xref: /qemu/hw/arm/virt.c (revision dfbd2768b26d8aa1018004e736f2573e7f6abe67)
1 /*
2  * ARM mach-virt emulation
3  *
4  * Copyright (c) 2013 Linaro Limited
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms and conditions of the GNU General Public License,
8  * version 2 or later, as published by the Free Software Foundation.
9  *
10  * This program is distributed in the hope it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  * more details.
14  *
15  * You should have received a copy of the GNU General Public License along with
16  * this program.  If not, see <http://www.gnu.org/licenses/>.
17  *
18  * Emulate a virtual board which works by passing Linux all the information
19  * it needs about what devices are present via the device tree.
20  * There are some restrictions about what we can do here:
21  *  + we can only present devices whose Linux drivers will work based
22  *    purely on the device tree with no platform data at all
23  *  + we want to present a very stripped-down minimalist platform,
24  *    both because this reduces the security attack surface from the guest
25  *    and also because it reduces our exposure to being broken when
26  *    the kernel updates its device tree bindings and requires further
27  *    information in a device binding that we aren't providing.
28  * This is essentially the same approach kvmtool uses.
29  */
30 
31 #include "qemu/osdep.h"
32 #include "qapi/error.h"
33 #include "hw/sysbus.h"
34 #include "hw/arm/arm.h"
35 #include "hw/arm/primecell.h"
36 #include "hw/arm/virt.h"
37 #include "hw/devices.h"
38 #include "net/net.h"
39 #include "sysemu/block-backend.h"
40 #include "sysemu/device_tree.h"
41 #include "sysemu/numa.h"
42 #include "sysemu/sysemu.h"
43 #include "sysemu/kvm.h"
44 #include "hw/boards.h"
45 #include "hw/compat.h"
46 #include "hw/loader.h"
47 #include "exec/address-spaces.h"
48 #include "qemu/bitops.h"
49 #include "qemu/error-report.h"
50 #include "hw/pci-host/gpex.h"
51 #include "hw/arm/virt-acpi-build.h"
52 #include "hw/arm/sysbus-fdt.h"
53 #include "hw/platform-bus.h"
54 #include "hw/arm/fdt.h"
55 #include "hw/intc/arm_gic.h"
56 #include "hw/intc/arm_gicv3_common.h"
57 #include "kvm_arm.h"
58 #include "hw/smbios/smbios.h"
59 #include "qapi/visitor.h"
60 #include "standard-headers/linux/input.h"
61 
62 /* Number of external interrupt lines to configure the GIC with */
63 #define NUM_IRQS 256
64 
65 #define PLATFORM_BUS_NUM_IRQS 64
66 
67 static ARMPlatformBusSystemParams platform_bus_params;
68 
69 typedef struct VirtBoardInfo {
70     struct arm_boot_info bootinfo;
71     const char *cpu_model;
72     const MemMapEntry *memmap;
73     const int *irqmap;
74     int smp_cpus;
75     void *fdt;
76     int fdt_size;
77     uint32_t clock_phandle;
78     uint32_t gic_phandle;
79     uint32_t msi_phandle;
80     bool using_psci;
81 } VirtBoardInfo;
82 
83 typedef struct {
84     MachineClass parent;
85     VirtBoardInfo *daughterboard;
86     bool disallow_affinity_adjustment;
87     bool no_its;
88     bool no_pmu;
89 } VirtMachineClass;
90 
91 typedef struct {
92     MachineState parent;
93     bool secure;
94     bool highmem;
95     int32_t gic_version;
96 } VirtMachineState;
97 
98 #define TYPE_VIRT_MACHINE   MACHINE_TYPE_NAME("virt")
99 #define VIRT_MACHINE(obj) \
100     OBJECT_CHECK(VirtMachineState, (obj), TYPE_VIRT_MACHINE)
101 #define VIRT_MACHINE_GET_CLASS(obj) \
102     OBJECT_GET_CLASS(VirtMachineClass, obj, TYPE_VIRT_MACHINE)
103 #define VIRT_MACHINE_CLASS(klass) \
104     OBJECT_CLASS_CHECK(VirtMachineClass, klass, TYPE_VIRT_MACHINE)
105 
106 
107 #define DEFINE_VIRT_MACHINE_LATEST(major, minor, latest) \
108     static void virt_##major##_##minor##_class_init(ObjectClass *oc, \
109                                                     void *data) \
110     { \
111         MachineClass *mc = MACHINE_CLASS(oc); \
112         virt_machine_##major##_##minor##_options(mc); \
113         mc->desc = "QEMU " # major "." # minor " ARM Virtual Machine"; \
114         if (latest) { \
115             mc->alias = "virt"; \
116         } \
117     } \
118     static const TypeInfo machvirt_##major##_##minor##_info = { \
119         .name = MACHINE_TYPE_NAME("virt-" # major "." # minor), \
120         .parent = TYPE_VIRT_MACHINE, \
121         .instance_init = virt_##major##_##minor##_instance_init, \
122         .class_init = virt_##major##_##minor##_class_init, \
123     }; \
124     static void machvirt_machine_##major##_##minor##_init(void) \
125     { \
126         type_register_static(&machvirt_##major##_##minor##_info); \
127     } \
128     type_init(machvirt_machine_##major##_##minor##_init);
129 
130 #define DEFINE_VIRT_MACHINE_AS_LATEST(major, minor) \
131     DEFINE_VIRT_MACHINE_LATEST(major, minor, true)
132 #define DEFINE_VIRT_MACHINE(major, minor) \
133     DEFINE_VIRT_MACHINE_LATEST(major, minor, false)
134 
135 
136 /* RAM limit in GB. Since VIRT_MEM starts at the 1GB mark, this means
137  * RAM can go up to the 256GB mark, leaving 256GB of the physical
138  * address space unallocated and free for future use between 256G and 512G.
139  * If we need to provide more RAM to VMs in the future then we need to:
140  *  * allocate a second bank of RAM starting at 2TB and working up
141  *  * fix the DT and ACPI table generation code in QEMU to correctly
142  *    report two split lumps of RAM to the guest
143  *  * fix KVM in the host kernel to allow guests with >40 bit address spaces
144  * (We don't want to fill all the way up to 512GB with RAM because
145  * we might want it for non-RAM purposes later. Conversely it seems
146  * reasonable to assume that anybody configuring a VM with a quarter
147  * of a terabyte of RAM will be doing it on a host with more than a
148  * terabyte of physical address space.)
149  */
150 #define RAMLIMIT_GB 255
151 #define RAMLIMIT_BYTES (RAMLIMIT_GB * 1024ULL * 1024 * 1024)
152 
153 /* Addresses and sizes of our components.
154  * 0..128MB is space for a flash device so we can run bootrom code such as UEFI.
155  * 128MB..256MB is used for miscellaneous device I/O.
156  * 256MB..1GB is reserved for possible future PCI support (ie where the
157  * PCI memory window will go if we add a PCI host controller).
158  * 1GB and up is RAM (which may happily spill over into the
159  * high memory region beyond 4GB).
160  * This represents a compromise between how much RAM can be given to
161  * a 32 bit VM and leaving space for expansion and in particular for PCI.
162  * Note that devices should generally be placed at multiples of 0x10000,
163  * to accommodate guests using 64K pages.
164  */
165 static const MemMapEntry a15memmap[] = {
166     /* Space up to 0x8000000 is reserved for a boot ROM */
167     [VIRT_FLASH] =              {          0, 0x08000000 },
168     [VIRT_CPUPERIPHS] =         { 0x08000000, 0x00020000 },
169     /* GIC distributor and CPU interfaces sit inside the CPU peripheral space */
170     [VIRT_GIC_DIST] =           { 0x08000000, 0x00010000 },
171     [VIRT_GIC_CPU] =            { 0x08010000, 0x00010000 },
172     [VIRT_GIC_V2M] =            { 0x08020000, 0x00001000 },
173     /* The space in between here is reserved for GICv3 CPU/vCPU/HYP */
174     [VIRT_GIC_ITS] =            { 0x08080000, 0x00020000 },
175     /* This redistributor space allows up to 2*64kB*123 CPUs */
176     [VIRT_GIC_REDIST] =         { 0x080A0000, 0x00F60000 },
177     [VIRT_UART] =               { 0x09000000, 0x00001000 },
178     [VIRT_RTC] =                { 0x09010000, 0x00001000 },
179     [VIRT_FW_CFG] =             { 0x09020000, 0x00000018 },
180     [VIRT_GPIO] =               { 0x09030000, 0x00001000 },
181     [VIRT_SECURE_UART] =        { 0x09040000, 0x00001000 },
182     [VIRT_MMIO] =               { 0x0a000000, 0x00000200 },
183     /* ...repeating for a total of NUM_VIRTIO_TRANSPORTS, each of that size */
184     [VIRT_PLATFORM_BUS] =       { 0x0c000000, 0x02000000 },
185     [VIRT_SECURE_MEM] =         { 0x0e000000, 0x01000000 },
186     [VIRT_PCIE_MMIO] =          { 0x10000000, 0x2eff0000 },
187     [VIRT_PCIE_PIO] =           { 0x3eff0000, 0x00010000 },
188     [VIRT_PCIE_ECAM] =          { 0x3f000000, 0x01000000 },
189     [VIRT_MEM] =                { 0x40000000, RAMLIMIT_BYTES },
190     /* Second PCIe window, 512GB wide at the 512GB boundary */
191     [VIRT_PCIE_MMIO_HIGH] =   { 0x8000000000ULL, 0x8000000000ULL },
192 };
193 
194 static const int a15irqmap[] = {
195     [VIRT_UART] = 1,
196     [VIRT_RTC] = 2,
197     [VIRT_PCIE] = 3, /* ... to 6 */
198     [VIRT_GPIO] = 7,
199     [VIRT_SECURE_UART] = 8,
200     [VIRT_MMIO] = 16, /* ...to 16 + NUM_VIRTIO_TRANSPORTS - 1 */
201     [VIRT_GIC_V2M] = 48, /* ...to 48 + NUM_GICV2M_SPIS - 1 */
202     [VIRT_PLATFORM_BUS] = 112, /* ...to 112 + PLATFORM_BUS_NUM_IRQS -1 */
203 };
204 
205 static VirtBoardInfo machines[] = {
206     {
207         .cpu_model = "cortex-a15",
208         .memmap = a15memmap,
209         .irqmap = a15irqmap,
210     },
211     {
212         .cpu_model = "cortex-a53",
213         .memmap = a15memmap,
214         .irqmap = a15irqmap,
215     },
216     {
217         .cpu_model = "cortex-a57",
218         .memmap = a15memmap,
219         .irqmap = a15irqmap,
220     },
221     {
222         .cpu_model = "host",
223         .memmap = a15memmap,
224         .irqmap = a15irqmap,
225     },
226 };
227 
228 static VirtBoardInfo *find_machine_info(const char *cpu)
229 {
230     int i;
231 
232     for (i = 0; i < ARRAY_SIZE(machines); i++) {
233         if (strcmp(cpu, machines[i].cpu_model) == 0) {
234             return &machines[i];
235         }
236     }
237     return NULL;
238 }
239 
240 static void create_fdt(VirtBoardInfo *vbi)
241 {
242     void *fdt = create_device_tree(&vbi->fdt_size);
243 
244     if (!fdt) {
245         error_report("create_device_tree() failed");
246         exit(1);
247     }
248 
249     vbi->fdt = fdt;
250 
251     /* Header */
252     qemu_fdt_setprop_string(fdt, "/", "compatible", "linux,dummy-virt");
253     qemu_fdt_setprop_cell(fdt, "/", "#address-cells", 0x2);
254     qemu_fdt_setprop_cell(fdt, "/", "#size-cells", 0x2);
255 
256     /*
257      * /chosen and /memory nodes must exist for load_dtb
258      * to fill in necessary properties later
259      */
260     qemu_fdt_add_subnode(fdt, "/chosen");
261     qemu_fdt_add_subnode(fdt, "/memory");
262     qemu_fdt_setprop_string(fdt, "/memory", "device_type", "memory");
263 
264     /* Clock node, for the benefit of the UART. The kernel device tree
265      * binding documentation claims the PL011 node clock properties are
266      * optional but in practice if you omit them the kernel refuses to
267      * probe for the device.
268      */
269     vbi->clock_phandle = qemu_fdt_alloc_phandle(fdt);
270     qemu_fdt_add_subnode(fdt, "/apb-pclk");
271     qemu_fdt_setprop_string(fdt, "/apb-pclk", "compatible", "fixed-clock");
272     qemu_fdt_setprop_cell(fdt, "/apb-pclk", "#clock-cells", 0x0);
273     qemu_fdt_setprop_cell(fdt, "/apb-pclk", "clock-frequency", 24000000);
274     qemu_fdt_setprop_string(fdt, "/apb-pclk", "clock-output-names",
275                                 "clk24mhz");
276     qemu_fdt_setprop_cell(fdt, "/apb-pclk", "phandle", vbi->clock_phandle);
277 
278 }
279 
280 static void fdt_add_psci_node(const VirtBoardInfo *vbi)
281 {
282     uint32_t cpu_suspend_fn;
283     uint32_t cpu_off_fn;
284     uint32_t cpu_on_fn;
285     uint32_t migrate_fn;
286     void *fdt = vbi->fdt;
287     ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(0));
288 
289     if (!vbi->using_psci) {
290         return;
291     }
292 
293     qemu_fdt_add_subnode(fdt, "/psci");
294     if (armcpu->psci_version == 2) {
295         const char comp[] = "arm,psci-0.2\0arm,psci";
296         qemu_fdt_setprop(fdt, "/psci", "compatible", comp, sizeof(comp));
297 
298         cpu_off_fn = QEMU_PSCI_0_2_FN_CPU_OFF;
299         if (arm_feature(&armcpu->env, ARM_FEATURE_AARCH64)) {
300             cpu_suspend_fn = QEMU_PSCI_0_2_FN64_CPU_SUSPEND;
301             cpu_on_fn = QEMU_PSCI_0_2_FN64_CPU_ON;
302             migrate_fn = QEMU_PSCI_0_2_FN64_MIGRATE;
303         } else {
304             cpu_suspend_fn = QEMU_PSCI_0_2_FN_CPU_SUSPEND;
305             cpu_on_fn = QEMU_PSCI_0_2_FN_CPU_ON;
306             migrate_fn = QEMU_PSCI_0_2_FN_MIGRATE;
307         }
308     } else {
309         qemu_fdt_setprop_string(fdt, "/psci", "compatible", "arm,psci");
310 
311         cpu_suspend_fn = QEMU_PSCI_0_1_FN_CPU_SUSPEND;
312         cpu_off_fn = QEMU_PSCI_0_1_FN_CPU_OFF;
313         cpu_on_fn = QEMU_PSCI_0_1_FN_CPU_ON;
314         migrate_fn = QEMU_PSCI_0_1_FN_MIGRATE;
315     }
316 
317     /* We adopt the PSCI spec's nomenclature, and use 'conduit' to refer
318      * to the instruction that should be used to invoke PSCI functions.
319      * However, the device tree binding uses 'method' instead, so that is
320      * what we should use here.
321      */
322     qemu_fdt_setprop_string(fdt, "/psci", "method", "hvc");
323 
324     qemu_fdt_setprop_cell(fdt, "/psci", "cpu_suspend", cpu_suspend_fn);
325     qemu_fdt_setprop_cell(fdt, "/psci", "cpu_off", cpu_off_fn);
326     qemu_fdt_setprop_cell(fdt, "/psci", "cpu_on", cpu_on_fn);
327     qemu_fdt_setprop_cell(fdt, "/psci", "migrate", migrate_fn);
328 }
329 
330 static void fdt_add_timer_nodes(const VirtBoardInfo *vbi, int gictype)
331 {
332     /* Note that on A15 h/w these interrupts are level-triggered,
333      * but for the GIC implementation provided by both QEMU and KVM
334      * they are edge-triggered.
335      */
336     ARMCPU *armcpu;
337     uint32_t irqflags = GIC_FDT_IRQ_FLAGS_EDGE_LO_HI;
338 
339     if (gictype == 2) {
340         irqflags = deposit32(irqflags, GIC_FDT_IRQ_PPI_CPU_START,
341                              GIC_FDT_IRQ_PPI_CPU_WIDTH,
342                              (1 << vbi->smp_cpus) - 1);
343     }
344 
345     qemu_fdt_add_subnode(vbi->fdt, "/timer");
346 
347     armcpu = ARM_CPU(qemu_get_cpu(0));
348     if (arm_feature(&armcpu->env, ARM_FEATURE_V8)) {
349         const char compat[] = "arm,armv8-timer\0arm,armv7-timer";
350         qemu_fdt_setprop(vbi->fdt, "/timer", "compatible",
351                          compat, sizeof(compat));
352     } else {
353         qemu_fdt_setprop_string(vbi->fdt, "/timer", "compatible",
354                                 "arm,armv7-timer");
355     }
356     qemu_fdt_setprop(vbi->fdt, "/timer", "always-on", NULL, 0);
357     qemu_fdt_setprop_cells(vbi->fdt, "/timer", "interrupts",
358                        GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_S_EL1_IRQ, irqflags,
359                        GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_NS_EL1_IRQ, irqflags,
360                        GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_VIRT_IRQ, irqflags,
361                        GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_NS_EL2_IRQ, irqflags);
362 }
363 
364 static void fdt_add_cpu_nodes(const VirtBoardInfo *vbi)
365 {
366     int cpu;
367     int addr_cells = 1;
368     unsigned int i;
369 
370     /*
371      * From Documentation/devicetree/bindings/arm/cpus.txt
372      *  On ARM v8 64-bit systems value should be set to 2,
373      *  that corresponds to the MPIDR_EL1 register size.
374      *  If MPIDR_EL1[63:32] value is equal to 0 on all CPUs
375      *  in the system, #address-cells can be set to 1, since
376      *  MPIDR_EL1[63:32] bits are not used for CPUs
377      *  identification.
378      *
379      *  Here we actually don't know whether our system is 32- or 64-bit one.
380      *  The simplest way to go is to examine affinity IDs of all our CPUs. If
381      *  at least one of them has Aff3 populated, we set #address-cells to 2.
382      */
383     for (cpu = 0; cpu < vbi->smp_cpus; cpu++) {
384         ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu));
385 
386         if (armcpu->mp_affinity & ARM_AFF3_MASK) {
387             addr_cells = 2;
388             break;
389         }
390     }
391 
392     qemu_fdt_add_subnode(vbi->fdt, "/cpus");
393     qemu_fdt_setprop_cell(vbi->fdt, "/cpus", "#address-cells", addr_cells);
394     qemu_fdt_setprop_cell(vbi->fdt, "/cpus", "#size-cells", 0x0);
395 
396     for (cpu = vbi->smp_cpus - 1; cpu >= 0; cpu--) {
397         char *nodename = g_strdup_printf("/cpus/cpu@%d", cpu);
398         ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu));
399 
400         qemu_fdt_add_subnode(vbi->fdt, nodename);
401         qemu_fdt_setprop_string(vbi->fdt, nodename, "device_type", "cpu");
402         qemu_fdt_setprop_string(vbi->fdt, nodename, "compatible",
403                                     armcpu->dtb_compatible);
404 
405         if (vbi->using_psci && vbi->smp_cpus > 1) {
406             qemu_fdt_setprop_string(vbi->fdt, nodename,
407                                         "enable-method", "psci");
408         }
409 
410         if (addr_cells == 2) {
411             qemu_fdt_setprop_u64(vbi->fdt, nodename, "reg",
412                                  armcpu->mp_affinity);
413         } else {
414             qemu_fdt_setprop_cell(vbi->fdt, nodename, "reg",
415                                   armcpu->mp_affinity);
416         }
417 
418         i = numa_get_node_for_cpu(cpu);
419         if (i < nb_numa_nodes) {
420             qemu_fdt_setprop_cell(vbi->fdt, nodename, "numa-node-id", i);
421         }
422 
423         g_free(nodename);
424     }
425 }
426 
427 static void fdt_add_its_gic_node(VirtBoardInfo *vbi)
428 {
429     vbi->msi_phandle = qemu_fdt_alloc_phandle(vbi->fdt);
430     qemu_fdt_add_subnode(vbi->fdt, "/intc/its");
431     qemu_fdt_setprop_string(vbi->fdt, "/intc/its", "compatible",
432                             "arm,gic-v3-its");
433     qemu_fdt_setprop(vbi->fdt, "/intc/its", "msi-controller", NULL, 0);
434     qemu_fdt_setprop_sized_cells(vbi->fdt, "/intc/its", "reg",
435                                  2, vbi->memmap[VIRT_GIC_ITS].base,
436                                  2, vbi->memmap[VIRT_GIC_ITS].size);
437     qemu_fdt_setprop_cell(vbi->fdt, "/intc/its", "phandle", vbi->msi_phandle);
438 }
439 
440 static void fdt_add_v2m_gic_node(VirtBoardInfo *vbi)
441 {
442     vbi->msi_phandle = qemu_fdt_alloc_phandle(vbi->fdt);
443     qemu_fdt_add_subnode(vbi->fdt, "/intc/v2m");
444     qemu_fdt_setprop_string(vbi->fdt, "/intc/v2m", "compatible",
445                             "arm,gic-v2m-frame");
446     qemu_fdt_setprop(vbi->fdt, "/intc/v2m", "msi-controller", NULL, 0);
447     qemu_fdt_setprop_sized_cells(vbi->fdt, "/intc/v2m", "reg",
448                                  2, vbi->memmap[VIRT_GIC_V2M].base,
449                                  2, vbi->memmap[VIRT_GIC_V2M].size);
450     qemu_fdt_setprop_cell(vbi->fdt, "/intc/v2m", "phandle", vbi->msi_phandle);
451 }
452 
453 static void fdt_add_gic_node(VirtBoardInfo *vbi, int type)
454 {
455     vbi->gic_phandle = qemu_fdt_alloc_phandle(vbi->fdt);
456     qemu_fdt_setprop_cell(vbi->fdt, "/", "interrupt-parent", vbi->gic_phandle);
457 
458     qemu_fdt_add_subnode(vbi->fdt, "/intc");
459     qemu_fdt_setprop_cell(vbi->fdt, "/intc", "#interrupt-cells", 3);
460     qemu_fdt_setprop(vbi->fdt, "/intc", "interrupt-controller", NULL, 0);
461     qemu_fdt_setprop_cell(vbi->fdt, "/intc", "#address-cells", 0x2);
462     qemu_fdt_setprop_cell(vbi->fdt, "/intc", "#size-cells", 0x2);
463     qemu_fdt_setprop(vbi->fdt, "/intc", "ranges", NULL, 0);
464     if (type == 3) {
465         qemu_fdt_setprop_string(vbi->fdt, "/intc", "compatible",
466                                 "arm,gic-v3");
467         qemu_fdt_setprop_sized_cells(vbi->fdt, "/intc", "reg",
468                                      2, vbi->memmap[VIRT_GIC_DIST].base,
469                                      2, vbi->memmap[VIRT_GIC_DIST].size,
470                                      2, vbi->memmap[VIRT_GIC_REDIST].base,
471                                      2, vbi->memmap[VIRT_GIC_REDIST].size);
472     } else {
473         /* 'cortex-a15-gic' means 'GIC v2' */
474         qemu_fdt_setprop_string(vbi->fdt, "/intc", "compatible",
475                                 "arm,cortex-a15-gic");
476         qemu_fdt_setprop_sized_cells(vbi->fdt, "/intc", "reg",
477                                       2, vbi->memmap[VIRT_GIC_DIST].base,
478                                       2, vbi->memmap[VIRT_GIC_DIST].size,
479                                       2, vbi->memmap[VIRT_GIC_CPU].base,
480                                       2, vbi->memmap[VIRT_GIC_CPU].size);
481     }
482 
483     qemu_fdt_setprop_cell(vbi->fdt, "/intc", "phandle", vbi->gic_phandle);
484 }
485 
486 static void fdt_add_pmu_nodes(const VirtBoardInfo *vbi, int gictype)
487 {
488     CPUState *cpu;
489     ARMCPU *armcpu;
490     uint32_t irqflags = GIC_FDT_IRQ_FLAGS_LEVEL_HI;
491 
492     CPU_FOREACH(cpu) {
493         armcpu = ARM_CPU(cpu);
494         if (!arm_feature(&armcpu->env, ARM_FEATURE_PMU) ||
495             !kvm_arm_pmu_create(cpu, PPI(VIRTUAL_PMU_IRQ))) {
496             return;
497         }
498     }
499 
500     if (gictype == 2) {
501         irqflags = deposit32(irqflags, GIC_FDT_IRQ_PPI_CPU_START,
502                              GIC_FDT_IRQ_PPI_CPU_WIDTH,
503                              (1 << vbi->smp_cpus) - 1);
504     }
505 
506     armcpu = ARM_CPU(qemu_get_cpu(0));
507     qemu_fdt_add_subnode(vbi->fdt, "/pmu");
508     if (arm_feature(&armcpu->env, ARM_FEATURE_V8)) {
509         const char compat[] = "arm,armv8-pmuv3";
510         qemu_fdt_setprop(vbi->fdt, "/pmu", "compatible",
511                          compat, sizeof(compat));
512         qemu_fdt_setprop_cells(vbi->fdt, "/pmu", "interrupts",
513                                GIC_FDT_IRQ_TYPE_PPI, VIRTUAL_PMU_IRQ, irqflags);
514     }
515 }
516 
517 static void create_its(VirtBoardInfo *vbi, DeviceState *gicdev)
518 {
519     const char *itsclass = its_class_name();
520     DeviceState *dev;
521 
522     if (!itsclass) {
523         /* Do nothing if not supported */
524         return;
525     }
526 
527     dev = qdev_create(NULL, itsclass);
528 
529     object_property_set_link(OBJECT(dev), OBJECT(gicdev), "parent-gicv3",
530                              &error_abort);
531     qdev_init_nofail(dev);
532     sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vbi->memmap[VIRT_GIC_ITS].base);
533 
534     fdt_add_its_gic_node(vbi);
535 }
536 
537 static void create_v2m(VirtBoardInfo *vbi, qemu_irq *pic)
538 {
539     int i;
540     int irq = vbi->irqmap[VIRT_GIC_V2M];
541     DeviceState *dev;
542 
543     dev = qdev_create(NULL, "arm-gicv2m");
544     sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vbi->memmap[VIRT_GIC_V2M].base);
545     qdev_prop_set_uint32(dev, "base-spi", irq);
546     qdev_prop_set_uint32(dev, "num-spi", NUM_GICV2M_SPIS);
547     qdev_init_nofail(dev);
548 
549     for (i = 0; i < NUM_GICV2M_SPIS; i++) {
550         sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, pic[irq + i]);
551     }
552 
553     fdt_add_v2m_gic_node(vbi);
554 }
555 
556 static void create_gic(VirtBoardInfo *vbi, qemu_irq *pic, int type,
557                        bool secure, bool no_its)
558 {
559     /* We create a standalone GIC */
560     DeviceState *gicdev;
561     SysBusDevice *gicbusdev;
562     const char *gictype;
563     int i;
564 
565     gictype = (type == 3) ? gicv3_class_name() : gic_class_name();
566 
567     gicdev = qdev_create(NULL, gictype);
568     qdev_prop_set_uint32(gicdev, "revision", type);
569     qdev_prop_set_uint32(gicdev, "num-cpu", smp_cpus);
570     /* Note that the num-irq property counts both internal and external
571      * interrupts; there are always 32 of the former (mandated by GIC spec).
572      */
573     qdev_prop_set_uint32(gicdev, "num-irq", NUM_IRQS + 32);
574     if (!kvm_irqchip_in_kernel()) {
575         qdev_prop_set_bit(gicdev, "has-security-extensions", secure);
576     }
577     qdev_init_nofail(gicdev);
578     gicbusdev = SYS_BUS_DEVICE(gicdev);
579     sysbus_mmio_map(gicbusdev, 0, vbi->memmap[VIRT_GIC_DIST].base);
580     if (type == 3) {
581         sysbus_mmio_map(gicbusdev, 1, vbi->memmap[VIRT_GIC_REDIST].base);
582     } else {
583         sysbus_mmio_map(gicbusdev, 1, vbi->memmap[VIRT_GIC_CPU].base);
584     }
585 
586     /* Wire the outputs from each CPU's generic timer to the
587      * appropriate GIC PPI inputs, and the GIC's IRQ output to
588      * the CPU's IRQ input.
589      */
590     for (i = 0; i < smp_cpus; i++) {
591         DeviceState *cpudev = DEVICE(qemu_get_cpu(i));
592         int ppibase = NUM_IRQS + i * GIC_INTERNAL + GIC_NR_SGIS;
593         int irq;
594         /* Mapping from the output timer irq lines from the CPU to the
595          * GIC PPI inputs we use for the virt board.
596          */
597         const int timer_irq[] = {
598             [GTIMER_PHYS] = ARCH_TIMER_NS_EL1_IRQ,
599             [GTIMER_VIRT] = ARCH_TIMER_VIRT_IRQ,
600             [GTIMER_HYP]  = ARCH_TIMER_NS_EL2_IRQ,
601             [GTIMER_SEC]  = ARCH_TIMER_S_EL1_IRQ,
602         };
603 
604         for (irq = 0; irq < ARRAY_SIZE(timer_irq); irq++) {
605             qdev_connect_gpio_out(cpudev, irq,
606                                   qdev_get_gpio_in(gicdev,
607                                                    ppibase + timer_irq[irq]));
608         }
609 
610         sysbus_connect_irq(gicbusdev, i, qdev_get_gpio_in(cpudev, ARM_CPU_IRQ));
611         sysbus_connect_irq(gicbusdev, i + smp_cpus,
612                            qdev_get_gpio_in(cpudev, ARM_CPU_FIQ));
613     }
614 
615     for (i = 0; i < NUM_IRQS; i++) {
616         pic[i] = qdev_get_gpio_in(gicdev, i);
617     }
618 
619     fdt_add_gic_node(vbi, type);
620 
621     if (type == 3 && !no_its) {
622         create_its(vbi, gicdev);
623     } else if (type == 2) {
624         create_v2m(vbi, pic);
625     }
626 }
627 
628 static void create_uart(const VirtBoardInfo *vbi, qemu_irq *pic, int uart,
629                         MemoryRegion *mem, CharDriverState *chr)
630 {
631     char *nodename;
632     hwaddr base = vbi->memmap[uart].base;
633     hwaddr size = vbi->memmap[uart].size;
634     int irq = vbi->irqmap[uart];
635     const char compat[] = "arm,pl011\0arm,primecell";
636     const char clocknames[] = "uartclk\0apb_pclk";
637     DeviceState *dev = qdev_create(NULL, "pl011");
638     SysBusDevice *s = SYS_BUS_DEVICE(dev);
639 
640     qdev_prop_set_chr(dev, "chardev", chr);
641     qdev_init_nofail(dev);
642     memory_region_add_subregion(mem, base,
643                                 sysbus_mmio_get_region(s, 0));
644     sysbus_connect_irq(s, 0, pic[irq]);
645 
646     nodename = g_strdup_printf("/pl011@%" PRIx64, base);
647     qemu_fdt_add_subnode(vbi->fdt, nodename);
648     /* Note that we can't use setprop_string because of the embedded NUL */
649     qemu_fdt_setprop(vbi->fdt, nodename, "compatible",
650                          compat, sizeof(compat));
651     qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg",
652                                      2, base, 2, size);
653     qemu_fdt_setprop_cells(vbi->fdt, nodename, "interrupts",
654                                GIC_FDT_IRQ_TYPE_SPI, irq,
655                                GIC_FDT_IRQ_FLAGS_LEVEL_HI);
656     qemu_fdt_setprop_cells(vbi->fdt, nodename, "clocks",
657                                vbi->clock_phandle, vbi->clock_phandle);
658     qemu_fdt_setprop(vbi->fdt, nodename, "clock-names",
659                          clocknames, sizeof(clocknames));
660 
661     if (uart == VIRT_UART) {
662         qemu_fdt_setprop_string(vbi->fdt, "/chosen", "stdout-path", nodename);
663     } else {
664         /* Mark as not usable by the normal world */
665         qemu_fdt_setprop_string(vbi->fdt, nodename, "status", "disabled");
666         qemu_fdt_setprop_string(vbi->fdt, nodename, "secure-status", "okay");
667     }
668 
669     g_free(nodename);
670 }
671 
672 static void create_rtc(const VirtBoardInfo *vbi, qemu_irq *pic)
673 {
674     char *nodename;
675     hwaddr base = vbi->memmap[VIRT_RTC].base;
676     hwaddr size = vbi->memmap[VIRT_RTC].size;
677     int irq = vbi->irqmap[VIRT_RTC];
678     const char compat[] = "arm,pl031\0arm,primecell";
679 
680     sysbus_create_simple("pl031", base, pic[irq]);
681 
682     nodename = g_strdup_printf("/pl031@%" PRIx64, base);
683     qemu_fdt_add_subnode(vbi->fdt, nodename);
684     qemu_fdt_setprop(vbi->fdt, nodename, "compatible", compat, sizeof(compat));
685     qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg",
686                                  2, base, 2, size);
687     qemu_fdt_setprop_cells(vbi->fdt, nodename, "interrupts",
688                            GIC_FDT_IRQ_TYPE_SPI, irq,
689                            GIC_FDT_IRQ_FLAGS_LEVEL_HI);
690     qemu_fdt_setprop_cell(vbi->fdt, nodename, "clocks", vbi->clock_phandle);
691     qemu_fdt_setprop_string(vbi->fdt, nodename, "clock-names", "apb_pclk");
692     g_free(nodename);
693 }
694 
695 static DeviceState *gpio_key_dev;
696 static void virt_powerdown_req(Notifier *n, void *opaque)
697 {
698     /* use gpio Pin 3 for power button event */
699     qemu_set_irq(qdev_get_gpio_in(gpio_key_dev, 0), 1);
700 }
701 
702 static Notifier virt_system_powerdown_notifier = {
703     .notify = virt_powerdown_req
704 };
705 
706 static void create_gpio(const VirtBoardInfo *vbi, qemu_irq *pic)
707 {
708     char *nodename;
709     DeviceState *pl061_dev;
710     hwaddr base = vbi->memmap[VIRT_GPIO].base;
711     hwaddr size = vbi->memmap[VIRT_GPIO].size;
712     int irq = vbi->irqmap[VIRT_GPIO];
713     const char compat[] = "arm,pl061\0arm,primecell";
714 
715     pl061_dev = sysbus_create_simple("pl061", base, pic[irq]);
716 
717     uint32_t phandle = qemu_fdt_alloc_phandle(vbi->fdt);
718     nodename = g_strdup_printf("/pl061@%" PRIx64, base);
719     qemu_fdt_add_subnode(vbi->fdt, nodename);
720     qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg",
721                                  2, base, 2, size);
722     qemu_fdt_setprop(vbi->fdt, nodename, "compatible", compat, sizeof(compat));
723     qemu_fdt_setprop_cell(vbi->fdt, nodename, "#gpio-cells", 2);
724     qemu_fdt_setprop(vbi->fdt, nodename, "gpio-controller", NULL, 0);
725     qemu_fdt_setprop_cells(vbi->fdt, nodename, "interrupts",
726                            GIC_FDT_IRQ_TYPE_SPI, irq,
727                            GIC_FDT_IRQ_FLAGS_LEVEL_HI);
728     qemu_fdt_setprop_cell(vbi->fdt, nodename, "clocks", vbi->clock_phandle);
729     qemu_fdt_setprop_string(vbi->fdt, nodename, "clock-names", "apb_pclk");
730     qemu_fdt_setprop_cell(vbi->fdt, nodename, "phandle", phandle);
731 
732     gpio_key_dev = sysbus_create_simple("gpio-key", -1,
733                                         qdev_get_gpio_in(pl061_dev, 3));
734     qemu_fdt_add_subnode(vbi->fdt, "/gpio-keys");
735     qemu_fdt_setprop_string(vbi->fdt, "/gpio-keys", "compatible", "gpio-keys");
736     qemu_fdt_setprop_cell(vbi->fdt, "/gpio-keys", "#size-cells", 0);
737     qemu_fdt_setprop_cell(vbi->fdt, "/gpio-keys", "#address-cells", 1);
738 
739     qemu_fdt_add_subnode(vbi->fdt, "/gpio-keys/poweroff");
740     qemu_fdt_setprop_string(vbi->fdt, "/gpio-keys/poweroff",
741                             "label", "GPIO Key Poweroff");
742     qemu_fdt_setprop_cell(vbi->fdt, "/gpio-keys/poweroff", "linux,code",
743                           KEY_POWER);
744     qemu_fdt_setprop_cells(vbi->fdt, "/gpio-keys/poweroff",
745                            "gpios", phandle, 3, 0);
746 
747     /* connect powerdown request */
748     qemu_register_powerdown_notifier(&virt_system_powerdown_notifier);
749 
750     g_free(nodename);
751 }
752 
753 static void create_virtio_devices(const VirtBoardInfo *vbi, qemu_irq *pic)
754 {
755     int i;
756     hwaddr size = vbi->memmap[VIRT_MMIO].size;
757 
758     /* We create the transports in forwards order. Since qbus_realize()
759      * prepends (not appends) new child buses, the incrementing loop below will
760      * create a list of virtio-mmio buses with decreasing base addresses.
761      *
762      * When a -device option is processed from the command line,
763      * qbus_find_recursive() picks the next free virtio-mmio bus in forwards
764      * order. The upshot is that -device options in increasing command line
765      * order are mapped to virtio-mmio buses with decreasing base addresses.
766      *
767      * When this code was originally written, that arrangement ensured that the
768      * guest Linux kernel would give the lowest "name" (/dev/vda, eth0, etc) to
769      * the first -device on the command line. (The end-to-end order is a
770      * function of this loop, qbus_realize(), qbus_find_recursive(), and the
771      * guest kernel's name-to-address assignment strategy.)
772      *
773      * Meanwhile, the kernel's traversal seems to have been reversed; see eg.
774      * the message, if not necessarily the code, of commit 70161ff336.
775      * Therefore the loop now establishes the inverse of the original intent.
776      *
777      * Unfortunately, we can't counteract the kernel change by reversing the
778      * loop; it would break existing command lines.
779      *
780      * In any case, the kernel makes no guarantee about the stability of
781      * enumeration order of virtio devices (as demonstrated by it changing
782      * between kernel versions). For reliable and stable identification
783      * of disks users must use UUIDs or similar mechanisms.
784      */
785     for (i = 0; i < NUM_VIRTIO_TRANSPORTS; i++) {
786         int irq = vbi->irqmap[VIRT_MMIO] + i;
787         hwaddr base = vbi->memmap[VIRT_MMIO].base + i * size;
788 
789         sysbus_create_simple("virtio-mmio", base, pic[irq]);
790     }
791 
792     /* We add dtb nodes in reverse order so that they appear in the finished
793      * device tree lowest address first.
794      *
795      * Note that this mapping is independent of the loop above. The previous
796      * loop influences virtio device to virtio transport assignment, whereas
797      * this loop controls how virtio transports are laid out in the dtb.
798      */
799     for (i = NUM_VIRTIO_TRANSPORTS - 1; i >= 0; i--) {
800         char *nodename;
801         int irq = vbi->irqmap[VIRT_MMIO] + i;
802         hwaddr base = vbi->memmap[VIRT_MMIO].base + i * size;
803 
804         nodename = g_strdup_printf("/virtio_mmio@%" PRIx64, base);
805         qemu_fdt_add_subnode(vbi->fdt, nodename);
806         qemu_fdt_setprop_string(vbi->fdt, nodename,
807                                 "compatible", "virtio,mmio");
808         qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg",
809                                      2, base, 2, size);
810         qemu_fdt_setprop_cells(vbi->fdt, nodename, "interrupts",
811                                GIC_FDT_IRQ_TYPE_SPI, irq,
812                                GIC_FDT_IRQ_FLAGS_EDGE_LO_HI);
813         g_free(nodename);
814     }
815 }
816 
817 static void create_one_flash(const char *name, hwaddr flashbase,
818                              hwaddr flashsize, const char *file,
819                              MemoryRegion *sysmem)
820 {
821     /* Create and map a single flash device. We use the same
822      * parameters as the flash devices on the Versatile Express board.
823      */
824     DriveInfo *dinfo = drive_get_next(IF_PFLASH);
825     DeviceState *dev = qdev_create(NULL, "cfi.pflash01");
826     SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
827     const uint64_t sectorlength = 256 * 1024;
828 
829     if (dinfo) {
830         qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(dinfo),
831                             &error_abort);
832     }
833 
834     qdev_prop_set_uint32(dev, "num-blocks", flashsize / sectorlength);
835     qdev_prop_set_uint64(dev, "sector-length", sectorlength);
836     qdev_prop_set_uint8(dev, "width", 4);
837     qdev_prop_set_uint8(dev, "device-width", 2);
838     qdev_prop_set_bit(dev, "big-endian", false);
839     qdev_prop_set_uint16(dev, "id0", 0x89);
840     qdev_prop_set_uint16(dev, "id1", 0x18);
841     qdev_prop_set_uint16(dev, "id2", 0x00);
842     qdev_prop_set_uint16(dev, "id3", 0x00);
843     qdev_prop_set_string(dev, "name", name);
844     qdev_init_nofail(dev);
845 
846     memory_region_add_subregion(sysmem, flashbase,
847                                 sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 0));
848 
849     if (file) {
850         char *fn;
851         int image_size;
852 
853         if (drive_get(IF_PFLASH, 0, 0)) {
854             error_report("The contents of the first flash device may be "
855                          "specified with -bios or with -drive if=pflash... "
856                          "but you cannot use both options at once");
857             exit(1);
858         }
859         fn = qemu_find_file(QEMU_FILE_TYPE_BIOS, file);
860         if (!fn) {
861             error_report("Could not find ROM image '%s'", file);
862             exit(1);
863         }
864         image_size = load_image_mr(fn, sysbus_mmio_get_region(sbd, 0));
865         g_free(fn);
866         if (image_size < 0) {
867             error_report("Could not load ROM image '%s'", file);
868             exit(1);
869         }
870     }
871 }
872 
873 static void create_flash(const VirtBoardInfo *vbi,
874                          MemoryRegion *sysmem,
875                          MemoryRegion *secure_sysmem)
876 {
877     /* Create two flash devices to fill the VIRT_FLASH space in the memmap.
878      * Any file passed via -bios goes in the first of these.
879      * sysmem is the system memory space. secure_sysmem is the secure view
880      * of the system, and the first flash device should be made visible only
881      * there. The second flash device is visible to both secure and nonsecure.
882      * If sysmem == secure_sysmem this means there is no separate Secure
883      * address space and both flash devices are generally visible.
884      */
885     hwaddr flashsize = vbi->memmap[VIRT_FLASH].size / 2;
886     hwaddr flashbase = vbi->memmap[VIRT_FLASH].base;
887     char *nodename;
888 
889     create_one_flash("virt.flash0", flashbase, flashsize,
890                      bios_name, secure_sysmem);
891     create_one_flash("virt.flash1", flashbase + flashsize, flashsize,
892                      NULL, sysmem);
893 
894     if (sysmem == secure_sysmem) {
895         /* Report both flash devices as a single node in the DT */
896         nodename = g_strdup_printf("/flash@%" PRIx64, flashbase);
897         qemu_fdt_add_subnode(vbi->fdt, nodename);
898         qemu_fdt_setprop_string(vbi->fdt, nodename, "compatible", "cfi-flash");
899         qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg",
900                                      2, flashbase, 2, flashsize,
901                                      2, flashbase + flashsize, 2, flashsize);
902         qemu_fdt_setprop_cell(vbi->fdt, nodename, "bank-width", 4);
903         g_free(nodename);
904     } else {
905         /* Report the devices as separate nodes so we can mark one as
906          * only visible to the secure world.
907          */
908         nodename = g_strdup_printf("/secflash@%" PRIx64, flashbase);
909         qemu_fdt_add_subnode(vbi->fdt, nodename);
910         qemu_fdt_setprop_string(vbi->fdt, nodename, "compatible", "cfi-flash");
911         qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg",
912                                      2, flashbase, 2, flashsize);
913         qemu_fdt_setprop_cell(vbi->fdt, nodename, "bank-width", 4);
914         qemu_fdt_setprop_string(vbi->fdt, nodename, "status", "disabled");
915         qemu_fdt_setprop_string(vbi->fdt, nodename, "secure-status", "okay");
916         g_free(nodename);
917 
918         nodename = g_strdup_printf("/flash@%" PRIx64, flashbase);
919         qemu_fdt_add_subnode(vbi->fdt, nodename);
920         qemu_fdt_setprop_string(vbi->fdt, nodename, "compatible", "cfi-flash");
921         qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg",
922                                      2, flashbase + flashsize, 2, flashsize);
923         qemu_fdt_setprop_cell(vbi->fdt, nodename, "bank-width", 4);
924         g_free(nodename);
925     }
926 }
927 
928 static void create_fw_cfg(const VirtBoardInfo *vbi, AddressSpace *as)
929 {
930     hwaddr base = vbi->memmap[VIRT_FW_CFG].base;
931     hwaddr size = vbi->memmap[VIRT_FW_CFG].size;
932     char *nodename;
933 
934     fw_cfg_init_mem_wide(base + 8, base, 8, base + 16, as);
935 
936     nodename = g_strdup_printf("/fw-cfg@%" PRIx64, base);
937     qemu_fdt_add_subnode(vbi->fdt, nodename);
938     qemu_fdt_setprop_string(vbi->fdt, nodename,
939                             "compatible", "qemu,fw-cfg-mmio");
940     qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg",
941                                  2, base, 2, size);
942     g_free(nodename);
943 }
944 
945 static void create_pcie_irq_map(const VirtBoardInfo *vbi, uint32_t gic_phandle,
946                                 int first_irq, const char *nodename)
947 {
948     int devfn, pin;
949     uint32_t full_irq_map[4 * 4 * 10] = { 0 };
950     uint32_t *irq_map = full_irq_map;
951 
952     for (devfn = 0; devfn <= 0x18; devfn += 0x8) {
953         for (pin = 0; pin < 4; pin++) {
954             int irq_type = GIC_FDT_IRQ_TYPE_SPI;
955             int irq_nr = first_irq + ((pin + PCI_SLOT(devfn)) % PCI_NUM_PINS);
956             int irq_level = GIC_FDT_IRQ_FLAGS_LEVEL_HI;
957             int i;
958 
959             uint32_t map[] = {
960                 devfn << 8, 0, 0,                           /* devfn */
961                 pin + 1,                                    /* PCI pin */
962                 gic_phandle, 0, 0, irq_type, irq_nr, irq_level }; /* GIC irq */
963 
964             /* Convert map to big endian */
965             for (i = 0; i < 10; i++) {
966                 irq_map[i] = cpu_to_be32(map[i]);
967             }
968             irq_map += 10;
969         }
970     }
971 
972     qemu_fdt_setprop(vbi->fdt, nodename, "interrupt-map",
973                      full_irq_map, sizeof(full_irq_map));
974 
975     qemu_fdt_setprop_cells(vbi->fdt, nodename, "interrupt-map-mask",
976                            0x1800, 0, 0, /* devfn (PCI_SLOT(3)) */
977                            0x7           /* PCI irq */);
978 }
979 
980 static void create_pcie(const VirtBoardInfo *vbi, qemu_irq *pic,
981                         bool use_highmem)
982 {
983     hwaddr base_mmio = vbi->memmap[VIRT_PCIE_MMIO].base;
984     hwaddr size_mmio = vbi->memmap[VIRT_PCIE_MMIO].size;
985     hwaddr base_mmio_high = vbi->memmap[VIRT_PCIE_MMIO_HIGH].base;
986     hwaddr size_mmio_high = vbi->memmap[VIRT_PCIE_MMIO_HIGH].size;
987     hwaddr base_pio = vbi->memmap[VIRT_PCIE_PIO].base;
988     hwaddr size_pio = vbi->memmap[VIRT_PCIE_PIO].size;
989     hwaddr base_ecam = vbi->memmap[VIRT_PCIE_ECAM].base;
990     hwaddr size_ecam = vbi->memmap[VIRT_PCIE_ECAM].size;
991     hwaddr base = base_mmio;
992     int nr_pcie_buses = size_ecam / PCIE_MMCFG_SIZE_MIN;
993     int irq = vbi->irqmap[VIRT_PCIE];
994     MemoryRegion *mmio_alias;
995     MemoryRegion *mmio_reg;
996     MemoryRegion *ecam_alias;
997     MemoryRegion *ecam_reg;
998     DeviceState *dev;
999     char *nodename;
1000     int i;
1001     PCIHostState *pci;
1002 
1003     dev = qdev_create(NULL, TYPE_GPEX_HOST);
1004     qdev_init_nofail(dev);
1005 
1006     /* Map only the first size_ecam bytes of ECAM space */
1007     ecam_alias = g_new0(MemoryRegion, 1);
1008     ecam_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 0);
1009     memory_region_init_alias(ecam_alias, OBJECT(dev), "pcie-ecam",
1010                              ecam_reg, 0, size_ecam);
1011     memory_region_add_subregion(get_system_memory(), base_ecam, ecam_alias);
1012 
1013     /* Map the MMIO window into system address space so as to expose
1014      * the section of PCI MMIO space which starts at the same base address
1015      * (ie 1:1 mapping for that part of PCI MMIO space visible through
1016      * the window).
1017      */
1018     mmio_alias = g_new0(MemoryRegion, 1);
1019     mmio_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 1);
1020     memory_region_init_alias(mmio_alias, OBJECT(dev), "pcie-mmio",
1021                              mmio_reg, base_mmio, size_mmio);
1022     memory_region_add_subregion(get_system_memory(), base_mmio, mmio_alias);
1023 
1024     if (use_highmem) {
1025         /* Map high MMIO space */
1026         MemoryRegion *high_mmio_alias = g_new0(MemoryRegion, 1);
1027 
1028         memory_region_init_alias(high_mmio_alias, OBJECT(dev), "pcie-mmio-high",
1029                                  mmio_reg, base_mmio_high, size_mmio_high);
1030         memory_region_add_subregion(get_system_memory(), base_mmio_high,
1031                                     high_mmio_alias);
1032     }
1033 
1034     /* Map IO port space */
1035     sysbus_mmio_map(SYS_BUS_DEVICE(dev), 2, base_pio);
1036 
1037     for (i = 0; i < GPEX_NUM_IRQS; i++) {
1038         sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, pic[irq + i]);
1039     }
1040 
1041     pci = PCI_HOST_BRIDGE(dev);
1042     if (pci->bus) {
1043         for (i = 0; i < nb_nics; i++) {
1044             NICInfo *nd = &nd_table[i];
1045 
1046             if (!nd->model) {
1047                 nd->model = g_strdup("virtio");
1048             }
1049 
1050             pci_nic_init_nofail(nd, pci->bus, nd->model, NULL);
1051         }
1052     }
1053 
1054     nodename = g_strdup_printf("/pcie@%" PRIx64, base);
1055     qemu_fdt_add_subnode(vbi->fdt, nodename);
1056     qemu_fdt_setprop_string(vbi->fdt, nodename,
1057                             "compatible", "pci-host-ecam-generic");
1058     qemu_fdt_setprop_string(vbi->fdt, nodename, "device_type", "pci");
1059     qemu_fdt_setprop_cell(vbi->fdt, nodename, "#address-cells", 3);
1060     qemu_fdt_setprop_cell(vbi->fdt, nodename, "#size-cells", 2);
1061     qemu_fdt_setprop_cells(vbi->fdt, nodename, "bus-range", 0,
1062                            nr_pcie_buses - 1);
1063     qemu_fdt_setprop(vbi->fdt, nodename, "dma-coherent", NULL, 0);
1064 
1065     if (vbi->msi_phandle) {
1066         qemu_fdt_setprop_cells(vbi->fdt, nodename, "msi-parent",
1067                                vbi->msi_phandle);
1068     }
1069 
1070     qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg",
1071                                  2, base_ecam, 2, size_ecam);
1072 
1073     if (use_highmem) {
1074         qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "ranges",
1075                                      1, FDT_PCI_RANGE_IOPORT, 2, 0,
1076                                      2, base_pio, 2, size_pio,
1077                                      1, FDT_PCI_RANGE_MMIO, 2, base_mmio,
1078                                      2, base_mmio, 2, size_mmio,
1079                                      1, FDT_PCI_RANGE_MMIO_64BIT,
1080                                      2, base_mmio_high,
1081                                      2, base_mmio_high, 2, size_mmio_high);
1082     } else {
1083         qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "ranges",
1084                                      1, FDT_PCI_RANGE_IOPORT, 2, 0,
1085                                      2, base_pio, 2, size_pio,
1086                                      1, FDT_PCI_RANGE_MMIO, 2, base_mmio,
1087                                      2, base_mmio, 2, size_mmio);
1088     }
1089 
1090     qemu_fdt_setprop_cell(vbi->fdt, nodename, "#interrupt-cells", 1);
1091     create_pcie_irq_map(vbi, vbi->gic_phandle, irq, nodename);
1092 
1093     g_free(nodename);
1094 }
1095 
1096 static void create_platform_bus(VirtBoardInfo *vbi, qemu_irq *pic)
1097 {
1098     DeviceState *dev;
1099     SysBusDevice *s;
1100     int i;
1101     ARMPlatformBusFDTParams *fdt_params = g_new(ARMPlatformBusFDTParams, 1);
1102     MemoryRegion *sysmem = get_system_memory();
1103 
1104     platform_bus_params.platform_bus_base = vbi->memmap[VIRT_PLATFORM_BUS].base;
1105     platform_bus_params.platform_bus_size = vbi->memmap[VIRT_PLATFORM_BUS].size;
1106     platform_bus_params.platform_bus_first_irq = vbi->irqmap[VIRT_PLATFORM_BUS];
1107     platform_bus_params.platform_bus_num_irqs = PLATFORM_BUS_NUM_IRQS;
1108 
1109     fdt_params->system_params = &platform_bus_params;
1110     fdt_params->binfo = &vbi->bootinfo;
1111     fdt_params->intc = "/intc";
1112     /*
1113      * register a machine init done notifier that creates the device tree
1114      * nodes of the platform bus and its children dynamic sysbus devices
1115      */
1116     arm_register_platform_bus_fdt_creator(fdt_params);
1117 
1118     dev = qdev_create(NULL, TYPE_PLATFORM_BUS_DEVICE);
1119     dev->id = TYPE_PLATFORM_BUS_DEVICE;
1120     qdev_prop_set_uint32(dev, "num_irqs",
1121         platform_bus_params.platform_bus_num_irqs);
1122     qdev_prop_set_uint32(dev, "mmio_size",
1123         platform_bus_params.platform_bus_size);
1124     qdev_init_nofail(dev);
1125     s = SYS_BUS_DEVICE(dev);
1126 
1127     for (i = 0; i < platform_bus_params.platform_bus_num_irqs; i++) {
1128         int irqn = platform_bus_params.platform_bus_first_irq + i;
1129         sysbus_connect_irq(s, i, pic[irqn]);
1130     }
1131 
1132     memory_region_add_subregion(sysmem,
1133                                 platform_bus_params.platform_bus_base,
1134                                 sysbus_mmio_get_region(s, 0));
1135 }
1136 
1137 static void create_secure_ram(VirtBoardInfo *vbi, MemoryRegion *secure_sysmem)
1138 {
1139     MemoryRegion *secram = g_new(MemoryRegion, 1);
1140     char *nodename;
1141     hwaddr base = vbi->memmap[VIRT_SECURE_MEM].base;
1142     hwaddr size = vbi->memmap[VIRT_SECURE_MEM].size;
1143 
1144     memory_region_init_ram(secram, NULL, "virt.secure-ram", size, &error_fatal);
1145     vmstate_register_ram_global(secram);
1146     memory_region_add_subregion(secure_sysmem, base, secram);
1147 
1148     nodename = g_strdup_printf("/secram@%" PRIx64, base);
1149     qemu_fdt_add_subnode(vbi->fdt, nodename);
1150     qemu_fdt_setprop_string(vbi->fdt, nodename, "device_type", "memory");
1151     qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg", 2, base, 2, size);
1152     qemu_fdt_setprop_string(vbi->fdt, nodename, "status", "disabled");
1153     qemu_fdt_setprop_string(vbi->fdt, nodename, "secure-status", "okay");
1154 
1155     g_free(nodename);
1156 }
1157 
1158 static void *machvirt_dtb(const struct arm_boot_info *binfo, int *fdt_size)
1159 {
1160     const VirtBoardInfo *board = (const VirtBoardInfo *)binfo;
1161 
1162     *fdt_size = board->fdt_size;
1163     return board->fdt;
1164 }
1165 
1166 static void virt_build_smbios(VirtGuestInfo *guest_info)
1167 {
1168     FWCfgState *fw_cfg = guest_info->fw_cfg;
1169     uint8_t *smbios_tables, *smbios_anchor;
1170     size_t smbios_tables_len, smbios_anchor_len;
1171     const char *product = "QEMU Virtual Machine";
1172 
1173     if (!fw_cfg) {
1174         return;
1175     }
1176 
1177     if (kvm_enabled()) {
1178         product = "KVM Virtual Machine";
1179     }
1180 
1181     smbios_set_defaults("QEMU", product,
1182                         "1.0", false, true, SMBIOS_ENTRY_POINT_30);
1183 
1184     smbios_get_tables(NULL, 0, &smbios_tables, &smbios_tables_len,
1185                       &smbios_anchor, &smbios_anchor_len);
1186 
1187     if (smbios_anchor) {
1188         fw_cfg_add_file(fw_cfg, "etc/smbios/smbios-tables",
1189                         smbios_tables, smbios_tables_len);
1190         fw_cfg_add_file(fw_cfg, "etc/smbios/smbios-anchor",
1191                         smbios_anchor, smbios_anchor_len);
1192     }
1193 }
1194 
1195 static
1196 void virt_guest_info_machine_done(Notifier *notifier, void *data)
1197 {
1198     VirtGuestInfoState *guest_info_state = container_of(notifier,
1199                                               VirtGuestInfoState, machine_done);
1200     virt_acpi_setup(&guest_info_state->info);
1201     virt_build_smbios(&guest_info_state->info);
1202 }
1203 
1204 static void machvirt_init(MachineState *machine)
1205 {
1206     VirtMachineState *vms = VIRT_MACHINE(machine);
1207     VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(machine);
1208     qemu_irq pic[NUM_IRQS];
1209     MemoryRegion *sysmem = get_system_memory();
1210     MemoryRegion *secure_sysmem = NULL;
1211     int gic_version = vms->gic_version;
1212     int n, virt_max_cpus;
1213     MemoryRegion *ram = g_new(MemoryRegion, 1);
1214     const char *cpu_model = machine->cpu_model;
1215     VirtBoardInfo *vbi;
1216     VirtGuestInfoState *guest_info_state = g_malloc0(sizeof *guest_info_state);
1217     VirtGuestInfo *guest_info = &guest_info_state->info;
1218     char **cpustr;
1219     ObjectClass *oc;
1220     const char *typename;
1221     CPUClass *cc;
1222     Error *err = NULL;
1223     bool firmware_loaded = bios_name || drive_get(IF_PFLASH, 0, 0);
1224     uint8_t clustersz;
1225 
1226     if (!cpu_model) {
1227         cpu_model = "cortex-a15";
1228     }
1229 
1230     /* We can probe only here because during property set
1231      * KVM is not available yet
1232      */
1233     if (!gic_version) {
1234         if (!kvm_enabled()) {
1235             error_report("gic-version=host requires KVM");
1236             exit(1);
1237         }
1238 
1239         gic_version = kvm_arm_vgic_probe();
1240         if (!gic_version) {
1241             error_report("Unable to determine GIC version supported by host");
1242             exit(1);
1243         }
1244     }
1245 
1246     /* Separate the actual CPU model name from any appended features */
1247     cpustr = g_strsplit(cpu_model, ",", 2);
1248 
1249     vbi = find_machine_info(cpustr[0]);
1250 
1251     if (!vbi) {
1252         error_report("mach-virt: CPU %s not supported", cpustr[0]);
1253         exit(1);
1254     }
1255 
1256     /* If we have an EL3 boot ROM then the assumption is that it will
1257      * implement PSCI itself, so disable QEMU's internal implementation
1258      * so it doesn't get in the way. Instead of starting secondary
1259      * CPUs in PSCI powerdown state we will start them all running and
1260      * let the boot ROM sort them out.
1261      * The usual case is that we do use QEMU's PSCI implementation.
1262      */
1263     vbi->using_psci = !(vms->secure && firmware_loaded);
1264 
1265     /* The maximum number of CPUs depends on the GIC version, or on how
1266      * many redistributors we can fit into the memory map.
1267      */
1268     if (gic_version == 3) {
1269         virt_max_cpus = vbi->memmap[VIRT_GIC_REDIST].size / 0x20000;
1270         clustersz = GICV3_TARGETLIST_BITS;
1271     } else {
1272         virt_max_cpus = GIC_NCPU;
1273         clustersz = GIC_TARGETLIST_BITS;
1274     }
1275 
1276     if (max_cpus > virt_max_cpus) {
1277         error_report("Number of SMP CPUs requested (%d) exceeds max CPUs "
1278                      "supported by machine 'mach-virt' (%d)",
1279                      max_cpus, virt_max_cpus);
1280         exit(1);
1281     }
1282 
1283     vbi->smp_cpus = smp_cpus;
1284 
1285     if (machine->ram_size > vbi->memmap[VIRT_MEM].size) {
1286         error_report("mach-virt: cannot model more than %dGB RAM", RAMLIMIT_GB);
1287         exit(1);
1288     }
1289 
1290     if (vms->secure) {
1291         if (kvm_enabled()) {
1292             error_report("mach-virt: KVM does not support Security extensions");
1293             exit(1);
1294         }
1295 
1296         /* The Secure view of the world is the same as the NonSecure,
1297          * but with a few extra devices. Create it as a container region
1298          * containing the system memory at low priority; any secure-only
1299          * devices go in at higher priority and take precedence.
1300          */
1301         secure_sysmem = g_new(MemoryRegion, 1);
1302         memory_region_init(secure_sysmem, OBJECT(machine), "secure-memory",
1303                            UINT64_MAX);
1304         memory_region_add_subregion_overlap(secure_sysmem, 0, sysmem, -1);
1305     }
1306 
1307     create_fdt(vbi);
1308 
1309     oc = cpu_class_by_name(TYPE_ARM_CPU, cpustr[0]);
1310     if (!oc) {
1311         error_report("Unable to find CPU definition");
1312         exit(1);
1313     }
1314     typename = object_class_get_name(oc);
1315 
1316     /* convert -smp CPU options specified by the user into global props */
1317     cc = CPU_CLASS(oc);
1318     cc->parse_features(typename, cpustr[1], &err);
1319     g_strfreev(cpustr);
1320     if (err) {
1321         error_report_err(err);
1322         exit(1);
1323     }
1324 
1325     for (n = 0; n < smp_cpus; n++) {
1326         Object *cpuobj = object_new(typename);
1327         if (!vmc->disallow_affinity_adjustment) {
1328             /* Adjust MPIDR like 64-bit KVM hosts, which incorporate the
1329              * GIC's target-list limitations. 32-bit KVM hosts currently
1330              * always create clusters of 4 CPUs, but that is expected to
1331              * change when they gain support for gicv3. When KVM is enabled
1332              * it will override the changes we make here, therefore our
1333              * purposes are to make TCG consistent (with 64-bit KVM hosts)
1334              * and to improve SGI efficiency.
1335              */
1336             uint8_t aff1 = n / clustersz;
1337             uint8_t aff0 = n % clustersz;
1338             object_property_set_int(cpuobj, (aff1 << ARM_AFF1_SHIFT) | aff0,
1339                                     "mp-affinity", NULL);
1340         }
1341 
1342         if (!vms->secure) {
1343             object_property_set_bool(cpuobj, false, "has_el3", NULL);
1344         }
1345 
1346         if (vbi->using_psci) {
1347             object_property_set_int(cpuobj, QEMU_PSCI_CONDUIT_HVC,
1348                                     "psci-conduit", NULL);
1349 
1350             /* Secondary CPUs start in PSCI powered-down state */
1351             if (n > 0) {
1352                 object_property_set_bool(cpuobj, true,
1353                                          "start-powered-off", NULL);
1354             }
1355         }
1356 
1357         if (vmc->no_pmu && object_property_find(cpuobj, "pmu", NULL)) {
1358             object_property_set_bool(cpuobj, false, "pmu", NULL);
1359         }
1360 
1361         if (object_property_find(cpuobj, "reset-cbar", NULL)) {
1362             object_property_set_int(cpuobj, vbi->memmap[VIRT_CPUPERIPHS].base,
1363                                     "reset-cbar", &error_abort);
1364         }
1365 
1366         object_property_set_link(cpuobj, OBJECT(sysmem), "memory",
1367                                  &error_abort);
1368         if (vms->secure) {
1369             object_property_set_link(cpuobj, OBJECT(secure_sysmem),
1370                                      "secure-memory", &error_abort);
1371         }
1372 
1373         object_property_set_bool(cpuobj, true, "realized", NULL);
1374     }
1375     fdt_add_timer_nodes(vbi, gic_version);
1376     fdt_add_cpu_nodes(vbi);
1377     fdt_add_psci_node(vbi);
1378 
1379     memory_region_allocate_system_memory(ram, NULL, "mach-virt.ram",
1380                                          machine->ram_size);
1381     memory_region_add_subregion(sysmem, vbi->memmap[VIRT_MEM].base, ram);
1382 
1383     create_flash(vbi, sysmem, secure_sysmem ? secure_sysmem : sysmem);
1384 
1385     create_gic(vbi, pic, gic_version, vms->secure, vmc->no_its);
1386 
1387     fdt_add_pmu_nodes(vbi, gic_version);
1388 
1389     create_uart(vbi, pic, VIRT_UART, sysmem, serial_hds[0]);
1390 
1391     if (vms->secure) {
1392         create_secure_ram(vbi, secure_sysmem);
1393         create_uart(vbi, pic, VIRT_SECURE_UART, secure_sysmem, serial_hds[1]);
1394     }
1395 
1396     create_rtc(vbi, pic);
1397 
1398     create_pcie(vbi, pic, vms->highmem);
1399 
1400     create_gpio(vbi, pic);
1401 
1402     /* Create mmio transports, so the user can create virtio backends
1403      * (which will be automatically plugged in to the transports). If
1404      * no backend is created the transport will just sit harmlessly idle.
1405      */
1406     create_virtio_devices(vbi, pic);
1407 
1408     create_fw_cfg(vbi, &address_space_memory);
1409     rom_set_fw(fw_cfg_find());
1410 
1411     guest_info->smp_cpus = smp_cpus;
1412     guest_info->fw_cfg = fw_cfg_find();
1413     guest_info->memmap = vbi->memmap;
1414     guest_info->irqmap = vbi->irqmap;
1415     guest_info->use_highmem = vms->highmem;
1416     guest_info->gic_version = gic_version;
1417     guest_info->no_its = vmc->no_its;
1418     guest_info_state->machine_done.notify = virt_guest_info_machine_done;
1419     qemu_add_machine_init_done_notifier(&guest_info_state->machine_done);
1420 
1421     vbi->bootinfo.ram_size = machine->ram_size;
1422     vbi->bootinfo.kernel_filename = machine->kernel_filename;
1423     vbi->bootinfo.kernel_cmdline = machine->kernel_cmdline;
1424     vbi->bootinfo.initrd_filename = machine->initrd_filename;
1425     vbi->bootinfo.nb_cpus = smp_cpus;
1426     vbi->bootinfo.board_id = -1;
1427     vbi->bootinfo.loader_start = vbi->memmap[VIRT_MEM].base;
1428     vbi->bootinfo.get_dtb = machvirt_dtb;
1429     vbi->bootinfo.firmware_loaded = firmware_loaded;
1430     arm_load_kernel(ARM_CPU(first_cpu), &vbi->bootinfo);
1431 
1432     /*
1433      * arm_load_kernel machine init done notifier registration must
1434      * happen before the platform_bus_create call. In this latter,
1435      * another notifier is registered which adds platform bus nodes.
1436      * Notifiers are executed in registration reverse order.
1437      */
1438     create_platform_bus(vbi, pic);
1439 }
1440 
1441 static bool virt_get_secure(Object *obj, Error **errp)
1442 {
1443     VirtMachineState *vms = VIRT_MACHINE(obj);
1444 
1445     return vms->secure;
1446 }
1447 
1448 static void virt_set_secure(Object *obj, bool value, Error **errp)
1449 {
1450     VirtMachineState *vms = VIRT_MACHINE(obj);
1451 
1452     vms->secure = value;
1453 }
1454 
1455 static bool virt_get_highmem(Object *obj, Error **errp)
1456 {
1457     VirtMachineState *vms = VIRT_MACHINE(obj);
1458 
1459     return vms->highmem;
1460 }
1461 
1462 static void virt_set_highmem(Object *obj, bool value, Error **errp)
1463 {
1464     VirtMachineState *vms = VIRT_MACHINE(obj);
1465 
1466     vms->highmem = value;
1467 }
1468 
1469 static char *virt_get_gic_version(Object *obj, Error **errp)
1470 {
1471     VirtMachineState *vms = VIRT_MACHINE(obj);
1472     const char *val = vms->gic_version == 3 ? "3" : "2";
1473 
1474     return g_strdup(val);
1475 }
1476 
1477 static void virt_set_gic_version(Object *obj, const char *value, Error **errp)
1478 {
1479     VirtMachineState *vms = VIRT_MACHINE(obj);
1480 
1481     if (!strcmp(value, "3")) {
1482         vms->gic_version = 3;
1483     } else if (!strcmp(value, "2")) {
1484         vms->gic_version = 2;
1485     } else if (!strcmp(value, "host")) {
1486         vms->gic_version = 0; /* Will probe later */
1487     } else {
1488         error_setg(errp, "Invalid gic-version value");
1489         error_append_hint(errp, "Valid values are 3, 2, host.\n");
1490     }
1491 }
1492 
1493 static void virt_machine_class_init(ObjectClass *oc, void *data)
1494 {
1495     MachineClass *mc = MACHINE_CLASS(oc);
1496 
1497     mc->init = machvirt_init;
1498     /* Start max_cpus at the maximum QEMU supports. We'll further restrict
1499      * it later in machvirt_init, where we have more information about the
1500      * configuration of the particular instance.
1501      */
1502     mc->max_cpus = 255;
1503     mc->has_dynamic_sysbus = true;
1504     mc->block_default_type = IF_VIRTIO;
1505     mc->no_cdrom = 1;
1506     mc->pci_allow_0_address = true;
1507     /* We know we will never create a pre-ARMv7 CPU which needs 1K pages */
1508     mc->minimum_page_bits = 12;
1509 }
1510 
1511 static const TypeInfo virt_machine_info = {
1512     .name          = TYPE_VIRT_MACHINE,
1513     .parent        = TYPE_MACHINE,
1514     .abstract      = true,
1515     .instance_size = sizeof(VirtMachineState),
1516     .class_size    = sizeof(VirtMachineClass),
1517     .class_init    = virt_machine_class_init,
1518 };
1519 
1520 static void machvirt_machine_init(void)
1521 {
1522     type_register_static(&virt_machine_info);
1523 }
1524 type_init(machvirt_machine_init);
1525 
1526 static void virt_2_8_instance_init(Object *obj)
1527 {
1528     VirtMachineState *vms = VIRT_MACHINE(obj);
1529 
1530     /* EL3 is disabled by default on virt: this makes us consistent
1531      * between KVM and TCG for this board, and it also allows us to
1532      * boot UEFI blobs which assume no TrustZone support.
1533      */
1534     vms->secure = false;
1535     object_property_add_bool(obj, "secure", virt_get_secure,
1536                              virt_set_secure, NULL);
1537     object_property_set_description(obj, "secure",
1538                                     "Set on/off to enable/disable the ARM "
1539                                     "Security Extensions (TrustZone)",
1540                                     NULL);
1541 
1542     /* High memory is enabled by default */
1543     vms->highmem = true;
1544     object_property_add_bool(obj, "highmem", virt_get_highmem,
1545                              virt_set_highmem, NULL);
1546     object_property_set_description(obj, "highmem",
1547                                     "Set on/off to enable/disable using "
1548                                     "physical address space above 32 bits",
1549                                     NULL);
1550     /* Default GIC type is v2 */
1551     vms->gic_version = 2;
1552     object_property_add_str(obj, "gic-version", virt_get_gic_version,
1553                         virt_set_gic_version, NULL);
1554     object_property_set_description(obj, "gic-version",
1555                                     "Set GIC version. "
1556                                     "Valid values are 2, 3 and host", NULL);
1557 }
1558 
1559 static void virt_machine_2_8_options(MachineClass *mc)
1560 {
1561 }
1562 DEFINE_VIRT_MACHINE_AS_LATEST(2, 8)
1563 
1564 #define VIRT_COMPAT_2_7 \
1565     HW_COMPAT_2_7
1566 
1567 static void virt_2_7_instance_init(Object *obj)
1568 {
1569     virt_2_8_instance_init(obj);
1570 }
1571 
1572 static void virt_machine_2_7_options(MachineClass *mc)
1573 {
1574     VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
1575 
1576     virt_machine_2_8_options(mc);
1577     SET_MACHINE_COMPAT(mc, VIRT_COMPAT_2_7);
1578     /* ITS was introduced with 2.8 */
1579     vmc->no_its = true;
1580     /* Stick with 1K pages for migration compatibility */
1581     mc->minimum_page_bits = 0;
1582 }
1583 DEFINE_VIRT_MACHINE(2, 7)
1584 
1585 #define VIRT_COMPAT_2_6 \
1586     HW_COMPAT_2_6
1587 
1588 static void virt_2_6_instance_init(Object *obj)
1589 {
1590     virt_2_7_instance_init(obj);
1591 }
1592 
1593 static void virt_machine_2_6_options(MachineClass *mc)
1594 {
1595     VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
1596 
1597     virt_machine_2_7_options(mc);
1598     SET_MACHINE_COMPAT(mc, VIRT_COMPAT_2_6);
1599     vmc->disallow_affinity_adjustment = true;
1600     /* Disable PMU for 2.6 as PMU support was first introduced in 2.7 */
1601     vmc->no_pmu = true;
1602 }
1603 DEFINE_VIRT_MACHINE(2, 6)
1604