState *s = (UartState *)opaque;
318     uint8_t buf = '\0';
319 
320     if (event == CHR_EVENT_BREAK) {
321         uart_write_rx_fifo(opaque, &buf, 1);
322     }
323 
324     uart_update_status(s);
325 }
326 
327 static void uart_read_rx_fifo(UartState *s, uint32_t *c)
328 {
329     if ((s->r[R_CR] & UART_CR_RX_DIS) || !(s->r[R_CR] & UART_CR_RX_EN)) {
330         return;
331     }
332 
333     if (s->rx_count) {
334         uint32_t rx_rpos =
335                 (RX_FIFO_SIZE + s->rx_wpos - s->rx_count) % RX_FIFO_SIZE;
336         *c = s->rx_fifo[rx_rpos];
337         s->rx_count--;
338 
339         qemu_chr_accept_input(s->chr);
340     } else {
341         *c = 0;
342     }
343 
344     uart_update_status(s);
345 }
346 
347 static void uart_write(void *opaque, hwaddr offset,
348                           uint64_t value, unsigned size)
349 {
350     UartState *s = (UartState *)opaque;
351 
352     DB_PRINT(" offset:%x data:%08x\n", (unsigned)offset, (unsigned)value);
353     offset >>= 2;
354     switch (offset) {
355     case R_IER: /* ier (wts imr) */
356         s->r[R_IMR] |= value;
357         break;
358     case R_IDR: /* idr (wtc imr) */
359         s->r[R_IMR] &= ~value;
360         break;
361     case R_IMR: /* imr (read only) */
362         break;
363     case R_CISR: /* cisr (wtc) */
364         s->r[R_CISR] &= ~value;
365         break;
366     case R_TX_RX: /* UARTDR */
367         switch (s->r[R_MR] & UART_MR_CHMODE) {
368         case NORMAL_MODE:
369             uart_write_tx_fifo(s, (uint8_t *) &value, 1);
370             break;
371         case LOCAL_LOOPBACK:
372             uart_write_rx_fifo(opaque, (uint8_t *) &value, 1);
373             break;
374         }
375         break;
376     default:
377         s->r[offset] = value;
378     }
379 
380     switch (offset) {
381     case R_CR:
382         uart_ctrl_update(s);
383         break;
384     case R_MR:
385         uart_parameters_setup(s);
386         break;
387     }
388     uart_update_status(s);
389 }
390 
391 static uint64_t uart_read(void *opaque, hwaddr offset,
392         unsigned size)
393 {
394     UartState *s = (UartState *)opaque;
395     uint32_t c = 0;
396 
397     offset >>= 2;
398     if (offset >= R_MAX) {
399         c = 0;
400     } else if (offset == R_TX_RX) {
401         uart_read_rx_fifo(s, &c);
402     } else {
403        c = s->r[offset];
404     }
405 
406     DB_PRINT(" offset:%x data:%08x\n", (unsigned)(offset << 2), (unsigned)c);
407     return c;
408 }
409 
410 static const MemoryRegionOps uart_ops = {
411     .read = uart_read,
412     .write = uart_write,
413     .endianness = DEVICE_NATIVE_ENDIAN,
414 };
415 
416 static void cadence_uart_reset(DeviceState *dev)
417 {
418     UartState *s = CADENCE_UART(dev);
419 
420     s->r[R_CR] = 0x00000128;
421     s->r[R_IMR] = 0;
422     s->r[R_CISR] = 0;
423     s->r[R_RTRIG] = 0x00000020;
424     s->r[R_BRGR] = 0x0000000F;
425     s->r[R_TTRIG] = 0x00000020;
426 
427     uart_rx_reset(s);
428     uart_tx_reset(s);
429 
430     s->rx_count = 0;
431     s->rx_wpos = 0;
432     uart_update_status(s);
433 }
434 
435 static int cadence_uart_init(SysBusDevice *dev)
436 {
437     UartState *s = CADENCE_UART(dev);
438 
439     memory_region_init_io(&s->iomem, OBJECT(s), &uart_ops, s, "uart", 0x1000);
440     sysbus_init_mmio(dev, &s->iomem);
441     sysbus_init_irq(dev, &s->irq);
442 
443     s->fifo_trigger_handle = timer_new_ns(QEMU_CLOCK_VIRTUAL,
444             (QEMUTimerCB *)fifo_trigger_update, s);
445 
446     s->tx_time_handle = timer_new_ns(QEMU_CLOCK_VIRTUAL,
447             (QEMUTimerCB *)uart_tx_write, s);
448 
449     s->char_tx_time = (get_ticks_per_sec() / 9600) * 10;
450 
451     s->chr = qemu_char_get_next_serial();
452 
453     if (s->chr) {
454         qemu_chr_add_handlers(s->chr, uart_can_receive, uart_receive,
455                               uart_event, s);
456     }
457 
458     return 0;
459 }
460 
461 static int cadence_uart_post_load(void *opaque, int version_id)
462 {
463     UartState *s = opaque;
464 
465     uart_parameters_setup(s);
466     uart_update_status(s);
467     return 0;
468 }
469 
470 static const VMStateDescription vmstate_cadence_uart = {
471     .name = "cadence_uart",
472     .version_id = 1,
473     .minimum_version_id = 1,
474     .minimum_version_id_old = 1,
475     .post_load = cadence_uart_post_load,
476     .fields = (VMStateField[]) {
477         VMSTATE_UINT32_ARRAY(r, UartState, R_MAX),
478         VMSTATE_UINT8_ARRAY(rx_fifo, UartState, RX_FIFO_SIZE),
479         VMSTATE_UINT32(rx_count, UartState),
480         VMSTATE_UINT32(rx_wpos, UartState),
481         VMSTATE_TIMER(fifo_trigger_handle, UartState),
482         VMSTATE_TIMER(tx_time_handle, UartState),
483         VMSTATE_END_OF_LIST()
484     }
485 };
486 
487 static void cadence_uart_class_init(ObjectClass *klass, void *data)
488 {
489     DeviceClass *dc = DEVICE_CLASS(klass);
490     SysBusDeviceClass *sdc = SYS_BUS_DEVICE_CLASS(klass);
491 
492     sdc->init = cadence_uart_init;
493     dc->vmsd = &vmstate_cadence_uart;
494     dc->reset = cadence_uart_reset;
495 }
496 
497 static const TypeInfo cadence_uart_info = {
498     .name          = TYPE_CADENCE_UART,
499     .parent        = TYPE_SYS_BUS_DEVICE,
500     .instance_size = sizeof(UartState),
501     .class_init    = cadence_uart_class_init,
502 };
503 
504 static void cadence_uart_register_types(void)
505 {
506     type_register_static(&cadence_uart_info);
507 }
508 
509 type_init(cadence_uart_register_types)
510