xref: /qemu/hw/arm/virt.c (revision 93977402441405055500ff0389b49f6bbac9d50b)
1 /*
2  * ARM mach-virt emulation
3  *
4  * Copyright (c) 2013 Linaro Limited
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms and conditions of the GNU General Public License,
8  * version 2 or later, as published by the Free Software Foundation.
9  *
10  * This program is distributed in the hope it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  * more details.
14  *
15  * You should have received a copy of the GNU General Public License along with
16  * this program.  If not, see <http://www.gnu.org/licenses/>.
17  *
18  * Emulate a virtual board which works by passing Linux all the information
19  * it needs about what devices are present via the device tree.
20  * There are some restrictions about what we can do here:
21  *  + we can only present devices whose Linux drivers will work based
22  *    purely on the device tree with no platform data at all
23  *  + we want to present a very stripped-down minimalist platform,
24  *    both because this reduces the security attack surface from the guest
25  *    and also because it reduces our exposure to being broken when
26  *    the kernel updates its device tree bindings and requires further
27  *    information in a device binding that we aren't providing.
28  * This is essentially the same approach kvmtool uses.
29  */
30 
31 #include "qemu/osdep.h"
32 #include "qapi/error.h"
33 #include "hw/sysbus.h"
34 #include "hw/arm/arm.h"
35 #include "hw/arm/primecell.h"
36 #include "hw/arm/virt.h"
37 #include "hw/devices.h"
38 #include "net/net.h"
39 #include "sysemu/block-backend.h"
40 #include "sysemu/device_tree.h"
41 #include "sysemu/numa.h"
42 #include "sysemu/sysemu.h"
43 #include "sysemu/kvm.h"
44 #include "hw/boards.h"
45 #include "hw/compat.h"
46 #include "hw/loader.h"
47 #include "exec/address-spaces.h"
48 #include "qemu/bitops.h"
49 #include "qemu/error-report.h"
50 #include "hw/pci-host/gpex.h"
51 #include "hw/arm/virt-acpi-build.h"
52 #include "hw/arm/sysbus-fdt.h"
53 #include "hw/platform-bus.h"
54 #include "hw/arm/fdt.h"
55 #include "hw/intc/arm_gic.h"
56 #include "hw/intc/arm_gicv3_common.h"
57 #include "kvm_arm.h"
58 #include "hw/smbios/smbios.h"
59 #include "qapi/visitor.h"
60 #include "standard-headers/linux/input.h"
61 
62 /* Number of external interrupt lines to configure the GIC with */
63 #define NUM_IRQS 256
64 
65 #define PLATFORM_BUS_NUM_IRQS 64
66 
67 static ARMPlatformBusSystemParams platform_bus_params;
68 
69 typedef struct VirtBoardInfo {
70     struct arm_boot_info bootinfo;
71     const char *cpu_model;
72     const MemMapEntry *memmap;
73     const int *irqmap;
74     int smp_cpus;
75     void *fdt;
76     int fdt_size;
77     uint32_t clock_phandle;
78     uint32_t gic_phandle;
79     uint32_t msi_phandle;
80     bool using_psci;
81 } VirtBoardInfo;
82 
83 typedef struct {
84     MachineClass parent;
85     VirtBoardInfo *daughterboard;
86     bool disallow_affinity_adjustment;
87 } VirtMachineClass;
88 
89 typedef struct {
90     MachineState parent;
91     bool secure;
92     bool highmem;
93     int32_t gic_version;
94 } VirtMachineState;
95 
96 #define TYPE_VIRT_MACHINE   MACHINE_TYPE_NAME("virt")
97 #define VIRT_MACHINE(obj) \
98     OBJECT_CHECK(VirtMachineState, (obj), TYPE_VIRT_MACHINE)
99 #define VIRT_MACHINE_GET_CLASS(obj) \
100     OBJECT_GET_CLASS(VirtMachineClass, obj, TYPE_VIRT_MACHINE)
101 #define VIRT_MACHINE_CLASS(klass) \
102     OBJECT_CLASS_CHECK(VirtMachineClass, klass, TYPE_VIRT_MACHINE)
103 
104 
105 #define DEFINE_VIRT_MACHINE_LATEST(major, minor, latest) \
106     static void virt_##major##_##minor##_class_init(ObjectClass *oc, \
107                                                     void *data) \
108     { \
109         MachineClass *mc = MACHINE_CLASS(oc); \
110         virt_machine_##major##_##minor##_options(mc); \
111         mc->desc = "QEMU " # major "." # minor " ARM Virtual Machine"; \
112         if (latest) { \
113             mc->alias = "virt"; \
114         } \
115     } \
116     static const TypeInfo machvirt_##major##_##minor##_info = { \
117         .name = MACHINE_TYPE_NAME("virt-" # major "." # minor), \
118         .parent = TYPE_VIRT_MACHINE, \
119         .instance_init = virt_##major##_##minor##_instance_init, \
120         .class_init = virt_##major##_##minor##_class_init, \
121     }; \
122     static void machvirt_machine_##major##_##minor##_init(void) \
123     { \
124         type_register_static(&machvirt_##major##_##minor##_info); \
125     } \
126     type_init(machvirt_machine_##major##_##minor##_init);
127 
128 #define DEFINE_VIRT_MACHINE_AS_LATEST(major, minor) \
129     DEFINE_VIRT_MACHINE_LATEST(major, minor, true)
130 #define DEFINE_VIRT_MACHINE(major, minor) \
131     DEFINE_VIRT_MACHINE_LATEST(major, minor, false)
132 
133 
134 /* RAM limit in GB. Since VIRT_MEM starts at the 1GB mark, this means
135  * RAM can go up to the 256GB mark, leaving 256GB of the physical
136  * address space unallocated and free for future use between 256G and 512G.
137  * If we need to provide more RAM to VMs in the future then we need to:
138  *  * allocate a second bank of RAM starting at 2TB and working up
139  *  * fix the DT and ACPI table generation code in QEMU to correctly
140  *    report two split lumps of RAM to the guest
141  *  * fix KVM in the host kernel to allow guests with >40 bit address spaces
142  * (We don't want to fill all the way up to 512GB with RAM because
143  * we might want it for non-RAM purposes later. Conversely it seems
144  * reasonable to assume that anybody configuring a VM with a quarter
145  * of a terabyte of RAM will be doing it on a host with more than a
146  * terabyte of physical address space.)
147  */
148 #define RAMLIMIT_GB 255
149 #define RAMLIMIT_BYTES (RAMLIMIT_GB * 1024ULL * 1024 * 1024)
150 
151 /* Addresses and sizes of our components.
152  * 0..128MB is space for a flash device so we can run bootrom code such as UEFI.
153  * 128MB..256MB is used for miscellaneous device I/O.
154  * 256MB..1GB is reserved for possible future PCI support (ie where the
155  * PCI memory window will go if we add a PCI host controller).
156  * 1GB and up is RAM (which may happily spill over into the
157  * high memory region beyond 4GB).
158  * This represents a compromise between how much RAM can be given to
159  * a 32 bit VM and leaving space for expansion and in particular for PCI.
160  * Note that devices should generally be placed at multiples of 0x10000,
161  * to accommodate guests using 64K pages.
162  */
163 static const MemMapEntry a15memmap[] = {
164     /* Space up to 0x8000000 is reserved for a boot ROM */
165     [VIRT_FLASH] =              {          0, 0x08000000 },
166     [VIRT_CPUPERIPHS] =         { 0x08000000, 0x00020000 },
167     /* GIC distributor and CPU interfaces sit inside the CPU peripheral space */
168     [VIRT_GIC_DIST] =           { 0x08000000, 0x00010000 },
169     [VIRT_GIC_CPU] =            { 0x08010000, 0x00010000 },
170     [VIRT_GIC_V2M] =            { 0x08020000, 0x00001000 },
171     /* The space in between here is reserved for GICv3 CPU/vCPU/HYP */
172     [VIRT_GIC_ITS] =            { 0x08080000, 0x00020000 },
173     /* This redistributor space allows up to 2*64kB*123 CPUs */
174     [VIRT_GIC_REDIST] =         { 0x080A0000, 0x00F60000 },
175     [VIRT_UART] =               { 0x09000000, 0x00001000 },
176     [VIRT_RTC] =                { 0x09010000, 0x00001000 },
177     [VIRT_FW_CFG] =             { 0x09020000, 0x00000018 },
178     [VIRT_GPIO] =               { 0x09030000, 0x00001000 },
179     [VIRT_SECURE_UART] =        { 0x09040000, 0x00001000 },
180     [VIRT_MMIO] =               { 0x0a000000, 0x00000200 },
181     /* ...repeating for a total of NUM_VIRTIO_TRANSPORTS, each of that size */
182     [VIRT_PLATFORM_BUS] =       { 0x0c000000, 0x02000000 },
183     [VIRT_SECURE_MEM] =         { 0x0e000000, 0x01000000 },
184     [VIRT_PCIE_MMIO] =          { 0x10000000, 0x2eff0000 },
185     [VIRT_PCIE_PIO] =           { 0x3eff0000, 0x00010000 },
186     [VIRT_PCIE_ECAM] =          { 0x3f000000, 0x01000000 },
187     [VIRT_MEM] =                { 0x40000000, RAMLIMIT_BYTES },
188     /* Second PCIe window, 512GB wide at the 512GB boundary */
189     [VIRT_PCIE_MMIO_HIGH] =   { 0x8000000000ULL, 0x8000000000ULL },
190 };
191 
192 static const int a15irqmap[] = {
193     [VIRT_UART] = 1,
194     [VIRT_RTC] = 2,
195     [VIRT_PCIE] = 3, /* ... to 6 */
196     [VIRT_GPIO] = 7,
197     [VIRT_SECURE_UART] = 8,
198     [VIRT_MMIO] = 16, /* ...to 16 + NUM_VIRTIO_TRANSPORTS - 1 */
199     [VIRT_GIC_V2M] = 48, /* ...to 48 + NUM_GICV2M_SPIS - 1 */
200     [VIRT_PLATFORM_BUS] = 112, /* ...to 112 + PLATFORM_BUS_NUM_IRQS -1 */
201 };
202 
203 static VirtBoardInfo machines[] = {
204     {
205         .cpu_model = "cortex-a15",
206         .memmap = a15memmap,
207         .irqmap = a15irqmap,
208     },
209     {
210         .cpu_model = "cortex-a53",
211         .memmap = a15memmap,
212         .irqmap = a15irqmap,
213     },
214     {
215         .cpu_model = "cortex-a57",
216         .memmap = a15memmap,
217         .irqmap = a15irqmap,
218     },
219     {
220         .cpu_model = "host",
221         .memmap = a15memmap,
222         .irqmap = a15irqmap,
223     },
224 };
225 
226 static VirtBoardInfo *find_machine_info(const char *cpu)
227 {
228     int i;
229 
230     for (i = 0; i < ARRAY_SIZE(machines); i++) {
231         if (strcmp(cpu, machines[i].cpu_model) == 0) {
232             return &machines[i];
233         }
234     }
235     return NULL;
236 }
237 
238 static void create_fdt(VirtBoardInfo *vbi)
239 {
240     void *fdt = create_device_tree(&vbi->fdt_size);
241 
242     if (!fdt) {
243         error_report("create_device_tree() failed");
244         exit(1);
245     }
246 
247     vbi->fdt = fdt;
248 
249     /* Header */
250     qemu_fdt_setprop_string(fdt, "/", "compatible", "linux,dummy-virt");
251     qemu_fdt_setprop_cell(fdt, "/", "#address-cells", 0x2);
252     qemu_fdt_setprop_cell(fdt, "/", "#size-cells", 0x2);
253 
254     /*
255      * /chosen and /memory nodes must exist for load_dtb
256      * to fill in necessary properties later
257      */
258     qemu_fdt_add_subnode(fdt, "/chosen");
259     qemu_fdt_add_subnode(fdt, "/memory");
260     qemu_fdt_setprop_string(fdt, "/memory", "device_type", "memory");
261 
262     /* Clock node, for the benefit of the UART. The kernel device tree
263      * binding documentation claims the PL011 node clock properties are
264      * optional but in practice if you omit them the kernel refuses to
265      * probe for the device.
266      */
267     vbi->clock_phandle = qemu_fdt_alloc_phandle(fdt);
268     qemu_fdt_add_subnode(fdt, "/apb-pclk");
269     qemu_fdt_setprop_string(fdt, "/apb-pclk", "compatible", "fixed-clock");
270     qemu_fdt_setprop_cell(fdt, "/apb-pclk", "#clock-cells", 0x0);
271     qemu_fdt_setprop_cell(fdt, "/apb-pclk", "clock-frequency", 24000000);
272     qemu_fdt_setprop_string(fdt, "/apb-pclk", "clock-output-names",
273                                 "clk24mhz");
274     qemu_fdt_setprop_cell(fdt, "/apb-pclk", "phandle", vbi->clock_phandle);
275 
276 }
277 
278 static void fdt_add_psci_node(const VirtBoardInfo *vbi)
279 {
280     uint32_t cpu_suspend_fn;
281     uint32_t cpu_off_fn;
282     uint32_t cpu_on_fn;
283     uint32_t migrate_fn;
284     void *fdt = vbi->fdt;
285     ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(0));
286 
287     if (!vbi->using_psci) {
288         return;
289     }
290 
291     qemu_fdt_add_subnode(fdt, "/psci");
292     if (armcpu->psci_version == 2) {
293         const char comp[] = "arm,psci-0.2\0arm,psci";
294         qemu_fdt_setprop(fdt, "/psci", "compatible", comp, sizeof(comp));
295 
296         cpu_off_fn = QEMU_PSCI_0_2_FN_CPU_OFF;
297         if (arm_feature(&armcpu->env, ARM_FEATURE_AARCH64)) {
298             cpu_suspend_fn = QEMU_PSCI_0_2_FN64_CPU_SUSPEND;
299             cpu_on_fn = QEMU_PSCI_0_2_FN64_CPU_ON;
300             migrate_fn = QEMU_PSCI_0_2_FN64_MIGRATE;
301         } else {
302             cpu_suspend_fn = QEMU_PSCI_0_2_FN_CPU_SUSPEND;
303             cpu_on_fn = QEMU_PSCI_0_2_FN_CPU_ON;
304             migrate_fn = QEMU_PSCI_0_2_FN_MIGRATE;
305         }
306     } else {
307         qemu_fdt_setprop_string(fdt, "/psci", "compatible", "arm,psci");
308 
309         cpu_suspend_fn = QEMU_PSCI_0_1_FN_CPU_SUSPEND;
310         cpu_off_fn = QEMU_PSCI_0_1_FN_CPU_OFF;
311         cpu_on_fn = QEMU_PSCI_0_1_FN_CPU_ON;
312         migrate_fn = QEMU_PSCI_0_1_FN_MIGRATE;
313     }
314 
315     /* We adopt the PSCI spec's nomenclature, and use 'conduit' to refer
316      * to the instruction that should be used to invoke PSCI functions.
317      * However, the device tree binding uses 'method' instead, so that is
318      * what we should use here.
319      */
320     qemu_fdt_setprop_string(fdt, "/psci", "method", "hvc");
321 
322     qemu_fdt_setprop_cell(fdt, "/psci", "cpu_suspend", cpu_suspend_fn);
323     qemu_fdt_setprop_cell(fdt, "/psci", "cpu_off", cpu_off_fn);
324     qemu_fdt_setprop_cell(fdt, "/psci", "cpu_on", cpu_on_fn);
325     qemu_fdt_setprop_cell(fdt, "/psci", "migrate", migrate_fn);
326 }
327 
328 static void fdt_add_timer_nodes(const VirtBoardInfo *vbi, int gictype)
329 {
330     /* Note that on A15 h/w these interrupts are level-triggered,
331      * but for the GIC implementation provided by both QEMU and KVM
332      * they are edge-triggered.
333      */
334     ARMCPU *armcpu;
335     uint32_t irqflags = GIC_FDT_IRQ_FLAGS_EDGE_LO_HI;
336 
337     if (gictype == 2) {
338         irqflags = deposit32(irqflags, GIC_FDT_IRQ_PPI_CPU_START,
339                              GIC_FDT_IRQ_PPI_CPU_WIDTH,
340                              (1 << vbi->smp_cpus) - 1);
341     }
342 
343     qemu_fdt_add_subnode(vbi->fdt, "/timer");
344 
345     armcpu = ARM_CPU(qemu_get_cpu(0));
346     if (arm_feature(&armcpu->env, ARM_FEATURE_V8)) {
347         const char compat[] = "arm,armv8-timer\0arm,armv7-timer";
348         qemu_fdt_setprop(vbi->fdt, "/timer", "compatible",
349                          compat, sizeof(compat));
350     } else {
351         qemu_fdt_setprop_string(vbi->fdt, "/timer", "compatible",
352                                 "arm,armv7-timer");
353     }
354     qemu_fdt_setprop(vbi->fdt, "/timer", "always-on", NULL, 0);
355     qemu_fdt_setprop_cells(vbi->fdt, "/timer", "interrupts",
356                        GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_S_EL1_IRQ, irqflags,
357                        GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_NS_EL1_IRQ, irqflags,
358                        GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_VIRT_IRQ, irqflags,
359                        GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_NS_EL2_IRQ, irqflags);
360 }
361 
362 static void fdt_add_cpu_nodes(const VirtBoardInfo *vbi)
363 {
364     int cpu;
365     int addr_cells = 1;
366     unsigned int i;
367 
368     /*
369      * From Documentation/devicetree/bindings/arm/cpus.txt
370      *  On ARM v8 64-bit systems value should be set to 2,
371      *  that corresponds to the MPIDR_EL1 register size.
372      *  If MPIDR_EL1[63:32] value is equal to 0 on all CPUs
373      *  in the system, #address-cells can be set to 1, since
374      *  MPIDR_EL1[63:32] bits are not used for CPUs
375      *  identification.
376      *
377      *  Here we actually don't know whether our system is 32- or 64-bit one.
378      *  The simplest way to go is to examine affinity IDs of all our CPUs. If
379      *  at least one of them has Aff3 populated, we set #address-cells to 2.
380      */
381     for (cpu = 0; cpu < vbi->smp_cpus; cpu++) {
382         ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu));
383 
384         if (armcpu->mp_affinity & ARM_AFF3_MASK) {
385             addr_cells = 2;
386             break;
387         }
388     }
389 
390     qemu_fdt_add_subnode(vbi->fdt, "/cpus");
391     qemu_fdt_setprop_cell(vbi->fdt, "/cpus", "#address-cells", addr_cells);
392     qemu_fdt_setprop_cell(vbi->fdt, "/cpus", "#size-cells", 0x0);
393 
394     for (cpu = vbi->smp_cpus - 1; cpu >= 0; cpu--) {
395         char *nodename = g_strdup_printf("/cpus/cpu@%d", cpu);
396         ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu));
397 
398         qemu_fdt_add_subnode(vbi->fdt, nodename);
399         qemu_fdt_setprop_string(vbi->fdt, nodename, "device_type", "cpu");
400         qemu_fdt_setprop_string(vbi->fdt, nodename, "compatible",
401                                     armcpu->dtb_compatible);
402 
403         if (vbi->using_psci && vbi->smp_cpus > 1) {
404             qemu_fdt_setprop_string(vbi->fdt, nodename,
405                                         "enable-method", "psci");
406         }
407 
408         if (addr_cells == 2) {
409             qemu_fdt_setprop_u64(vbi->fdt, nodename, "reg",
410                                  armcpu->mp_affinity);
411         } else {
412             qemu_fdt_setprop_cell(vbi->fdt, nodename, "reg",
413                                   armcpu->mp_affinity);
414         }
415 
416         i = numa_get_node_for_cpu(cpu);
417         if (i < nb_numa_nodes) {
418             qemu_fdt_setprop_cell(vbi->fdt, nodename, "numa-node-id", i);
419         }
420 
421         g_free(nodename);
422     }
423 }
424 
425 static void fdt_add_its_gic_node(VirtBoardInfo *vbi)
426 {
427     vbi->msi_phandle = qemu_fdt_alloc_phandle(vbi->fdt);
428     qemu_fdt_add_subnode(vbi->fdt, "/intc/its");
429     qemu_fdt_setprop_string(vbi->fdt, "/intc/its", "compatible",
430                             "arm,gic-v3-its");
431     qemu_fdt_setprop(vbi->fdt, "/intc/its", "msi-controller", NULL, 0);
432     qemu_fdt_setprop_sized_cells(vbi->fdt, "/intc/its", "reg",
433                                  2, vbi->memmap[VIRT_GIC_ITS].base,
434                                  2, vbi->memmap[VIRT_GIC_ITS].size);
435     qemu_fdt_setprop_cell(vbi->fdt, "/intc/its", "phandle", vbi->msi_phandle);
436 }
437 
438 static void fdt_add_v2m_gic_node(VirtBoardInfo *vbi)
439 {
440     vbi->msi_phandle = qemu_fdt_alloc_phandle(vbi->fdt);
441     qemu_fdt_add_subnode(vbi->fdt, "/intc/v2m");
442     qemu_fdt_setprop_string(vbi->fdt, "/intc/v2m", "compatible",
443                             "arm,gic-v2m-frame");
444     qemu_fdt_setprop(vbi->fdt, "/intc/v2m", "msi-controller", NULL, 0);
445     qemu_fdt_setprop_sized_cells(vbi->fdt, "/intc/v2m", "reg",
446                                  2, vbi->memmap[VIRT_GIC_V2M].base,
447                                  2, vbi->memmap[VIRT_GIC_V2M].size);
448     qemu_fdt_setprop_cell(vbi->fdt, "/intc/v2m", "phandle", vbi->msi_phandle);
449 }
450 
451 static void fdt_add_gic_node(VirtBoardInfo *vbi, int type)
452 {
453     vbi->gic_phandle = qemu_fdt_alloc_phandle(vbi->fdt);
454     qemu_fdt_setprop_cell(vbi->fdt, "/", "interrupt-parent", vbi->gic_phandle);
455 
456     qemu_fdt_add_subnode(vbi->fdt, "/intc");
457     qemu_fdt_setprop_cell(vbi->fdt, "/intc", "#interrupt-cells", 3);
458     qemu_fdt_setprop(vbi->fdt, "/intc", "interrupt-controller", NULL, 0);
459     qemu_fdt_setprop_cell(vbi->fdt, "/intc", "#address-cells", 0x2);
460     qemu_fdt_setprop_cell(vbi->fdt, "/intc", "#size-cells", 0x2);
461     qemu_fdt_setprop(vbi->fdt, "/intc", "ranges", NULL, 0);
462     if (type == 3) {
463         qemu_fdt_setprop_string(vbi->fdt, "/intc", "compatible",
464                                 "arm,gic-v3");
465         qemu_fdt_setprop_sized_cells(vbi->fdt, "/intc", "reg",
466                                      2, vbi->memmap[VIRT_GIC_DIST].base,
467                                      2, vbi->memmap[VIRT_GIC_DIST].size,
468                                      2, vbi->memmap[VIRT_GIC_REDIST].base,
469                                      2, vbi->memmap[VIRT_GIC_REDIST].size);
470     } else {
471         /* 'cortex-a15-gic' means 'GIC v2' */
472         qemu_fdt_setprop_string(vbi->fdt, "/intc", "compatible",
473                                 "arm,cortex-a15-gic");
474         qemu_fdt_setprop_sized_cells(vbi->fdt, "/intc", "reg",
475                                       2, vbi->memmap[VIRT_GIC_DIST].base,
476                                       2, vbi->memmap[VIRT_GIC_DIST].size,
477                                       2, vbi->memmap[VIRT_GIC_CPU].base,
478                                       2, vbi->memmap[VIRT_GIC_CPU].size);
479     }
480 
481     qemu_fdt_setprop_cell(vbi->fdt, "/intc", "phandle", vbi->gic_phandle);
482 }
483 
484 static void fdt_add_pmu_nodes(const VirtBoardInfo *vbi, int gictype)
485 {
486     CPUState *cpu;
487     ARMCPU *armcpu;
488     uint32_t irqflags = GIC_FDT_IRQ_FLAGS_LEVEL_HI;
489 
490     CPU_FOREACH(cpu) {
491         armcpu = ARM_CPU(cpu);
492         if (!armcpu->has_pmu ||
493             !kvm_arm_pmu_create(cpu, PPI(VIRTUAL_PMU_IRQ))) {
494             return;
495         }
496     }
497 
498     if (gictype == 2) {
499         irqflags = deposit32(irqflags, GIC_FDT_IRQ_PPI_CPU_START,
500                              GIC_FDT_IRQ_PPI_CPU_WIDTH,
501                              (1 << vbi->smp_cpus) - 1);
502     }
503 
504     armcpu = ARM_CPU(qemu_get_cpu(0));
505     qemu_fdt_add_subnode(vbi->fdt, "/pmu");
506     if (arm_feature(&armcpu->env, ARM_FEATURE_V8)) {
507         const char compat[] = "arm,armv8-pmuv3";
508         qemu_fdt_setprop(vbi->fdt, "/pmu", "compatible",
509                          compat, sizeof(compat));
510         qemu_fdt_setprop_cells(vbi->fdt, "/pmu", "interrupts",
511                                GIC_FDT_IRQ_TYPE_PPI, VIRTUAL_PMU_IRQ, irqflags);
512     }
513 }
514 
515 static void create_its(VirtBoardInfo *vbi, DeviceState *gicdev)
516 {
517     const char *itsclass = its_class_name();
518     DeviceState *dev;
519 
520     if (!itsclass) {
521         /* Do nothing if not supported */
522         return;
523     }
524 
525     dev = qdev_create(NULL, itsclass);
526 
527     object_property_set_link(OBJECT(dev), OBJECT(gicdev), "parent-gicv3",
528                              &error_abort);
529     qdev_init_nofail(dev);
530     sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vbi->memmap[VIRT_GIC_ITS].base);
531 
532     fdt_add_its_gic_node(vbi);
533 }
534 
535 static void create_v2m(VirtBoardInfo *vbi, qemu_irq *pic)
536 {
537     int i;
538     int irq = vbi->irqmap[VIRT_GIC_V2M];
539     DeviceState *dev;
540 
541     dev = qdev_create(NULL, "arm-gicv2m");
542     sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vbi->memmap[VIRT_GIC_V2M].base);
543     qdev_prop_set_uint32(dev, "base-spi", irq);
544     qdev_prop_set_uint32(dev, "num-spi", NUM_GICV2M_SPIS);
545     qdev_init_nofail(dev);
546 
547     for (i = 0; i < NUM_GICV2M_SPIS; i++) {
548         sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, pic[irq + i]);
549     }
550 
551     fdt_add_v2m_gic_node(vbi);
552 }
553 
554 static void create_gic(VirtBoardInfo *vbi, qemu_irq *pic, int type, bool secure)
555 {
556     /* We create a standalone GIC */
557     DeviceState *gicdev;
558     SysBusDevice *gicbusdev;
559     const char *gictype;
560     int i;
561 
562     gictype = (type == 3) ? gicv3_class_name() : gic_class_name();
563 
564     gicdev = qdev_create(NULL, gictype);
565     qdev_prop_set_uint32(gicdev, "revision", type);
566     qdev_prop_set_uint32(gicdev, "num-cpu", smp_cpus);
567     /* Note that the num-irq property counts both internal and external
568      * interrupts; there are always 32 of the former (mandated by GIC spec).
569      */
570     qdev_prop_set_uint32(gicdev, "num-irq", NUM_IRQS + 32);
571     if (!kvm_irqchip_in_kernel()) {
572         qdev_prop_set_bit(gicdev, "has-security-extensions", secure);
573     }
574     qdev_init_nofail(gicdev);
575     gicbusdev = SYS_BUS_DEVICE(gicdev);
576     sysbus_mmio_map(gicbusdev, 0, vbi->memmap[VIRT_GIC_DIST].base);
577     if (type == 3) {
578         sysbus_mmio_map(gicbusdev, 1, vbi->memmap[VIRT_GIC_REDIST].base);
579     } else {
580         sysbus_mmio_map(gicbusdev, 1, vbi->memmap[VIRT_GIC_CPU].base);
581     }
582 
583     /* Wire the outputs from each CPU's generic timer to the
584      * appropriate GIC PPI inputs, and the GIC's IRQ output to
585      * the CPU's IRQ input.
586      */
587     for (i = 0; i < smp_cpus; i++) {
588         DeviceState *cpudev = DEVICE(qemu_get_cpu(i));
589         int ppibase = NUM_IRQS + i * GIC_INTERNAL + GIC_NR_SGIS;
590         int irq;
591         /* Mapping from the output timer irq lines from the CPU to the
592          * GIC PPI inputs we use for the virt board.
593          */
594         const int timer_irq[] = {
595             [GTIMER_PHYS] = ARCH_TIMER_NS_EL1_IRQ,
596             [GTIMER_VIRT] = ARCH_TIMER_VIRT_IRQ,
597             [GTIMER_HYP]  = ARCH_TIMER_NS_EL2_IRQ,
598             [GTIMER_SEC]  = ARCH_TIMER_S_EL1_IRQ,
599         };
600 
601         for (irq = 0; irq < ARRAY_SIZE(timer_irq); irq++) {
602             qdev_connect_gpio_out(cpudev, irq,
603                                   qdev_get_gpio_in(gicdev,
604                                                    ppibase + timer_irq[irq]));
605         }
606 
607         sysbus_connect_irq(gicbusdev, i, qdev_get_gpio_in(cpudev, ARM_CPU_IRQ));
608         sysbus_connect_irq(gicbusdev, i + smp_cpus,
609                            qdev_get_gpio_in(cpudev, ARM_CPU_FIQ));
610     }
611 
612     for (i = 0; i < NUM_IRQS; i++) {
613         pic[i] = qdev_get_gpio_in(gicdev, i);
614     }
615 
616     fdt_add_gic_node(vbi, type);
617 
618     if (type == 3) {
619         create_its(vbi, gicdev);
620     } else {
621         create_v2m(vbi, pic);
622     }
623 }
624 
625 static void create_uart(const VirtBoardInfo *vbi, qemu_irq *pic, int uart,
626                         MemoryRegion *mem, CharDriverState *chr)
627 {
628     char *nodename;
629     hwaddr base = vbi->memmap[uart].base;
630     hwaddr size = vbi->memmap[uart].size;
631     int irq = vbi->irqmap[uart];
632     const char compat[] = "arm,pl011\0arm,primecell";
633     const char clocknames[] = "uartclk\0apb_pclk";
634     DeviceState *dev = qdev_create(NULL, "pl011");
635     SysBusDevice *s = SYS_BUS_DEVICE(dev);
636 
637     qdev_prop_set_chr(dev, "chardev", chr);
638     qdev_init_nofail(dev);
639     memory_region_add_subregion(mem, base,
640                                 sysbus_mmio_get_region(s, 0));
641     sysbus_connect_irq(s, 0, pic[irq]);
642 
643     nodename = g_strdup_printf("/pl011@%" PRIx64, base);
644     qemu_fdt_add_subnode(vbi->fdt, nodename);
645     /* Note that we can't use setprop_string because of the embedded NUL */
646     qemu_fdt_setprop(vbi->fdt, nodename, "compatible",
647                          compat, sizeof(compat));
648     qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg",
649                                      2, base, 2, size);
650     qemu_fdt_setprop_cells(vbi->fdt, nodename, "interrupts",
651                                GIC_FDT_IRQ_TYPE_SPI, irq,
652                                GIC_FDT_IRQ_FLAGS_LEVEL_HI);
653     qemu_fdt_setprop_cells(vbi->fdt, nodename, "clocks",
654                                vbi->clock_phandle, vbi->clock_phandle);
655     qemu_fdt_setprop(vbi->fdt, nodename, "clock-names",
656                          clocknames, sizeof(clocknames));
657 
658     if (uart == VIRT_UART) {
659         qemu_fdt_setprop_string(vbi->fdt, "/chosen", "stdout-path", nodename);
660     } else {
661         /* Mark as not usable by the normal world */
662         qemu_fdt_setprop_string(vbi->fdt, nodename, "status", "disabled");
663         qemu_fdt_setprop_string(vbi->fdt, nodename, "secure-status", "okay");
664     }
665 
666     g_free(nodename);
667 }
668 
669 static void create_rtc(const VirtBoardInfo *vbi, qemu_irq *pic)
670 {
671     char *nodename;
672     hwaddr base = vbi->memmap[VIRT_RTC].base;
673     hwaddr size = vbi->memmap[VIRT_RTC].size;
674     int irq = vbi->irqmap[VIRT_RTC];
675     const char compat[] = "arm,pl031\0arm,primecell";
676 
677     sysbus_create_simple("pl031", base, pic[irq]);
678 
679     nodename = g_strdup_printf("/pl031@%" PRIx64, base);
680     qemu_fdt_add_subnode(vbi->fdt, nodename);
681     qemu_fdt_setprop(vbi->fdt, nodename, "compatible", compat, sizeof(compat));
682     qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg",
683                                  2, base, 2, size);
684     qemu_fdt_setprop_cells(vbi->fdt, nodename, "interrupts",
685                            GIC_FDT_IRQ_TYPE_SPI, irq,
686                            GIC_FDT_IRQ_FLAGS_LEVEL_HI);
687     qemu_fdt_setprop_cell(vbi->fdt, nodename, "clocks", vbi->clock_phandle);
688     qemu_fdt_setprop_string(vbi->fdt, nodename, "clock-names", "apb_pclk");
689     g_free(nodename);
690 }
691 
692 static DeviceState *gpio_key_dev;
693 static void virt_powerdown_req(Notifier *n, void *opaque)
694 {
695     /* use gpio Pin 3 for power button event */
696     qemu_set_irq(qdev_get_gpio_in(gpio_key_dev, 0), 1);
697 }
698 
699 static Notifier virt_system_powerdown_notifier = {
700     .notify = virt_powerdown_req
701 };
702 
703 static void create_gpio(const VirtBoardInfo *vbi, qemu_irq *pic)
704 {
705     char *nodename;
706     DeviceState *pl061_dev;
707     hwaddr base = vbi->memmap[VIRT_GPIO].base;
708     hwaddr size = vbi->memmap[VIRT_GPIO].size;
709     int irq = vbi->irqmap[VIRT_GPIO];
710     const char compat[] = "arm,pl061\0arm,primecell";
711 
712     pl061_dev = sysbus_create_simple("pl061", base, pic[irq]);
713 
714     uint32_t phandle = qemu_fdt_alloc_phandle(vbi->fdt);
715     nodename = g_strdup_printf("/pl061@%" PRIx64, base);
716     qemu_fdt_add_subnode(vbi->fdt, nodename);
717     qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg",
718                                  2, base, 2, size);
719     qemu_fdt_setprop(vbi->fdt, nodename, "compatible", compat, sizeof(compat));
720     qemu_fdt_setprop_cell(vbi->fdt, nodename, "#gpio-cells", 2);
721     qemu_fdt_setprop(vbi->fdt, nodename, "gpio-controller", NULL, 0);
722     qemu_fdt_setprop_cells(vbi->fdt, nodename, "interrupts",
723                            GIC_FDT_IRQ_TYPE_SPI, irq,
724                            GIC_FDT_IRQ_FLAGS_LEVEL_HI);
725     qemu_fdt_setprop_cell(vbi->fdt, nodename, "clocks", vbi->clock_phandle);
726     qemu_fdt_setprop_string(vbi->fdt, nodename, "clock-names", "apb_pclk");
727     qemu_fdt_setprop_cell(vbi->fdt, nodename, "phandle", phandle);
728 
729     gpio_key_dev = sysbus_create_simple("gpio-key", -1,
730                                         qdev_get_gpio_in(pl061_dev, 3));
731     qemu_fdt_add_subnode(vbi->fdt, "/gpio-keys");
732     qemu_fdt_setprop_string(vbi->fdt, "/gpio-keys", "compatible", "gpio-keys");
733     qemu_fdt_setprop_cell(vbi->fdt, "/gpio-keys", "#size-cells", 0);
734     qemu_fdt_setprop_cell(vbi->fdt, "/gpio-keys", "#address-cells", 1);
735 
736     qemu_fdt_add_subnode(vbi->fdt, "/gpio-keys/poweroff");
737     qemu_fdt_setprop_string(vbi->fdt, "/gpio-keys/poweroff",
738                             "label", "GPIO Key Poweroff");
739     qemu_fdt_setprop_cell(vbi->fdt, "/gpio-keys/poweroff", "linux,code",
740                           KEY_POWER);
741     qemu_fdt_setprop_cells(vbi->fdt, "/gpio-keys/poweroff",
742                            "gpios", phandle, 3, 0);
743 
744     /* connect powerdown request */
745     qemu_register_powerdown_notifier(&virt_system_powerdown_notifier);
746 
747     g_free(nodename);
748 }
749 
750 static void create_virtio_devices(const VirtBoardInfo *vbi, qemu_irq *pic)
751 {
752     int i;
753     hwaddr size = vbi->memmap[VIRT_MMIO].size;
754 
755     /* We create the transports in forwards order. Since qbus_realize()
756      * prepends (not appends) new child buses, the incrementing loop below will
757      * create a list of virtio-mmio buses with decreasing base addresses.
758      *
759      * When a -device option is processed from the command line,
760      * qbus_find_recursive() picks the next free virtio-mmio bus in forwards
761      * order. The upshot is that -device options in increasing command line
762      * order are mapped to virtio-mmio buses with decreasing base addresses.
763      *
764      * When this code was originally written, that arrangement ensured that the
765      * guest Linux kernel would give the lowest "name" (/dev/vda, eth0, etc) to
766      * the first -device on the command line. (The end-to-end order is a
767      * function of this loop, qbus_realize(), qbus_find_recursive(), and the
768      * guest kernel's name-to-address assignment strategy.)
769      *
770      * Meanwhile, the kernel's traversal seems to have been reversed; see eg.
771      * the message, if not necessarily the code, of commit 70161ff336.
772      * Therefore the loop now establishes the inverse of the original intent.
773      *
774      * Unfortunately, we can't counteract the kernel change by reversing the
775      * loop; it would break existing command lines.
776      *
777      * In any case, the kernel makes no guarantee about the stability of
778      * enumeration order of virtio devices (as demonstrated by it changing
779      * between kernel versions). For reliable and stable identification
780      * of disks users must use UUIDs or similar mechanisms.
781      */
782     for (i = 0; i < NUM_VIRTIO_TRANSPORTS; i++) {
783         int irq = vbi->irqmap[VIRT_MMIO] + i;
784         hwaddr base = vbi->memmap[VIRT_MMIO].base + i * size;
785 
786         sysbus_create_simple("virtio-mmio", base, pic[irq]);
787     }
788 
789     /* We add dtb nodes in reverse order so that they appear in the finished
790      * device tree lowest address first.
791      *
792      * Note that this mapping is independent of the loop above. The previous
793      * loop influences virtio device to virtio transport assignment, whereas
794      * this loop controls how virtio transports are laid out in the dtb.
795      */
796     for (i = NUM_VIRTIO_TRANSPORTS - 1; i >= 0; i--) {
797         char *nodename;
798         int irq = vbi->irqmap[VIRT_MMIO] + i;
799         hwaddr base = vbi->memmap[VIRT_MMIO].base + i * size;
800 
801         nodename = g_strdup_printf("/virtio_mmio@%" PRIx64, base);
802         qemu_fdt_add_subnode(vbi->fdt, nodename);
803         qemu_fdt_setprop_string(vbi->fdt, nodename,
804                                 "compatible", "virtio,mmio");
805         qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg",
806                                      2, base, 2, size);
807         qemu_fdt_setprop_cells(vbi->fdt, nodename, "interrupts",
808                                GIC_FDT_IRQ_TYPE_SPI, irq,
809                                GIC_FDT_IRQ_FLAGS_EDGE_LO_HI);
810         g_free(nodename);
811     }
812 }
813 
814 static void create_one_flash(const char *name, hwaddr flashbase,
815                              hwaddr flashsize, const char *file,
816                              MemoryRegion *sysmem)
817 {
818     /* Create and map a single flash device. We use the same
819      * parameters as the flash devices on the Versatile Express board.
820      */
821     DriveInfo *dinfo = drive_get_next(IF_PFLASH);
822     DeviceState *dev = qdev_create(NULL, "cfi.pflash01");
823     SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
824     const uint64_t sectorlength = 256 * 1024;
825 
826     if (dinfo) {
827         qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(dinfo),
828                             &error_abort);
829     }
830 
831     qdev_prop_set_uint32(dev, "num-blocks", flashsize / sectorlength);
832     qdev_prop_set_uint64(dev, "sector-length", sectorlength);
833     qdev_prop_set_uint8(dev, "width", 4);
834     qdev_prop_set_uint8(dev, "device-width", 2);
835     qdev_prop_set_bit(dev, "big-endian", false);
836     qdev_prop_set_uint16(dev, "id0", 0x89);
837     qdev_prop_set_uint16(dev, "id1", 0x18);
838     qdev_prop_set_uint16(dev, "id2", 0x00);
839     qdev_prop_set_uint16(dev, "id3", 0x00);
840     qdev_prop_set_string(dev, "name", name);
841     qdev_init_nofail(dev);
842 
843     memory_region_add_subregion(sysmem, flashbase,
844                                 sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 0));
845 
846     if (file) {
847         char *fn;
848         int image_size;
849 
850         if (drive_get(IF_PFLASH, 0, 0)) {
851             error_report("The contents of the first flash device may be "
852                          "specified with -bios or with -drive if=pflash... "
853                          "but you cannot use both options at once");
854             exit(1);
855         }
856         fn = qemu_find_file(QEMU_FILE_TYPE_BIOS, file);
857         if (!fn) {
858             error_report("Could not find ROM image '%s'", file);
859             exit(1);
860         }
861         image_size = load_image_mr(fn, sysbus_mmio_get_region(sbd, 0));
862         g_free(fn);
863         if (image_size < 0) {
864             error_report("Could not load ROM image '%s'", file);
865             exit(1);
866         }
867     }
868 }
869 
870 static void create_flash(const VirtBoardInfo *vbi,
871                          MemoryRegion *sysmem,
872                          MemoryRegion *secure_sysmem)
873 {
874     /* Create two flash devices to fill the VIRT_FLASH space in the memmap.
875      * Any file passed via -bios goes in the first of these.
876      * sysmem is the system memory space. secure_sysmem is the secure view
877      * of the system, and the first flash device should be made visible only
878      * there. The second flash device is visible to both secure and nonsecure.
879      * If sysmem == secure_sysmem this means there is no separate Secure
880      * address space and both flash devices are generally visible.
881      */
882     hwaddr flashsize = vbi->memmap[VIRT_FLASH].size / 2;
883     hwaddr flashbase = vbi->memmap[VIRT_FLASH].base;
884     char *nodename;
885 
886     create_one_flash("virt.flash0", flashbase, flashsize,
887                      bios_name, secure_sysmem);
888     create_one_flash("virt.flash1", flashbase + flashsize, flashsize,
889                      NULL, sysmem);
890 
891     if (sysmem == secure_sysmem) {
892         /* Report both flash devices as a single node in the DT */
893         nodename = g_strdup_printf("/flash@%" PRIx64, flashbase);
894         qemu_fdt_add_subnode(vbi->fdt, nodename);
895         qemu_fdt_setprop_string(vbi->fdt, nodename, "compatible", "cfi-flash");
896         qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg",
897                                      2, flashbase, 2, flashsize,
898                                      2, flashbase + flashsize, 2, flashsize);
899         qemu_fdt_setprop_cell(vbi->fdt, nodename, "bank-width", 4);
900         g_free(nodename);
901     } else {
902         /* Report the devices as separate nodes so we can mark one as
903          * only visible to the secure world.
904          */
905         nodename = g_strdup_printf("/secflash@%" PRIx64, flashbase);
906         qemu_fdt_add_subnode(vbi->fdt, nodename);
907         qemu_fdt_setprop_string(vbi->fdt, nodename, "compatible", "cfi-flash");
908         qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg",
909                                      2, flashbase, 2, flashsize);
910         qemu_fdt_setprop_cell(vbi->fdt, nodename, "bank-width", 4);
911         qemu_fdt_setprop_string(vbi->fdt, nodename, "status", "disabled");
912         qemu_fdt_setprop_string(vbi->fdt, nodename, "secure-status", "okay");
913         g_free(nodename);
914 
915         nodename = g_strdup_printf("/flash@%" PRIx64, flashbase);
916         qemu_fdt_add_subnode(vbi->fdt, nodename);
917         qemu_fdt_setprop_string(vbi->fdt, nodename, "compatible", "cfi-flash");
918         qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg",
919                                      2, flashbase + flashsize, 2, flashsize);
920         qemu_fdt_setprop_cell(vbi->fdt, nodename, "bank-width", 4);
921         g_free(nodename);
922     }
923 }
924 
925 static void create_fw_cfg(const VirtBoardInfo *vbi, AddressSpace *as)
926 {
927     hwaddr base = vbi->memmap[VIRT_FW_CFG].base;
928     hwaddr size = vbi->memmap[VIRT_FW_CFG].size;
929     char *nodename;
930 
931     fw_cfg_init_mem_wide(base + 8, base, 8, base + 16, as);
932 
933     nodename = g_strdup_printf("/fw-cfg@%" PRIx64, base);
934     qemu_fdt_add_subnode(vbi->fdt, nodename);
935     qemu_fdt_setprop_string(vbi->fdt, nodename,
936                             "compatible", "qemu,fw-cfg-mmio");
937     qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg",
938                                  2, base, 2, size);
939     g_free(nodename);
940 }
941 
942 static void create_pcie_irq_map(const VirtBoardInfo *vbi, uint32_t gic_phandle,
943                                 int first_irq, const char *nodename)
944 {
945     int devfn, pin;
946     uint32_t full_irq_map[4 * 4 * 10] = { 0 };
947     uint32_t *irq_map = full_irq_map;
948 
949     for (devfn = 0; devfn <= 0x18; devfn += 0x8) {
950         for (pin = 0; pin < 4; pin++) {
951             int irq_type = GIC_FDT_IRQ_TYPE_SPI;
952             int irq_nr = first_irq + ((pin + PCI_SLOT(devfn)) % PCI_NUM_PINS);
953             int irq_level = GIC_FDT_IRQ_FLAGS_LEVEL_HI;
954             int i;
955 
956             uint32_t map[] = {
957                 devfn << 8, 0, 0,                           /* devfn */
958                 pin + 1,                                    /* PCI pin */
959                 gic_phandle, 0, 0, irq_type, irq_nr, irq_level }; /* GIC irq */
960 
961             /* Convert map to big endian */
962             for (i = 0; i < 10; i++) {
963                 irq_map[i] = cpu_to_be32(map[i]);
964             }
965             irq_map += 10;
966         }
967     }
968 
969     qemu_fdt_setprop(vbi->fdt, nodename, "interrupt-map",
970                      full_irq_map, sizeof(full_irq_map));
971 
972     qemu_fdt_setprop_cells(vbi->fdt, nodename, "interrupt-map-mask",
973                            0x1800, 0, 0, /* devfn (PCI_SLOT(3)) */
974                            0x7           /* PCI irq */);
975 }
976 
977 static void create_pcie(const VirtBoardInfo *vbi, qemu_irq *pic,
978                         bool use_highmem)
979 {
980     hwaddr base_mmio = vbi->memmap[VIRT_PCIE_MMIO].base;
981     hwaddr size_mmio = vbi->memmap[VIRT_PCIE_MMIO].size;
982     hwaddr base_mmio_high = vbi->memmap[VIRT_PCIE_MMIO_HIGH].base;
983     hwaddr size_mmio_high = vbi->memmap[VIRT_PCIE_MMIO_HIGH].size;
984     hwaddr base_pio = vbi->memmap[VIRT_PCIE_PIO].base;
985     hwaddr size_pio = vbi->memmap[VIRT_PCIE_PIO].size;
986     hwaddr base_ecam = vbi->memmap[VIRT_PCIE_ECAM].base;
987     hwaddr size_ecam = vbi->memmap[VIRT_PCIE_ECAM].size;
988     hwaddr base = base_mmio;
989     int nr_pcie_buses = size_ecam / PCIE_MMCFG_SIZE_MIN;
990     int irq = vbi->irqmap[VIRT_PCIE];
991     MemoryRegion *mmio_alias;
992     MemoryRegion *mmio_reg;
993     MemoryRegion *ecam_alias;
994     MemoryRegion *ecam_reg;
995     DeviceState *dev;
996     char *nodename;
997     int i;
998     PCIHostState *pci;
999 
1000     dev = qdev_create(NULL, TYPE_GPEX_HOST);
1001     qdev_init_nofail(dev);
1002 
1003     /* Map only the first size_ecam bytes of ECAM space */
1004     ecam_alias = g_new0(MemoryRegion, 1);
1005     ecam_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 0);
1006     memory_region_init_alias(ecam_alias, OBJECT(dev), "pcie-ecam",
1007                              ecam_reg, 0, size_ecam);
1008     memory_region_add_subregion(get_system_memory(), base_ecam, ecam_alias);
1009 
1010     /* Map the MMIO window into system address space so as to expose
1011      * the section of PCI MMIO space which starts at the same base address
1012      * (ie 1:1 mapping for that part of PCI MMIO space visible through
1013      * the window).
1014      */
1015     mmio_alias = g_new0(MemoryRegion, 1);
1016     mmio_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 1);
1017     memory_region_init_alias(mmio_alias, OBJECT(dev), "pcie-mmio",
1018                              mmio_reg, base_mmio, size_mmio);
1019     memory_region_add_subregion(get_system_memory(), base_mmio, mmio_alias);
1020 
1021     if (use_highmem) {
1022         /* Map high MMIO space */
1023         MemoryRegion *high_mmio_alias = g_new0(MemoryRegion, 1);
1024 
1025         memory_region_init_alias(high_mmio_alias, OBJECT(dev), "pcie-mmio-high",
1026                                  mmio_reg, base_mmio_high, size_mmio_high);
1027         memory_region_add_subregion(get_system_memory(), base_mmio_high,
1028                                     high_mmio_alias);
1029     }
1030 
1031     /* Map IO port space */
1032     sysbus_mmio_map(SYS_BUS_DEVICE(dev), 2, base_pio);
1033 
1034     for (i = 0; i < GPEX_NUM_IRQS; i++) {
1035         sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, pic[irq + i]);
1036     }
1037 
1038     pci = PCI_HOST_BRIDGE(dev);
1039     if (pci->bus) {
1040         for (i = 0; i < nb_nics; i++) {
1041             NICInfo *nd = &nd_table[i];
1042 
1043             if (!nd->model) {
1044                 nd->model = g_strdup("virtio");
1045             }
1046 
1047             pci_nic_init_nofail(nd, pci->bus, nd->model, NULL);
1048         }
1049     }
1050 
1051     nodename = g_strdup_printf("/pcie@%" PRIx64, base);
1052     qemu_fdt_add_subnode(vbi->fdt, nodename);
1053     qemu_fdt_setprop_string(vbi->fdt, nodename,
1054                             "compatible", "pci-host-ecam-generic");
1055     qemu_fdt_setprop_string(vbi->fdt, nodename, "device_type", "pci");
1056     qemu_fdt_setprop_cell(vbi->fdt, nodename, "#address-cells", 3);
1057     qemu_fdt_setprop_cell(vbi->fdt, nodename, "#size-cells", 2);
1058     qemu_fdt_setprop_cells(vbi->fdt, nodename, "bus-range", 0,
1059                            nr_pcie_buses - 1);
1060     qemu_fdt_setprop(vbi->fdt, nodename, "dma-coherent", NULL, 0);
1061 
1062     if (vbi->msi_phandle) {
1063         qemu_fdt_setprop_cells(vbi->fdt, nodename, "msi-parent",
1064                                vbi->msi_phandle);
1065     }
1066 
1067     qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg",
1068                                  2, base_ecam, 2, size_ecam);
1069 
1070     if (use_highmem) {
1071         qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "ranges",
1072                                      1, FDT_PCI_RANGE_IOPORT, 2, 0,
1073                                      2, base_pio, 2, size_pio,
1074                                      1, FDT_PCI_RANGE_MMIO, 2, base_mmio,
1075                                      2, base_mmio, 2, size_mmio,
1076                                      1, FDT_PCI_RANGE_MMIO_64BIT,
1077                                      2, base_mmio_high,
1078                                      2, base_mmio_high, 2, size_mmio_high);
1079     } else {
1080         qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "ranges",
1081                                      1, FDT_PCI_RANGE_IOPORT, 2, 0,
1082                                      2, base_pio, 2, size_pio,
1083                                      1, FDT_PCI_RANGE_MMIO, 2, base_mmio,
1084                                      2, base_mmio, 2, size_mmio);
1085     }
1086 
1087     qemu_fdt_setprop_cell(vbi->fdt, nodename, "#interrupt-cells", 1);
1088     create_pcie_irq_map(vbi, vbi->gic_phandle, irq, nodename);
1089 
1090     g_free(nodename);
1091 }
1092 
1093 static void create_platform_bus(VirtBoardInfo *vbi, qemu_irq *pic)
1094 {
1095     DeviceState *dev;
1096     SysBusDevice *s;
1097     int i;
1098     ARMPlatformBusFDTParams *fdt_params = g_new(ARMPlatformBusFDTParams, 1);
1099     MemoryRegion *sysmem = get_system_memory();
1100 
1101     platform_bus_params.platform_bus_base = vbi->memmap[VIRT_PLATFORM_BUS].base;
1102     platform_bus_params.platform_bus_size = vbi->memmap[VIRT_PLATFORM_BUS].size;
1103     platform_bus_params.platform_bus_first_irq = vbi->irqmap[VIRT_PLATFORM_BUS];
1104     platform_bus_params.platform_bus_num_irqs = PLATFORM_BUS_NUM_IRQS;
1105 
1106     fdt_params->system_params = &platform_bus_params;
1107     fdt_params->binfo = &vbi->bootinfo;
1108     fdt_params->intc = "/intc";
1109     /*
1110      * register a machine init done notifier that creates the device tree
1111      * nodes of the platform bus and its children dynamic sysbus devices
1112      */
1113     arm_register_platform_bus_fdt_creator(fdt_params);
1114 
1115     dev = qdev_create(NULL, TYPE_PLATFORM_BUS_DEVICE);
1116     dev->id = TYPE_PLATFORM_BUS_DEVICE;
1117     qdev_prop_set_uint32(dev, "num_irqs",
1118         platform_bus_params.platform_bus_num_irqs);
1119     qdev_prop_set_uint32(dev, "mmio_size",
1120         platform_bus_params.platform_bus_size);
1121     qdev_init_nofail(dev);
1122     s = SYS_BUS_DEVICE(dev);
1123 
1124     for (i = 0; i < platform_bus_params.platform_bus_num_irqs; i++) {
1125         int irqn = platform_bus_params.platform_bus_first_irq + i;
1126         sysbus_connect_irq(s, i, pic[irqn]);
1127     }
1128 
1129     memory_region_add_subregion(sysmem,
1130                                 platform_bus_params.platform_bus_base,
1131                                 sysbus_mmio_get_region(s, 0));
1132 }
1133 
1134 static void create_secure_ram(VirtBoardInfo *vbi, MemoryRegion *secure_sysmem)
1135 {
1136     MemoryRegion *secram = g_new(MemoryRegion, 1);
1137     char *nodename;
1138     hwaddr base = vbi->memmap[VIRT_SECURE_MEM].base;
1139     hwaddr size = vbi->memmap[VIRT_SECURE_MEM].size;
1140 
1141     memory_region_init_ram(secram, NULL, "virt.secure-ram", size, &error_fatal);
1142     vmstate_register_ram_global(secram);
1143     memory_region_add_subregion(secure_sysmem, base, secram);
1144 
1145     nodename = g_strdup_printf("/secram@%" PRIx64, base);
1146     qemu_fdt_add_subnode(vbi->fdt, nodename);
1147     qemu_fdt_setprop_string(vbi->fdt, nodename, "device_type", "memory");
1148     qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg", 2, base, 2, size);
1149     qemu_fdt_setprop_string(vbi->fdt, nodename, "status", "disabled");
1150     qemu_fdt_setprop_string(vbi->fdt, nodename, "secure-status", "okay");
1151 
1152     g_free(nodename);
1153 }
1154 
1155 static void *machvirt_dtb(const struct arm_boot_info *binfo, int *fdt_size)
1156 {
1157     const VirtBoardInfo *board = (const VirtBoardInfo *)binfo;
1158 
1159     *fdt_size = board->fdt_size;
1160     return board->fdt;
1161 }
1162 
1163 static void virt_build_smbios(VirtGuestInfo *guest_info)
1164 {
1165     FWCfgState *fw_cfg = guest_info->fw_cfg;
1166     uint8_t *smbios_tables, *smbios_anchor;
1167     size_t smbios_tables_len, smbios_anchor_len;
1168     const char *product = "QEMU Virtual Machine";
1169 
1170     if (!fw_cfg) {
1171         return;
1172     }
1173 
1174     if (kvm_enabled()) {
1175         product = "KVM Virtual Machine";
1176     }
1177 
1178     smbios_set_defaults("QEMU", product,
1179                         "1.0", false, true, SMBIOS_ENTRY_POINT_30);
1180 
1181     smbios_get_tables(NULL, 0, &smbios_tables, &smbios_tables_len,
1182                       &smbios_anchor, &smbios_anchor_len);
1183 
1184     if (smbios_anchor) {
1185         fw_cfg_add_file(fw_cfg, "etc/smbios/smbios-tables",
1186                         smbios_tables, smbios_tables_len);
1187         fw_cfg_add_file(fw_cfg, "etc/smbios/smbios-anchor",
1188                         smbios_anchor, smbios_anchor_len);
1189     }
1190 }
1191 
1192 static
1193 void virt_guest_info_machine_done(Notifier *notifier, void *data)
1194 {
1195     VirtGuestInfoState *guest_info_state = container_of(notifier,
1196                                               VirtGuestInfoState, machine_done);
1197     virt_acpi_setup(&guest_info_state->info);
1198     virt_build_smbios(&guest_info_state->info);
1199 }
1200 
1201 static void machvirt_init(MachineState *machine)
1202 {
1203     VirtMachineState *vms = VIRT_MACHINE(machine);
1204     VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(machine);
1205     qemu_irq pic[NUM_IRQS];
1206     MemoryRegion *sysmem = get_system_memory();
1207     MemoryRegion *secure_sysmem = NULL;
1208     int gic_version = vms->gic_version;
1209     int n, virt_max_cpus;
1210     MemoryRegion *ram = g_new(MemoryRegion, 1);
1211     const char *cpu_model = machine->cpu_model;
1212     VirtBoardInfo *vbi;
1213     VirtGuestInfoState *guest_info_state = g_malloc0(sizeof *guest_info_state);
1214     VirtGuestInfo *guest_info = &guest_info_state->info;
1215     char **cpustr;
1216     ObjectClass *oc;
1217     const char *typename;
1218     CPUClass *cc;
1219     Error *err = NULL;
1220     bool firmware_loaded = bios_name || drive_get(IF_PFLASH, 0, 0);
1221     uint8_t clustersz;
1222 
1223     if (!cpu_model) {
1224         cpu_model = "cortex-a15";
1225     }
1226 
1227     /* We can probe only here because during property set
1228      * KVM is not available yet
1229      */
1230     if (!gic_version) {
1231         if (!kvm_enabled()) {
1232             error_report("gic-version=host requires KVM");
1233             exit(1);
1234         }
1235 
1236         gic_version = kvm_arm_vgic_probe();
1237         if (!gic_version) {
1238             error_report("Unable to determine GIC version supported by host");
1239             exit(1);
1240         }
1241     }
1242 
1243     /* Separate the actual CPU model name from any appended features */
1244     cpustr = g_strsplit(cpu_model, ",", 2);
1245 
1246     vbi = find_machine_info(cpustr[0]);
1247 
1248     if (!vbi) {
1249         error_report("mach-virt: CPU %s not supported", cpustr[0]);
1250         exit(1);
1251     }
1252 
1253     /* If we have an EL3 boot ROM then the assumption is that it will
1254      * implement PSCI itself, so disable QEMU's internal implementation
1255      * so it doesn't get in the way. Instead of starting secondary
1256      * CPUs in PSCI powerdown state we will start them all running and
1257      * let the boot ROM sort them out.
1258      * The usual case is that we do use QEMU's PSCI implementation.
1259      */
1260     vbi->using_psci = !(vms->secure && firmware_loaded);
1261 
1262     /* The maximum number of CPUs depends on the GIC version, or on how
1263      * many redistributors we can fit into the memory map.
1264      */
1265     if (gic_version == 3) {
1266         virt_max_cpus = vbi->memmap[VIRT_GIC_REDIST].size / 0x20000;
1267         clustersz = GICV3_TARGETLIST_BITS;
1268     } else {
1269         virt_max_cpus = GIC_NCPU;
1270         clustersz = GIC_TARGETLIST_BITS;
1271     }
1272 
1273     if (max_cpus > virt_max_cpus) {
1274         error_report("Number of SMP CPUs requested (%d) exceeds max CPUs "
1275                      "supported by machine 'mach-virt' (%d)",
1276                      max_cpus, virt_max_cpus);
1277         exit(1);
1278     }
1279 
1280     vbi->smp_cpus = smp_cpus;
1281 
1282     if (machine->ram_size > vbi->memmap[VIRT_MEM].size) {
1283         error_report("mach-virt: cannot model more than %dGB RAM", RAMLIMIT_GB);
1284         exit(1);
1285     }
1286 
1287     if (vms->secure) {
1288         if (kvm_enabled()) {
1289             error_report("mach-virt: KVM does not support Security extensions");
1290             exit(1);
1291         }
1292 
1293         /* The Secure view of the world is the same as the NonSecure,
1294          * but with a few extra devices. Create it as a container region
1295          * containing the system memory at low priority; any secure-only
1296          * devices go in at higher priority and take precedence.
1297          */
1298         secure_sysmem = g_new(MemoryRegion, 1);
1299         memory_region_init(secure_sysmem, OBJECT(machine), "secure-memory",
1300                            UINT64_MAX);
1301         memory_region_add_subregion_overlap(secure_sysmem, 0, sysmem, -1);
1302     }
1303 
1304     create_fdt(vbi);
1305 
1306     oc = cpu_class_by_name(TYPE_ARM_CPU, cpustr[0]);
1307     if (!oc) {
1308         error_report("Unable to find CPU definition");
1309         exit(1);
1310     }
1311     typename = object_class_get_name(oc);
1312 
1313     /* convert -smp CPU options specified by the user into global props */
1314     cc = CPU_CLASS(oc);
1315     cc->parse_features(typename, cpustr[1], &err);
1316     g_strfreev(cpustr);
1317     if (err) {
1318         error_report_err(err);
1319         exit(1);
1320     }
1321 
1322     for (n = 0; n < smp_cpus; n++) {
1323         Object *cpuobj = object_new(typename);
1324         if (!vmc->disallow_affinity_adjustment) {
1325             /* Adjust MPIDR like 64-bit KVM hosts, which incorporate the
1326              * GIC's target-list limitations. 32-bit KVM hosts currently
1327              * always create clusters of 4 CPUs, but that is expected to
1328              * change when they gain support for gicv3. When KVM is enabled
1329              * it will override the changes we make here, therefore our
1330              * purposes are to make TCG consistent (with 64-bit KVM hosts)
1331              * and to improve SGI efficiency.
1332              */
1333             uint8_t aff1 = n / clustersz;
1334             uint8_t aff0 = n % clustersz;
1335             object_property_set_int(cpuobj, (aff1 << ARM_AFF1_SHIFT) | aff0,
1336                                     "mp-affinity", NULL);
1337         }
1338 
1339         if (!vms->secure) {
1340             object_property_set_bool(cpuobj, false, "has_el3", NULL);
1341         }
1342 
1343         if (vbi->using_psci) {
1344             object_property_set_int(cpuobj, QEMU_PSCI_CONDUIT_HVC,
1345                                     "psci-conduit", NULL);
1346 
1347             /* Secondary CPUs start in PSCI powered-down state */
1348             if (n > 0) {
1349                 object_property_set_bool(cpuobj, true,
1350                                          "start-powered-off", NULL);
1351             }
1352         }
1353 
1354         if (object_property_find(cpuobj, "reset-cbar", NULL)) {
1355             object_property_set_int(cpuobj, vbi->memmap[VIRT_CPUPERIPHS].base,
1356                                     "reset-cbar", &error_abort);
1357         }
1358 
1359         object_property_set_link(cpuobj, OBJECT(sysmem), "memory",
1360                                  &error_abort);
1361         if (vms->secure) {
1362             object_property_set_link(cpuobj, OBJECT(secure_sysmem),
1363                                      "secure-memory", &error_abort);
1364         }
1365 
1366         object_property_set_bool(cpuobj, true, "realized", NULL);
1367     }
1368     fdt_add_timer_nodes(vbi, gic_version);
1369     fdt_add_cpu_nodes(vbi);
1370     fdt_add_psci_node(vbi);
1371 
1372     memory_region_allocate_system_memory(ram, NULL, "mach-virt.ram",
1373                                          machine->ram_size);
1374     memory_region_add_subregion(sysmem, vbi->memmap[VIRT_MEM].base, ram);
1375 
1376     create_flash(vbi, sysmem, secure_sysmem ? secure_sysmem : sysmem);
1377 
1378     create_gic(vbi, pic, gic_version, vms->secure);
1379 
1380     fdt_add_pmu_nodes(vbi, gic_version);
1381 
1382     create_uart(vbi, pic, VIRT_UART, sysmem, serial_hds[0]);
1383 
1384     if (vms->secure) {
1385         create_secure_ram(vbi, secure_sysmem);
1386         create_uart(vbi, pic, VIRT_SECURE_UART, secure_sysmem, serial_hds[1]);
1387     }
1388 
1389     create_rtc(vbi, pic);
1390 
1391     create_pcie(vbi, pic, vms->highmem);
1392 
1393     create_gpio(vbi, pic);
1394 
1395     /* Create mmio transports, so the user can create virtio backends
1396      * (which will be automatically plugged in to the transports). If
1397      * no backend is created the transport will just sit harmlessly idle.
1398      */
1399     create_virtio_devices(vbi, pic);
1400 
1401     create_fw_cfg(vbi, &address_space_memory);
1402     rom_set_fw(fw_cfg_find());
1403 
1404     guest_info->smp_cpus = smp_cpus;
1405     guest_info->fw_cfg = fw_cfg_find();
1406     guest_info->memmap = vbi->memmap;
1407     guest_info->irqmap = vbi->irqmap;
1408     guest_info->use_highmem = vms->highmem;
1409     guest_info->gic_version = gic_version;
1410     guest_info_state->machine_done.notify = virt_guest_info_machine_done;
1411     qemu_add_machine_init_done_notifier(&guest_info_state->machine_done);
1412 
1413     vbi->bootinfo.ram_size = machine->ram_size;
1414     vbi->bootinfo.kernel_filename = machine->kernel_filename;
1415     vbi->bootinfo.kernel_cmdline = machine->kernel_cmdline;
1416     vbi->bootinfo.initrd_filename = machine->initrd_filename;
1417     vbi->bootinfo.nb_cpus = smp_cpus;
1418     vbi->bootinfo.board_id = -1;
1419     vbi->bootinfo.loader_start = vbi->memmap[VIRT_MEM].base;
1420     vbi->bootinfo.get_dtb = machvirt_dtb;
1421     vbi->bootinfo.firmware_loaded = firmware_loaded;
1422     arm_load_kernel(ARM_CPU(first_cpu), &vbi->bootinfo);
1423 
1424     /*
1425      * arm_load_kernel machine init done notifier registration must
1426      * happen before the platform_bus_create call. In this latter,
1427      * another notifier is registered which adds platform bus nodes.
1428      * Notifiers are executed in registration reverse order.
1429      */
1430     create_platform_bus(vbi, pic);
1431 }
1432 
1433 static bool virt_get_secure(Object *obj, Error **errp)
1434 {
1435     VirtMachineState *vms = VIRT_MACHINE(obj);
1436 
1437     return vms->secure;
1438 }
1439 
1440 static void virt_set_secure(Object *obj, bool value, Error **errp)
1441 {
1442     VirtMachineState *vms = VIRT_MACHINE(obj);
1443 
1444     vms->secure = value;
1445 }
1446 
1447 static bool virt_get_highmem(Object *obj, Error **errp)
1448 {
1449     VirtMachineState *vms = VIRT_MACHINE(obj);
1450 
1451     return vms->highmem;
1452 }
1453 
1454 static void virt_set_highmem(Object *obj, bool value, Error **errp)
1455 {
1456     VirtMachineState *vms = VIRT_MACHINE(obj);
1457 
1458     vms->highmem = value;
1459 }
1460 
1461 static char *virt_get_gic_version(Object *obj, Error **errp)
1462 {
1463     VirtMachineState *vms = VIRT_MACHINE(obj);
1464     const char *val = vms->gic_version == 3 ? "3" : "2";
1465 
1466     return g_strdup(val);
1467 }
1468 
1469 static void virt_set_gic_version(Object *obj, const char *value, Error **errp)
1470 {
1471     VirtMachineState *vms = VIRT_MACHINE(obj);
1472 
1473     if (!strcmp(value, "3")) {
1474         vms->gic_version = 3;
1475     } else if (!strcmp(value, "2")) {
1476         vms->gic_version = 2;
1477     } else if (!strcmp(value, "host")) {
1478         vms->gic_version = 0; /* Will probe later */
1479     } else {
1480         error_setg(errp, "Invalid gic-version value");
1481         error_append_hint(errp, "Valid values are 3, 2, host.\n");
1482     }
1483 }
1484 
1485 static void virt_machine_class_init(ObjectClass *oc, void *data)
1486 {
1487     MachineClass *mc = MACHINE_CLASS(oc);
1488 
1489     mc->init = machvirt_init;
1490     /* Start max_cpus at the maximum QEMU supports. We'll further restrict
1491      * it later in machvirt_init, where we have more information about the
1492      * configuration of the particular instance.
1493      */
1494     mc->max_cpus = MAX_CPUMASK_BITS;
1495     mc->has_dynamic_sysbus = true;
1496     mc->block_default_type = IF_VIRTIO;
1497     mc->no_cdrom = 1;
1498     mc->pci_allow_0_address = true;
1499 }
1500 
1501 static const TypeInfo virt_machine_info = {
1502     .name          = TYPE_VIRT_MACHINE,
1503     .parent        = TYPE_MACHINE,
1504     .abstract      = true,
1505     .instance_size = sizeof(VirtMachineState),
1506     .class_size    = sizeof(VirtMachineClass),
1507     .class_init    = virt_machine_class_init,
1508 };
1509 
1510 static void machvirt_machine_init(void)
1511 {
1512     type_register_static(&virt_machine_info);
1513 }
1514 type_init(machvirt_machine_init);
1515 
1516 static void virt_2_8_instance_init(Object *obj)
1517 {
1518     VirtMachineState *vms = VIRT_MACHINE(obj);
1519 
1520     /* EL3 is disabled by default on virt: this makes us consistent
1521      * between KVM and TCG for this board, and it also allows us to
1522      * boot UEFI blobs which assume no TrustZone support.
1523      */
1524     vms->secure = false;
1525     object_property_add_bool(obj, "secure", virt_get_secure,
1526                              virt_set_secure, NULL);
1527     object_property_set_description(obj, "secure",
1528                                     "Set on/off to enable/disable the ARM "
1529                                     "Security Extensions (TrustZone)",
1530                                     NULL);
1531 
1532     /* High memory is enabled by default */
1533     vms->highmem = true;
1534     object_property_add_bool(obj, "highmem", virt_get_highmem,
1535                              virt_set_highmem, NULL);
1536     object_property_set_description(obj, "highmem",
1537                                     "Set on/off to enable/disable using "
1538                                     "physical address space above 32 bits",
1539                                     NULL);
1540     /* Default GIC type is v2 */
1541     vms->gic_version = 2;
1542     object_property_add_str(obj, "gic-version", virt_get_gic_version,
1543                         virt_set_gic_version, NULL);
1544     object_property_set_description(obj, "gic-version",
1545                                     "Set GIC version. "
1546                                     "Valid values are 2, 3 and host", NULL);
1547 }
1548 
1549 static void virt_machine_2_8_options(MachineClass *mc)
1550 {
1551 }
1552 DEFINE_VIRT_MACHINE_AS_LATEST(2, 8)
1553 
1554 #define VIRT_COMPAT_2_7 \
1555     HW_COMPAT_2_7
1556 
1557 static void virt_2_7_instance_init(Object *obj)
1558 {
1559     virt_2_8_instance_init(obj);
1560 }
1561 
1562 static void virt_machine_2_7_options(MachineClass *mc)
1563 {
1564     virt_machine_2_8_options(mc);
1565     SET_MACHINE_COMPAT(mc, VIRT_COMPAT_2_7);
1566 }
1567 DEFINE_VIRT_MACHINE(2, 7)
1568 
1569 #define VIRT_COMPAT_2_6 \
1570     HW_COMPAT_2_6
1571 
1572 static void virt_2_6_instance_init(Object *obj)
1573 {
1574     virt_2_7_instance_init(obj);
1575 }
1576 
1577 static void virt_machine_2_6_options(MachineClass *mc)
1578 {
1579     VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
1580 
1581     virt_machine_2_7_options(mc);
1582     SET_MACHINE_COMPAT(mc, VIRT_COMPAT_2_6);
1583     vmc->disallow_affinity_adjustment = true;
1584 }
1585 DEFINE_VIRT_MACHINE(2, 6)
1586