1 /* 2 * QEMU Floppy disk emulator (Intel 82078) 3 * 4 * Copyright (c) 2003, 2007 Jocelyn Mayer 5 * Copyright (c) 2008 Hervé Poussineau 6 * 7 * Permission is hereby granted, free of charge, to any person obtaining a copy 8 * of this software and associated documentation files (the "Software"), to deal 9 * in the Software without restriction, including without limitation the rights 10 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 11 * copies of the Software, and to permit persons to whom the Software is 12 * furnished to do so, subject to the following conditions: 13 * 14 * The above copyright notice and this permission notice shall be included in 15 * all copies or substantial portions of the Software. 16 * 17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 18 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 20 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 21 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 22 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 23 * THE SOFTWARE. 24 */ 25 /* 26 * The controller is used in Sun4m systems in a slightly different 27 * way. There are changes in DOR register and DMA is not available. 28 */ 29 30 #include "qemu/osdep.h" 31 #include "hw/block/fdc.h" 32 #include "qapi/error.h" 33 #include "qemu/error-report.h" 34 #include "qemu/timer.h" 35 #include "qemu/memalign.h" 36 #include "hw/irq.h" 37 #include "hw/isa/isa.h" 38 #include "hw/qdev-properties.h" 39 #include "hw/qdev-properties-system.h" 40 #include "migration/vmstate.h" 41 #include "hw/block/block.h" 42 #include "system/block-backend.h" 43 #include "system/blockdev.h" 44 #include "system/system.h" 45 #include "qemu/log.h" 46 #include "qemu/main-loop.h" 47 #include "qemu/module.h" 48 #include "trace.h" 49 #include "qom/object.h" 50 #include "fdc-internal.h" 51 52 /********************************************************/ 53 /* debug Floppy devices */ 54 55 #define DEBUG_FLOPPY 0 56 57 #define FLOPPY_DPRINTF(fmt, ...) \ 58 do { \ 59 if (DEBUG_FLOPPY) { \ 60 fprintf(stderr, "FLOPPY: " fmt , ## __VA_ARGS__); \ 61 } \ 62 } while (0) 63 64 65 /* Anonymous BlockBackend for empty drive */ 66 static BlockBackend *blk_create_empty_drive(void) 67 { 68 return blk_new(qemu_get_aio_context(), 0, BLK_PERM_ALL); 69 } 70 71 /********************************************************/ 72 /* qdev floppy bus */ 73 74 #define TYPE_FLOPPY_BUS "floppy-bus" 75 OBJECT_DECLARE_SIMPLE_TYPE(FloppyBus, FLOPPY_BUS) 76 77 static FDrive *get_drv(FDCtrl *fdctrl, int unit); 78 79 static const TypeInfo floppy_bus_info = { 80 .name = TYPE_FLOPPY_BUS, 81 .parent = TYPE_BUS, 82 .instance_size = sizeof(FloppyBus), 83 }; 84 85 static void floppy_bus_create(FDCtrl *fdc, FloppyBus *bus, DeviceState *dev) 86 { 87 qbus_init(bus, sizeof(FloppyBus), TYPE_FLOPPY_BUS, dev, NULL); 88 bus->fdc = fdc; 89 } 90 91 92 /********************************************************/ 93 /* Floppy drive emulation */ 94 95 /* In many cases, the total sector size of a format is enough to uniquely 96 * identify it. However, there are some total sector collisions between 97 * formats of different physical size, and these are noted below by 98 * highlighting the total sector size for entries with collisions. */ 99 const FDFormat fd_formats[] = { 100 /* First entry is default format */ 101 /* 1.44 MB 3"1/2 floppy disks */ 102 { FLOPPY_DRIVE_TYPE_144, 18, 80, 1, FDRIVE_RATE_500K, }, /* 3.5" 2880 */ 103 { FLOPPY_DRIVE_TYPE_144, 20, 80, 1, FDRIVE_RATE_500K, }, /* 3.5" 3200 */ 104 { FLOPPY_DRIVE_TYPE_144, 21, 80, 1, FDRIVE_RATE_500K, }, 105 { FLOPPY_DRIVE_TYPE_144, 21, 82, 1, FDRIVE_RATE_500K, }, 106 { FLOPPY_DRIVE_TYPE_144, 21, 83, 1, FDRIVE_RATE_500K, }, 107 { FLOPPY_DRIVE_TYPE_144, 22, 80, 1, FDRIVE_RATE_500K, }, 108 { FLOPPY_DRIVE_TYPE_144, 23, 80, 1, FDRIVE_RATE_500K, }, 109 { FLOPPY_DRIVE_TYPE_144, 24, 80, 1, FDRIVE_RATE_500K, }, 110 /* 2.88 MB 3"1/2 floppy disks */ 111 { FLOPPY_DRIVE_TYPE_288, 36, 80, 1, FDRIVE_RATE_1M, }, 112 { FLOPPY_DRIVE_TYPE_288, 39, 80, 1, FDRIVE_RATE_1M, }, 113 { FLOPPY_DRIVE_TYPE_288, 40, 80, 1, FDRIVE_RATE_1M, }, 114 { FLOPPY_DRIVE_TYPE_288, 44, 80, 1, FDRIVE_RATE_1M, }, 115 { FLOPPY_DRIVE_TYPE_288, 48, 80, 1, FDRIVE_RATE_1M, }, 116 /* 720 kB 3"1/2 floppy disks */ 117 { FLOPPY_DRIVE_TYPE_144, 9, 80, 1, FDRIVE_RATE_250K, }, /* 3.5" 1440 */ 118 { FLOPPY_DRIVE_TYPE_144, 10, 80, 1, FDRIVE_RATE_250K, }, 119 { FLOPPY_DRIVE_TYPE_144, 10, 82, 1, FDRIVE_RATE_250K, }, 120 { FLOPPY_DRIVE_TYPE_144, 10, 83, 1, FDRIVE_RATE_250K, }, 121 { FLOPPY_DRIVE_TYPE_144, 13, 80, 1, FDRIVE_RATE_250K, }, 122 { FLOPPY_DRIVE_TYPE_144, 14, 80, 1, FDRIVE_RATE_250K, }, 123 /* 1.2 MB 5"1/4 floppy disks */ 124 { FLOPPY_DRIVE_TYPE_120, 15, 80, 1, FDRIVE_RATE_500K, }, 125 { FLOPPY_DRIVE_TYPE_120, 18, 80, 1, FDRIVE_RATE_500K, }, /* 5.25" 2880 */ 126 { FLOPPY_DRIVE_TYPE_120, 18, 82, 1, FDRIVE_RATE_500K, }, 127 { FLOPPY_DRIVE_TYPE_120, 18, 83, 1, FDRIVE_RATE_500K, }, 128 { FLOPPY_DRIVE_TYPE_120, 20, 80, 1, FDRIVE_RATE_500K, }, /* 5.25" 3200 */ 129 /* 720 kB 5"1/4 floppy disks */ 130 { FLOPPY_DRIVE_TYPE_120, 9, 80, 1, FDRIVE_RATE_250K, }, /* 5.25" 1440 */ 131 { FLOPPY_DRIVE_TYPE_120, 11, 80, 1, FDRIVE_RATE_250K, }, 132 /* 360 kB 5"1/4 floppy disks */ 133 { FLOPPY_DRIVE_TYPE_120, 9, 40, 1, FDRIVE_RATE_300K, }, /* 5.25" 720 */ 134 { FLOPPY_DRIVE_TYPE_120, 9, 40, 0, FDRIVE_RATE_300K, }, 135 { FLOPPY_DRIVE_TYPE_120, 10, 41, 1, FDRIVE_RATE_300K, }, 136 { FLOPPY_DRIVE_TYPE_120, 10, 42, 1, FDRIVE_RATE_300K, }, 137 /* 320 kB 5"1/4 floppy disks */ 138 { FLOPPY_DRIVE_TYPE_120, 8, 40, 1, FDRIVE_RATE_250K, }, 139 { FLOPPY_DRIVE_TYPE_120, 8, 40, 0, FDRIVE_RATE_250K, }, 140 /* 360 kB must match 5"1/4 better than 3"1/2... */ 141 { FLOPPY_DRIVE_TYPE_144, 9, 80, 0, FDRIVE_RATE_250K, }, /* 3.5" 720 */ 142 /* end */ 143 { FLOPPY_DRIVE_TYPE_NONE, -1, -1, 0, 0, }, 144 }; 145 146 static FDriveSize drive_size(FloppyDriveType drive) 147 { 148 switch (drive) { 149 case FLOPPY_DRIVE_TYPE_120: 150 return FDRIVE_SIZE_525; 151 case FLOPPY_DRIVE_TYPE_144: 152 case FLOPPY_DRIVE_TYPE_288: 153 return FDRIVE_SIZE_350; 154 default: 155 return FDRIVE_SIZE_UNKNOWN; 156 } 157 } 158 159 #define GET_CUR_DRV(fdctrl) ((fdctrl)->cur_drv) 160 #define SET_CUR_DRV(fdctrl, drive) ((fdctrl)->cur_drv = (drive)) 161 162 /* Will always be a fixed parameter for us */ 163 #define FD_SECTOR_LEN 512 164 #define FD_SECTOR_SC 2 /* Sector size code */ 165 #define FD_RESET_SENSEI_COUNT 4 /* Number of sense interrupts on RESET */ 166 167 168 static FloppyDriveType get_fallback_drive_type(FDrive *drv); 169 170 /* Hack: FD_SEEK is expected to work on empty drives. However, QEMU 171 * currently goes through some pains to keep seeks within the bounds 172 * established by last_sect and max_track. Correcting this is difficult, 173 * as refactoring FDC code tends to expose nasty bugs in the Linux kernel. 174 * 175 * For now: allow empty drives to have large bounds so we can seek around, 176 * with the understanding that when a diskette is inserted, the bounds will 177 * properly tighten to match the geometry of that inserted medium. 178 */ 179 static void fd_empty_seek_hack(FDrive *drv) 180 { 181 drv->last_sect = 0xFF; 182 drv->max_track = 0xFF; 183 } 184 185 static void fd_init(FDrive *drv) 186 { 187 /* Drive */ 188 drv->perpendicular = 0; 189 /* Disk */ 190 drv->disk = FLOPPY_DRIVE_TYPE_NONE; 191 drv->last_sect = 0; 192 drv->max_track = 0; 193 drv->ro = true; 194 drv->media_changed = 1; 195 } 196 197 #define NUM_SIDES(drv) ((drv)->flags & FDISK_DBL_SIDES ? 2 : 1) 198 199 static int fd_sector_calc(uint8_t head, uint8_t track, uint8_t sect, 200 uint8_t last_sect, uint8_t num_sides) 201 { 202 return (((track * num_sides) + head) * last_sect) + sect - 1; 203 } 204 205 /* Returns current position, in sectors, for given drive */ 206 static int fd_sector(FDrive *drv) 207 { 208 return fd_sector_calc(drv->head, drv->track, drv->sect, drv->last_sect, 209 NUM_SIDES(drv)); 210 } 211 212 /* Returns current position, in bytes, for given drive */ 213 static int fd_offset(FDrive *drv) 214 { 215 g_assert(fd_sector(drv) < INT_MAX >> BDRV_SECTOR_BITS); 216 return fd_sector(drv) << BDRV_SECTOR_BITS; 217 } 218 219 /* Seek to a new position: 220 * returns 0 if already on right track 221 * returns 1 if track changed 222 * returns 2 if track is invalid 223 * returns 3 if sector is invalid 224 * returns 4 if seek is disabled 225 */ 226 static int fd_seek(FDrive *drv, uint8_t head, uint8_t track, uint8_t sect, 227 int enable_seek) 228 { 229 uint32_t sector; 230 int ret; 231 232 if (track > drv->max_track || 233 (head != 0 && (drv->flags & FDISK_DBL_SIDES) == 0)) { 234 FLOPPY_DPRINTF("try to read %d %02x %02x (max=%d %d %02x %02x)\n", 235 head, track, sect, 1, 236 (drv->flags & FDISK_DBL_SIDES) == 0 ? 0 : 1, 237 drv->max_track, drv->last_sect); 238 return 2; 239 } 240 if (sect > drv->last_sect) { 241 FLOPPY_DPRINTF("try to read %d %02x %02x (max=%d %d %02x %02x)\n", 242 head, track, sect, 1, 243 (drv->flags & FDISK_DBL_SIDES) == 0 ? 0 : 1, 244 drv->max_track, drv->last_sect); 245 return 3; 246 } 247 sector = fd_sector_calc(head, track, sect, drv->last_sect, NUM_SIDES(drv)); 248 ret = 0; 249 if (sector != fd_sector(drv)) { 250 #if 0 251 if (!enable_seek) { 252 FLOPPY_DPRINTF("error: no implicit seek %d %02x %02x" 253 " (max=%d %02x %02x)\n", 254 head, track, sect, 1, drv->max_track, 255 drv->last_sect); 256 return 4; 257 } 258 #endif 259 drv->head = head; 260 if (drv->track != track) { 261 if (drv->blk != NULL && blk_is_inserted(drv->blk)) { 262 drv->media_changed = 0; 263 } 264 ret = 1; 265 } 266 drv->track = track; 267 drv->sect = sect; 268 } 269 270 if (drv->blk == NULL || !blk_is_inserted(drv->blk)) { 271 ret = 2; 272 } 273 274 return ret; 275 } 276 277 /* Set drive back to track 0 */ 278 static void fd_recalibrate(FDrive *drv) 279 { 280 FLOPPY_DPRINTF("recalibrate\n"); 281 fd_seek(drv, 0, 0, 1, 1); 282 } 283 284 /** 285 * Determine geometry based on inserted diskette. 286 * Will not operate on an empty drive. 287 * 288 * @return: 0 on success, -1 if the drive is empty. 289 */ 290 static int pick_geometry(FDrive *drv) 291 { 292 BlockBackend *blk = drv->blk; 293 const FDFormat *parse; 294 uint64_t nb_sectors, size; 295 int i; 296 int match, size_match, type_match; 297 bool magic = drv->drive == FLOPPY_DRIVE_TYPE_AUTO; 298 299 /* We can only pick a geometry if we have a diskette. */ 300 if (!drv->blk || !blk_is_inserted(drv->blk) || 301 drv->drive == FLOPPY_DRIVE_TYPE_NONE) 302 { 303 return -1; 304 } 305 306 /* We need to determine the likely geometry of the inserted medium. 307 * In order of preference, we look for: 308 * (1) The same drive type and number of sectors, 309 * (2) The same diskette size and number of sectors, 310 * (3) The same drive type. 311 * 312 * In all cases, matches that occur higher in the drive table will take 313 * precedence over matches that occur later in the table. 314 */ 315 blk_get_geometry(blk, &nb_sectors); 316 match = size_match = type_match = -1; 317 for (i = 0; ; i++) { 318 parse = &fd_formats[i]; 319 if (parse->drive == FLOPPY_DRIVE_TYPE_NONE) { 320 break; 321 } 322 size = (parse->max_head + 1) * parse->max_track * parse->last_sect; 323 if (nb_sectors == size) { 324 if (magic || parse->drive == drv->drive) { 325 /* (1) perfect match -- nb_sectors and drive type */ 326 goto out; 327 } else if (drive_size(parse->drive) == drive_size(drv->drive)) { 328 /* (2) size match -- nb_sectors and physical medium size */ 329 match = (match == -1) ? i : match; 330 } else { 331 /* This is suspicious -- Did the user misconfigure? */ 332 size_match = (size_match == -1) ? i : size_match; 333 } 334 } else if (type_match == -1) { 335 if ((parse->drive == drv->drive) || 336 (magic && (parse->drive == get_fallback_drive_type(drv)))) { 337 /* (3) type match -- nb_sectors mismatch, but matches the type 338 * specified explicitly by the user, or matches the fallback 339 * default type when using the drive autodetect mechanism */ 340 type_match = i; 341 } 342 } 343 } 344 345 /* No exact match found */ 346 if (match == -1) { 347 if (size_match != -1) { 348 parse = &fd_formats[size_match]; 349 FLOPPY_DPRINTF("User requested floppy drive type '%s', " 350 "but inserted medium appears to be a " 351 "%"PRId64" sector '%s' type\n", 352 FloppyDriveType_str(drv->drive), 353 nb_sectors, 354 FloppyDriveType_str(parse->drive)); 355 } 356 assert(type_match != -1 && "misconfigured fd_format"); 357 match = type_match; 358 } 359 parse = &(fd_formats[match]); 360 361 out: 362 if (parse->max_head == 0) { 363 drv->flags &= ~FDISK_DBL_SIDES; 364 } else { 365 drv->flags |= FDISK_DBL_SIDES; 366 } 367 drv->max_track = parse->max_track; 368 drv->last_sect = parse->last_sect; 369 drv->disk = parse->drive; 370 drv->media_rate = parse->rate; 371 return 0; 372 } 373 374 static void pick_drive_type(FDrive *drv) 375 { 376 if (drv->drive != FLOPPY_DRIVE_TYPE_AUTO) { 377 return; 378 } 379 380 if (pick_geometry(drv) == 0) { 381 drv->drive = drv->disk; 382 } else { 383 drv->drive = get_fallback_drive_type(drv); 384 } 385 386 g_assert(drv->drive != FLOPPY_DRIVE_TYPE_AUTO); 387 } 388 389 /* Revalidate a disk drive after a disk change */ 390 static void fd_revalidate(FDrive *drv) 391 { 392 int rc; 393 394 FLOPPY_DPRINTF("revalidate\n"); 395 if (drv->blk != NULL) { 396 drv->ro = !blk_is_writable(drv->blk); 397 if (!blk_is_inserted(drv->blk)) { 398 FLOPPY_DPRINTF("No disk in drive\n"); 399 drv->disk = FLOPPY_DRIVE_TYPE_NONE; 400 fd_empty_seek_hack(drv); 401 } else if (!drv->media_validated) { 402 rc = pick_geometry(drv); 403 if (rc) { 404 FLOPPY_DPRINTF("Could not validate floppy drive media"); 405 } else { 406 drv->media_validated = true; 407 FLOPPY_DPRINTF("Floppy disk (%d h %d t %d s) %s\n", 408 (drv->flags & FDISK_DBL_SIDES) ? 2 : 1, 409 drv->max_track, drv->last_sect, 410 drv->ro ? "ro" : "rw"); 411 } 412 } 413 } else { 414 FLOPPY_DPRINTF("No drive connected\n"); 415 drv->last_sect = 0; 416 drv->max_track = 0; 417 drv->flags &= ~FDISK_DBL_SIDES; 418 drv->drive = FLOPPY_DRIVE_TYPE_NONE; 419 drv->disk = FLOPPY_DRIVE_TYPE_NONE; 420 } 421 } 422 423 static void fd_change_cb(void *opaque, bool load, Error **errp) 424 { 425 FDrive *drive = opaque; 426 427 if (!load) { 428 blk_set_perm(drive->blk, 0, BLK_PERM_ALL, &error_abort); 429 } else { 430 if (!blkconf_apply_backend_options(drive->conf, 431 !blk_supports_write_perm(drive->blk), 432 false, errp)) { 433 return; 434 } 435 } 436 437 drive->media_changed = 1; 438 drive->media_validated = false; 439 fd_revalidate(drive); 440 } 441 442 static const BlockDevOps fd_block_ops = { 443 .change_media_cb = fd_change_cb, 444 }; 445 446 447 #define TYPE_FLOPPY_DRIVE "floppy" 448 OBJECT_DECLARE_SIMPLE_TYPE(FloppyDrive, FLOPPY_DRIVE) 449 450 struct FloppyDrive { 451 DeviceState qdev; 452 uint32_t unit; 453 BlockConf conf; 454 FloppyDriveType type; 455 }; 456 457 static const Property floppy_drive_properties[] = { 458 DEFINE_PROP_UINT32("unit", FloppyDrive, unit, -1), 459 DEFINE_BLOCK_PROPERTIES(FloppyDrive, conf), 460 DEFINE_PROP_SIGNED("drive-type", FloppyDrive, type, 461 FLOPPY_DRIVE_TYPE_AUTO, qdev_prop_fdc_drive_type, 462 FloppyDriveType), 463 }; 464 465 static void floppy_drive_realize(DeviceState *qdev, Error **errp) 466 { 467 FloppyDrive *dev = FLOPPY_DRIVE(qdev); 468 FloppyBus *bus = FLOPPY_BUS(qdev->parent_bus); 469 FDrive *drive; 470 bool read_only; 471 int ret; 472 473 if (dev->unit == -1) { 474 for (dev->unit = 0; dev->unit < MAX_FD; dev->unit++) { 475 drive = get_drv(bus->fdc, dev->unit); 476 if (!drive->blk) { 477 break; 478 } 479 } 480 } 481 482 if (dev->unit >= MAX_FD) { 483 error_setg(errp, "Can't create floppy unit %d, bus supports " 484 "only %d units", dev->unit, MAX_FD); 485 return; 486 } 487 488 drive = get_drv(bus->fdc, dev->unit); 489 if (drive->blk) { 490 error_setg(errp, "Floppy unit %d is in use", dev->unit); 491 return; 492 } 493 494 if (!dev->conf.blk) { 495 dev->conf.blk = blk_create_empty_drive(); 496 ret = blk_attach_dev(dev->conf.blk, qdev); 497 assert(ret == 0); 498 499 /* Don't take write permissions on an empty drive to allow attaching a 500 * read-only node later */ 501 read_only = true; 502 } else { 503 read_only = !blk_bs(dev->conf.blk) || 504 !blk_supports_write_perm(dev->conf.blk); 505 } 506 507 if (!blkconf_blocksizes(&dev->conf, errp)) { 508 return; 509 } 510 511 if (dev->conf.logical_block_size != 512 || 512 dev->conf.physical_block_size != 512) 513 { 514 error_setg(errp, "Physical and logical block size must " 515 "be 512 for floppy"); 516 return; 517 } 518 519 /* rerror/werror aren't supported by fdc and therefore not even registered 520 * with qdev. So set the defaults manually before they are used in 521 * blkconf_apply_backend_options(). */ 522 dev->conf.rerror = BLOCKDEV_ON_ERROR_AUTO; 523 dev->conf.werror = BLOCKDEV_ON_ERROR_AUTO; 524 525 if (!blkconf_apply_backend_options(&dev->conf, read_only, false, errp)) { 526 return; 527 } 528 529 /* 'enospc' is the default for -drive, 'report' is what blk_new() gives us 530 * for empty drives. */ 531 if (blk_get_on_error(dev->conf.blk, 0) != BLOCKDEV_ON_ERROR_ENOSPC && 532 blk_get_on_error(dev->conf.blk, 0) != BLOCKDEV_ON_ERROR_REPORT) { 533 error_setg(errp, "fdc doesn't support drive option werror"); 534 return; 535 } 536 if (blk_get_on_error(dev->conf.blk, 1) != BLOCKDEV_ON_ERROR_REPORT) { 537 error_setg(errp, "fdc doesn't support drive option rerror"); 538 return; 539 } 540 541 drive->conf = &dev->conf; 542 drive->blk = dev->conf.blk; 543 drive->fdctrl = bus->fdc; 544 545 fd_init(drive); 546 blk_set_dev_ops(drive->blk, &fd_block_ops, drive); 547 548 /* Keep 'type' qdev property and FDrive->drive in sync */ 549 drive->drive = dev->type; 550 pick_drive_type(drive); 551 dev->type = drive->drive; 552 553 fd_revalidate(drive); 554 } 555 556 static void floppy_drive_class_init(ObjectClass *klass, void *data) 557 { 558 DeviceClass *k = DEVICE_CLASS(klass); 559 k->realize = floppy_drive_realize; 560 set_bit(DEVICE_CATEGORY_STORAGE, k->categories); 561 k->bus_type = TYPE_FLOPPY_BUS; 562 device_class_set_props(k, floppy_drive_properties); 563 k->desc = "virtual floppy drive"; 564 } 565 566 static const TypeInfo floppy_drive_info = { 567 .name = TYPE_FLOPPY_DRIVE, 568 .parent = TYPE_DEVICE, 569 .instance_size = sizeof(FloppyDrive), 570 .class_init = floppy_drive_class_init, 571 }; 572 573 /********************************************************/ 574 /* Intel 82078 floppy disk controller emulation */ 575 576 static void fdctrl_to_command_phase(FDCtrl *fdctrl); 577 static void fdctrl_raise_irq(FDCtrl *fdctrl); 578 static FDrive *get_cur_drv(FDCtrl *fdctrl); 579 580 static uint32_t fdctrl_read_statusA(FDCtrl *fdctrl); 581 static uint32_t fdctrl_read_statusB(FDCtrl *fdctrl); 582 static uint32_t fdctrl_read_dor(FDCtrl *fdctrl); 583 static void fdctrl_write_dor(FDCtrl *fdctrl, uint32_t value); 584 static uint32_t fdctrl_read_tape(FDCtrl *fdctrl); 585 static void fdctrl_write_tape(FDCtrl *fdctrl, uint32_t value); 586 static uint32_t fdctrl_read_main_status(FDCtrl *fdctrl); 587 static void fdctrl_write_rate(FDCtrl *fdctrl, uint32_t value); 588 static uint32_t fdctrl_read_data(FDCtrl *fdctrl); 589 static void fdctrl_write_data(FDCtrl *fdctrl, uint32_t value); 590 static uint32_t fdctrl_read_dir(FDCtrl *fdctrl); 591 static void fdctrl_write_ccr(FDCtrl *fdctrl, uint32_t value); 592 593 enum { 594 FD_DIR_WRITE = 0, 595 FD_DIR_READ = 1, 596 FD_DIR_SCANE = 2, 597 FD_DIR_SCANL = 3, 598 FD_DIR_SCANH = 4, 599 FD_DIR_VERIFY = 5, 600 }; 601 602 enum { 603 FD_STATE_MULTI = 0x01, /* multi track flag */ 604 FD_STATE_FORMAT = 0x02, /* format flag */ 605 }; 606 607 enum { 608 FD_REG_SRA = 0x00, 609 FD_REG_SRB = 0x01, 610 FD_REG_DOR = 0x02, 611 FD_REG_TDR = 0x03, 612 FD_REG_MSR = 0x04, 613 FD_REG_DSR = 0x04, 614 FD_REG_FIFO = 0x05, 615 FD_REG_DIR = 0x07, 616 FD_REG_CCR = 0x07, 617 }; 618 619 enum { 620 FD_CMD_READ_TRACK = 0x02, 621 FD_CMD_SPECIFY = 0x03, 622 FD_CMD_SENSE_DRIVE_STATUS = 0x04, 623 FD_CMD_WRITE = 0x05, 624 FD_CMD_READ = 0x06, 625 FD_CMD_RECALIBRATE = 0x07, 626 FD_CMD_SENSE_INTERRUPT_STATUS = 0x08, 627 FD_CMD_WRITE_DELETED = 0x09, 628 FD_CMD_READ_ID = 0x0a, 629 FD_CMD_READ_DELETED = 0x0c, 630 FD_CMD_FORMAT_TRACK = 0x0d, 631 FD_CMD_DUMPREG = 0x0e, 632 FD_CMD_SEEK = 0x0f, 633 FD_CMD_VERSION = 0x10, 634 FD_CMD_SCAN_EQUAL = 0x11, 635 FD_CMD_PERPENDICULAR_MODE = 0x12, 636 FD_CMD_CONFIGURE = 0x13, 637 FD_CMD_LOCK = 0x14, 638 FD_CMD_VERIFY = 0x16, 639 FD_CMD_POWERDOWN_MODE = 0x17, 640 FD_CMD_PART_ID = 0x18, 641 FD_CMD_SCAN_LOW_OR_EQUAL = 0x19, 642 FD_CMD_SCAN_HIGH_OR_EQUAL = 0x1d, 643 FD_CMD_SAVE = 0x2e, 644 FD_CMD_OPTION = 0x33, 645 FD_CMD_RESTORE = 0x4e, 646 FD_CMD_DRIVE_SPECIFICATION_COMMAND = 0x8e, 647 FD_CMD_RELATIVE_SEEK_OUT = 0x8f, 648 FD_CMD_FORMAT_AND_WRITE = 0xcd, 649 FD_CMD_RELATIVE_SEEK_IN = 0xcf, 650 }; 651 652 enum { 653 FD_CONFIG_PRETRK = 0xff, /* Pre-compensation set to track 0 */ 654 FD_CONFIG_FIFOTHR = 0x0f, /* FIFO threshold set to 1 byte */ 655 FD_CONFIG_POLL = 0x10, /* Poll enabled */ 656 FD_CONFIG_EFIFO = 0x20, /* FIFO disabled */ 657 FD_CONFIG_EIS = 0x40, /* No implied seeks */ 658 }; 659 660 enum { 661 FD_SR0_DS0 = 0x01, 662 FD_SR0_DS1 = 0x02, 663 FD_SR0_HEAD = 0x04, 664 FD_SR0_EQPMT = 0x10, 665 FD_SR0_SEEK = 0x20, 666 FD_SR0_ABNTERM = 0x40, 667 FD_SR0_INVCMD = 0x80, 668 FD_SR0_RDYCHG = 0xc0, 669 }; 670 671 enum { 672 FD_SR1_MA = 0x01, /* Missing address mark */ 673 FD_SR1_NW = 0x02, /* Not writable */ 674 FD_SR1_EC = 0x80, /* End of cylinder */ 675 }; 676 677 enum { 678 FD_SR2_SNS = 0x04, /* Scan not satisfied */ 679 FD_SR2_SEH = 0x08, /* Scan equal hit */ 680 }; 681 682 enum { 683 FD_SRA_DIR = 0x01, 684 FD_SRA_nWP = 0x02, 685 FD_SRA_nINDX = 0x04, 686 FD_SRA_HDSEL = 0x08, 687 FD_SRA_nTRK0 = 0x10, 688 FD_SRA_STEP = 0x20, 689 FD_SRA_nDRV2 = 0x40, 690 FD_SRA_INTPEND = 0x80, 691 }; 692 693 enum { 694 FD_SRB_MTR0 = 0x01, 695 FD_SRB_MTR1 = 0x02, 696 FD_SRB_WGATE = 0x04, 697 FD_SRB_RDATA = 0x08, 698 FD_SRB_WDATA = 0x10, 699 FD_SRB_DR0 = 0x20, 700 }; 701 702 enum { 703 #if MAX_FD == 4 704 FD_DOR_SELMASK = 0x03, 705 #else 706 FD_DOR_SELMASK = 0x01, 707 #endif 708 FD_DOR_nRESET = 0x04, 709 FD_DOR_DMAEN = 0x08, 710 FD_DOR_MOTEN0 = 0x10, 711 FD_DOR_MOTEN1 = 0x20, 712 FD_DOR_MOTEN2 = 0x40, 713 FD_DOR_MOTEN3 = 0x80, 714 }; 715 716 enum { 717 #if MAX_FD == 4 718 FD_TDR_BOOTSEL = 0x0c, 719 #else 720 FD_TDR_BOOTSEL = 0x04, 721 #endif 722 }; 723 724 enum { 725 FD_DSR_DRATEMASK= 0x03, 726 FD_DSR_PWRDOWN = 0x40, 727 FD_DSR_SWRESET = 0x80, 728 }; 729 730 enum { 731 FD_MSR_DRV0BUSY = 0x01, 732 FD_MSR_DRV1BUSY = 0x02, 733 FD_MSR_DRV2BUSY = 0x04, 734 FD_MSR_DRV3BUSY = 0x08, 735 FD_MSR_CMDBUSY = 0x10, 736 FD_MSR_NONDMA = 0x20, 737 FD_MSR_DIO = 0x40, 738 FD_MSR_RQM = 0x80, 739 }; 740 741 enum { 742 FD_DIR_DSKCHG = 0x80, 743 }; 744 745 /* 746 * See chapter 5.0 "Controller phases" of the spec: 747 * 748 * Command phase: 749 * The host writes a command and its parameters into the FIFO. The command 750 * phase is completed when all parameters for the command have been supplied, 751 * and execution phase is entered. 752 * 753 * Execution phase: 754 * Data transfers, either DMA or non-DMA. For non-DMA transfers, the FIFO 755 * contains the payload now, otherwise it's unused. When all bytes of the 756 * required data have been transferred, the state is switched to either result 757 * phase (if the command produces status bytes) or directly back into the 758 * command phase for the next command. 759 * 760 * Result phase: 761 * The host reads out the FIFO, which contains one or more result bytes now. 762 */ 763 enum { 764 /* Only for migration: reconstruct phase from registers like qemu 2.3 */ 765 FD_PHASE_RECONSTRUCT = 0, 766 767 FD_PHASE_COMMAND = 1, 768 FD_PHASE_EXECUTION = 2, 769 FD_PHASE_RESULT = 3, 770 }; 771 772 #define FD_MULTI_TRACK(state) ((state) & FD_STATE_MULTI) 773 #define FD_FORMAT_CMD(state) ((state) & FD_STATE_FORMAT) 774 775 static FloppyDriveType get_fallback_drive_type(FDrive *drv) 776 { 777 return drv->fdctrl->fallback; 778 } 779 780 uint32_t fdctrl_read(void *opaque, uint32_t reg) 781 { 782 FDCtrl *fdctrl = opaque; 783 uint32_t retval; 784 785 reg &= 7; 786 switch (reg) { 787 case FD_REG_SRA: 788 retval = fdctrl_read_statusA(fdctrl); 789 break; 790 case FD_REG_SRB: 791 retval = fdctrl_read_statusB(fdctrl); 792 break; 793 case FD_REG_DOR: 794 retval = fdctrl_read_dor(fdctrl); 795 break; 796 case FD_REG_TDR: 797 retval = fdctrl_read_tape(fdctrl); 798 break; 799 case FD_REG_MSR: 800 retval = fdctrl_read_main_status(fdctrl); 801 break; 802 case FD_REG_FIFO: 803 retval = fdctrl_read_data(fdctrl); 804 break; 805 case FD_REG_DIR: 806 retval = fdctrl_read_dir(fdctrl); 807 break; 808 default: 809 retval = (uint32_t)(-1); 810 break; 811 } 812 trace_fdc_ioport_read(reg, retval); 813 814 return retval; 815 } 816 817 void fdctrl_write(void *opaque, uint32_t reg, uint32_t value) 818 { 819 FDCtrl *fdctrl = opaque; 820 821 reg &= 7; 822 trace_fdc_ioport_write(reg, value); 823 switch (reg) { 824 case FD_REG_DOR: 825 fdctrl_write_dor(fdctrl, value); 826 break; 827 case FD_REG_TDR: 828 fdctrl_write_tape(fdctrl, value); 829 break; 830 case FD_REG_DSR: 831 fdctrl_write_rate(fdctrl, value); 832 break; 833 case FD_REG_FIFO: 834 fdctrl_write_data(fdctrl, value); 835 break; 836 case FD_REG_CCR: 837 fdctrl_write_ccr(fdctrl, value); 838 break; 839 default: 840 break; 841 } 842 } 843 844 static bool fdrive_media_changed_needed(void *opaque) 845 { 846 FDrive *drive = opaque; 847 848 return (drive->blk != NULL && drive->media_changed != 1); 849 } 850 851 static const VMStateDescription vmstate_fdrive_media_changed = { 852 .name = "fdrive/media_changed", 853 .version_id = 1, 854 .minimum_version_id = 1, 855 .needed = fdrive_media_changed_needed, 856 .fields = (const VMStateField[]) { 857 VMSTATE_UINT8(media_changed, FDrive), 858 VMSTATE_END_OF_LIST() 859 } 860 }; 861 862 static const VMStateDescription vmstate_fdrive_media_rate = { 863 .name = "fdrive/media_rate", 864 .version_id = 1, 865 .minimum_version_id = 1, 866 .fields = (const VMStateField[]) { 867 VMSTATE_UINT8(media_rate, FDrive), 868 VMSTATE_END_OF_LIST() 869 } 870 }; 871 872 static bool fdrive_perpendicular_needed(void *opaque) 873 { 874 FDrive *drive = opaque; 875 876 return drive->perpendicular != 0; 877 } 878 879 static const VMStateDescription vmstate_fdrive_perpendicular = { 880 .name = "fdrive/perpendicular", 881 .version_id = 1, 882 .minimum_version_id = 1, 883 .needed = fdrive_perpendicular_needed, 884 .fields = (const VMStateField[]) { 885 VMSTATE_UINT8(perpendicular, FDrive), 886 VMSTATE_END_OF_LIST() 887 } 888 }; 889 890 static int fdrive_post_load(void *opaque, int version_id) 891 { 892 fd_revalidate(opaque); 893 return 0; 894 } 895 896 static const VMStateDescription vmstate_fdrive = { 897 .name = "fdrive", 898 .version_id = 1, 899 .minimum_version_id = 1, 900 .post_load = fdrive_post_load, 901 .fields = (const VMStateField[]) { 902 VMSTATE_UINT8(head, FDrive), 903 VMSTATE_UINT8(track, FDrive), 904 VMSTATE_UINT8(sect, FDrive), 905 VMSTATE_END_OF_LIST() 906 }, 907 .subsections = (const VMStateDescription * const []) { 908 &vmstate_fdrive_media_changed, 909 &vmstate_fdrive_media_rate, 910 &vmstate_fdrive_perpendicular, 911 NULL 912 } 913 }; 914 915 /* 916 * Reconstructs the phase from register values according to the logic that was 917 * implemented in qemu 2.3. This is the default value that is used if the phase 918 * subsection is not present on migration. 919 * 920 * Don't change this function to reflect newer qemu versions, it is part of 921 * the migration ABI. 922 */ 923 static int reconstruct_phase(FDCtrl *fdctrl) 924 { 925 if (fdctrl->msr & FD_MSR_NONDMA) { 926 return FD_PHASE_EXECUTION; 927 } else if ((fdctrl->msr & FD_MSR_RQM) == 0) { 928 /* qemu 2.3 disabled RQM only during DMA transfers */ 929 return FD_PHASE_EXECUTION; 930 } else if (fdctrl->msr & FD_MSR_DIO) { 931 return FD_PHASE_RESULT; 932 } else { 933 return FD_PHASE_COMMAND; 934 } 935 } 936 937 static int fdc_pre_save(void *opaque) 938 { 939 FDCtrl *s = opaque; 940 941 s->dor_vmstate = s->dor | GET_CUR_DRV(s); 942 943 return 0; 944 } 945 946 static int fdc_pre_load(void *opaque) 947 { 948 FDCtrl *s = opaque; 949 s->phase = FD_PHASE_RECONSTRUCT; 950 return 0; 951 } 952 953 static int fdc_post_load(void *opaque, int version_id) 954 { 955 FDCtrl *s = opaque; 956 957 SET_CUR_DRV(s, s->dor_vmstate & FD_DOR_SELMASK); 958 s->dor = s->dor_vmstate & ~FD_DOR_SELMASK; 959 960 if (s->phase == FD_PHASE_RECONSTRUCT) { 961 s->phase = reconstruct_phase(s); 962 } 963 964 return 0; 965 } 966 967 static bool fdc_reset_sensei_needed(void *opaque) 968 { 969 FDCtrl *s = opaque; 970 971 return s->reset_sensei != 0; 972 } 973 974 static const VMStateDescription vmstate_fdc_reset_sensei = { 975 .name = "fdc/reset_sensei", 976 .version_id = 1, 977 .minimum_version_id = 1, 978 .needed = fdc_reset_sensei_needed, 979 .fields = (const VMStateField[]) { 980 VMSTATE_INT32(reset_sensei, FDCtrl), 981 VMSTATE_END_OF_LIST() 982 } 983 }; 984 985 static bool fdc_result_timer_needed(void *opaque) 986 { 987 FDCtrl *s = opaque; 988 989 return timer_pending(s->result_timer); 990 } 991 992 static const VMStateDescription vmstate_fdc_result_timer = { 993 .name = "fdc/result_timer", 994 .version_id = 1, 995 .minimum_version_id = 1, 996 .needed = fdc_result_timer_needed, 997 .fields = (const VMStateField[]) { 998 VMSTATE_TIMER_PTR(result_timer, FDCtrl), 999 VMSTATE_END_OF_LIST() 1000 } 1001 }; 1002 1003 static bool fdc_phase_needed(void *opaque) 1004 { 1005 FDCtrl *fdctrl = opaque; 1006 1007 return reconstruct_phase(fdctrl) != fdctrl->phase; 1008 } 1009 1010 static const VMStateDescription vmstate_fdc_phase = { 1011 .name = "fdc/phase", 1012 .version_id = 1, 1013 .minimum_version_id = 1, 1014 .needed = fdc_phase_needed, 1015 .fields = (const VMStateField[]) { 1016 VMSTATE_UINT8(phase, FDCtrl), 1017 VMSTATE_END_OF_LIST() 1018 } 1019 }; 1020 1021 const VMStateDescription vmstate_fdc = { 1022 .name = "fdc", 1023 .version_id = 2, 1024 .minimum_version_id = 2, 1025 .pre_save = fdc_pre_save, 1026 .pre_load = fdc_pre_load, 1027 .post_load = fdc_post_load, 1028 .fields = (const VMStateField[]) { 1029 /* Controller State */ 1030 VMSTATE_UINT8(sra, FDCtrl), 1031 VMSTATE_UINT8(srb, FDCtrl), 1032 VMSTATE_UINT8(dor_vmstate, FDCtrl), 1033 VMSTATE_UINT8(tdr, FDCtrl), 1034 VMSTATE_UINT8(dsr, FDCtrl), 1035 VMSTATE_UINT8(msr, FDCtrl), 1036 VMSTATE_UINT8(status0, FDCtrl), 1037 VMSTATE_UINT8(status1, FDCtrl), 1038 VMSTATE_UINT8(status2, FDCtrl), 1039 /* Command FIFO */ 1040 VMSTATE_VARRAY_INT32(fifo, FDCtrl, fifo_size, 0, vmstate_info_uint8, 1041 uint8_t), 1042 VMSTATE_UINT32(data_pos, FDCtrl), 1043 VMSTATE_UINT32(data_len, FDCtrl), 1044 VMSTATE_UINT8(data_state, FDCtrl), 1045 VMSTATE_UINT8(data_dir, FDCtrl), 1046 VMSTATE_UINT8(eot, FDCtrl), 1047 /* States kept only to be returned back */ 1048 VMSTATE_UINT8(timer0, FDCtrl), 1049 VMSTATE_UINT8(timer1, FDCtrl), 1050 VMSTATE_UINT8(precomp_trk, FDCtrl), 1051 VMSTATE_UINT8(config, FDCtrl), 1052 VMSTATE_UINT8(lock, FDCtrl), 1053 VMSTATE_UINT8(pwrd, FDCtrl), 1054 VMSTATE_UINT8_EQUAL(num_floppies, FDCtrl, NULL), 1055 VMSTATE_STRUCT_ARRAY(drives, FDCtrl, MAX_FD, 1, 1056 vmstate_fdrive, FDrive), 1057 VMSTATE_END_OF_LIST() 1058 }, 1059 .subsections = (const VMStateDescription * const []) { 1060 &vmstate_fdc_reset_sensei, 1061 &vmstate_fdc_result_timer, 1062 &vmstate_fdc_phase, 1063 NULL 1064 } 1065 }; 1066 1067 /* Change IRQ state */ 1068 static void fdctrl_reset_irq(FDCtrl *fdctrl) 1069 { 1070 fdctrl->status0 = 0; 1071 if (!(fdctrl->sra & FD_SRA_INTPEND)) 1072 return; 1073 FLOPPY_DPRINTF("Reset interrupt\n"); 1074 qemu_set_irq(fdctrl->irq, 0); 1075 fdctrl->sra &= ~FD_SRA_INTPEND; 1076 } 1077 1078 static void fdctrl_raise_irq(FDCtrl *fdctrl) 1079 { 1080 if (!(fdctrl->sra & FD_SRA_INTPEND)) { 1081 qemu_set_irq(fdctrl->irq, 1); 1082 fdctrl->sra |= FD_SRA_INTPEND; 1083 } 1084 1085 fdctrl->reset_sensei = 0; 1086 FLOPPY_DPRINTF("Set interrupt status to 0x%02x\n", fdctrl->status0); 1087 } 1088 1089 /* Reset controller */ 1090 void fdctrl_reset(FDCtrl *fdctrl, int do_irq) 1091 { 1092 int i; 1093 1094 FLOPPY_DPRINTF("reset controller\n"); 1095 fdctrl_reset_irq(fdctrl); 1096 /* Initialise controller */ 1097 fdctrl->sra = 0; 1098 fdctrl->srb = 0xc0; 1099 if (!fdctrl->drives[1].blk) { 1100 fdctrl->sra |= FD_SRA_nDRV2; 1101 } 1102 fdctrl->cur_drv = 0; 1103 fdctrl->dor = FD_DOR_nRESET; 1104 fdctrl->dor |= (fdctrl->dma_chann != -1) ? FD_DOR_DMAEN : 0; 1105 fdctrl->msr = FD_MSR_RQM; 1106 fdctrl->reset_sensei = 0; 1107 timer_del(fdctrl->result_timer); 1108 /* FIFO state */ 1109 fdctrl->data_pos = 0; 1110 fdctrl->data_len = 0; 1111 fdctrl->data_state = 0; 1112 fdctrl->data_dir = FD_DIR_WRITE; 1113 for (i = 0; i < MAX_FD; i++) 1114 fd_recalibrate(&fdctrl->drives[i]); 1115 fdctrl_to_command_phase(fdctrl); 1116 if (do_irq) { 1117 fdctrl->status0 |= FD_SR0_RDYCHG; 1118 fdctrl_raise_irq(fdctrl); 1119 fdctrl->reset_sensei = FD_RESET_SENSEI_COUNT; 1120 } 1121 } 1122 1123 static inline FDrive *drv0(FDCtrl *fdctrl) 1124 { 1125 return &fdctrl->drives[(fdctrl->tdr & FD_TDR_BOOTSEL) >> 2]; 1126 } 1127 1128 static inline FDrive *drv1(FDCtrl *fdctrl) 1129 { 1130 if ((fdctrl->tdr & FD_TDR_BOOTSEL) < (1 << 2)) 1131 return &fdctrl->drives[1]; 1132 else 1133 return &fdctrl->drives[0]; 1134 } 1135 1136 #if MAX_FD == 4 1137 static inline FDrive *drv2(FDCtrl *fdctrl) 1138 { 1139 if ((fdctrl->tdr & FD_TDR_BOOTSEL) < (2 << 2)) 1140 return &fdctrl->drives[2]; 1141 else 1142 return &fdctrl->drives[1]; 1143 } 1144 1145 static inline FDrive *drv3(FDCtrl *fdctrl) 1146 { 1147 if ((fdctrl->tdr & FD_TDR_BOOTSEL) < (3 << 2)) 1148 return &fdctrl->drives[3]; 1149 else 1150 return &fdctrl->drives[2]; 1151 } 1152 #endif 1153 1154 static FDrive *get_drv(FDCtrl *fdctrl, int unit) 1155 { 1156 switch (unit) { 1157 case 0: return drv0(fdctrl); 1158 case 1: return drv1(fdctrl); 1159 #if MAX_FD == 4 1160 case 2: return drv2(fdctrl); 1161 case 3: return drv3(fdctrl); 1162 #endif 1163 default: return NULL; 1164 } 1165 } 1166 1167 static FDrive *get_cur_drv(FDCtrl *fdctrl) 1168 { 1169 FDrive *cur_drv = get_drv(fdctrl, fdctrl->cur_drv); 1170 1171 if (!cur_drv->blk) { 1172 /* 1173 * Kludge: empty drive line selected. Create an anonymous 1174 * BlockBackend to avoid NULL deref with various BlockBackend 1175 * API calls within this model (CVE-2021-20196). 1176 * Due to the controller QOM model limitations, we don't 1177 * attach the created to the controller device. 1178 */ 1179 cur_drv->blk = blk_create_empty_drive(); 1180 } 1181 return cur_drv; 1182 } 1183 1184 /* Status A register : 0x00 (read-only) */ 1185 static uint32_t fdctrl_read_statusA(FDCtrl *fdctrl) 1186 { 1187 uint32_t retval = fdctrl->sra; 1188 1189 FLOPPY_DPRINTF("status register A: 0x%02x\n", retval); 1190 1191 return retval; 1192 } 1193 1194 /* Status B register : 0x01 (read-only) */ 1195 static uint32_t fdctrl_read_statusB(FDCtrl *fdctrl) 1196 { 1197 uint32_t retval = fdctrl->srb; 1198 1199 FLOPPY_DPRINTF("status register B: 0x%02x\n", retval); 1200 1201 return retval; 1202 } 1203 1204 /* Digital output register : 0x02 */ 1205 static uint32_t fdctrl_read_dor(FDCtrl *fdctrl) 1206 { 1207 uint32_t retval = fdctrl->dor; 1208 1209 /* Selected drive */ 1210 retval |= fdctrl->cur_drv; 1211 FLOPPY_DPRINTF("digital output register: 0x%02x\n", retval); 1212 1213 return retval; 1214 } 1215 1216 static void fdctrl_write_dor(FDCtrl *fdctrl, uint32_t value) 1217 { 1218 FLOPPY_DPRINTF("digital output register set to 0x%02x\n", value); 1219 1220 /* Motors */ 1221 if (value & FD_DOR_MOTEN0) 1222 fdctrl->srb |= FD_SRB_MTR0; 1223 else 1224 fdctrl->srb &= ~FD_SRB_MTR0; 1225 if (value & FD_DOR_MOTEN1) 1226 fdctrl->srb |= FD_SRB_MTR1; 1227 else 1228 fdctrl->srb &= ~FD_SRB_MTR1; 1229 1230 /* Drive */ 1231 if (value & 1) 1232 fdctrl->srb |= FD_SRB_DR0; 1233 else 1234 fdctrl->srb &= ~FD_SRB_DR0; 1235 1236 /* Reset */ 1237 if (!(value & FD_DOR_nRESET)) { 1238 if (fdctrl->dor & FD_DOR_nRESET) { 1239 FLOPPY_DPRINTF("controller enter RESET state\n"); 1240 } 1241 } else { 1242 if (!(fdctrl->dor & FD_DOR_nRESET)) { 1243 FLOPPY_DPRINTF("controller out of RESET state\n"); 1244 fdctrl_reset(fdctrl, 1); 1245 fdctrl->dsr &= ~FD_DSR_PWRDOWN; 1246 } 1247 } 1248 /* Selected drive */ 1249 fdctrl->cur_drv = value & FD_DOR_SELMASK; 1250 1251 fdctrl->dor = value; 1252 } 1253 1254 /* Tape drive register : 0x03 */ 1255 static uint32_t fdctrl_read_tape(FDCtrl *fdctrl) 1256 { 1257 uint32_t retval = fdctrl->tdr; 1258 1259 FLOPPY_DPRINTF("tape drive register: 0x%02x\n", retval); 1260 1261 return retval; 1262 } 1263 1264 static void fdctrl_write_tape(FDCtrl *fdctrl, uint32_t value) 1265 { 1266 /* Reset mode */ 1267 if (!(fdctrl->dor & FD_DOR_nRESET)) { 1268 FLOPPY_DPRINTF("Floppy controller in RESET state !\n"); 1269 return; 1270 } 1271 FLOPPY_DPRINTF("tape drive register set to 0x%02x\n", value); 1272 /* Disk boot selection indicator */ 1273 fdctrl->tdr = value & FD_TDR_BOOTSEL; 1274 /* Tape indicators: never allow */ 1275 } 1276 1277 /* Main status register : 0x04 (read) */ 1278 static uint32_t fdctrl_read_main_status(FDCtrl *fdctrl) 1279 { 1280 uint32_t retval = fdctrl->msr; 1281 1282 fdctrl->dsr &= ~FD_DSR_PWRDOWN; 1283 fdctrl->dor |= FD_DOR_nRESET; 1284 1285 FLOPPY_DPRINTF("main status register: 0x%02x\n", retval); 1286 1287 return retval; 1288 } 1289 1290 /* Data select rate register : 0x04 (write) */ 1291 static void fdctrl_write_rate(FDCtrl *fdctrl, uint32_t value) 1292 { 1293 /* Reset mode */ 1294 if (!(fdctrl->dor & FD_DOR_nRESET)) { 1295 FLOPPY_DPRINTF("Floppy controller in RESET state !\n"); 1296 return; 1297 } 1298 FLOPPY_DPRINTF("select rate register set to 0x%02x\n", value); 1299 /* Reset: autoclear */ 1300 if (value & FD_DSR_SWRESET) { 1301 fdctrl->dor &= ~FD_DOR_nRESET; 1302 fdctrl_reset(fdctrl, 1); 1303 fdctrl->dor |= FD_DOR_nRESET; 1304 } 1305 if (value & FD_DSR_PWRDOWN) { 1306 fdctrl_reset(fdctrl, 1); 1307 } 1308 fdctrl->dsr = value; 1309 } 1310 1311 /* Configuration control register: 0x07 (write) */ 1312 static void fdctrl_write_ccr(FDCtrl *fdctrl, uint32_t value) 1313 { 1314 /* Reset mode */ 1315 if (!(fdctrl->dor & FD_DOR_nRESET)) { 1316 FLOPPY_DPRINTF("Floppy controller in RESET state !\n"); 1317 return; 1318 } 1319 FLOPPY_DPRINTF("configuration control register set to 0x%02x\n", value); 1320 1321 /* Only the rate selection bits used in AT mode, and we 1322 * store those in the DSR. 1323 */ 1324 fdctrl->dsr = (fdctrl->dsr & ~FD_DSR_DRATEMASK) | 1325 (value & FD_DSR_DRATEMASK); 1326 } 1327 1328 static int fdctrl_media_changed(FDrive *drv) 1329 { 1330 return drv->media_changed; 1331 } 1332 1333 /* Digital input register : 0x07 (read-only) */ 1334 static uint32_t fdctrl_read_dir(FDCtrl *fdctrl) 1335 { 1336 uint32_t retval = 0; 1337 1338 if (fdctrl_media_changed(get_cur_drv(fdctrl))) { 1339 retval |= FD_DIR_DSKCHG; 1340 } 1341 if (retval != 0) { 1342 FLOPPY_DPRINTF("Floppy digital input register: 0x%02x\n", retval); 1343 } 1344 1345 return retval; 1346 } 1347 1348 /* Clear the FIFO and update the state for receiving the next command */ 1349 static void fdctrl_to_command_phase(FDCtrl *fdctrl) 1350 { 1351 fdctrl->phase = FD_PHASE_COMMAND; 1352 fdctrl->data_dir = FD_DIR_WRITE; 1353 fdctrl->data_pos = 0; 1354 fdctrl->data_len = 1; /* Accept command byte, adjust for params later */ 1355 fdctrl->msr &= ~(FD_MSR_CMDBUSY | FD_MSR_DIO); 1356 fdctrl->msr |= FD_MSR_RQM; 1357 } 1358 1359 /* Update the state to allow the guest to read out the command status. 1360 * @fifo_len is the number of result bytes to be read out. */ 1361 static void fdctrl_to_result_phase(FDCtrl *fdctrl, int fifo_len) 1362 { 1363 fdctrl->phase = FD_PHASE_RESULT; 1364 fdctrl->data_dir = FD_DIR_READ; 1365 fdctrl->data_len = fifo_len; 1366 fdctrl->data_pos = 0; 1367 fdctrl->msr |= FD_MSR_CMDBUSY | FD_MSR_RQM | FD_MSR_DIO; 1368 } 1369 1370 /* Set an error: unimplemented/unknown command */ 1371 static void fdctrl_unimplemented(FDCtrl *fdctrl, int direction) 1372 { 1373 qemu_log_mask(LOG_UNIMP, "fdc: unimplemented command 0x%02x\n", 1374 fdctrl->fifo[0]); 1375 fdctrl->fifo[0] = FD_SR0_INVCMD; 1376 fdctrl_to_result_phase(fdctrl, 1); 1377 } 1378 1379 /* Seek to next sector 1380 * returns 0 when end of track reached (for DBL_SIDES on head 1) 1381 * otherwise returns 1 1382 */ 1383 static int fdctrl_seek_to_next_sect(FDCtrl *fdctrl, FDrive *cur_drv) 1384 { 1385 FLOPPY_DPRINTF("seek to next sector (%d %02x %02x => %d)\n", 1386 cur_drv->head, cur_drv->track, cur_drv->sect, 1387 fd_sector(cur_drv)); 1388 /* XXX: cur_drv->sect >= cur_drv->last_sect should be an 1389 error in fact */ 1390 uint8_t new_head = cur_drv->head; 1391 uint8_t new_track = cur_drv->track; 1392 uint8_t new_sect = cur_drv->sect; 1393 1394 int ret = 1; 1395 1396 if (new_sect >= cur_drv->last_sect || 1397 new_sect == fdctrl->eot) { 1398 new_sect = 1; 1399 if (FD_MULTI_TRACK(fdctrl->data_state)) { 1400 if (new_head == 0 && 1401 (cur_drv->flags & FDISK_DBL_SIDES) != 0) { 1402 new_head = 1; 1403 } else { 1404 new_head = 0; 1405 new_track++; 1406 fdctrl->status0 |= FD_SR0_SEEK; 1407 if ((cur_drv->flags & FDISK_DBL_SIDES) == 0) { 1408 ret = 0; 1409 } 1410 } 1411 } else { 1412 fdctrl->status0 |= FD_SR0_SEEK; 1413 new_track++; 1414 ret = 0; 1415 } 1416 if (ret == 1) { 1417 FLOPPY_DPRINTF("seek to next track (%d %02x %02x => %d)\n", 1418 new_head, new_track, new_sect, fd_sector(cur_drv)); 1419 } 1420 } else { 1421 new_sect++; 1422 } 1423 fd_seek(cur_drv, new_head, new_track, new_sect, 1); 1424 return ret; 1425 } 1426 1427 /* Callback for transfer end (stop or abort) */ 1428 static void fdctrl_stop_transfer(FDCtrl *fdctrl, uint8_t status0, 1429 uint8_t status1, uint8_t status2) 1430 { 1431 FDrive *cur_drv; 1432 cur_drv = get_cur_drv(fdctrl); 1433 1434 fdctrl->status0 &= ~(FD_SR0_DS0 | FD_SR0_DS1 | FD_SR0_HEAD); 1435 fdctrl->status0 |= GET_CUR_DRV(fdctrl); 1436 if (cur_drv->head) { 1437 fdctrl->status0 |= FD_SR0_HEAD; 1438 } 1439 fdctrl->status0 |= status0; 1440 1441 FLOPPY_DPRINTF("transfer status: %02x %02x %02x (%02x)\n", 1442 status0, status1, status2, fdctrl->status0); 1443 fdctrl->fifo[0] = fdctrl->status0; 1444 fdctrl->fifo[1] = status1; 1445 fdctrl->fifo[2] = status2; 1446 fdctrl->fifo[3] = cur_drv->track; 1447 fdctrl->fifo[4] = cur_drv->head; 1448 fdctrl->fifo[5] = cur_drv->sect; 1449 fdctrl->fifo[6] = FD_SECTOR_SC; 1450 fdctrl->data_dir = FD_DIR_READ; 1451 if (fdctrl->dma_chann != -1 && !(fdctrl->msr & FD_MSR_NONDMA)) { 1452 IsaDmaClass *k = ISADMA_GET_CLASS(fdctrl->dma); 1453 k->release_DREQ(fdctrl->dma, fdctrl->dma_chann); 1454 } 1455 fdctrl->msr |= FD_MSR_RQM | FD_MSR_DIO; 1456 fdctrl->msr &= ~FD_MSR_NONDMA; 1457 1458 fdctrl_to_result_phase(fdctrl, 7); 1459 fdctrl_raise_irq(fdctrl); 1460 } 1461 1462 /* Prepare a data transfer (either DMA or FIFO) */ 1463 static void fdctrl_start_transfer(FDCtrl *fdctrl, int direction) 1464 { 1465 FDrive *cur_drv; 1466 uint8_t kh, kt, ks; 1467 1468 SET_CUR_DRV(fdctrl, fdctrl->fifo[1] & FD_DOR_SELMASK); 1469 cur_drv = get_cur_drv(fdctrl); 1470 kt = fdctrl->fifo[2]; 1471 kh = fdctrl->fifo[3]; 1472 ks = fdctrl->fifo[4]; 1473 FLOPPY_DPRINTF("Start transfer at %d %d %02x %02x (%d)\n", 1474 GET_CUR_DRV(fdctrl), kh, kt, ks, 1475 fd_sector_calc(kh, kt, ks, cur_drv->last_sect, 1476 NUM_SIDES(cur_drv))); 1477 switch (fd_seek(cur_drv, kh, kt, ks, fdctrl->config & FD_CONFIG_EIS)) { 1478 case 2: 1479 /* sect too big */ 1480 fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, 0x00, 0x00); 1481 fdctrl->fifo[3] = kt; 1482 fdctrl->fifo[4] = kh; 1483 fdctrl->fifo[5] = ks; 1484 return; 1485 case 3: 1486 /* track too big */ 1487 fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, FD_SR1_EC, 0x00); 1488 fdctrl->fifo[3] = kt; 1489 fdctrl->fifo[4] = kh; 1490 fdctrl->fifo[5] = ks; 1491 return; 1492 case 4: 1493 /* No seek enabled */ 1494 fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, 0x00, 0x00); 1495 fdctrl->fifo[3] = kt; 1496 fdctrl->fifo[4] = kh; 1497 fdctrl->fifo[5] = ks; 1498 return; 1499 case 1: 1500 fdctrl->status0 |= FD_SR0_SEEK; 1501 break; 1502 default: 1503 break; 1504 } 1505 1506 /* Check the data rate. If the programmed data rate does not match 1507 * the currently inserted medium, the operation has to fail. */ 1508 if ((fdctrl->dsr & FD_DSR_DRATEMASK) != cur_drv->media_rate) { 1509 FLOPPY_DPRINTF("data rate mismatch (fdc=%d, media=%d)\n", 1510 fdctrl->dsr & FD_DSR_DRATEMASK, cur_drv->media_rate); 1511 fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, FD_SR1_MA, 0x00); 1512 fdctrl->fifo[3] = kt; 1513 fdctrl->fifo[4] = kh; 1514 fdctrl->fifo[5] = ks; 1515 return; 1516 } 1517 1518 /* Set the FIFO state */ 1519 fdctrl->data_dir = direction; 1520 fdctrl->data_pos = 0; 1521 assert(fdctrl->msr & FD_MSR_CMDBUSY); 1522 if (fdctrl->fifo[0] & 0x80) 1523 fdctrl->data_state |= FD_STATE_MULTI; 1524 else 1525 fdctrl->data_state &= ~FD_STATE_MULTI; 1526 if (fdctrl->fifo[5] == 0) { 1527 fdctrl->data_len = fdctrl->fifo[8]; 1528 } else { 1529 int tmp; 1530 fdctrl->data_len = 128 << (fdctrl->fifo[5] > 7 ? 7 : fdctrl->fifo[5]); 1531 tmp = (fdctrl->fifo[6] - ks + 1); 1532 if (tmp < 0) { 1533 FLOPPY_DPRINTF("invalid EOT: %d\n", tmp); 1534 fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, FD_SR1_MA, 0x00); 1535 fdctrl->fifo[3] = kt; 1536 fdctrl->fifo[4] = kh; 1537 fdctrl->fifo[5] = ks; 1538 return; 1539 } 1540 if (fdctrl->fifo[0] & 0x80) 1541 tmp += fdctrl->fifo[6]; 1542 fdctrl->data_len *= tmp; 1543 } 1544 fdctrl->eot = fdctrl->fifo[6]; 1545 if (fdctrl->dor & FD_DOR_DMAEN) { 1546 /* DMA transfer is enabled. */ 1547 IsaDmaClass *k = ISADMA_GET_CLASS(fdctrl->dma); 1548 1549 FLOPPY_DPRINTF("direction=%d (%d - %d)\n", 1550 direction, (128 << fdctrl->fifo[5]) * 1551 (cur_drv->last_sect - ks + 1), fdctrl->data_len); 1552 1553 /* No access is allowed until DMA transfer has completed */ 1554 fdctrl->msr &= ~FD_MSR_RQM; 1555 if (direction != FD_DIR_VERIFY) { 1556 /* 1557 * Now, we just have to wait for the DMA controller to 1558 * recall us... 1559 */ 1560 k->hold_DREQ(fdctrl->dma, fdctrl->dma_chann); 1561 k->schedule(fdctrl->dma); 1562 } else { 1563 /* Start transfer */ 1564 fdctrl_transfer_handler(fdctrl, fdctrl->dma_chann, 0, 1565 fdctrl->data_len); 1566 } 1567 return; 1568 } 1569 FLOPPY_DPRINTF("start non-DMA transfer\n"); 1570 fdctrl->msr |= FD_MSR_NONDMA | FD_MSR_RQM; 1571 if (direction != FD_DIR_WRITE) 1572 fdctrl->msr |= FD_MSR_DIO; 1573 /* IO based transfer: calculate len */ 1574 fdctrl_raise_irq(fdctrl); 1575 } 1576 1577 /* Prepare a transfer of deleted data */ 1578 static void fdctrl_start_transfer_del(FDCtrl *fdctrl, int direction) 1579 { 1580 qemu_log_mask(LOG_UNIMP, "fdctrl_start_transfer_del() unimplemented\n"); 1581 1582 /* We don't handle deleted data, 1583 * so we don't return *ANYTHING* 1584 */ 1585 fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM | FD_SR0_SEEK, 0x00, 0x00); 1586 } 1587 1588 /* handlers for DMA transfers */ 1589 int fdctrl_transfer_handler(void *opaque, int nchan, int dma_pos, int dma_len) 1590 { 1591 FDCtrl *fdctrl; 1592 FDrive *cur_drv; 1593 int len, start_pos, rel_pos; 1594 uint8_t status0 = 0x00, status1 = 0x00, status2 = 0x00; 1595 IsaDmaClass *k; 1596 1597 fdctrl = opaque; 1598 if (fdctrl->msr & FD_MSR_RQM) { 1599 FLOPPY_DPRINTF("Not in DMA transfer mode !\n"); 1600 return 0; 1601 } 1602 k = ISADMA_GET_CLASS(fdctrl->dma); 1603 cur_drv = get_cur_drv(fdctrl); 1604 if (fdctrl->data_dir == FD_DIR_SCANE || fdctrl->data_dir == FD_DIR_SCANL || 1605 fdctrl->data_dir == FD_DIR_SCANH) 1606 status2 = FD_SR2_SNS; 1607 if (dma_len > fdctrl->data_len) 1608 dma_len = fdctrl->data_len; 1609 if (cur_drv->blk == NULL) { 1610 if (fdctrl->data_dir == FD_DIR_WRITE) 1611 fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM | FD_SR0_SEEK, 0x00, 0x00); 1612 else 1613 fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, 0x00, 0x00); 1614 len = 0; 1615 goto transfer_error; 1616 } 1617 rel_pos = fdctrl->data_pos % FD_SECTOR_LEN; 1618 for (start_pos = fdctrl->data_pos; fdctrl->data_pos < dma_len;) { 1619 len = dma_len - fdctrl->data_pos; 1620 if (len + rel_pos > FD_SECTOR_LEN) 1621 len = FD_SECTOR_LEN - rel_pos; 1622 FLOPPY_DPRINTF("copy %d bytes (%d %d %d) %d pos %d %02x " 1623 "(%d-0x%08x 0x%08x)\n", len, dma_len, fdctrl->data_pos, 1624 fdctrl->data_len, GET_CUR_DRV(fdctrl), cur_drv->head, 1625 cur_drv->track, cur_drv->sect, fd_sector(cur_drv), 1626 fd_sector(cur_drv) * FD_SECTOR_LEN); 1627 if (fdctrl->data_dir != FD_DIR_WRITE || 1628 len < FD_SECTOR_LEN || rel_pos != 0) { 1629 /* READ & SCAN commands and realign to a sector for WRITE */ 1630 if (blk_pread(cur_drv->blk, fd_offset(cur_drv), BDRV_SECTOR_SIZE, 1631 fdctrl->fifo, 0) < 0) { 1632 FLOPPY_DPRINTF("Floppy: error getting sector %d\n", 1633 fd_sector(cur_drv)); 1634 /* Sure, image size is too small... */ 1635 memset(fdctrl->fifo, 0, FD_SECTOR_LEN); 1636 } 1637 } 1638 switch (fdctrl->data_dir) { 1639 case FD_DIR_READ: 1640 /* READ commands */ 1641 k->write_memory(fdctrl->dma, nchan, fdctrl->fifo + rel_pos, 1642 fdctrl->data_pos, len); 1643 break; 1644 case FD_DIR_WRITE: 1645 /* WRITE commands */ 1646 if (cur_drv->ro) { 1647 /* Handle readonly medium early, no need to do DMA, touch the 1648 * LED or attempt any writes. A real floppy doesn't attempt 1649 * to write to readonly media either. */ 1650 fdctrl_stop_transfer(fdctrl, 1651 FD_SR0_ABNTERM | FD_SR0_SEEK, FD_SR1_NW, 1652 0x00); 1653 goto transfer_error; 1654 } 1655 1656 k->read_memory(fdctrl->dma, nchan, fdctrl->fifo + rel_pos, 1657 fdctrl->data_pos, len); 1658 if (blk_pwrite(cur_drv->blk, fd_offset(cur_drv), BDRV_SECTOR_SIZE, 1659 fdctrl->fifo, 0) < 0) { 1660 FLOPPY_DPRINTF("error writing sector %d\n", 1661 fd_sector(cur_drv)); 1662 fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM | FD_SR0_SEEK, 0x00, 0x00); 1663 goto transfer_error; 1664 } 1665 break; 1666 case FD_DIR_VERIFY: 1667 /* VERIFY commands */ 1668 break; 1669 default: 1670 /* SCAN commands */ 1671 { 1672 uint8_t tmpbuf[FD_SECTOR_LEN]; 1673 int ret; 1674 k->read_memory(fdctrl->dma, nchan, tmpbuf, fdctrl->data_pos, 1675 len); 1676 ret = memcmp(tmpbuf, fdctrl->fifo + rel_pos, len); 1677 if (ret == 0) { 1678 status2 = FD_SR2_SEH; 1679 goto end_transfer; 1680 } 1681 if ((ret < 0 && fdctrl->data_dir == FD_DIR_SCANL) || 1682 (ret > 0 && fdctrl->data_dir == FD_DIR_SCANH)) { 1683 status2 = 0x00; 1684 goto end_transfer; 1685 } 1686 } 1687 break; 1688 } 1689 fdctrl->data_pos += len; 1690 rel_pos = fdctrl->data_pos % FD_SECTOR_LEN; 1691 if (rel_pos == 0) { 1692 /* Seek to next sector */ 1693 if (!fdctrl_seek_to_next_sect(fdctrl, cur_drv)) 1694 break; 1695 } 1696 } 1697 end_transfer: 1698 len = fdctrl->data_pos - start_pos; 1699 FLOPPY_DPRINTF("end transfer %d %d %d\n", 1700 fdctrl->data_pos, len, fdctrl->data_len); 1701 if (fdctrl->data_dir == FD_DIR_SCANE || 1702 fdctrl->data_dir == FD_DIR_SCANL || 1703 fdctrl->data_dir == FD_DIR_SCANH) 1704 status2 = FD_SR2_SEH; 1705 fdctrl->data_len -= len; 1706 fdctrl_stop_transfer(fdctrl, status0, status1, status2); 1707 transfer_error: 1708 1709 return len; 1710 } 1711 1712 /* Data register : 0x05 */ 1713 static uint32_t fdctrl_read_data(FDCtrl *fdctrl) 1714 { 1715 FDrive *cur_drv; 1716 uint32_t retval = 0; 1717 uint32_t pos; 1718 1719 cur_drv = get_cur_drv(fdctrl); 1720 fdctrl->dsr &= ~FD_DSR_PWRDOWN; 1721 if (!(fdctrl->msr & FD_MSR_RQM) || !(fdctrl->msr & FD_MSR_DIO)) { 1722 FLOPPY_DPRINTF("error: controller not ready for reading\n"); 1723 return 0; 1724 } 1725 1726 /* If data_len spans multiple sectors, the current position in the FIFO 1727 * wraps around while fdctrl->data_pos is the real position in the whole 1728 * request. */ 1729 pos = fdctrl->data_pos; 1730 pos %= FD_SECTOR_LEN; 1731 1732 switch (fdctrl->phase) { 1733 case FD_PHASE_EXECUTION: 1734 assert(fdctrl->msr & FD_MSR_NONDMA); 1735 if (pos == 0) { 1736 if (fdctrl->data_pos != 0) 1737 if (!fdctrl_seek_to_next_sect(fdctrl, cur_drv)) { 1738 FLOPPY_DPRINTF("error seeking to next sector %d\n", 1739 fd_sector(cur_drv)); 1740 return 0; 1741 } 1742 if (blk_pread(cur_drv->blk, fd_offset(cur_drv), BDRV_SECTOR_SIZE, 1743 fdctrl->fifo, 0) 1744 < 0) { 1745 FLOPPY_DPRINTF("error getting sector %d\n", 1746 fd_sector(cur_drv)); 1747 /* Sure, image size is too small... */ 1748 memset(fdctrl->fifo, 0, FD_SECTOR_LEN); 1749 } 1750 } 1751 1752 if (++fdctrl->data_pos == fdctrl->data_len) { 1753 fdctrl->msr &= ~FD_MSR_RQM; 1754 fdctrl_stop_transfer(fdctrl, 0x00, 0x00, 0x00); 1755 } 1756 break; 1757 1758 case FD_PHASE_RESULT: 1759 assert(!(fdctrl->msr & FD_MSR_NONDMA)); 1760 if (++fdctrl->data_pos == fdctrl->data_len) { 1761 fdctrl->msr &= ~FD_MSR_RQM; 1762 fdctrl_to_command_phase(fdctrl); 1763 fdctrl_reset_irq(fdctrl); 1764 } 1765 break; 1766 1767 case FD_PHASE_COMMAND: 1768 default: 1769 abort(); 1770 } 1771 1772 retval = fdctrl->fifo[pos]; 1773 FLOPPY_DPRINTF("data register: 0x%02x\n", retval); 1774 1775 return retval; 1776 } 1777 1778 static void fdctrl_format_sector(FDCtrl *fdctrl) 1779 { 1780 FDrive *cur_drv; 1781 uint8_t kh, kt, ks; 1782 1783 SET_CUR_DRV(fdctrl, fdctrl->fifo[1] & FD_DOR_SELMASK); 1784 cur_drv = get_cur_drv(fdctrl); 1785 kt = fdctrl->fifo[6]; 1786 kh = fdctrl->fifo[7]; 1787 ks = fdctrl->fifo[8]; 1788 FLOPPY_DPRINTF("format sector at %d %d %02x %02x (%d)\n", 1789 GET_CUR_DRV(fdctrl), kh, kt, ks, 1790 fd_sector_calc(kh, kt, ks, cur_drv->last_sect, 1791 NUM_SIDES(cur_drv))); 1792 switch (fd_seek(cur_drv, kh, kt, ks, fdctrl->config & FD_CONFIG_EIS)) { 1793 case 2: 1794 /* sect too big */ 1795 fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, 0x00, 0x00); 1796 fdctrl->fifo[3] = kt; 1797 fdctrl->fifo[4] = kh; 1798 fdctrl->fifo[5] = ks; 1799 return; 1800 case 3: 1801 /* track too big */ 1802 fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, FD_SR1_EC, 0x00); 1803 fdctrl->fifo[3] = kt; 1804 fdctrl->fifo[4] = kh; 1805 fdctrl->fifo[5] = ks; 1806 return; 1807 case 4: 1808 /* No seek enabled */ 1809 fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, 0x00, 0x00); 1810 fdctrl->fifo[3] = kt; 1811 fdctrl->fifo[4] = kh; 1812 fdctrl->fifo[5] = ks; 1813 return; 1814 case 1: 1815 fdctrl->status0 |= FD_SR0_SEEK; 1816 break; 1817 default: 1818 break; 1819 } 1820 memset(fdctrl->fifo, 0, FD_SECTOR_LEN); 1821 if (cur_drv->blk == NULL || 1822 blk_pwrite(cur_drv->blk, fd_offset(cur_drv), BDRV_SECTOR_SIZE, 1823 fdctrl->fifo, 0) < 0) { 1824 FLOPPY_DPRINTF("error formatting sector %d\n", fd_sector(cur_drv)); 1825 fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM | FD_SR0_SEEK, 0x00, 0x00); 1826 } else { 1827 if (cur_drv->sect == cur_drv->last_sect) { 1828 fdctrl->data_state &= ~FD_STATE_FORMAT; 1829 /* Last sector done */ 1830 fdctrl_stop_transfer(fdctrl, 0x00, 0x00, 0x00); 1831 } else { 1832 /* More to do */ 1833 fdctrl->data_pos = 0; 1834 fdctrl->data_len = 4; 1835 } 1836 } 1837 } 1838 1839 static void fdctrl_handle_lock(FDCtrl *fdctrl, int direction) 1840 { 1841 fdctrl->lock = (fdctrl->fifo[0] & 0x80) ? 1 : 0; 1842 fdctrl->fifo[0] = fdctrl->lock << 4; 1843 fdctrl_to_result_phase(fdctrl, 1); 1844 } 1845 1846 static void fdctrl_handle_dumpreg(FDCtrl *fdctrl, int direction) 1847 { 1848 FDrive *cur_drv = get_cur_drv(fdctrl); 1849 1850 /* Drives position */ 1851 fdctrl->fifo[0] = drv0(fdctrl)->track; 1852 fdctrl->fifo[1] = drv1(fdctrl)->track; 1853 #if MAX_FD == 4 1854 fdctrl->fifo[2] = drv2(fdctrl)->track; 1855 fdctrl->fifo[3] = drv3(fdctrl)->track; 1856 #else 1857 fdctrl->fifo[2] = 0; 1858 fdctrl->fifo[3] = 0; 1859 #endif 1860 /* timers */ 1861 fdctrl->fifo[4] = fdctrl->timer0; 1862 fdctrl->fifo[5] = (fdctrl->timer1 << 1) | (fdctrl->dor & FD_DOR_DMAEN ? 1 : 0); 1863 fdctrl->fifo[6] = cur_drv->last_sect; 1864 fdctrl->fifo[7] = (fdctrl->lock << 7) | 1865 (cur_drv->perpendicular << 2); 1866 fdctrl->fifo[8] = fdctrl->config; 1867 fdctrl->fifo[9] = fdctrl->precomp_trk; 1868 fdctrl_to_result_phase(fdctrl, 10); 1869 } 1870 1871 static void fdctrl_handle_version(FDCtrl *fdctrl, int direction) 1872 { 1873 /* Controller's version */ 1874 fdctrl->fifo[0] = fdctrl->version; 1875 fdctrl_to_result_phase(fdctrl, 1); 1876 } 1877 1878 static void fdctrl_handle_partid(FDCtrl *fdctrl, int direction) 1879 { 1880 fdctrl->fifo[0] = 0x41; /* Stepping 1 */ 1881 fdctrl_to_result_phase(fdctrl, 1); 1882 } 1883 1884 static void fdctrl_handle_restore(FDCtrl *fdctrl, int direction) 1885 { 1886 FDrive *cur_drv = get_cur_drv(fdctrl); 1887 1888 /* Drives position */ 1889 drv0(fdctrl)->track = fdctrl->fifo[3]; 1890 drv1(fdctrl)->track = fdctrl->fifo[4]; 1891 #if MAX_FD == 4 1892 drv2(fdctrl)->track = fdctrl->fifo[5]; 1893 drv3(fdctrl)->track = fdctrl->fifo[6]; 1894 #endif 1895 /* timers */ 1896 fdctrl->timer0 = fdctrl->fifo[7]; 1897 fdctrl->timer1 = fdctrl->fifo[8]; 1898 cur_drv->last_sect = fdctrl->fifo[9]; 1899 fdctrl->lock = fdctrl->fifo[10] >> 7; 1900 cur_drv->perpendicular = (fdctrl->fifo[10] >> 2) & 0xF; 1901 fdctrl->config = fdctrl->fifo[11]; 1902 fdctrl->precomp_trk = fdctrl->fifo[12]; 1903 fdctrl->pwrd = fdctrl->fifo[13]; 1904 fdctrl_to_command_phase(fdctrl); 1905 } 1906 1907 static void fdctrl_handle_save(FDCtrl *fdctrl, int direction) 1908 { 1909 FDrive *cur_drv = get_cur_drv(fdctrl); 1910 1911 fdctrl->fifo[0] = 0; 1912 fdctrl->fifo[1] = 0; 1913 /* Drives position */ 1914 fdctrl->fifo[2] = drv0(fdctrl)->track; 1915 fdctrl->fifo[3] = drv1(fdctrl)->track; 1916 #if MAX_FD == 4 1917 fdctrl->fifo[4] = drv2(fdctrl)->track; 1918 fdctrl->fifo[5] = drv3(fdctrl)->track; 1919 #else 1920 fdctrl->fifo[4] = 0; 1921 fdctrl->fifo[5] = 0; 1922 #endif 1923 /* timers */ 1924 fdctrl->fifo[6] = fdctrl->timer0; 1925 fdctrl->fifo[7] = fdctrl->timer1; 1926 fdctrl->fifo[8] = cur_drv->last_sect; 1927 fdctrl->fifo[9] = (fdctrl->lock << 7) | 1928 (cur_drv->perpendicular << 2); 1929 fdctrl->fifo[10] = fdctrl->config; 1930 fdctrl->fifo[11] = fdctrl->precomp_trk; 1931 fdctrl->fifo[12] = fdctrl->pwrd; 1932 fdctrl->fifo[13] = 0; 1933 fdctrl->fifo[14] = 0; 1934 fdctrl_to_result_phase(fdctrl, 15); 1935 } 1936 1937 static void fdctrl_handle_readid(FDCtrl *fdctrl, int direction) 1938 { 1939 FDrive *cur_drv = get_cur_drv(fdctrl); 1940 1941 cur_drv->head = (fdctrl->fifo[1] >> 2) & 1; 1942 timer_mod(fdctrl->result_timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + 1943 (NANOSECONDS_PER_SECOND / 50)); 1944 } 1945 1946 static void fdctrl_handle_format_track(FDCtrl *fdctrl, int direction) 1947 { 1948 FDrive *cur_drv; 1949 1950 SET_CUR_DRV(fdctrl, fdctrl->fifo[1] & FD_DOR_SELMASK); 1951 cur_drv = get_cur_drv(fdctrl); 1952 fdctrl->data_state |= FD_STATE_FORMAT; 1953 if (fdctrl->fifo[0] & 0x80) 1954 fdctrl->data_state |= FD_STATE_MULTI; 1955 else 1956 fdctrl->data_state &= ~FD_STATE_MULTI; 1957 cur_drv->bps = 1958 fdctrl->fifo[2] > 7 ? 16384 : 128 << fdctrl->fifo[2]; 1959 #if 0 1960 cur_drv->last_sect = 1961 cur_drv->flags & FDISK_DBL_SIDES ? fdctrl->fifo[3] : 1962 fdctrl->fifo[3] / 2; 1963 #else 1964 cur_drv->last_sect = fdctrl->fifo[3]; 1965 #endif 1966 /* TODO: implement format using DMA expected by the Bochs BIOS 1967 * and Linux fdformat (read 3 bytes per sector via DMA and fill 1968 * the sector with the specified fill byte 1969 */ 1970 fdctrl->data_state &= ~FD_STATE_FORMAT; 1971 fdctrl_stop_transfer(fdctrl, 0x00, 0x00, 0x00); 1972 } 1973 1974 static void fdctrl_handle_specify(FDCtrl *fdctrl, int direction) 1975 { 1976 fdctrl->timer0 = (fdctrl->fifo[1] >> 4) & 0xF; 1977 fdctrl->timer1 = fdctrl->fifo[2] >> 1; 1978 if (fdctrl->fifo[2] & 1) 1979 fdctrl->dor &= ~FD_DOR_DMAEN; 1980 else 1981 fdctrl->dor |= FD_DOR_DMAEN; 1982 /* No result back */ 1983 fdctrl_to_command_phase(fdctrl); 1984 } 1985 1986 static void fdctrl_handle_sense_drive_status(FDCtrl *fdctrl, int direction) 1987 { 1988 FDrive *cur_drv; 1989 1990 SET_CUR_DRV(fdctrl, fdctrl->fifo[1] & FD_DOR_SELMASK); 1991 cur_drv = get_cur_drv(fdctrl); 1992 cur_drv->head = (fdctrl->fifo[1] >> 2) & 1; 1993 /* 1 Byte status back */ 1994 fdctrl->fifo[0] = (cur_drv->ro << 6) | 1995 (cur_drv->track == 0 ? 0x10 : 0x00) | 1996 (cur_drv->head << 2) | 1997 GET_CUR_DRV(fdctrl) | 1998 0x28; 1999 fdctrl_to_result_phase(fdctrl, 1); 2000 } 2001 2002 static void fdctrl_handle_recalibrate(FDCtrl *fdctrl, int direction) 2003 { 2004 FDrive *cur_drv; 2005 2006 SET_CUR_DRV(fdctrl, fdctrl->fifo[1] & FD_DOR_SELMASK); 2007 cur_drv = get_cur_drv(fdctrl); 2008 fd_recalibrate(cur_drv); 2009 fdctrl_to_command_phase(fdctrl); 2010 /* Raise Interrupt */ 2011 fdctrl->status0 |= FD_SR0_SEEK; 2012 fdctrl_raise_irq(fdctrl); 2013 } 2014 2015 static void fdctrl_handle_sense_interrupt_status(FDCtrl *fdctrl, int direction) 2016 { 2017 FDrive *cur_drv = get_cur_drv(fdctrl); 2018 2019 if (fdctrl->reset_sensei > 0) { 2020 fdctrl->fifo[0] = 2021 FD_SR0_RDYCHG + FD_RESET_SENSEI_COUNT - fdctrl->reset_sensei; 2022 fdctrl->reset_sensei--; 2023 } else if (!(fdctrl->sra & FD_SRA_INTPEND)) { 2024 fdctrl->fifo[0] = FD_SR0_INVCMD; 2025 fdctrl_to_result_phase(fdctrl, 1); 2026 return; 2027 } else { 2028 fdctrl->fifo[0] = 2029 (fdctrl->status0 & ~(FD_SR0_HEAD | FD_SR0_DS1 | FD_SR0_DS0)) 2030 | GET_CUR_DRV(fdctrl); 2031 } 2032 2033 fdctrl->fifo[1] = cur_drv->track; 2034 fdctrl_to_result_phase(fdctrl, 2); 2035 fdctrl_reset_irq(fdctrl); 2036 fdctrl->status0 = FD_SR0_RDYCHG; 2037 } 2038 2039 static void fdctrl_handle_seek(FDCtrl *fdctrl, int direction) 2040 { 2041 FDrive *cur_drv; 2042 2043 SET_CUR_DRV(fdctrl, fdctrl->fifo[1] & FD_DOR_SELMASK); 2044 cur_drv = get_cur_drv(fdctrl); 2045 fdctrl_to_command_phase(fdctrl); 2046 /* The seek command just sends step pulses to the drive and doesn't care if 2047 * there is a medium inserted of if it's banging the head against the drive. 2048 */ 2049 fd_seek(cur_drv, cur_drv->head, fdctrl->fifo[2], cur_drv->sect, 1); 2050 /* Raise Interrupt */ 2051 fdctrl->status0 |= FD_SR0_SEEK; 2052 fdctrl_raise_irq(fdctrl); 2053 } 2054 2055 static void fdctrl_handle_perpendicular_mode(FDCtrl *fdctrl, int direction) 2056 { 2057 FDrive *cur_drv = get_cur_drv(fdctrl); 2058 2059 if (fdctrl->fifo[1] & 0x80) 2060 cur_drv->perpendicular = fdctrl->fifo[1] & 0x7; 2061 /* No result back */ 2062 fdctrl_to_command_phase(fdctrl); 2063 } 2064 2065 static void fdctrl_handle_configure(FDCtrl *fdctrl, int direction) 2066 { 2067 fdctrl->config = fdctrl->fifo[2]; 2068 fdctrl->precomp_trk = fdctrl->fifo[3]; 2069 /* No result back */ 2070 fdctrl_to_command_phase(fdctrl); 2071 } 2072 2073 static void fdctrl_handle_powerdown_mode(FDCtrl *fdctrl, int direction) 2074 { 2075 fdctrl->pwrd = fdctrl->fifo[1]; 2076 fdctrl->fifo[0] = fdctrl->fifo[1]; 2077 fdctrl_to_result_phase(fdctrl, 1); 2078 } 2079 2080 static void fdctrl_handle_option(FDCtrl *fdctrl, int direction) 2081 { 2082 /* No result back */ 2083 fdctrl_to_command_phase(fdctrl); 2084 } 2085 2086 static void fdctrl_handle_drive_specification_command(FDCtrl *fdctrl, int direction) 2087 { 2088 FDrive *cur_drv = get_cur_drv(fdctrl); 2089 uint32_t pos; 2090 2091 pos = fdctrl->data_pos - 1; 2092 pos %= FD_SECTOR_LEN; 2093 if (fdctrl->fifo[pos] & 0x80) { 2094 /* Command parameters done */ 2095 if (fdctrl->fifo[pos] & 0x40) { 2096 fdctrl->fifo[0] = fdctrl->fifo[1]; 2097 fdctrl->fifo[2] = 0; 2098 fdctrl->fifo[3] = 0; 2099 fdctrl_to_result_phase(fdctrl, 4); 2100 } else { 2101 fdctrl_to_command_phase(fdctrl); 2102 } 2103 } else if (fdctrl->data_len > 7) { 2104 /* ERROR */ 2105 fdctrl->fifo[0] = 0x80 | 2106 (cur_drv->head << 2) | GET_CUR_DRV(fdctrl); 2107 fdctrl_to_result_phase(fdctrl, 1); 2108 } 2109 } 2110 2111 static void fdctrl_handle_relative_seek_in(FDCtrl *fdctrl, int direction) 2112 { 2113 FDrive *cur_drv; 2114 2115 SET_CUR_DRV(fdctrl, fdctrl->fifo[1] & FD_DOR_SELMASK); 2116 cur_drv = get_cur_drv(fdctrl); 2117 if (fdctrl->fifo[2] + cur_drv->track >= cur_drv->max_track) { 2118 fd_seek(cur_drv, cur_drv->head, cur_drv->max_track - 1, 2119 cur_drv->sect, 1); 2120 } else { 2121 fd_seek(cur_drv, cur_drv->head, 2122 cur_drv->track + fdctrl->fifo[2], cur_drv->sect, 1); 2123 } 2124 fdctrl_to_command_phase(fdctrl); 2125 /* Raise Interrupt */ 2126 fdctrl->status0 |= FD_SR0_SEEK; 2127 fdctrl_raise_irq(fdctrl); 2128 } 2129 2130 static void fdctrl_handle_relative_seek_out(FDCtrl *fdctrl, int direction) 2131 { 2132 FDrive *cur_drv; 2133 2134 SET_CUR_DRV(fdctrl, fdctrl->fifo[1] & FD_DOR_SELMASK); 2135 cur_drv = get_cur_drv(fdctrl); 2136 if (fdctrl->fifo[2] > cur_drv->track) { 2137 fd_seek(cur_drv, cur_drv->head, 0, cur_drv->sect, 1); 2138 } else { 2139 fd_seek(cur_drv, cur_drv->head, 2140 cur_drv->track - fdctrl->fifo[2], cur_drv->sect, 1); 2141 } 2142 fdctrl_to_command_phase(fdctrl); 2143 /* Raise Interrupt */ 2144 fdctrl->status0 |= FD_SR0_SEEK; 2145 fdctrl_raise_irq(fdctrl); 2146 } 2147 2148 /* 2149 * Handlers for the execution phase of each command 2150 */ 2151 typedef struct FDCtrlCommand { 2152 uint8_t value; 2153 uint8_t mask; 2154 const char* name; 2155 int parameters; 2156 void (*handler)(FDCtrl *fdctrl, int direction); 2157 int direction; 2158 } FDCtrlCommand; 2159 2160 static const FDCtrlCommand handlers[] = { 2161 { FD_CMD_READ, 0x1f, "READ", 8, fdctrl_start_transfer, FD_DIR_READ }, 2162 { FD_CMD_WRITE, 0x3f, "WRITE", 8, fdctrl_start_transfer, FD_DIR_WRITE }, 2163 { FD_CMD_SEEK, 0xff, "SEEK", 2, fdctrl_handle_seek }, 2164 { FD_CMD_SENSE_INTERRUPT_STATUS, 0xff, "SENSE INTERRUPT STATUS", 0, fdctrl_handle_sense_interrupt_status }, 2165 { FD_CMD_RECALIBRATE, 0xff, "RECALIBRATE", 1, fdctrl_handle_recalibrate }, 2166 { FD_CMD_FORMAT_TRACK, 0xbf, "FORMAT TRACK", 5, fdctrl_handle_format_track }, 2167 { FD_CMD_READ_TRACK, 0xbf, "READ TRACK", 8, fdctrl_start_transfer, FD_DIR_READ }, 2168 { FD_CMD_RESTORE, 0xff, "RESTORE", 17, fdctrl_handle_restore }, /* part of READ DELETED DATA */ 2169 { FD_CMD_SAVE, 0xff, "SAVE", 0, fdctrl_handle_save }, /* part of READ DELETED DATA */ 2170 { FD_CMD_READ_DELETED, 0x1f, "READ DELETED DATA", 8, fdctrl_start_transfer_del, FD_DIR_READ }, 2171 { FD_CMD_SCAN_EQUAL, 0x1f, "SCAN EQUAL", 8, fdctrl_start_transfer, FD_DIR_SCANE }, 2172 { FD_CMD_VERIFY, 0x1f, "VERIFY", 8, fdctrl_start_transfer, FD_DIR_VERIFY }, 2173 { FD_CMD_SCAN_LOW_OR_EQUAL, 0x1f, "SCAN LOW OR EQUAL", 8, fdctrl_start_transfer, FD_DIR_SCANL }, 2174 { FD_CMD_SCAN_HIGH_OR_EQUAL, 0x1f, "SCAN HIGH OR EQUAL", 8, fdctrl_start_transfer, FD_DIR_SCANH }, 2175 { FD_CMD_WRITE_DELETED, 0x3f, "WRITE DELETED DATA", 8, fdctrl_start_transfer_del, FD_DIR_WRITE }, 2176 { FD_CMD_READ_ID, 0xbf, "READ ID", 1, fdctrl_handle_readid }, 2177 { FD_CMD_SPECIFY, 0xff, "SPECIFY", 2, fdctrl_handle_specify }, 2178 { FD_CMD_SENSE_DRIVE_STATUS, 0xff, "SENSE DRIVE STATUS", 1, fdctrl_handle_sense_drive_status }, 2179 { FD_CMD_PERPENDICULAR_MODE, 0xff, "PERPENDICULAR MODE", 1, fdctrl_handle_perpendicular_mode }, 2180 { FD_CMD_CONFIGURE, 0xff, "CONFIGURE", 3, fdctrl_handle_configure }, 2181 { FD_CMD_POWERDOWN_MODE, 0xff, "POWERDOWN MODE", 2, fdctrl_handle_powerdown_mode }, 2182 { FD_CMD_OPTION, 0xff, "OPTION", 1, fdctrl_handle_option }, 2183 { FD_CMD_DRIVE_SPECIFICATION_COMMAND, 0xff, "DRIVE SPECIFICATION COMMAND", 5, fdctrl_handle_drive_specification_command }, 2184 { FD_CMD_RELATIVE_SEEK_OUT, 0xff, "RELATIVE SEEK OUT", 2, fdctrl_handle_relative_seek_out }, 2185 { FD_CMD_FORMAT_AND_WRITE, 0xff, "FORMAT AND WRITE", 10, fdctrl_unimplemented }, 2186 { FD_CMD_RELATIVE_SEEK_IN, 0xff, "RELATIVE SEEK IN", 2, fdctrl_handle_relative_seek_in }, 2187 { FD_CMD_LOCK, 0x7f, "LOCK", 0, fdctrl_handle_lock }, 2188 { FD_CMD_DUMPREG, 0xff, "DUMPREG", 0, fdctrl_handle_dumpreg }, 2189 { FD_CMD_VERSION, 0xff, "VERSION", 0, fdctrl_handle_version }, 2190 { FD_CMD_PART_ID, 0xff, "PART ID", 0, fdctrl_handle_partid }, 2191 { FD_CMD_WRITE, 0x1f, "WRITE (BeOS)", 8, fdctrl_start_transfer, FD_DIR_WRITE }, /* not in specification ; BeOS 4.5 bug */ 2192 { 0, 0, "unknown", 0, fdctrl_unimplemented }, /* default handler */ 2193 }; 2194 /* Associate command to an index in the 'handlers' array */ 2195 static uint8_t command_to_handler[256]; 2196 2197 static const FDCtrlCommand *get_command(uint8_t cmd) 2198 { 2199 int idx; 2200 2201 idx = command_to_handler[cmd]; 2202 FLOPPY_DPRINTF("%s command\n", handlers[idx].name); 2203 return &handlers[idx]; 2204 } 2205 2206 static void fdctrl_write_data(FDCtrl *fdctrl, uint32_t value) 2207 { 2208 FDrive *cur_drv; 2209 const FDCtrlCommand *cmd; 2210 uint32_t pos; 2211 2212 /* Reset mode */ 2213 if (!(fdctrl->dor & FD_DOR_nRESET)) { 2214 FLOPPY_DPRINTF("Floppy controller in RESET state !\n"); 2215 return; 2216 } 2217 if (!(fdctrl->msr & FD_MSR_RQM) || (fdctrl->msr & FD_MSR_DIO)) { 2218 FLOPPY_DPRINTF("error: controller not ready for writing\n"); 2219 return; 2220 } 2221 fdctrl->dsr &= ~FD_DSR_PWRDOWN; 2222 2223 FLOPPY_DPRINTF("%s: %02x\n", __func__, value); 2224 2225 /* If data_len spans multiple sectors, the current position in the FIFO 2226 * wraps around while fdctrl->data_pos is the real position in the whole 2227 * request. */ 2228 pos = fdctrl->data_pos++; 2229 pos %= FD_SECTOR_LEN; 2230 fdctrl->fifo[pos] = value; 2231 2232 if (fdctrl->data_pos == fdctrl->data_len) { 2233 fdctrl->msr &= ~FD_MSR_RQM; 2234 } 2235 2236 switch (fdctrl->phase) { 2237 case FD_PHASE_EXECUTION: 2238 /* For DMA requests, RQM should be cleared during execution phase, so 2239 * we would have errored out above. */ 2240 assert(fdctrl->msr & FD_MSR_NONDMA); 2241 2242 /* FIFO data write */ 2243 if (pos == FD_SECTOR_LEN - 1 || 2244 fdctrl->data_pos == fdctrl->data_len) { 2245 cur_drv = get_cur_drv(fdctrl); 2246 if (blk_pwrite(cur_drv->blk, fd_offset(cur_drv), BDRV_SECTOR_SIZE, 2247 fdctrl->fifo, 0) < 0) { 2248 FLOPPY_DPRINTF("error writing sector %d\n", 2249 fd_sector(cur_drv)); 2250 break; 2251 } 2252 if (!fdctrl_seek_to_next_sect(fdctrl, cur_drv)) { 2253 FLOPPY_DPRINTF("error seeking to next sector %d\n", 2254 fd_sector(cur_drv)); 2255 break; 2256 } 2257 } 2258 2259 /* Switch to result phase when done with the transfer */ 2260 if (fdctrl->data_pos == fdctrl->data_len) { 2261 fdctrl_stop_transfer(fdctrl, 0x00, 0x00, 0x00); 2262 } 2263 break; 2264 2265 case FD_PHASE_COMMAND: 2266 assert(!(fdctrl->msr & FD_MSR_NONDMA)); 2267 assert(fdctrl->data_pos < FD_SECTOR_LEN); 2268 2269 if (pos == 0) { 2270 /* The first byte specifies the command. Now we start reading 2271 * as many parameters as this command requires. */ 2272 cmd = get_command(value); 2273 fdctrl->data_len = cmd->parameters + 1; 2274 if (cmd->parameters) { 2275 fdctrl->msr |= FD_MSR_RQM; 2276 } 2277 fdctrl->msr |= FD_MSR_CMDBUSY; 2278 } 2279 2280 if (fdctrl->data_pos == fdctrl->data_len) { 2281 /* We have all parameters now, execute the command */ 2282 fdctrl->phase = FD_PHASE_EXECUTION; 2283 2284 if (fdctrl->data_state & FD_STATE_FORMAT) { 2285 fdctrl_format_sector(fdctrl); 2286 break; 2287 } 2288 2289 cmd = get_command(fdctrl->fifo[0]); 2290 FLOPPY_DPRINTF("Calling handler for '%s'\n", cmd->name); 2291 cmd->handler(fdctrl, cmd->direction); 2292 } 2293 break; 2294 2295 case FD_PHASE_RESULT: 2296 default: 2297 abort(); 2298 } 2299 } 2300 2301 static void fdctrl_result_timer(void *opaque) 2302 { 2303 FDCtrl *fdctrl = opaque; 2304 FDrive *cur_drv = get_cur_drv(fdctrl); 2305 2306 /* Pretend we are spinning. 2307 * This is needed for Coherent, which uses READ ID to check for 2308 * sector interleaving. 2309 */ 2310 if (cur_drv->last_sect != 0) { 2311 cur_drv->sect = (cur_drv->sect % cur_drv->last_sect) + 1; 2312 } 2313 /* READ_ID can't automatically succeed! */ 2314 if ((fdctrl->dsr & FD_DSR_DRATEMASK) != cur_drv->media_rate) { 2315 FLOPPY_DPRINTF("read id rate mismatch (fdc=%d, media=%d)\n", 2316 fdctrl->dsr & FD_DSR_DRATEMASK, cur_drv->media_rate); 2317 fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, FD_SR1_MA, 0x00); 2318 } else { 2319 fdctrl_stop_transfer(fdctrl, 0x00, 0x00, 0x00); 2320 } 2321 } 2322 2323 /* Init functions */ 2324 2325 void fdctrl_init_drives(FloppyBus *bus, DriveInfo **fds) 2326 { 2327 DeviceState *dev; 2328 int i; 2329 2330 for (i = 0; i < MAX_FD; i++) { 2331 if (fds[i]) { 2332 dev = qdev_new("floppy"); 2333 qdev_prop_set_uint32(dev, "unit", i); 2334 qdev_prop_set_enum(dev, "drive-type", FLOPPY_DRIVE_TYPE_AUTO); 2335 qdev_prop_set_drive_err(dev, "drive", blk_by_legacy_dinfo(fds[i]), 2336 &error_fatal); 2337 qdev_realize_and_unref(dev, &bus->bus, &error_fatal); 2338 } 2339 } 2340 } 2341 2342 void fdctrl_realize_common(DeviceState *dev, FDCtrl *fdctrl, Error **errp) 2343 { 2344 int i, j; 2345 FDrive *drive; 2346 static int command_tables_inited = 0; 2347 2348 if (fdctrl->fallback == FLOPPY_DRIVE_TYPE_AUTO) { 2349 error_setg(errp, "Cannot choose a fallback FDrive type of 'auto'"); 2350 return; 2351 } 2352 2353 /* Fill 'command_to_handler' lookup table */ 2354 if (!command_tables_inited) { 2355 command_tables_inited = 1; 2356 for (i = ARRAY_SIZE(handlers) - 1; i >= 0; i--) { 2357 for (j = 0; j < sizeof(command_to_handler); j++) { 2358 if ((j & handlers[i].mask) == handlers[i].value) { 2359 command_to_handler[j] = i; 2360 } 2361 } 2362 } 2363 } 2364 2365 FLOPPY_DPRINTF("init controller\n"); 2366 fdctrl->fifo = qemu_memalign(512, FD_SECTOR_LEN); 2367 memset(fdctrl->fifo, 0, FD_SECTOR_LEN); 2368 fdctrl->fifo_size = 512; 2369 fdctrl->result_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, 2370 fdctrl_result_timer, fdctrl); 2371 2372 fdctrl->version = 0x90; /* Intel 82078 controller */ 2373 fdctrl->config = FD_CONFIG_EIS | FD_CONFIG_EFIFO; /* Implicit seek, polling & FIFO enabled */ 2374 fdctrl->num_floppies = MAX_FD; 2375 2376 floppy_bus_create(fdctrl, &fdctrl->bus, dev); 2377 2378 for (i = 0; i < MAX_FD; i++) { 2379 drive = &fdctrl->drives[i]; 2380 drive->fdctrl = fdctrl; 2381 fd_init(drive); 2382 fd_revalidate(drive); 2383 } 2384 } 2385 2386 static void fdc_register_types(void) 2387 { 2388 type_register_static(&floppy_bus_info); 2389 type_register_static(&floppy_drive_info); 2390 } 2391 2392 type_init(fdc_register_types) 2393