xref: /qemu/hw/block/m25p80.c (revision f505a4d74aae6fc8bb5502a6038b5f671aa97713)
1 /*
2  * ST M25P80 emulator. Emulate all SPI flash devices based on the m25p80 command
3  * set. Known devices table current as of Jun/2012 and taken from linux.
4  * See drivers/mtd/devices/m25p80.c.
5  *
6  * Copyright (C) 2011 Edgar E. Iglesias <edgar.iglesias@gmail.com>
7  * Copyright (C) 2012 Peter A. G. Crosthwaite <peter.crosthwaite@petalogix.com>
8  * Copyright (C) 2012 PetaLogix
9  *
10  * This program is free software; you can redistribute it and/or
11  * modify it under the terms of the GNU General Public License as
12  * published by the Free Software Foundation; either version 2 or
13  * (at your option) a later version of the License.
14  *
15  * This program is distributed in the hope that it will be useful,
16  * but WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
18  * GNU General Public License for more details.
19  *
20  * You should have received a copy of the GNU General Public License along
21  * with this program; if not, see <http://www.gnu.org/licenses/>.
22  */
23 
24 #include "hw/hw.h"
25 #include "sysemu/blockdev.h"
26 #include "hw/ssi.h"
27 #include "hw/devices.h"
28 
29 #ifndef M25P80_ERR_DEBUG
30 #define M25P80_ERR_DEBUG 0
31 #endif
32 
33 #define DB_PRINT_L(level, ...) do { \
34     if (M25P80_ERR_DEBUG > (level)) { \
35         fprintf(stderr,  ": %s: ", __func__); \
36         fprintf(stderr, ## __VA_ARGS__); \
37     } \
38 } while (0);
39 
40 /* Fields for FlashPartInfo->flags */
41 
42 /* erase capabilities */
43 #define ER_4K 1
44 #define ER_32K 2
45 /* set to allow the page program command to write 0s back to 1. Useful for
46  * modelling EEPROM with SPI flash command set
47  */
48 #define WR_1 0x100
49 
50 typedef struct FlashPartInfo {
51     const char *part_name;
52     /* jedec code. (jedec >> 16) & 0xff is the 1st byte, >> 8 the 2nd etc */
53     uint32_t jedec;
54     /* extended jedec code */
55     uint16_t ext_jedec;
56     /* there is confusion between manufacturers as to what a sector is. In this
57      * device model, a "sector" is the size that is erased by the ERASE_SECTOR
58      * command (opcode 0xd8).
59      */
60     uint32_t sector_size;
61     uint32_t n_sectors;
62     uint32_t page_size;
63     uint8_t flags;
64 } FlashPartInfo;
65 
66 /* adapted from linux */
67 
68 #define INFO(_part_name, _jedec, _ext_jedec, _sector_size, _n_sectors, _flags)\
69     .part_name = (_part_name),\
70     .jedec = (_jedec),\
71     .ext_jedec = (_ext_jedec),\
72     .sector_size = (_sector_size),\
73     .n_sectors = (_n_sectors),\
74     .page_size = 256,\
75     .flags = (_flags),\
76 
77 #define JEDEC_NUMONYX 0x20
78 #define JEDEC_WINBOND 0xEF
79 #define JEDEC_SPANSION 0x01
80 
81 static const FlashPartInfo known_devices[] = {
82     /* Atmel -- some are (confusingly) marketed as "DataFlash" */
83     { INFO("at25fs010",   0x1f6601,      0,  32 << 10,   4, ER_4K) },
84     { INFO("at25fs040",   0x1f6604,      0,  64 << 10,   8, ER_4K) },
85 
86     { INFO("at25df041a",  0x1f4401,      0,  64 << 10,   8, ER_4K) },
87     { INFO("at25df321a",  0x1f4701,      0,  64 << 10,  64, ER_4K) },
88     { INFO("at25df641",   0x1f4800,      0,  64 << 10, 128, ER_4K) },
89 
90     { INFO("at26f004",    0x1f0400,      0,  64 << 10,   8, ER_4K) },
91     { INFO("at26df081a",  0x1f4501,      0,  64 << 10,  16, ER_4K) },
92     { INFO("at26df161a",  0x1f4601,      0,  64 << 10,  32, ER_4K) },
93     { INFO("at26df321",   0x1f4700,      0,  64 << 10,  64, ER_4K) },
94 
95     /* EON -- en25xxx */
96     { INFO("en25f32",     0x1c3116,      0,  64 << 10,  64, ER_4K) },
97     { INFO("en25p32",     0x1c2016,      0,  64 << 10,  64, 0) },
98     { INFO("en25q32b",    0x1c3016,      0,  64 << 10,  64, 0) },
99     { INFO("en25p64",     0x1c2017,      0,  64 << 10, 128, 0) },
100 
101     /* Intel/Numonyx -- xxxs33b */
102     { INFO("160s33b",     0x898911,      0,  64 << 10,  32, 0) },
103     { INFO("320s33b",     0x898912,      0,  64 << 10,  64, 0) },
104     { INFO("640s33b",     0x898913,      0,  64 << 10, 128, 0) },
105 
106     /* Macronix */
107     { INFO("mx25l4005a",  0xc22013,      0,  64 << 10,   8, ER_4K) },
108     { INFO("mx25l8005",   0xc22014,      0,  64 << 10,  16, 0) },
109     { INFO("mx25l1606e",  0xc22015,      0,  64 << 10,  32, ER_4K) },
110     { INFO("mx25l3205d",  0xc22016,      0,  64 << 10,  64, 0) },
111     { INFO("mx25l6405d",  0xc22017,      0,  64 << 10, 128, 0) },
112     { INFO("mx25l12805d", 0xc22018,      0,  64 << 10, 256, 0) },
113     { INFO("mx25l12855e", 0xc22618,      0,  64 << 10, 256, 0) },
114     { INFO("mx25l25635e", 0xc22019,      0,  64 << 10, 512, 0) },
115     { INFO("mx25l25655e", 0xc22619,      0,  64 << 10, 512, 0) },
116 
117     /* Spansion -- single (large) sector size only, at least
118      * for the chips listed here (without boot sectors).
119      */
120     { INFO("s25sl004a",   0x010212,      0,  64 << 10,   8, 0) },
121     { INFO("s25sl008a",   0x010213,      0,  64 << 10,  16, 0) },
122     { INFO("s25sl016a",   0x010214,      0,  64 << 10,  32, 0) },
123     { INFO("s25sl032a",   0x010215,      0,  64 << 10,  64, 0) },
124     { INFO("s25sl032p",   0x010215, 0x4d00,  64 << 10,  64, ER_4K) },
125     { INFO("s25sl064a",   0x010216,      0,  64 << 10, 128, 0) },
126     { INFO("s25fl256s0",  0x010219, 0x4d00, 256 << 10, 128, 0) },
127     { INFO("s25fl256s1",  0x010219, 0x4d01,  64 << 10, 512, 0) },
128     { INFO("s25fl512s",   0x010220, 0x4d00, 256 << 10, 256, 0) },
129     { INFO("s70fl01gs",   0x010221, 0x4d00, 256 << 10, 256, 0) },
130     { INFO("s25sl12800",  0x012018, 0x0300, 256 << 10,  64, 0) },
131     { INFO("s25sl12801",  0x012018, 0x0301,  64 << 10, 256, 0) },
132     { INFO("s25fl129p0",  0x012018, 0x4d00, 256 << 10,  64, 0) },
133     { INFO("s25fl129p1",  0x012018, 0x4d01,  64 << 10, 256, 0) },
134     { INFO("s25fl016k",   0xef4015,      0,  64 << 10,  32, ER_4K | ER_32K) },
135     { INFO("s25fl064k",   0xef4017,      0,  64 << 10, 128, ER_4K | ER_32K) },
136 
137     /* SST -- large erase sizes are "overlays", "sectors" are 4<< 10 */
138     { INFO("sst25vf040b", 0xbf258d,      0,  64 << 10,   8, ER_4K) },
139     { INFO("sst25vf080b", 0xbf258e,      0,  64 << 10,  16, ER_4K) },
140     { INFO("sst25vf016b", 0xbf2541,      0,  64 << 10,  32, ER_4K) },
141     { INFO("sst25vf032b", 0xbf254a,      0,  64 << 10,  64, ER_4K) },
142     { INFO("sst25wf512",  0xbf2501,      0,  64 << 10,   1, ER_4K) },
143     { INFO("sst25wf010",  0xbf2502,      0,  64 << 10,   2, ER_4K) },
144     { INFO("sst25wf020",  0xbf2503,      0,  64 << 10,   4, ER_4K) },
145     { INFO("sst25wf040",  0xbf2504,      0,  64 << 10,   8, ER_4K) },
146 
147     /* ST Microelectronics -- newer production may have feature updates */
148     { INFO("m25p05",      0x202010,      0,  32 << 10,   2, 0) },
149     { INFO("m25p10",      0x202011,      0,  32 << 10,   4, 0) },
150     { INFO("m25p20",      0x202012,      0,  64 << 10,   4, 0) },
151     { INFO("m25p40",      0x202013,      0,  64 << 10,   8, 0) },
152     { INFO("m25p80",      0x202014,      0,  64 << 10,  16, 0) },
153     { INFO("m25p16",      0x202015,      0,  64 << 10,  32, 0) },
154     { INFO("m25p32",      0x202016,      0,  64 << 10,  64, 0) },
155     { INFO("m25p64",      0x202017,      0,  64 << 10, 128, 0) },
156     { INFO("m25p128",     0x202018,      0, 256 << 10,  64, 0) },
157 
158     { INFO("m45pe10",     0x204011,      0,  64 << 10,   2, 0) },
159     { INFO("m45pe80",     0x204014,      0,  64 << 10,  16, 0) },
160     { INFO("m45pe16",     0x204015,      0,  64 << 10,  32, 0) },
161 
162     { INFO("m25pe80",     0x208014,      0,  64 << 10,  16, 0) },
163     { INFO("m25pe16",     0x208015,      0,  64 << 10,  32, ER_4K) },
164 
165     { INFO("m25px32",     0x207116,      0,  64 << 10,  64, ER_4K) },
166     { INFO("m25px32-s0",  0x207316,      0,  64 << 10,  64, ER_4K) },
167     { INFO("m25px32-s1",  0x206316,      0,  64 << 10,  64, ER_4K) },
168     { INFO("m25px64",     0x207117,      0,  64 << 10, 128, 0) },
169 
170     /* Winbond -- w25x "blocks" are 64k, "sectors" are 4KiB */
171     { INFO("w25x10",      0xef3011,      0,  64 << 10,   2, ER_4K) },
172     { INFO("w25x20",      0xef3012,      0,  64 << 10,   4, ER_4K) },
173     { INFO("w25x40",      0xef3013,      0,  64 << 10,   8, ER_4K) },
174     { INFO("w25x80",      0xef3014,      0,  64 << 10,  16, ER_4K) },
175     { INFO("w25x16",      0xef3015,      0,  64 << 10,  32, ER_4K) },
176     { INFO("w25x32",      0xef3016,      0,  64 << 10,  64, ER_4K) },
177     { INFO("w25q32",      0xef4016,      0,  64 << 10,  64, ER_4K) },
178     { INFO("w25x64",      0xef3017,      0,  64 << 10, 128, ER_4K) },
179     { INFO("w25q64",      0xef4017,      0,  64 << 10, 128, ER_4K) },
180 
181     /* Numonyx -- n25q128 */
182     { INFO("n25q128",      0x20ba18,      0,  64 << 10, 256, 0) },
183 };
184 
185 typedef enum {
186     NOP = 0,
187     WRSR = 0x1,
188     WRDI = 0x4,
189     RDSR = 0x5,
190     WREN = 0x6,
191     JEDEC_READ = 0x9f,
192     BULK_ERASE = 0xc7,
193 
194     READ = 0x3,
195     FAST_READ = 0xb,
196     DOR = 0x3b,
197     QOR = 0x6b,
198     DIOR = 0xbb,
199     QIOR = 0xeb,
200 
201     PP = 0x2,
202     DPP = 0xa2,
203     QPP = 0x32,
204 
205     ERASE_4K = 0x20,
206     ERASE_32K = 0x52,
207     ERASE_SECTOR = 0xd8,
208 } FlashCMD;
209 
210 typedef enum {
211     STATE_IDLE,
212     STATE_PAGE_PROGRAM,
213     STATE_READ,
214     STATE_COLLECTING_DATA,
215     STATE_READING_DATA,
216 } CMDState;
217 
218 typedef struct Flash {
219     SSISlave ssidev;
220     uint32_t r;
221 
222     BlockDriverState *bdrv;
223 
224     uint8_t *storage;
225     uint32_t size;
226     int page_size;
227 
228     uint8_t state;
229     uint8_t data[16];
230     uint32_t len;
231     uint32_t pos;
232     uint8_t needed_bytes;
233     uint8_t cmd_in_progress;
234     uint64_t cur_addr;
235     bool write_enable;
236 
237     int64_t dirty_page;
238 
239     const FlashPartInfo *pi;
240 
241 } Flash;
242 
243 typedef struct M25P80Class {
244     SSISlaveClass parent_class;
245     FlashPartInfo *pi;
246 } M25P80Class;
247 
248 #define TYPE_M25P80 "m25p80-generic"
249 #define M25P80(obj) \
250      OBJECT_CHECK(Flash, (obj), TYPE_M25P80)
251 #define M25P80_CLASS(klass) \
252      OBJECT_CLASS_CHECK(M25P80Class, (klass), TYPE_M25P80)
253 #define M25P80_GET_CLASS(obj) \
254      OBJECT_GET_CLASS(M25P80Class, (obj), TYPE_M25P80)
255 
256 static void bdrv_sync_complete(void *opaque, int ret)
257 {
258     /* do nothing. Masters do not directly interact with the backing store,
259      * only the working copy so no mutexing required.
260      */
261 }
262 
263 static void flash_sync_page(Flash *s, int page)
264 {
265     if (s->bdrv) {
266         int bdrv_sector, nb_sectors;
267         QEMUIOVector iov;
268 
269         bdrv_sector = (page * s->pi->page_size) / BDRV_SECTOR_SIZE;
270         nb_sectors = DIV_ROUND_UP(s->pi->page_size, BDRV_SECTOR_SIZE);
271         qemu_iovec_init(&iov, 1);
272         qemu_iovec_add(&iov, s->storage + bdrv_sector * BDRV_SECTOR_SIZE,
273                                                 nb_sectors * BDRV_SECTOR_SIZE);
274         bdrv_aio_writev(s->bdrv, bdrv_sector, &iov, nb_sectors,
275                                                 bdrv_sync_complete, NULL);
276     }
277 }
278 
279 static inline void flash_sync_area(Flash *s, int64_t off, int64_t len)
280 {
281     int64_t start, end, nb_sectors;
282     QEMUIOVector iov;
283 
284     if (!s->bdrv) {
285         return;
286     }
287 
288     assert(!(len % BDRV_SECTOR_SIZE));
289     start = off / BDRV_SECTOR_SIZE;
290     end = (off + len) / BDRV_SECTOR_SIZE;
291     nb_sectors = end - start;
292     qemu_iovec_init(&iov, 1);
293     qemu_iovec_add(&iov, s->storage + (start * BDRV_SECTOR_SIZE),
294                                         nb_sectors * BDRV_SECTOR_SIZE);
295     bdrv_aio_writev(s->bdrv, start, &iov, nb_sectors, bdrv_sync_complete, NULL);
296 }
297 
298 static void flash_erase(Flash *s, int offset, FlashCMD cmd)
299 {
300     uint32_t len;
301     uint8_t capa_to_assert = 0;
302 
303     switch (cmd) {
304     case ERASE_4K:
305         len = 4 << 10;
306         capa_to_assert = ER_4K;
307         break;
308     case ERASE_32K:
309         len = 32 << 10;
310         capa_to_assert = ER_32K;
311         break;
312     case ERASE_SECTOR:
313         len = s->pi->sector_size;
314         break;
315     case BULK_ERASE:
316         len = s->size;
317         break;
318     default:
319         abort();
320     }
321 
322     DB_PRINT_L(0, "offset = %#x, len = %d\n", offset, len);
323     if ((s->pi->flags & capa_to_assert) != capa_to_assert) {
324         qemu_log_mask(LOG_GUEST_ERROR, "M25P80: %d erase size not supported by"
325                       " device\n", len);
326     }
327 
328     if (!s->write_enable) {
329         qemu_log_mask(LOG_GUEST_ERROR, "M25P80: erase with write protect!\n");
330         return;
331     }
332     memset(s->storage + offset, 0xff, len);
333     flash_sync_area(s, offset, len);
334 }
335 
336 static inline void flash_sync_dirty(Flash *s, int64_t newpage)
337 {
338     if (s->dirty_page >= 0 && s->dirty_page != newpage) {
339         flash_sync_page(s, s->dirty_page);
340         s->dirty_page = newpage;
341     }
342 }
343 
344 static inline
345 void flash_write8(Flash *s, uint64_t addr, uint8_t data)
346 {
347     int64_t page = addr / s->pi->page_size;
348     uint8_t prev = s->storage[s->cur_addr];
349 
350     if (!s->write_enable) {
351         qemu_log_mask(LOG_GUEST_ERROR, "M25P80: write with write protect!\n");
352     }
353 
354     if ((prev ^ data) & data) {
355         DB_PRINT_L(1, "programming zero to one! addr=%" PRIx64 "  %" PRIx8
356                    " -> %" PRIx8 "\n", addr, prev, data);
357     }
358 
359     if (s->pi->flags & WR_1) {
360         s->storage[s->cur_addr] = data;
361     } else {
362         s->storage[s->cur_addr] &= data;
363     }
364 
365     flash_sync_dirty(s, page);
366     s->dirty_page = page;
367 }
368 
369 static void complete_collecting_data(Flash *s)
370 {
371     s->cur_addr = s->data[0] << 16;
372     s->cur_addr |= s->data[1] << 8;
373     s->cur_addr |= s->data[2];
374 
375     s->state = STATE_IDLE;
376 
377     switch (s->cmd_in_progress) {
378     case DPP:
379     case QPP:
380     case PP:
381         s->state = STATE_PAGE_PROGRAM;
382         break;
383     case READ:
384     case FAST_READ:
385     case DOR:
386     case QOR:
387     case DIOR:
388     case QIOR:
389         s->state = STATE_READ;
390         break;
391     case ERASE_4K:
392     case ERASE_32K:
393     case ERASE_SECTOR:
394         flash_erase(s, s->cur_addr, s->cmd_in_progress);
395         break;
396     case WRSR:
397         if (s->write_enable) {
398             s->write_enable = false;
399         }
400         break;
401     default:
402         break;
403     }
404 }
405 
406 static void decode_new_cmd(Flash *s, uint32_t value)
407 {
408     s->cmd_in_progress = value;
409     DB_PRINT_L(0, "decoded new command:%x\n", value);
410 
411     switch (value) {
412 
413     case ERASE_4K:
414     case ERASE_32K:
415     case ERASE_SECTOR:
416     case READ:
417     case DPP:
418     case QPP:
419     case PP:
420         s->needed_bytes = 3;
421         s->pos = 0;
422         s->len = 0;
423         s->state = STATE_COLLECTING_DATA;
424         break;
425 
426     case FAST_READ:
427     case DOR:
428     case QOR:
429         s->needed_bytes = 4;
430         s->pos = 0;
431         s->len = 0;
432         s->state = STATE_COLLECTING_DATA;
433         break;
434 
435     case DIOR:
436         switch ((s->pi->jedec >> 16) & 0xFF) {
437         case JEDEC_WINBOND:
438         case JEDEC_SPANSION:
439             s->needed_bytes = 4;
440             break;
441         case JEDEC_NUMONYX:
442         default:
443             s->needed_bytes = 5;
444         }
445         s->pos = 0;
446         s->len = 0;
447         s->state = STATE_COLLECTING_DATA;
448         break;
449 
450     case QIOR:
451         switch ((s->pi->jedec >> 16) & 0xFF) {
452         case JEDEC_WINBOND:
453         case JEDEC_SPANSION:
454             s->needed_bytes = 6;
455             break;
456         case JEDEC_NUMONYX:
457         default:
458             s->needed_bytes = 8;
459         }
460         s->pos = 0;
461         s->len = 0;
462         s->state = STATE_COLLECTING_DATA;
463         break;
464 
465     case WRSR:
466         if (s->write_enable) {
467             s->needed_bytes = 1;
468             s->pos = 0;
469             s->len = 0;
470             s->state = STATE_COLLECTING_DATA;
471         }
472         break;
473 
474     case WRDI:
475         s->write_enable = false;
476         break;
477     case WREN:
478         s->write_enable = true;
479         break;
480 
481     case RDSR:
482         s->data[0] = (!!s->write_enable) << 1;
483         s->pos = 0;
484         s->len = 1;
485         s->state = STATE_READING_DATA;
486         break;
487 
488     case JEDEC_READ:
489         DB_PRINT_L(0, "populated jedec code\n");
490         s->data[0] = (s->pi->jedec >> 16) & 0xff;
491         s->data[1] = (s->pi->jedec >> 8) & 0xff;
492         s->data[2] = s->pi->jedec & 0xff;
493         if (s->pi->ext_jedec) {
494             s->data[3] = (s->pi->ext_jedec >> 8) & 0xff;
495             s->data[4] = s->pi->ext_jedec & 0xff;
496             s->len = 5;
497         } else {
498             s->len = 3;
499         }
500         s->pos = 0;
501         s->state = STATE_READING_DATA;
502         break;
503 
504     case BULK_ERASE:
505         if (s->write_enable) {
506             DB_PRINT_L(0, "chip erase\n");
507             flash_erase(s, 0, BULK_ERASE);
508         } else {
509             qemu_log_mask(LOG_GUEST_ERROR, "M25P80: chip erase with write "
510                           "protect!\n");
511         }
512         break;
513     case NOP:
514         break;
515     default:
516         qemu_log_mask(LOG_GUEST_ERROR, "M25P80: Unknown cmd %x\n", value);
517         break;
518     }
519 }
520 
521 static int m25p80_cs(SSISlave *ss, bool select)
522 {
523     Flash *s = FROM_SSI_SLAVE(Flash, ss);
524 
525     if (select) {
526         s->len = 0;
527         s->pos = 0;
528         s->state = STATE_IDLE;
529         flash_sync_dirty(s, -1);
530     }
531 
532     DB_PRINT_L(0, "%sselect\n", select ? "de" : "");
533 
534     return 0;
535 }
536 
537 static uint32_t m25p80_transfer8(SSISlave *ss, uint32_t tx)
538 {
539     Flash *s = FROM_SSI_SLAVE(Flash, ss);
540     uint32_t r = 0;
541 
542     switch (s->state) {
543 
544     case STATE_PAGE_PROGRAM:
545         DB_PRINT_L(1, "page program cur_addr=%#" PRIx64 " data=%" PRIx8 "\n",
546                    s->cur_addr, (uint8_t)tx);
547         flash_write8(s, s->cur_addr, (uint8_t)tx);
548         s->cur_addr++;
549         break;
550 
551     case STATE_READ:
552         r = s->storage[s->cur_addr];
553         DB_PRINT_L(1, "READ 0x%" PRIx64 "=%" PRIx8 "\n", s->cur_addr,
554                    (uint8_t)r);
555         s->cur_addr = (s->cur_addr + 1) % s->size;
556         break;
557 
558     case STATE_COLLECTING_DATA:
559         s->data[s->len] = (uint8_t)tx;
560         s->len++;
561 
562         if (s->len == s->needed_bytes) {
563             complete_collecting_data(s);
564         }
565         break;
566 
567     case STATE_READING_DATA:
568         r = s->data[s->pos];
569         s->pos++;
570         if (s->pos == s->len) {
571             s->pos = 0;
572             s->state = STATE_IDLE;
573         }
574         break;
575 
576     default:
577     case STATE_IDLE:
578         decode_new_cmd(s, (uint8_t)tx);
579         break;
580     }
581 
582     return r;
583 }
584 
585 static int m25p80_init(SSISlave *ss)
586 {
587     DriveInfo *dinfo;
588     Flash *s = FROM_SSI_SLAVE(Flash, ss);
589     M25P80Class *mc = M25P80_GET_CLASS(s);
590 
591     s->pi = mc->pi;
592 
593     s->size = s->pi->sector_size * s->pi->n_sectors;
594     s->dirty_page = -1;
595     s->storage = qemu_blockalign(s->bdrv, s->size);
596 
597     dinfo = drive_get_next(IF_MTD);
598 
599     if (dinfo && dinfo->bdrv) {
600         DB_PRINT_L(0, "Binding to IF_MTD drive\n");
601         s->bdrv = dinfo->bdrv;
602         /* FIXME: Move to late init */
603         if (bdrv_read(s->bdrv, 0, s->storage, DIV_ROUND_UP(s->size,
604                                                     BDRV_SECTOR_SIZE))) {
605             fprintf(stderr, "Failed to initialize SPI flash!\n");
606             return 1;
607         }
608     } else {
609         DB_PRINT_L(0, "No BDRV - binding to RAM\n");
610         memset(s->storage, 0xFF, s->size);
611     }
612 
613     return 0;
614 }
615 
616 static void m25p80_pre_save(void *opaque)
617 {
618     flash_sync_dirty((Flash *)opaque, -1);
619 }
620 
621 static const VMStateDescription vmstate_m25p80 = {
622     .name = "xilinx_spi",
623     .version_id = 1,
624     .minimum_version_id = 1,
625     .minimum_version_id_old = 1,
626     .pre_save = m25p80_pre_save,
627     .fields = (VMStateField[]) {
628         VMSTATE_UINT8(state, Flash),
629         VMSTATE_UINT8_ARRAY(data, Flash, 16),
630         VMSTATE_UINT32(len, Flash),
631         VMSTATE_UINT32(pos, Flash),
632         VMSTATE_UINT8(needed_bytes, Flash),
633         VMSTATE_UINT8(cmd_in_progress, Flash),
634         VMSTATE_UINT64(cur_addr, Flash),
635         VMSTATE_BOOL(write_enable, Flash),
636         VMSTATE_END_OF_LIST()
637     }
638 };
639 
640 static void m25p80_class_init(ObjectClass *klass, void *data)
641 {
642     DeviceClass *dc = DEVICE_CLASS(klass);
643     SSISlaveClass *k = SSI_SLAVE_CLASS(klass);
644     M25P80Class *mc = M25P80_CLASS(klass);
645 
646     k->init = m25p80_init;
647     k->transfer = m25p80_transfer8;
648     k->set_cs = m25p80_cs;
649     k->cs_polarity = SSI_CS_LOW;
650     dc->vmsd = &vmstate_m25p80;
651     mc->pi = data;
652 }
653 
654 static const TypeInfo m25p80_info = {
655     .name           = TYPE_M25P80,
656     .parent         = TYPE_SSI_SLAVE,
657     .instance_size  = sizeof(Flash),
658     .class_size     = sizeof(M25P80Class),
659     .abstract       = true,
660 };
661 
662 static void m25p80_register_types(void)
663 {
664     int i;
665 
666     type_register_static(&m25p80_info);
667     for (i = 0; i < ARRAY_SIZE(known_devices); ++i) {
668         TypeInfo ti = {
669             .name       = known_devices[i].part_name,
670             .parent     = TYPE_M25P80,
671             .class_init = m25p80_class_init,
672             .class_data = (void *)&known_devices[i],
673         };
674         type_register(&ti);
675     }
676 }
677 
678 type_init(m25p80_register_types)
679