1 /* 2 * ARM mach-virt emulation 3 * 4 * Copyright (c) 2013 Linaro Limited 5 * 6 * This program is free software; you can redistribute it and/or modify it 7 * under the terms and conditions of the GNU General Public License, 8 * version 2 or later, as published by the Free Software Foundation. 9 * 10 * This program is distributed in the hope it will be useful, but WITHOUT 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 13 * more details. 14 * 15 * You should have received a copy of the GNU General Public License along with 16 * this program. If not, see <http://www.gnu.org/licenses/>. 17 * 18 * Emulate a virtual board which works by passing Linux all the information 19 * it needs about what devices are present via the device tree. 20 * There are some restrictions about what we can do here: 21 * + we can only present devices whose Linux drivers will work based 22 * purely on the device tree with no platform data at all 23 * + we want to present a very stripped-down minimalist platform, 24 * both because this reduces the security attack surface from the guest 25 * and also because it reduces our exposure to being broken when 26 * the kernel updates its device tree bindings and requires further 27 * information in a device binding that we aren't providing. 28 * This is essentially the same approach kvmtool uses. 29 */ 30 31 #include "qemu/osdep.h" 32 #include "qemu/datadir.h" 33 #include "qemu/units.h" 34 #include "qemu/option.h" 35 #include "monitor/qdev.h" 36 #include "hw/sysbus.h" 37 #include "hw/arm/boot.h" 38 #include "hw/arm/primecell.h" 39 #include "hw/arm/virt.h" 40 #include "hw/block/flash.h" 41 #include "hw/vfio/vfio-calxeda-xgmac.h" 42 #include "hw/vfio/vfio-amd-xgbe.h" 43 #include "hw/display/ramfb.h" 44 #include "net/net.h" 45 #include "system/device_tree.h" 46 #include "system/numa.h" 47 #include "system/runstate.h" 48 #include "system/tpm.h" 49 #include "system/tcg.h" 50 #include "system/kvm.h" 51 #include "system/hvf.h" 52 #include "system/qtest.h" 53 #include "hw/loader.h" 54 #include "qapi/error.h" 55 #include "qemu/bitops.h" 56 #include "qemu/cutils.h" 57 #include "qemu/error-report.h" 58 #include "qemu/module.h" 59 #include "hw/pci-host/gpex.h" 60 #include "hw/virtio/virtio-pci.h" 61 #include "hw/core/sysbus-fdt.h" 62 #include "hw/platform-bus.h" 63 #include "hw/qdev-properties.h" 64 #include "hw/arm/fdt.h" 65 #include "hw/intc/arm_gic.h" 66 #include "hw/intc/arm_gicv3_common.h" 67 #include "hw/intc/arm_gicv3_its_common.h" 68 #include "hw/irq.h" 69 #include "kvm_arm.h" 70 #include "hvf_arm.h" 71 #include "hw/firmware/smbios.h" 72 #include "qapi/visitor.h" 73 #include "qapi/qapi-visit-common.h" 74 #include "qobject/qlist.h" 75 #include "standard-headers/linux/input.h" 76 #include "hw/arm/smmuv3.h" 77 #include "hw/acpi/acpi.h" 78 #include "target/arm/cpu-qom.h" 79 #include "target/arm/internals.h" 80 #include "target/arm/multiprocessing.h" 81 #include "target/arm/gtimer.h" 82 #include "hw/mem/pc-dimm.h" 83 #include "hw/mem/nvdimm.h" 84 #include "hw/acpi/generic_event_device.h" 85 #include "hw/uefi/var-service-api.h" 86 #include "hw/virtio/virtio-md-pci.h" 87 #include "hw/virtio/virtio-iommu.h" 88 #include "hw/char/pl011.h" 89 #include "qemu/guest-random.h" 90 91 static GlobalProperty arm_virt_compat[] = { 92 { TYPE_VIRTIO_IOMMU_PCI, "aw-bits", "48" }, 93 }; 94 static const size_t arm_virt_compat_len = G_N_ELEMENTS(arm_virt_compat); 95 96 /* 97 * This cannot be called from the virt_machine_class_init() because 98 * TYPE_VIRT_MACHINE is abstract and mc->compat_props g_ptr_array_new() 99 * only is called on virt non abstract class init. 100 */ 101 static void arm_virt_compat_set(MachineClass *mc) 102 { 103 compat_props_add(mc->compat_props, arm_virt_compat, 104 arm_virt_compat_len); 105 } 106 107 #define DEFINE_VIRT_MACHINE_IMPL(latest, ...) \ 108 static void MACHINE_VER_SYM(class_init, virt, __VA_ARGS__)( \ 109 ObjectClass *oc, \ 110 const void *data) \ 111 { \ 112 MachineClass *mc = MACHINE_CLASS(oc); \ 113 arm_virt_compat_set(mc); \ 114 MACHINE_VER_SYM(options, virt, __VA_ARGS__)(mc); \ 115 mc->desc = "QEMU " MACHINE_VER_STR(__VA_ARGS__) " ARM Virtual Machine"; \ 116 MACHINE_VER_DEPRECATION(__VA_ARGS__); \ 117 if (latest) { \ 118 mc->alias = "virt"; \ 119 } \ 120 } \ 121 static const TypeInfo MACHINE_VER_SYM(info, virt, __VA_ARGS__) = \ 122 { \ 123 .name = MACHINE_VER_TYPE_NAME("virt", __VA_ARGS__), \ 124 .parent = TYPE_VIRT_MACHINE, \ 125 .class_init = MACHINE_VER_SYM(class_init, virt, __VA_ARGS__), \ 126 }; \ 127 static void MACHINE_VER_SYM(register, virt, __VA_ARGS__)(void) \ 128 { \ 129 MACHINE_VER_DELETION(__VA_ARGS__); \ 130 type_register_static(&MACHINE_VER_SYM(info, virt, __VA_ARGS__)); \ 131 } \ 132 type_init(MACHINE_VER_SYM(register, virt, __VA_ARGS__)); 133 134 #define DEFINE_VIRT_MACHINE_AS_LATEST(major, minor) \ 135 DEFINE_VIRT_MACHINE_IMPL(true, major, minor) 136 #define DEFINE_VIRT_MACHINE(major, minor) \ 137 DEFINE_VIRT_MACHINE_IMPL(false, major, minor) 138 139 140 /* Number of external interrupt lines to configure the GIC with */ 141 #define NUM_IRQS 256 142 143 #define PLATFORM_BUS_NUM_IRQS 64 144 145 /* Legacy RAM limit in GB (< version 4.0) */ 146 #define LEGACY_RAMLIMIT_GB 255 147 #define LEGACY_RAMLIMIT_BYTES (LEGACY_RAMLIMIT_GB * GiB) 148 149 /* Addresses and sizes of our components. 150 * 0..128MB is space for a flash device so we can run bootrom code such as UEFI. 151 * 128MB..256MB is used for miscellaneous device I/O. 152 * 256MB..1GB is reserved for possible future PCI support (ie where the 153 * PCI memory window will go if we add a PCI host controller). 154 * 1GB and up is RAM (which may happily spill over into the 155 * high memory region beyond 4GB). 156 * This represents a compromise between how much RAM can be given to 157 * a 32 bit VM and leaving space for expansion and in particular for PCI. 158 * Note that devices should generally be placed at multiples of 0x10000, 159 * to accommodate guests using 64K pages. 160 */ 161 static const MemMapEntry base_memmap[] = { 162 /* Space up to 0x8000000 is reserved for a boot ROM */ 163 [VIRT_FLASH] = { 0, 0x08000000 }, 164 [VIRT_CPUPERIPHS] = { 0x08000000, 0x00020000 }, 165 /* GIC distributor and CPU interfaces sit inside the CPU peripheral space */ 166 [VIRT_GIC_DIST] = { 0x08000000, 0x00010000 }, 167 [VIRT_GIC_CPU] = { 0x08010000, 0x00010000 }, 168 [VIRT_GIC_V2M] = { 0x08020000, 0x00001000 }, 169 [VIRT_GIC_HYP] = { 0x08030000, 0x00010000 }, 170 [VIRT_GIC_VCPU] = { 0x08040000, 0x00010000 }, 171 /* The space in between here is reserved for GICv3 CPU/vCPU/HYP */ 172 [VIRT_GIC_ITS] = { 0x08080000, 0x00020000 }, 173 /* This redistributor space allows up to 2*64kB*123 CPUs */ 174 [VIRT_GIC_REDIST] = { 0x080A0000, 0x00F60000 }, 175 [VIRT_UART0] = { 0x09000000, 0x00001000 }, 176 [VIRT_RTC] = { 0x09010000, 0x00001000 }, 177 [VIRT_FW_CFG] = { 0x09020000, 0x00000018 }, 178 [VIRT_GPIO] = { 0x09030000, 0x00001000 }, 179 [VIRT_UART1] = { 0x09040000, 0x00001000 }, 180 [VIRT_SMMU] = { 0x09050000, 0x00020000 }, 181 [VIRT_PCDIMM_ACPI] = { 0x09070000, MEMORY_HOTPLUG_IO_LEN }, 182 [VIRT_ACPI_GED] = { 0x09080000, ACPI_GED_EVT_SEL_LEN }, 183 [VIRT_NVDIMM_ACPI] = { 0x09090000, NVDIMM_ACPI_IO_LEN}, 184 [VIRT_PVTIME] = { 0x090a0000, 0x00010000 }, 185 [VIRT_SECURE_GPIO] = { 0x090b0000, 0x00001000 }, 186 [VIRT_MMIO] = { 0x0a000000, 0x00000200 }, 187 /* ...repeating for a total of NUM_VIRTIO_TRANSPORTS, each of that size */ 188 [VIRT_PLATFORM_BUS] = { 0x0c000000, 0x02000000 }, 189 [VIRT_SECURE_MEM] = { 0x0e000000, 0x01000000 }, 190 [VIRT_PCIE_MMIO] = { 0x10000000, 0x2eff0000 }, 191 [VIRT_PCIE_PIO] = { 0x3eff0000, 0x00010000 }, 192 [VIRT_PCIE_ECAM] = { 0x3f000000, 0x01000000 }, 193 /* Actual RAM size depends on initial RAM and device memory settings */ 194 [VIRT_MEM] = { GiB, LEGACY_RAMLIMIT_BYTES }, 195 }; 196 197 /* Update the docs for highmem-mmio-size when changing this default */ 198 #define DEFAULT_HIGH_PCIE_MMIO_SIZE_GB 512 199 #define DEFAULT_HIGH_PCIE_MMIO_SIZE (DEFAULT_HIGH_PCIE_MMIO_SIZE_GB * GiB) 200 201 /* 202 * Highmem IO Regions: This memory map is floating, located after the RAM. 203 * Each MemMapEntry base (GPA) will be dynamically computed, depending on the 204 * top of the RAM, so that its base get the same alignment as the size, 205 * ie. a 512GiB entry will be aligned on a 512GiB boundary. If there is 206 * less than 256GiB of RAM, the floating area starts at the 256GiB mark. 207 * Note the extended_memmap is sized so that it eventually also includes the 208 * base_memmap entries (VIRT_HIGH_GIC_REDIST2 index is greater than the last 209 * index of base_memmap). 210 * 211 * The memory map for these Highmem IO Regions can be in legacy or compact 212 * layout, depending on 'compact-highmem' property. With legacy layout, the 213 * PA space for one specific region is always reserved, even if the region 214 * has been disabled or doesn't fit into the PA space. However, the PA space 215 * for the region won't be reserved in these circumstances with compact layout. 216 * 217 * Note that the highmem-mmio-size property will update the high PCIE MMIO size 218 * field in this array. 219 */ 220 static MemMapEntry extended_memmap[] = { 221 /* Additional 64 MB redist region (can contain up to 512 redistributors) */ 222 [VIRT_HIGH_GIC_REDIST2] = { 0x0, 64 * MiB }, 223 [VIRT_HIGH_PCIE_ECAM] = { 0x0, 256 * MiB }, 224 /* Second PCIe window */ 225 [VIRT_HIGH_PCIE_MMIO] = { 0x0, DEFAULT_HIGH_PCIE_MMIO_SIZE }, 226 }; 227 228 static const int a15irqmap[] = { 229 [VIRT_UART0] = 1, 230 [VIRT_RTC] = 2, 231 [VIRT_PCIE] = 3, /* ... to 6 */ 232 [VIRT_GPIO] = 7, 233 [VIRT_UART1] = 8, 234 [VIRT_ACPI_GED] = 9, 235 [VIRT_MMIO] = 16, /* ...to 16 + NUM_VIRTIO_TRANSPORTS - 1 */ 236 [VIRT_GIC_V2M] = 48, /* ...to 48 + NUM_GICV2M_SPIS - 1 */ 237 [VIRT_SMMU] = 74, /* ...to 74 + NUM_SMMU_IRQS - 1 */ 238 [VIRT_PLATFORM_BUS] = 112, /* ...to 112 + PLATFORM_BUS_NUM_IRQS -1 */ 239 }; 240 241 static void create_randomness(MachineState *ms, const char *node) 242 { 243 struct { 244 uint64_t kaslr; 245 uint8_t rng[32]; 246 } seed; 247 248 if (qemu_guest_getrandom(&seed, sizeof(seed), NULL)) { 249 return; 250 } 251 qemu_fdt_setprop_u64(ms->fdt, node, "kaslr-seed", seed.kaslr); 252 qemu_fdt_setprop(ms->fdt, node, "rng-seed", seed.rng, sizeof(seed.rng)); 253 } 254 255 /* 256 * The CPU object always exposes the NS EL2 virt timer IRQ line, 257 * but we don't want to advertise it to the guest in the dtb or ACPI 258 * table unless it's really going to do something. 259 */ 260 static bool ns_el2_virt_timer_present(void) 261 { 262 ARMCPU *cpu = ARM_CPU(qemu_get_cpu(0)); 263 CPUARMState *env = &cpu->env; 264 265 return arm_feature(env, ARM_FEATURE_AARCH64) && 266 arm_feature(env, ARM_FEATURE_EL2) && cpu_isar_feature(aa64_vh, cpu); 267 } 268 269 static void create_fdt(VirtMachineState *vms) 270 { 271 MachineState *ms = MACHINE(vms); 272 int nb_numa_nodes = ms->numa_state->num_nodes; 273 void *fdt = create_device_tree(&vms->fdt_size); 274 275 if (!fdt) { 276 error_report("create_device_tree() failed"); 277 exit(1); 278 } 279 280 ms->fdt = fdt; 281 282 /* Header */ 283 qemu_fdt_setprop_string(fdt, "/", "compatible", "linux,dummy-virt"); 284 qemu_fdt_setprop_cell(fdt, "/", "#address-cells", 0x2); 285 qemu_fdt_setprop_cell(fdt, "/", "#size-cells", 0x2); 286 qemu_fdt_setprop_string(fdt, "/", "model", "linux,dummy-virt"); 287 288 /* 289 * For QEMU, all DMA is coherent. Advertising this in the root node 290 * has two benefits: 291 * 292 * - It avoids potential bugs where we forget to mark a DMA 293 * capable device as being dma-coherent 294 * - It avoids spurious warnings from the Linux kernel about 295 * devices which can't do DMA at all 296 */ 297 qemu_fdt_setprop(fdt, "/", "dma-coherent", NULL, 0); 298 299 /* /chosen must exist for load_dtb to fill in necessary properties later */ 300 qemu_fdt_add_subnode(fdt, "/chosen"); 301 if (vms->dtb_randomness) { 302 create_randomness(ms, "/chosen"); 303 } 304 305 if (vms->secure) { 306 qemu_fdt_add_subnode(fdt, "/secure-chosen"); 307 if (vms->dtb_randomness) { 308 create_randomness(ms, "/secure-chosen"); 309 } 310 } 311 312 qemu_fdt_add_subnode(fdt, "/aliases"); 313 314 /* Clock node, for the benefit of the UART. The kernel device tree 315 * binding documentation claims the PL011 node clock properties are 316 * optional but in practice if you omit them the kernel refuses to 317 * probe for the device. 318 */ 319 vms->clock_phandle = qemu_fdt_alloc_phandle(fdt); 320 qemu_fdt_add_subnode(fdt, "/apb-pclk"); 321 qemu_fdt_setprop_string(fdt, "/apb-pclk", "compatible", "fixed-clock"); 322 qemu_fdt_setprop_cell(fdt, "/apb-pclk", "#clock-cells", 0x0); 323 qemu_fdt_setprop_cell(fdt, "/apb-pclk", "clock-frequency", 24000000); 324 qemu_fdt_setprop_string(fdt, "/apb-pclk", "clock-output-names", 325 "clk24mhz"); 326 qemu_fdt_setprop_cell(fdt, "/apb-pclk", "phandle", vms->clock_phandle); 327 328 if (nb_numa_nodes > 0 && ms->numa_state->have_numa_distance) { 329 int size = nb_numa_nodes * nb_numa_nodes * 3 * sizeof(uint32_t); 330 uint32_t *matrix = g_malloc0(size); 331 int idx, i, j; 332 333 for (i = 0; i < nb_numa_nodes; i++) { 334 for (j = 0; j < nb_numa_nodes; j++) { 335 idx = (i * nb_numa_nodes + j) * 3; 336 matrix[idx + 0] = cpu_to_be32(i); 337 matrix[idx + 1] = cpu_to_be32(j); 338 matrix[idx + 2] = 339 cpu_to_be32(ms->numa_state->nodes[i].distance[j]); 340 } 341 } 342 343 qemu_fdt_add_subnode(fdt, "/distance-map"); 344 qemu_fdt_setprop_string(fdt, "/distance-map", "compatible", 345 "numa-distance-map-v1"); 346 qemu_fdt_setprop(fdt, "/distance-map", "distance-matrix", 347 matrix, size); 348 g_free(matrix); 349 } 350 } 351 352 static void fdt_add_timer_nodes(const VirtMachineState *vms) 353 { 354 /* On real hardware these interrupts are level-triggered. 355 * On KVM they were edge-triggered before host kernel version 4.4, 356 * and level-triggered afterwards. 357 * On emulated QEMU they are level-triggered. 358 * 359 * Getting the DTB info about them wrong is awkward for some 360 * guest kernels: 361 * pre-4.8 ignore the DT and leave the interrupt configured 362 * with whatever the GIC reset value (or the bootloader) left it at 363 * 4.8 before rc6 honour the incorrect data by programming it back 364 * into the GIC, causing problems 365 * 4.8rc6 and later ignore the DT and always write "level triggered" 366 * into the GIC 367 * 368 * For backwards-compatibility, virt-2.8 and earlier will continue 369 * to say these are edge-triggered, but later machines will report 370 * the correct information. 371 */ 372 ARMCPU *armcpu; 373 uint32_t irqflags = GIC_FDT_IRQ_FLAGS_LEVEL_HI; 374 MachineState *ms = MACHINE(vms); 375 376 if (vms->gic_version == VIRT_GIC_VERSION_2) { 377 irqflags = deposit32(irqflags, GIC_FDT_IRQ_PPI_CPU_START, 378 GIC_FDT_IRQ_PPI_CPU_WIDTH, 379 (1 << MACHINE(vms)->smp.cpus) - 1); 380 } 381 382 qemu_fdt_add_subnode(ms->fdt, "/timer"); 383 384 armcpu = ARM_CPU(qemu_get_cpu(0)); 385 if (arm_feature(&armcpu->env, ARM_FEATURE_V8)) { 386 const char compat[] = "arm,armv8-timer\0arm,armv7-timer"; 387 qemu_fdt_setprop(ms->fdt, "/timer", "compatible", 388 compat, sizeof(compat)); 389 } else { 390 qemu_fdt_setprop_string(ms->fdt, "/timer", "compatible", 391 "arm,armv7-timer"); 392 } 393 qemu_fdt_setprop(ms->fdt, "/timer", "always-on", NULL, 0); 394 if (vms->ns_el2_virt_timer_irq) { 395 qemu_fdt_setprop_cells(ms->fdt, "/timer", "interrupts", 396 GIC_FDT_IRQ_TYPE_PPI, 397 INTID_TO_PPI(ARCH_TIMER_S_EL1_IRQ), irqflags, 398 GIC_FDT_IRQ_TYPE_PPI, 399 INTID_TO_PPI(ARCH_TIMER_NS_EL1_IRQ), irqflags, 400 GIC_FDT_IRQ_TYPE_PPI, 401 INTID_TO_PPI(ARCH_TIMER_VIRT_IRQ), irqflags, 402 GIC_FDT_IRQ_TYPE_PPI, 403 INTID_TO_PPI(ARCH_TIMER_NS_EL2_IRQ), irqflags, 404 GIC_FDT_IRQ_TYPE_PPI, 405 INTID_TO_PPI(ARCH_TIMER_NS_EL2_VIRT_IRQ), irqflags); 406 } else { 407 qemu_fdt_setprop_cells(ms->fdt, "/timer", "interrupts", 408 GIC_FDT_IRQ_TYPE_PPI, 409 INTID_TO_PPI(ARCH_TIMER_S_EL1_IRQ), irqflags, 410 GIC_FDT_IRQ_TYPE_PPI, 411 INTID_TO_PPI(ARCH_TIMER_NS_EL1_IRQ), irqflags, 412 GIC_FDT_IRQ_TYPE_PPI, 413 INTID_TO_PPI(ARCH_TIMER_VIRT_IRQ), irqflags, 414 GIC_FDT_IRQ_TYPE_PPI, 415 INTID_TO_PPI(ARCH_TIMER_NS_EL2_IRQ), irqflags); 416 } 417 } 418 419 static void fdt_add_cpu_nodes(const VirtMachineState *vms) 420 { 421 int cpu; 422 int addr_cells = 1; 423 const MachineState *ms = MACHINE(vms); 424 const VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms); 425 int smp_cpus = ms->smp.cpus; 426 427 /* 428 * See Linux Documentation/devicetree/bindings/arm/cpus.yaml 429 * On ARM v8 64-bit systems value should be set to 2, 430 * that corresponds to the MPIDR_EL1 register size. 431 * If MPIDR_EL1[63:32] value is equal to 0 on all CPUs 432 * in the system, #address-cells can be set to 1, since 433 * MPIDR_EL1[63:32] bits are not used for CPUs 434 * identification. 435 * 436 * Here we actually don't know whether our system is 32- or 64-bit one. 437 * The simplest way to go is to examine affinity IDs of all our CPUs. If 438 * at least one of them has Aff3 populated, we set #address-cells to 2. 439 */ 440 for (cpu = 0; cpu < smp_cpus; cpu++) { 441 ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu)); 442 443 if (arm_cpu_mp_affinity(armcpu) & ARM_AFF3_MASK) { 444 addr_cells = 2; 445 break; 446 } 447 } 448 449 qemu_fdt_add_subnode(ms->fdt, "/cpus"); 450 qemu_fdt_setprop_cell(ms->fdt, "/cpus", "#address-cells", addr_cells); 451 qemu_fdt_setprop_cell(ms->fdt, "/cpus", "#size-cells", 0x0); 452 453 for (cpu = smp_cpus - 1; cpu >= 0; cpu--) { 454 char *nodename = g_strdup_printf("/cpus/cpu@%d", cpu); 455 ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu)); 456 CPUState *cs = CPU(armcpu); 457 458 qemu_fdt_add_subnode(ms->fdt, nodename); 459 qemu_fdt_setprop_string(ms->fdt, nodename, "device_type", "cpu"); 460 qemu_fdt_setprop_string(ms->fdt, nodename, "compatible", 461 armcpu->dtb_compatible); 462 463 if (vms->psci_conduit != QEMU_PSCI_CONDUIT_DISABLED && smp_cpus > 1) { 464 qemu_fdt_setprop_string(ms->fdt, nodename, 465 "enable-method", "psci"); 466 } 467 468 if (addr_cells == 2) { 469 qemu_fdt_setprop_u64(ms->fdt, nodename, "reg", 470 arm_cpu_mp_affinity(armcpu)); 471 } else { 472 qemu_fdt_setprop_cell(ms->fdt, nodename, "reg", 473 arm_cpu_mp_affinity(armcpu)); 474 } 475 476 if (ms->possible_cpus->cpus[cs->cpu_index].props.has_node_id) { 477 qemu_fdt_setprop_cell(ms->fdt, nodename, "numa-node-id", 478 ms->possible_cpus->cpus[cs->cpu_index].props.node_id); 479 } 480 481 if (!vmc->no_cpu_topology) { 482 qemu_fdt_setprop_cell(ms->fdt, nodename, "phandle", 483 qemu_fdt_alloc_phandle(ms->fdt)); 484 } 485 486 g_free(nodename); 487 } 488 489 if (!vmc->no_cpu_topology) { 490 /* 491 * Add vCPU topology description through fdt node cpu-map. 492 * 493 * See Linux Documentation/devicetree/bindings/cpu/cpu-topology.txt 494 * In a SMP system, the hierarchy of CPUs can be defined through 495 * four entities that are used to describe the layout of CPUs in 496 * the system: socket/cluster/core/thread. 497 * 498 * A socket node represents the boundary of system physical package 499 * and its child nodes must be one or more cluster nodes. A system 500 * can contain several layers of clustering within a single physical 501 * package and cluster nodes can be contained in parent cluster nodes. 502 * 503 * Note: currently we only support one layer of clustering within 504 * each physical package. 505 */ 506 qemu_fdt_add_subnode(ms->fdt, "/cpus/cpu-map"); 507 508 for (cpu = smp_cpus - 1; cpu >= 0; cpu--) { 509 char *cpu_path = g_strdup_printf("/cpus/cpu@%d", cpu); 510 char *map_path; 511 512 if (ms->smp.threads > 1) { 513 map_path = g_strdup_printf( 514 "/cpus/cpu-map/socket%d/cluster%d/core%d/thread%d", 515 cpu / (ms->smp.clusters * ms->smp.cores * ms->smp.threads), 516 (cpu / (ms->smp.cores * ms->smp.threads)) % ms->smp.clusters, 517 (cpu / ms->smp.threads) % ms->smp.cores, 518 cpu % ms->smp.threads); 519 } else { 520 map_path = g_strdup_printf( 521 "/cpus/cpu-map/socket%d/cluster%d/core%d", 522 cpu / (ms->smp.clusters * ms->smp.cores), 523 (cpu / ms->smp.cores) % ms->smp.clusters, 524 cpu % ms->smp.cores); 525 } 526 qemu_fdt_add_path(ms->fdt, map_path); 527 qemu_fdt_setprop_phandle(ms->fdt, map_path, "cpu", cpu_path); 528 529 g_free(map_path); 530 g_free(cpu_path); 531 } 532 } 533 } 534 535 static void fdt_add_its_gic_node(VirtMachineState *vms) 536 { 537 char *nodename; 538 MachineState *ms = MACHINE(vms); 539 540 vms->msi_phandle = qemu_fdt_alloc_phandle(ms->fdt); 541 nodename = g_strdup_printf("/intc/its@%" PRIx64, 542 vms->memmap[VIRT_GIC_ITS].base); 543 qemu_fdt_add_subnode(ms->fdt, nodename); 544 qemu_fdt_setprop_string(ms->fdt, nodename, "compatible", 545 "arm,gic-v3-its"); 546 qemu_fdt_setprop(ms->fdt, nodename, "msi-controller", NULL, 0); 547 qemu_fdt_setprop_cell(ms->fdt, nodename, "#msi-cells", 1); 548 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg", 549 2, vms->memmap[VIRT_GIC_ITS].base, 550 2, vms->memmap[VIRT_GIC_ITS].size); 551 qemu_fdt_setprop_cell(ms->fdt, nodename, "phandle", vms->msi_phandle); 552 g_free(nodename); 553 } 554 555 static void fdt_add_v2m_gic_node(VirtMachineState *vms) 556 { 557 MachineState *ms = MACHINE(vms); 558 char *nodename; 559 560 nodename = g_strdup_printf("/intc/v2m@%" PRIx64, 561 vms->memmap[VIRT_GIC_V2M].base); 562 vms->msi_phandle = qemu_fdt_alloc_phandle(ms->fdt); 563 qemu_fdt_add_subnode(ms->fdt, nodename); 564 qemu_fdt_setprop_string(ms->fdt, nodename, "compatible", 565 "arm,gic-v2m-frame"); 566 qemu_fdt_setprop(ms->fdt, nodename, "msi-controller", NULL, 0); 567 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg", 568 2, vms->memmap[VIRT_GIC_V2M].base, 569 2, vms->memmap[VIRT_GIC_V2M].size); 570 qemu_fdt_setprop_cell(ms->fdt, nodename, "phandle", vms->msi_phandle); 571 g_free(nodename); 572 } 573 574 static void fdt_add_gic_node(VirtMachineState *vms) 575 { 576 MachineState *ms = MACHINE(vms); 577 char *nodename; 578 579 vms->gic_phandle = qemu_fdt_alloc_phandle(ms->fdt); 580 qemu_fdt_setprop_cell(ms->fdt, "/", "interrupt-parent", vms->gic_phandle); 581 582 nodename = g_strdup_printf("/intc@%" PRIx64, 583 vms->memmap[VIRT_GIC_DIST].base); 584 qemu_fdt_add_subnode(ms->fdt, nodename); 585 qemu_fdt_setprop_cell(ms->fdt, nodename, "#interrupt-cells", 3); 586 qemu_fdt_setprop(ms->fdt, nodename, "interrupt-controller", NULL, 0); 587 qemu_fdt_setprop_cell(ms->fdt, nodename, "#address-cells", 0x2); 588 qemu_fdt_setprop_cell(ms->fdt, nodename, "#size-cells", 0x2); 589 qemu_fdt_setprop(ms->fdt, nodename, "ranges", NULL, 0); 590 if (vms->gic_version != VIRT_GIC_VERSION_2) { 591 int nb_redist_regions = virt_gicv3_redist_region_count(vms); 592 593 qemu_fdt_setprop_string(ms->fdt, nodename, "compatible", 594 "arm,gic-v3"); 595 596 qemu_fdt_setprop_cell(ms->fdt, nodename, 597 "#redistributor-regions", nb_redist_regions); 598 599 if (nb_redist_regions == 1) { 600 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg", 601 2, vms->memmap[VIRT_GIC_DIST].base, 602 2, vms->memmap[VIRT_GIC_DIST].size, 603 2, vms->memmap[VIRT_GIC_REDIST].base, 604 2, vms->memmap[VIRT_GIC_REDIST].size); 605 } else { 606 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg", 607 2, vms->memmap[VIRT_GIC_DIST].base, 608 2, vms->memmap[VIRT_GIC_DIST].size, 609 2, vms->memmap[VIRT_GIC_REDIST].base, 610 2, vms->memmap[VIRT_GIC_REDIST].size, 611 2, vms->memmap[VIRT_HIGH_GIC_REDIST2].base, 612 2, vms->memmap[VIRT_HIGH_GIC_REDIST2].size); 613 } 614 615 if (vms->virt) { 616 qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupts", 617 GIC_FDT_IRQ_TYPE_PPI, 618 INTID_TO_PPI(ARCH_GIC_MAINT_IRQ), 619 GIC_FDT_IRQ_FLAGS_LEVEL_HI); 620 } 621 } else { 622 /* 'cortex-a15-gic' means 'GIC v2' */ 623 qemu_fdt_setprop_string(ms->fdt, nodename, "compatible", 624 "arm,cortex-a15-gic"); 625 if (!vms->virt) { 626 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg", 627 2, vms->memmap[VIRT_GIC_DIST].base, 628 2, vms->memmap[VIRT_GIC_DIST].size, 629 2, vms->memmap[VIRT_GIC_CPU].base, 630 2, vms->memmap[VIRT_GIC_CPU].size); 631 } else { 632 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg", 633 2, vms->memmap[VIRT_GIC_DIST].base, 634 2, vms->memmap[VIRT_GIC_DIST].size, 635 2, vms->memmap[VIRT_GIC_CPU].base, 636 2, vms->memmap[VIRT_GIC_CPU].size, 637 2, vms->memmap[VIRT_GIC_HYP].base, 638 2, vms->memmap[VIRT_GIC_HYP].size, 639 2, vms->memmap[VIRT_GIC_VCPU].base, 640 2, vms->memmap[VIRT_GIC_VCPU].size); 641 qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupts", 642 GIC_FDT_IRQ_TYPE_PPI, 643 INTID_TO_PPI(ARCH_GIC_MAINT_IRQ), 644 GIC_FDT_IRQ_FLAGS_LEVEL_HI); 645 } 646 } 647 648 qemu_fdt_setprop_cell(ms->fdt, nodename, "phandle", vms->gic_phandle); 649 g_free(nodename); 650 } 651 652 static void fdt_add_pmu_nodes(const VirtMachineState *vms) 653 { 654 ARMCPU *armcpu = ARM_CPU(first_cpu); 655 uint32_t irqflags = GIC_FDT_IRQ_FLAGS_LEVEL_HI; 656 MachineState *ms = MACHINE(vms); 657 658 if (!arm_feature(&armcpu->env, ARM_FEATURE_PMU)) { 659 assert(!object_property_get_bool(OBJECT(armcpu), "pmu", NULL)); 660 return; 661 } 662 663 if (vms->gic_version == VIRT_GIC_VERSION_2) { 664 irqflags = deposit32(irqflags, GIC_FDT_IRQ_PPI_CPU_START, 665 GIC_FDT_IRQ_PPI_CPU_WIDTH, 666 (1 << MACHINE(vms)->smp.cpus) - 1); 667 } 668 669 qemu_fdt_add_subnode(ms->fdt, "/pmu"); 670 if (arm_feature(&armcpu->env, ARM_FEATURE_V8)) { 671 const char compat[] = "arm,armv8-pmuv3"; 672 qemu_fdt_setprop(ms->fdt, "/pmu", "compatible", 673 compat, sizeof(compat)); 674 qemu_fdt_setprop_cells(ms->fdt, "/pmu", "interrupts", 675 GIC_FDT_IRQ_TYPE_PPI, 676 INTID_TO_PPI(VIRTUAL_PMU_IRQ), irqflags); 677 } 678 } 679 680 static inline DeviceState *create_acpi_ged(VirtMachineState *vms) 681 { 682 DeviceState *dev; 683 MachineState *ms = MACHINE(vms); 684 int irq = vms->irqmap[VIRT_ACPI_GED]; 685 uint32_t event = ACPI_GED_PWR_DOWN_EVT; 686 687 if (ms->ram_slots) { 688 event |= ACPI_GED_MEM_HOTPLUG_EVT; 689 } 690 691 if (ms->nvdimms_state->is_enabled) { 692 event |= ACPI_GED_NVDIMM_HOTPLUG_EVT; 693 } 694 695 dev = qdev_new(TYPE_ACPI_GED); 696 qdev_prop_set_uint32(dev, "ged-event", event); 697 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal); 698 699 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vms->memmap[VIRT_ACPI_GED].base); 700 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 1, vms->memmap[VIRT_PCDIMM_ACPI].base); 701 sysbus_connect_irq(SYS_BUS_DEVICE(dev), 0, qdev_get_gpio_in(vms->gic, irq)); 702 703 return dev; 704 } 705 706 static void create_its(VirtMachineState *vms) 707 { 708 const char *itsclass = its_class_name(); 709 DeviceState *dev; 710 711 if (!strcmp(itsclass, "arm-gicv3-its")) { 712 if (!vms->tcg_its) { 713 itsclass = NULL; 714 } 715 } 716 717 if (!itsclass) { 718 /* Do nothing if not supported */ 719 return; 720 } 721 722 dev = qdev_new(itsclass); 723 724 object_property_set_link(OBJECT(dev), "parent-gicv3", OBJECT(vms->gic), 725 &error_abort); 726 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal); 727 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vms->memmap[VIRT_GIC_ITS].base); 728 729 fdt_add_its_gic_node(vms); 730 vms->msi_controller = VIRT_MSI_CTRL_ITS; 731 } 732 733 static void create_v2m(VirtMachineState *vms) 734 { 735 int i; 736 int irq = vms->irqmap[VIRT_GIC_V2M]; 737 DeviceState *dev; 738 739 dev = qdev_new("arm-gicv2m"); 740 qdev_prop_set_uint32(dev, "base-spi", irq); 741 qdev_prop_set_uint32(dev, "num-spi", NUM_GICV2M_SPIS); 742 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal); 743 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vms->memmap[VIRT_GIC_V2M].base); 744 745 for (i = 0; i < NUM_GICV2M_SPIS; i++) { 746 sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, 747 qdev_get_gpio_in(vms->gic, irq + i)); 748 } 749 750 fdt_add_v2m_gic_node(vms); 751 vms->msi_controller = VIRT_MSI_CTRL_GICV2M; 752 } 753 754 /* 755 * If the CPU has FEAT_NMI, then turn on the NMI support in the GICv3 too. 756 * It's permitted to have a configuration with NMI in the CPU (and thus the 757 * GICv3 CPU interface) but not in the distributor/redistributors, but it's 758 * not very useful. 759 */ 760 static bool gicv3_nmi_present(VirtMachineState *vms) 761 { 762 ARMCPU *cpu = ARM_CPU(qemu_get_cpu(0)); 763 764 return tcg_enabled() && cpu_isar_feature(aa64_nmi, cpu) && 765 (vms->gic_version != VIRT_GIC_VERSION_2); 766 } 767 768 static void create_gic(VirtMachineState *vms, MemoryRegion *mem) 769 { 770 MachineState *ms = MACHINE(vms); 771 /* We create a standalone GIC */ 772 SysBusDevice *gicbusdev; 773 const char *gictype; 774 int i; 775 unsigned int smp_cpus = ms->smp.cpus; 776 uint32_t nb_redist_regions = 0; 777 int revision; 778 779 if (vms->gic_version == VIRT_GIC_VERSION_2) { 780 gictype = gic_class_name(); 781 } else { 782 gictype = gicv3_class_name(); 783 } 784 785 switch (vms->gic_version) { 786 case VIRT_GIC_VERSION_2: 787 revision = 2; 788 break; 789 case VIRT_GIC_VERSION_3: 790 revision = 3; 791 break; 792 case VIRT_GIC_VERSION_4: 793 revision = 4; 794 break; 795 default: 796 g_assert_not_reached(); 797 } 798 vms->gic = qdev_new(gictype); 799 qdev_prop_set_uint32(vms->gic, "revision", revision); 800 qdev_prop_set_uint32(vms->gic, "num-cpu", smp_cpus); 801 /* Note that the num-irq property counts both internal and external 802 * interrupts; there are always 32 of the former (mandated by GIC spec). 803 */ 804 qdev_prop_set_uint32(vms->gic, "num-irq", NUM_IRQS + 32); 805 if (!kvm_irqchip_in_kernel()) { 806 qdev_prop_set_bit(vms->gic, "has-security-extensions", vms->secure); 807 } 808 809 if (vms->gic_version != VIRT_GIC_VERSION_2) { 810 QList *redist_region_count; 811 uint32_t redist0_capacity = virt_redist_capacity(vms, VIRT_GIC_REDIST); 812 uint32_t redist0_count = MIN(smp_cpus, redist0_capacity); 813 814 nb_redist_regions = virt_gicv3_redist_region_count(vms); 815 816 redist_region_count = qlist_new(); 817 qlist_append_int(redist_region_count, redist0_count); 818 if (nb_redist_regions == 2) { 819 uint32_t redist1_capacity = 820 virt_redist_capacity(vms, VIRT_HIGH_GIC_REDIST2); 821 822 qlist_append_int(redist_region_count, 823 MIN(smp_cpus - redist0_count, redist1_capacity)); 824 } 825 qdev_prop_set_array(vms->gic, "redist-region-count", 826 redist_region_count); 827 828 if (!kvm_irqchip_in_kernel()) { 829 if (vms->tcg_its) { 830 object_property_set_link(OBJECT(vms->gic), "sysmem", 831 OBJECT(mem), &error_fatal); 832 qdev_prop_set_bit(vms->gic, "has-lpi", true); 833 } 834 } 835 } else { 836 if (!kvm_irqchip_in_kernel()) { 837 qdev_prop_set_bit(vms->gic, "has-virtualization-extensions", 838 vms->virt); 839 } 840 } 841 842 if (gicv3_nmi_present(vms)) { 843 qdev_prop_set_bit(vms->gic, "has-nmi", true); 844 } 845 846 gicbusdev = SYS_BUS_DEVICE(vms->gic); 847 sysbus_realize_and_unref(gicbusdev, &error_fatal); 848 sysbus_mmio_map(gicbusdev, 0, vms->memmap[VIRT_GIC_DIST].base); 849 if (vms->gic_version != VIRT_GIC_VERSION_2) { 850 sysbus_mmio_map(gicbusdev, 1, vms->memmap[VIRT_GIC_REDIST].base); 851 if (nb_redist_regions == 2) { 852 sysbus_mmio_map(gicbusdev, 2, 853 vms->memmap[VIRT_HIGH_GIC_REDIST2].base); 854 } 855 } else { 856 sysbus_mmio_map(gicbusdev, 1, vms->memmap[VIRT_GIC_CPU].base); 857 if (vms->virt) { 858 sysbus_mmio_map(gicbusdev, 2, vms->memmap[VIRT_GIC_HYP].base); 859 sysbus_mmio_map(gicbusdev, 3, vms->memmap[VIRT_GIC_VCPU].base); 860 } 861 } 862 863 /* Wire the outputs from each CPU's generic timer and the GICv3 864 * maintenance interrupt signal to the appropriate GIC PPI inputs, 865 * and the GIC's IRQ/FIQ/VIRQ/VFIQ/NMI/VINMI interrupt outputs to the 866 * CPU's inputs. 867 */ 868 for (i = 0; i < smp_cpus; i++) { 869 DeviceState *cpudev = DEVICE(qemu_get_cpu(i)); 870 int intidbase = NUM_IRQS + i * GIC_INTERNAL; 871 /* Mapping from the output timer irq lines from the CPU to the 872 * GIC PPI inputs we use for the virt board. 873 */ 874 const int timer_irq[] = { 875 [GTIMER_PHYS] = ARCH_TIMER_NS_EL1_IRQ, 876 [GTIMER_VIRT] = ARCH_TIMER_VIRT_IRQ, 877 [GTIMER_HYP] = ARCH_TIMER_NS_EL2_IRQ, 878 [GTIMER_SEC] = ARCH_TIMER_S_EL1_IRQ, 879 [GTIMER_HYPVIRT] = ARCH_TIMER_NS_EL2_VIRT_IRQ, 880 [GTIMER_S_EL2_PHYS] = ARCH_TIMER_S_EL2_IRQ, 881 [GTIMER_S_EL2_VIRT] = ARCH_TIMER_S_EL2_VIRT_IRQ, 882 }; 883 884 for (unsigned irq = 0; irq < ARRAY_SIZE(timer_irq); irq++) { 885 qdev_connect_gpio_out(cpudev, irq, 886 qdev_get_gpio_in(vms->gic, 887 intidbase + timer_irq[irq])); 888 } 889 890 if (vms->gic_version != VIRT_GIC_VERSION_2) { 891 qemu_irq irq = qdev_get_gpio_in(vms->gic, 892 intidbase + ARCH_GIC_MAINT_IRQ); 893 qdev_connect_gpio_out_named(cpudev, "gicv3-maintenance-interrupt", 894 0, irq); 895 } else if (vms->virt) { 896 qemu_irq irq = qdev_get_gpio_in(vms->gic, 897 intidbase + ARCH_GIC_MAINT_IRQ); 898 sysbus_connect_irq(gicbusdev, i + 4 * smp_cpus, irq); 899 } 900 901 qdev_connect_gpio_out_named(cpudev, "pmu-interrupt", 0, 902 qdev_get_gpio_in(vms->gic, intidbase 903 + VIRTUAL_PMU_IRQ)); 904 905 sysbus_connect_irq(gicbusdev, i, qdev_get_gpio_in(cpudev, ARM_CPU_IRQ)); 906 sysbus_connect_irq(gicbusdev, i + smp_cpus, 907 qdev_get_gpio_in(cpudev, ARM_CPU_FIQ)); 908 sysbus_connect_irq(gicbusdev, i + 2 * smp_cpus, 909 qdev_get_gpio_in(cpudev, ARM_CPU_VIRQ)); 910 sysbus_connect_irq(gicbusdev, i + 3 * smp_cpus, 911 qdev_get_gpio_in(cpudev, ARM_CPU_VFIQ)); 912 913 if (vms->gic_version != VIRT_GIC_VERSION_2) { 914 sysbus_connect_irq(gicbusdev, i + 4 * smp_cpus, 915 qdev_get_gpio_in(cpudev, ARM_CPU_NMI)); 916 sysbus_connect_irq(gicbusdev, i + 5 * smp_cpus, 917 qdev_get_gpio_in(cpudev, ARM_CPU_VINMI)); 918 } 919 } 920 921 fdt_add_gic_node(vms); 922 923 if (vms->gic_version != VIRT_GIC_VERSION_2 && vms->its) { 924 create_its(vms); 925 } else if (vms->gic_version == VIRT_GIC_VERSION_2) { 926 create_v2m(vms); 927 } 928 } 929 930 static void create_uart(const VirtMachineState *vms, int uart, 931 MemoryRegion *mem, Chardev *chr, bool secure) 932 { 933 char *nodename; 934 hwaddr base = vms->memmap[uart].base; 935 hwaddr size = vms->memmap[uart].size; 936 int irq = vms->irqmap[uart]; 937 const char compat[] = "arm,pl011\0arm,primecell"; 938 const char clocknames[] = "uartclk\0apb_pclk"; 939 DeviceState *dev = qdev_new(TYPE_PL011); 940 SysBusDevice *s = SYS_BUS_DEVICE(dev); 941 MachineState *ms = MACHINE(vms); 942 943 qdev_prop_set_chr(dev, "chardev", chr); 944 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal); 945 memory_region_add_subregion(mem, base, 946 sysbus_mmio_get_region(s, 0)); 947 sysbus_connect_irq(s, 0, qdev_get_gpio_in(vms->gic, irq)); 948 949 nodename = g_strdup_printf("/pl011@%" PRIx64, base); 950 qemu_fdt_add_subnode(ms->fdt, nodename); 951 /* Note that we can't use setprop_string because of the embedded NUL */ 952 qemu_fdt_setprop(ms->fdt, nodename, "compatible", 953 compat, sizeof(compat)); 954 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg", 955 2, base, 2, size); 956 qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupts", 957 GIC_FDT_IRQ_TYPE_SPI, irq, 958 GIC_FDT_IRQ_FLAGS_LEVEL_HI); 959 qemu_fdt_setprop_cells(ms->fdt, nodename, "clocks", 960 vms->clock_phandle, vms->clock_phandle); 961 qemu_fdt_setprop(ms->fdt, nodename, "clock-names", 962 clocknames, sizeof(clocknames)); 963 964 if (uart == VIRT_UART0) { 965 qemu_fdt_setprop_string(ms->fdt, "/chosen", "stdout-path", nodename); 966 qemu_fdt_setprop_string(ms->fdt, "/aliases", "serial0", nodename); 967 } else { 968 qemu_fdt_setprop_string(ms->fdt, "/aliases", "serial1", nodename); 969 } 970 if (secure) { 971 /* Mark as not usable by the normal world */ 972 qemu_fdt_setprop_string(ms->fdt, nodename, "status", "disabled"); 973 qemu_fdt_setprop_string(ms->fdt, nodename, "secure-status", "okay"); 974 975 qemu_fdt_setprop_string(ms->fdt, "/secure-chosen", "stdout-path", 976 nodename); 977 } 978 979 g_free(nodename); 980 } 981 982 static void create_rtc(const VirtMachineState *vms) 983 { 984 char *nodename; 985 hwaddr base = vms->memmap[VIRT_RTC].base; 986 hwaddr size = vms->memmap[VIRT_RTC].size; 987 int irq = vms->irqmap[VIRT_RTC]; 988 const char compat[] = "arm,pl031\0arm,primecell"; 989 MachineState *ms = MACHINE(vms); 990 991 sysbus_create_simple("pl031", base, qdev_get_gpio_in(vms->gic, irq)); 992 993 nodename = g_strdup_printf("/pl031@%" PRIx64, base); 994 qemu_fdt_add_subnode(ms->fdt, nodename); 995 qemu_fdt_setprop(ms->fdt, nodename, "compatible", compat, sizeof(compat)); 996 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg", 997 2, base, 2, size); 998 qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupts", 999 GIC_FDT_IRQ_TYPE_SPI, irq, 1000 GIC_FDT_IRQ_FLAGS_LEVEL_HI); 1001 qemu_fdt_setprop_cell(ms->fdt, nodename, "clocks", vms->clock_phandle); 1002 qemu_fdt_setprop_string(ms->fdt, nodename, "clock-names", "apb_pclk"); 1003 g_free(nodename); 1004 } 1005 1006 static DeviceState *gpio_key_dev; 1007 static void virt_powerdown_req(Notifier *n, void *opaque) 1008 { 1009 VirtMachineState *s = container_of(n, VirtMachineState, powerdown_notifier); 1010 1011 if (s->acpi_dev) { 1012 acpi_send_event(s->acpi_dev, ACPI_POWER_DOWN_STATUS); 1013 } else { 1014 /* use gpio Pin for power button event */ 1015 qemu_set_irq(qdev_get_gpio_in(gpio_key_dev, 0), 1); 1016 } 1017 } 1018 1019 static void create_gpio_keys(char *fdt, DeviceState *pl061_dev, 1020 uint32_t phandle) 1021 { 1022 gpio_key_dev = sysbus_create_simple("gpio-key", -1, 1023 qdev_get_gpio_in(pl061_dev, 1024 GPIO_PIN_POWER_BUTTON)); 1025 1026 qemu_fdt_add_subnode(fdt, "/gpio-keys"); 1027 qemu_fdt_setprop_string(fdt, "/gpio-keys", "compatible", "gpio-keys"); 1028 1029 qemu_fdt_add_subnode(fdt, "/gpio-keys/poweroff"); 1030 qemu_fdt_setprop_string(fdt, "/gpio-keys/poweroff", 1031 "label", "GPIO Key Poweroff"); 1032 qemu_fdt_setprop_cell(fdt, "/gpio-keys/poweroff", "linux,code", 1033 KEY_POWER); 1034 qemu_fdt_setprop_cells(fdt, "/gpio-keys/poweroff", 1035 "gpios", phandle, GPIO_PIN_POWER_BUTTON, 0); 1036 } 1037 1038 #define SECURE_GPIO_POWEROFF 0 1039 #define SECURE_GPIO_RESET 1 1040 1041 static void create_secure_gpio_pwr(char *fdt, DeviceState *pl061_dev, 1042 uint32_t phandle) 1043 { 1044 DeviceState *gpio_pwr_dev; 1045 1046 /* gpio-pwr */ 1047 gpio_pwr_dev = sysbus_create_simple("gpio-pwr", -1, NULL); 1048 1049 /* connect secure pl061 to gpio-pwr */ 1050 qdev_connect_gpio_out(pl061_dev, SECURE_GPIO_RESET, 1051 qdev_get_gpio_in_named(gpio_pwr_dev, "reset", 0)); 1052 qdev_connect_gpio_out(pl061_dev, SECURE_GPIO_POWEROFF, 1053 qdev_get_gpio_in_named(gpio_pwr_dev, "shutdown", 0)); 1054 1055 qemu_fdt_add_subnode(fdt, "/gpio-poweroff"); 1056 qemu_fdt_setprop_string(fdt, "/gpio-poweroff", "compatible", 1057 "gpio-poweroff"); 1058 qemu_fdt_setprop_cells(fdt, "/gpio-poweroff", 1059 "gpios", phandle, SECURE_GPIO_POWEROFF, 0); 1060 qemu_fdt_setprop_string(fdt, "/gpio-poweroff", "status", "disabled"); 1061 qemu_fdt_setprop_string(fdt, "/gpio-poweroff", "secure-status", 1062 "okay"); 1063 1064 qemu_fdt_add_subnode(fdt, "/gpio-restart"); 1065 qemu_fdt_setprop_string(fdt, "/gpio-restart", "compatible", 1066 "gpio-restart"); 1067 qemu_fdt_setprop_cells(fdt, "/gpio-restart", 1068 "gpios", phandle, SECURE_GPIO_RESET, 0); 1069 qemu_fdt_setprop_string(fdt, "/gpio-restart", "status", "disabled"); 1070 qemu_fdt_setprop_string(fdt, "/gpio-restart", "secure-status", 1071 "okay"); 1072 } 1073 1074 static void create_gpio_devices(const VirtMachineState *vms, int gpio, 1075 MemoryRegion *mem) 1076 { 1077 char *nodename; 1078 DeviceState *pl061_dev; 1079 hwaddr base = vms->memmap[gpio].base; 1080 hwaddr size = vms->memmap[gpio].size; 1081 int irq = vms->irqmap[gpio]; 1082 const char compat[] = "arm,pl061\0arm,primecell"; 1083 SysBusDevice *s; 1084 MachineState *ms = MACHINE(vms); 1085 1086 pl061_dev = qdev_new("pl061"); 1087 /* Pull lines down to 0 if not driven by the PL061 */ 1088 qdev_prop_set_uint32(pl061_dev, "pullups", 0); 1089 qdev_prop_set_uint32(pl061_dev, "pulldowns", 0xff); 1090 s = SYS_BUS_DEVICE(pl061_dev); 1091 sysbus_realize_and_unref(s, &error_fatal); 1092 memory_region_add_subregion(mem, base, sysbus_mmio_get_region(s, 0)); 1093 sysbus_connect_irq(s, 0, qdev_get_gpio_in(vms->gic, irq)); 1094 1095 uint32_t phandle = qemu_fdt_alloc_phandle(ms->fdt); 1096 nodename = g_strdup_printf("/pl061@%" PRIx64, base); 1097 qemu_fdt_add_subnode(ms->fdt, nodename); 1098 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg", 1099 2, base, 2, size); 1100 qemu_fdt_setprop(ms->fdt, nodename, "compatible", compat, sizeof(compat)); 1101 qemu_fdt_setprop_cell(ms->fdt, nodename, "#gpio-cells", 2); 1102 qemu_fdt_setprop(ms->fdt, nodename, "gpio-controller", NULL, 0); 1103 qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupts", 1104 GIC_FDT_IRQ_TYPE_SPI, irq, 1105 GIC_FDT_IRQ_FLAGS_LEVEL_HI); 1106 qemu_fdt_setprop_cell(ms->fdt, nodename, "clocks", vms->clock_phandle); 1107 qemu_fdt_setprop_string(ms->fdt, nodename, "clock-names", "apb_pclk"); 1108 qemu_fdt_setprop_cell(ms->fdt, nodename, "phandle", phandle); 1109 1110 if (gpio != VIRT_GPIO) { 1111 /* Mark as not usable by the normal world */ 1112 qemu_fdt_setprop_string(ms->fdt, nodename, "status", "disabled"); 1113 qemu_fdt_setprop_string(ms->fdt, nodename, "secure-status", "okay"); 1114 } 1115 g_free(nodename); 1116 1117 /* Child gpio devices */ 1118 if (gpio == VIRT_GPIO) { 1119 create_gpio_keys(ms->fdt, pl061_dev, phandle); 1120 } else { 1121 create_secure_gpio_pwr(ms->fdt, pl061_dev, phandle); 1122 } 1123 } 1124 1125 static void create_virtio_devices(const VirtMachineState *vms) 1126 { 1127 int i; 1128 hwaddr size = vms->memmap[VIRT_MMIO].size; 1129 MachineState *ms = MACHINE(vms); 1130 1131 /* We create the transports in forwards order. Since qbus_realize() 1132 * prepends (not appends) new child buses, the incrementing loop below will 1133 * create a list of virtio-mmio buses with decreasing base addresses. 1134 * 1135 * When a -device option is processed from the command line, 1136 * qbus_find_recursive() picks the next free virtio-mmio bus in forwards 1137 * order. The upshot is that -device options in increasing command line 1138 * order are mapped to virtio-mmio buses with decreasing base addresses. 1139 * 1140 * When this code was originally written, that arrangement ensured that the 1141 * guest Linux kernel would give the lowest "name" (/dev/vda, eth0, etc) to 1142 * the first -device on the command line. (The end-to-end order is a 1143 * function of this loop, qbus_realize(), qbus_find_recursive(), and the 1144 * guest kernel's name-to-address assignment strategy.) 1145 * 1146 * Meanwhile, the kernel's traversal seems to have been reversed; see eg. 1147 * the message, if not necessarily the code, of commit 70161ff336. 1148 * Therefore the loop now establishes the inverse of the original intent. 1149 * 1150 * Unfortunately, we can't counteract the kernel change by reversing the 1151 * loop; it would break existing command lines. 1152 * 1153 * In any case, the kernel makes no guarantee about the stability of 1154 * enumeration order of virtio devices (as demonstrated by it changing 1155 * between kernel versions). For reliable and stable identification 1156 * of disks users must use UUIDs or similar mechanisms. 1157 */ 1158 for (i = 0; i < NUM_VIRTIO_TRANSPORTS; i++) { 1159 int irq = vms->irqmap[VIRT_MMIO] + i; 1160 hwaddr base = vms->memmap[VIRT_MMIO].base + i * size; 1161 1162 sysbus_create_simple("virtio-mmio", base, 1163 qdev_get_gpio_in(vms->gic, irq)); 1164 } 1165 1166 /* We add dtb nodes in reverse order so that they appear in the finished 1167 * device tree lowest address first. 1168 * 1169 * Note that this mapping is independent of the loop above. The previous 1170 * loop influences virtio device to virtio transport assignment, whereas 1171 * this loop controls how virtio transports are laid out in the dtb. 1172 */ 1173 for (i = NUM_VIRTIO_TRANSPORTS - 1; i >= 0; i--) { 1174 char *nodename; 1175 int irq = vms->irqmap[VIRT_MMIO] + i; 1176 hwaddr base = vms->memmap[VIRT_MMIO].base + i * size; 1177 1178 nodename = g_strdup_printf("/virtio_mmio@%" PRIx64, base); 1179 qemu_fdt_add_subnode(ms->fdt, nodename); 1180 qemu_fdt_setprop_string(ms->fdt, nodename, 1181 "compatible", "virtio,mmio"); 1182 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg", 1183 2, base, 2, size); 1184 qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupts", 1185 GIC_FDT_IRQ_TYPE_SPI, irq, 1186 GIC_FDT_IRQ_FLAGS_EDGE_LO_HI); 1187 qemu_fdt_setprop(ms->fdt, nodename, "dma-coherent", NULL, 0); 1188 g_free(nodename); 1189 } 1190 } 1191 1192 #define VIRT_FLASH_SECTOR_SIZE (256 * KiB) 1193 1194 static PFlashCFI01 *virt_flash_create1(VirtMachineState *vms, 1195 const char *name, 1196 const char *alias_prop_name) 1197 { 1198 /* 1199 * Create a single flash device. We use the same parameters as 1200 * the flash devices on the Versatile Express board. 1201 */ 1202 DeviceState *dev = qdev_new(TYPE_PFLASH_CFI01); 1203 1204 qdev_prop_set_uint64(dev, "sector-length", VIRT_FLASH_SECTOR_SIZE); 1205 qdev_prop_set_uint8(dev, "width", 4); 1206 qdev_prop_set_uint8(dev, "device-width", 2); 1207 qdev_prop_set_bit(dev, "big-endian", false); 1208 qdev_prop_set_uint16(dev, "id0", 0x89); 1209 qdev_prop_set_uint16(dev, "id1", 0x18); 1210 qdev_prop_set_uint16(dev, "id2", 0x00); 1211 qdev_prop_set_uint16(dev, "id3", 0x00); 1212 qdev_prop_set_string(dev, "name", name); 1213 object_property_add_child(OBJECT(vms), name, OBJECT(dev)); 1214 object_property_add_alias(OBJECT(vms), alias_prop_name, 1215 OBJECT(dev), "drive"); 1216 return PFLASH_CFI01(dev); 1217 } 1218 1219 static void virt_flash_create(VirtMachineState *vms) 1220 { 1221 vms->flash[0] = virt_flash_create1(vms, "virt.flash0", "pflash0"); 1222 vms->flash[1] = virt_flash_create1(vms, "virt.flash1", "pflash1"); 1223 } 1224 1225 static void virt_flash_map1(PFlashCFI01 *flash, 1226 hwaddr base, hwaddr size, 1227 MemoryRegion *sysmem) 1228 { 1229 DeviceState *dev = DEVICE(flash); 1230 1231 assert(QEMU_IS_ALIGNED(size, VIRT_FLASH_SECTOR_SIZE)); 1232 assert(size / VIRT_FLASH_SECTOR_SIZE <= UINT32_MAX); 1233 qdev_prop_set_uint32(dev, "num-blocks", size / VIRT_FLASH_SECTOR_SIZE); 1234 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal); 1235 1236 memory_region_add_subregion(sysmem, base, 1237 sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 1238 0)); 1239 } 1240 1241 static void virt_flash_map(VirtMachineState *vms, 1242 MemoryRegion *sysmem, 1243 MemoryRegion *secure_sysmem) 1244 { 1245 /* 1246 * Map two flash devices to fill the VIRT_FLASH space in the memmap. 1247 * sysmem is the system memory space. secure_sysmem is the secure view 1248 * of the system, and the first flash device should be made visible only 1249 * there. The second flash device is visible to both secure and nonsecure. 1250 * If sysmem == secure_sysmem this means there is no separate Secure 1251 * address space and both flash devices are generally visible. 1252 */ 1253 hwaddr flashsize = vms->memmap[VIRT_FLASH].size / 2; 1254 hwaddr flashbase = vms->memmap[VIRT_FLASH].base; 1255 1256 virt_flash_map1(vms->flash[0], flashbase, flashsize, 1257 secure_sysmem); 1258 virt_flash_map1(vms->flash[1], flashbase + flashsize, flashsize, 1259 sysmem); 1260 } 1261 1262 static void virt_flash_fdt(VirtMachineState *vms, 1263 MemoryRegion *sysmem, 1264 MemoryRegion *secure_sysmem) 1265 { 1266 hwaddr flashsize = vms->memmap[VIRT_FLASH].size / 2; 1267 hwaddr flashbase = vms->memmap[VIRT_FLASH].base; 1268 MachineState *ms = MACHINE(vms); 1269 char *nodename; 1270 1271 if (sysmem == secure_sysmem) { 1272 /* Report both flash devices as a single node in the DT */ 1273 nodename = g_strdup_printf("/flash@%" PRIx64, flashbase); 1274 qemu_fdt_add_subnode(ms->fdt, nodename); 1275 qemu_fdt_setprop_string(ms->fdt, nodename, "compatible", "cfi-flash"); 1276 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg", 1277 2, flashbase, 2, flashsize, 1278 2, flashbase + flashsize, 2, flashsize); 1279 qemu_fdt_setprop_cell(ms->fdt, nodename, "bank-width", 4); 1280 g_free(nodename); 1281 } else { 1282 /* 1283 * Report the devices as separate nodes so we can mark one as 1284 * only visible to the secure world. 1285 */ 1286 nodename = g_strdup_printf("/secflash@%" PRIx64, flashbase); 1287 qemu_fdt_add_subnode(ms->fdt, nodename); 1288 qemu_fdt_setprop_string(ms->fdt, nodename, "compatible", "cfi-flash"); 1289 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg", 1290 2, flashbase, 2, flashsize); 1291 qemu_fdt_setprop_cell(ms->fdt, nodename, "bank-width", 4); 1292 qemu_fdt_setprop_string(ms->fdt, nodename, "status", "disabled"); 1293 qemu_fdt_setprop_string(ms->fdt, nodename, "secure-status", "okay"); 1294 g_free(nodename); 1295 1296 nodename = g_strdup_printf("/flash@%" PRIx64, flashbase + flashsize); 1297 qemu_fdt_add_subnode(ms->fdt, nodename); 1298 qemu_fdt_setprop_string(ms->fdt, nodename, "compatible", "cfi-flash"); 1299 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg", 1300 2, flashbase + flashsize, 2, flashsize); 1301 qemu_fdt_setprop_cell(ms->fdt, nodename, "bank-width", 4); 1302 g_free(nodename); 1303 } 1304 } 1305 1306 static bool virt_firmware_init(VirtMachineState *vms, 1307 MemoryRegion *sysmem, 1308 MemoryRegion *secure_sysmem) 1309 { 1310 int i; 1311 const char *bios_name; 1312 BlockBackend *pflash_blk0; 1313 1314 /* Map legacy -drive if=pflash to machine properties */ 1315 for (i = 0; i < ARRAY_SIZE(vms->flash); i++) { 1316 pflash_cfi01_legacy_drive(vms->flash[i], 1317 drive_get(IF_PFLASH, 0, i)); 1318 } 1319 1320 virt_flash_map(vms, sysmem, secure_sysmem); 1321 1322 pflash_blk0 = pflash_cfi01_get_blk(vms->flash[0]); 1323 1324 bios_name = MACHINE(vms)->firmware; 1325 if (bios_name) { 1326 char *fname; 1327 MemoryRegion *mr; 1328 int image_size; 1329 1330 if (pflash_blk0) { 1331 error_report("The contents of the first flash device may be " 1332 "specified with -bios or with -drive if=pflash... " 1333 "but you cannot use both options at once"); 1334 exit(1); 1335 } 1336 1337 /* Fall back to -bios */ 1338 1339 fname = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name); 1340 if (!fname) { 1341 error_report("Could not find ROM image '%s'", bios_name); 1342 exit(1); 1343 } 1344 mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(vms->flash[0]), 0); 1345 image_size = load_image_mr(fname, mr); 1346 g_free(fname); 1347 if (image_size < 0) { 1348 error_report("Could not load ROM image '%s'", bios_name); 1349 exit(1); 1350 } 1351 } 1352 1353 return pflash_blk0 || bios_name; 1354 } 1355 1356 static FWCfgState *create_fw_cfg(const VirtMachineState *vms, AddressSpace *as) 1357 { 1358 MachineState *ms = MACHINE(vms); 1359 hwaddr base = vms->memmap[VIRT_FW_CFG].base; 1360 hwaddr size = vms->memmap[VIRT_FW_CFG].size; 1361 FWCfgState *fw_cfg; 1362 char *nodename; 1363 1364 fw_cfg = fw_cfg_init_mem_wide(base + 8, base, 8, base + 16, as); 1365 fw_cfg_add_i16(fw_cfg, FW_CFG_NB_CPUS, (uint16_t)ms->smp.cpus); 1366 1367 nodename = g_strdup_printf("/fw-cfg@%" PRIx64, base); 1368 qemu_fdt_add_subnode(ms->fdt, nodename); 1369 qemu_fdt_setprop_string(ms->fdt, nodename, 1370 "compatible", "qemu,fw-cfg-mmio"); 1371 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg", 1372 2, base, 2, size); 1373 qemu_fdt_setprop(ms->fdt, nodename, "dma-coherent", NULL, 0); 1374 g_free(nodename); 1375 return fw_cfg; 1376 } 1377 1378 static void create_pcie_irq_map(const MachineState *ms, 1379 uint32_t gic_phandle, 1380 int first_irq, const char *nodename) 1381 { 1382 int devfn, pin; 1383 uint32_t full_irq_map[4 * 4 * 10] = { 0 }; 1384 uint32_t *irq_map = full_irq_map; 1385 1386 for (devfn = 0; devfn <= 0x18; devfn += 0x8) { 1387 for (pin = 0; pin < 4; pin++) { 1388 int irq_type = GIC_FDT_IRQ_TYPE_SPI; 1389 int irq_nr = first_irq + ((pin + PCI_SLOT(devfn)) % PCI_NUM_PINS); 1390 int irq_level = GIC_FDT_IRQ_FLAGS_LEVEL_HI; 1391 int i; 1392 1393 uint32_t map[] = { 1394 devfn << 8, 0, 0, /* devfn */ 1395 pin + 1, /* PCI pin */ 1396 gic_phandle, 0, 0, irq_type, irq_nr, irq_level }; /* GIC irq */ 1397 1398 /* Convert map to big endian */ 1399 for (i = 0; i < 10; i++) { 1400 irq_map[i] = cpu_to_be32(map[i]); 1401 } 1402 irq_map += 10; 1403 } 1404 } 1405 1406 qemu_fdt_setprop(ms->fdt, nodename, "interrupt-map", 1407 full_irq_map, sizeof(full_irq_map)); 1408 1409 qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupt-map-mask", 1410 cpu_to_be16(PCI_DEVFN(3, 0)), /* Slot 3 */ 1411 0, 0, 1412 0x7 /* PCI irq */); 1413 } 1414 1415 static void create_smmu(const VirtMachineState *vms, 1416 PCIBus *bus) 1417 { 1418 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms); 1419 char *node; 1420 const char compat[] = "arm,smmu-v3"; 1421 int irq = vms->irqmap[VIRT_SMMU]; 1422 int i; 1423 hwaddr base = vms->memmap[VIRT_SMMU].base; 1424 hwaddr size = vms->memmap[VIRT_SMMU].size; 1425 const char irq_names[] = "eventq\0priq\0cmdq-sync\0gerror"; 1426 DeviceState *dev; 1427 MachineState *ms = MACHINE(vms); 1428 1429 if (vms->iommu != VIRT_IOMMU_SMMUV3 || !vms->iommu_phandle) { 1430 return; 1431 } 1432 1433 dev = qdev_new(TYPE_ARM_SMMUV3); 1434 1435 if (!vmc->no_nested_smmu) { 1436 object_property_set_str(OBJECT(dev), "stage", "nested", &error_fatal); 1437 } 1438 object_property_set_link(OBJECT(dev), "primary-bus", OBJECT(bus), 1439 &error_abort); 1440 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal); 1441 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, base); 1442 for (i = 0; i < NUM_SMMU_IRQS; i++) { 1443 sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, 1444 qdev_get_gpio_in(vms->gic, irq + i)); 1445 } 1446 1447 node = g_strdup_printf("/smmuv3@%" PRIx64, base); 1448 qemu_fdt_add_subnode(ms->fdt, node); 1449 qemu_fdt_setprop(ms->fdt, node, "compatible", compat, sizeof(compat)); 1450 qemu_fdt_setprop_sized_cells(ms->fdt, node, "reg", 2, base, 2, size); 1451 1452 qemu_fdt_setprop_cells(ms->fdt, node, "interrupts", 1453 GIC_FDT_IRQ_TYPE_SPI, irq , GIC_FDT_IRQ_FLAGS_EDGE_LO_HI, 1454 GIC_FDT_IRQ_TYPE_SPI, irq + 1, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI, 1455 GIC_FDT_IRQ_TYPE_SPI, irq + 2, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI, 1456 GIC_FDT_IRQ_TYPE_SPI, irq + 3, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI); 1457 1458 qemu_fdt_setprop(ms->fdt, node, "interrupt-names", irq_names, 1459 sizeof(irq_names)); 1460 1461 qemu_fdt_setprop(ms->fdt, node, "dma-coherent", NULL, 0); 1462 1463 qemu_fdt_setprop_cell(ms->fdt, node, "#iommu-cells", 1); 1464 1465 qemu_fdt_setprop_cell(ms->fdt, node, "phandle", vms->iommu_phandle); 1466 g_free(node); 1467 } 1468 1469 static void create_virtio_iommu_dt_bindings(VirtMachineState *vms) 1470 { 1471 const char compat[] = "virtio,pci-iommu\0pci1af4,1057"; 1472 uint16_t bdf = vms->virtio_iommu_bdf; 1473 MachineState *ms = MACHINE(vms); 1474 char *node; 1475 1476 vms->iommu_phandle = qemu_fdt_alloc_phandle(ms->fdt); 1477 1478 node = g_strdup_printf("%s/virtio_iommu@%x,%x", vms->pciehb_nodename, 1479 PCI_SLOT(bdf), PCI_FUNC(bdf)); 1480 qemu_fdt_add_subnode(ms->fdt, node); 1481 qemu_fdt_setprop(ms->fdt, node, "compatible", compat, sizeof(compat)); 1482 qemu_fdt_setprop_sized_cells(ms->fdt, node, "reg", 1483 1, bdf << 8, 1, 0, 1, 0, 1484 1, 0, 1, 0); 1485 1486 qemu_fdt_setprop_cell(ms->fdt, node, "#iommu-cells", 1); 1487 qemu_fdt_setprop_cell(ms->fdt, node, "phandle", vms->iommu_phandle); 1488 g_free(node); 1489 1490 qemu_fdt_setprop_cells(ms->fdt, vms->pciehb_nodename, "iommu-map", 1491 0x0, vms->iommu_phandle, 0x0, bdf, 1492 bdf + 1, vms->iommu_phandle, bdf + 1, 0xffff - bdf); 1493 } 1494 1495 static void create_pcie(VirtMachineState *vms) 1496 { 1497 hwaddr base_mmio = vms->memmap[VIRT_PCIE_MMIO].base; 1498 hwaddr size_mmio = vms->memmap[VIRT_PCIE_MMIO].size; 1499 hwaddr base_mmio_high = vms->memmap[VIRT_HIGH_PCIE_MMIO].base; 1500 hwaddr size_mmio_high = vms->memmap[VIRT_HIGH_PCIE_MMIO].size; 1501 hwaddr base_pio = vms->memmap[VIRT_PCIE_PIO].base; 1502 hwaddr size_pio = vms->memmap[VIRT_PCIE_PIO].size; 1503 hwaddr base_ecam, size_ecam; 1504 hwaddr base = base_mmio; 1505 int nr_pcie_buses; 1506 int irq = vms->irqmap[VIRT_PCIE]; 1507 MemoryRegion *mmio_alias; 1508 MemoryRegion *mmio_reg; 1509 MemoryRegion *ecam_alias; 1510 MemoryRegion *ecam_reg; 1511 DeviceState *dev; 1512 char *nodename; 1513 int i, ecam_id; 1514 PCIHostState *pci; 1515 MachineState *ms = MACHINE(vms); 1516 MachineClass *mc = MACHINE_GET_CLASS(ms); 1517 1518 dev = qdev_new(TYPE_GPEX_HOST); 1519 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal); 1520 1521 ecam_id = VIRT_ECAM_ID(vms->highmem_ecam); 1522 base_ecam = vms->memmap[ecam_id].base; 1523 size_ecam = vms->memmap[ecam_id].size; 1524 nr_pcie_buses = size_ecam / PCIE_MMCFG_SIZE_MIN; 1525 /* Map only the first size_ecam bytes of ECAM space */ 1526 ecam_alias = g_new0(MemoryRegion, 1); 1527 ecam_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 0); 1528 memory_region_init_alias(ecam_alias, OBJECT(dev), "pcie-ecam", 1529 ecam_reg, 0, size_ecam); 1530 memory_region_add_subregion(get_system_memory(), base_ecam, ecam_alias); 1531 1532 /* Map the MMIO window into system address space so as to expose 1533 * the section of PCI MMIO space which starts at the same base address 1534 * (ie 1:1 mapping for that part of PCI MMIO space visible through 1535 * the window). 1536 */ 1537 mmio_alias = g_new0(MemoryRegion, 1); 1538 mmio_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 1); 1539 memory_region_init_alias(mmio_alias, OBJECT(dev), "pcie-mmio", 1540 mmio_reg, base_mmio, size_mmio); 1541 memory_region_add_subregion(get_system_memory(), base_mmio, mmio_alias); 1542 1543 if (vms->highmem_mmio) { 1544 /* Map high MMIO space */ 1545 MemoryRegion *high_mmio_alias = g_new0(MemoryRegion, 1); 1546 1547 memory_region_init_alias(high_mmio_alias, OBJECT(dev), "pcie-mmio-high", 1548 mmio_reg, base_mmio_high, size_mmio_high); 1549 memory_region_add_subregion(get_system_memory(), base_mmio_high, 1550 high_mmio_alias); 1551 } 1552 1553 /* Map IO port space */ 1554 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 2, base_pio); 1555 1556 for (i = 0; i < PCI_NUM_PINS; i++) { 1557 sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, 1558 qdev_get_gpio_in(vms->gic, irq + i)); 1559 gpex_set_irq_num(GPEX_HOST(dev), i, irq + i); 1560 } 1561 1562 pci = PCI_HOST_BRIDGE(dev); 1563 pci->bypass_iommu = vms->default_bus_bypass_iommu; 1564 vms->bus = pci->bus; 1565 if (vms->bus) { 1566 pci_init_nic_devices(pci->bus, mc->default_nic); 1567 } 1568 1569 nodename = vms->pciehb_nodename = g_strdup_printf("/pcie@%" PRIx64, base); 1570 qemu_fdt_add_subnode(ms->fdt, nodename); 1571 qemu_fdt_setprop_string(ms->fdt, nodename, 1572 "compatible", "pci-host-ecam-generic"); 1573 qemu_fdt_setprop_string(ms->fdt, nodename, "device_type", "pci"); 1574 qemu_fdt_setprop_cell(ms->fdt, nodename, "#address-cells", 3); 1575 qemu_fdt_setprop_cell(ms->fdt, nodename, "#size-cells", 2); 1576 qemu_fdt_setprop_cell(ms->fdt, nodename, "linux,pci-domain", 0); 1577 qemu_fdt_setprop_cells(ms->fdt, nodename, "bus-range", 0, 1578 nr_pcie_buses - 1); 1579 qemu_fdt_setprop(ms->fdt, nodename, "dma-coherent", NULL, 0); 1580 1581 if (vms->msi_phandle) { 1582 qemu_fdt_setprop_cells(ms->fdt, nodename, "msi-map", 1583 0, vms->msi_phandle, 0, 0x10000); 1584 } 1585 1586 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg", 1587 2, base_ecam, 2, size_ecam); 1588 1589 if (vms->highmem_mmio) { 1590 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "ranges", 1591 1, FDT_PCI_RANGE_IOPORT, 2, 0, 1592 2, base_pio, 2, size_pio, 1593 1, FDT_PCI_RANGE_MMIO, 2, base_mmio, 1594 2, base_mmio, 2, size_mmio, 1595 1, FDT_PCI_RANGE_MMIO_64BIT, 1596 2, base_mmio_high, 1597 2, base_mmio_high, 2, size_mmio_high); 1598 } else { 1599 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "ranges", 1600 1, FDT_PCI_RANGE_IOPORT, 2, 0, 1601 2, base_pio, 2, size_pio, 1602 1, FDT_PCI_RANGE_MMIO, 2, base_mmio, 1603 2, base_mmio, 2, size_mmio); 1604 } 1605 1606 qemu_fdt_setprop_cell(ms->fdt, nodename, "#interrupt-cells", 1); 1607 create_pcie_irq_map(ms, vms->gic_phandle, irq, nodename); 1608 1609 if (vms->iommu) { 1610 vms->iommu_phandle = qemu_fdt_alloc_phandle(ms->fdt); 1611 1612 switch (vms->iommu) { 1613 case VIRT_IOMMU_SMMUV3: 1614 create_smmu(vms, vms->bus); 1615 qemu_fdt_setprop_cells(ms->fdt, nodename, "iommu-map", 1616 0x0, vms->iommu_phandle, 0x0, 0x10000); 1617 break; 1618 default: 1619 g_assert_not_reached(); 1620 } 1621 } 1622 } 1623 1624 static void create_platform_bus(VirtMachineState *vms) 1625 { 1626 DeviceState *dev; 1627 SysBusDevice *s; 1628 int i; 1629 MemoryRegion *sysmem = get_system_memory(); 1630 1631 dev = qdev_new(TYPE_PLATFORM_BUS_DEVICE); 1632 dev->id = g_strdup(TYPE_PLATFORM_BUS_DEVICE); 1633 qdev_prop_set_uint32(dev, "num_irqs", PLATFORM_BUS_NUM_IRQS); 1634 qdev_prop_set_uint32(dev, "mmio_size", vms->memmap[VIRT_PLATFORM_BUS].size); 1635 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal); 1636 vms->platform_bus_dev = dev; 1637 1638 s = SYS_BUS_DEVICE(dev); 1639 for (i = 0; i < PLATFORM_BUS_NUM_IRQS; i++) { 1640 int irq = vms->irqmap[VIRT_PLATFORM_BUS] + i; 1641 sysbus_connect_irq(s, i, qdev_get_gpio_in(vms->gic, irq)); 1642 } 1643 1644 memory_region_add_subregion(sysmem, 1645 vms->memmap[VIRT_PLATFORM_BUS].base, 1646 sysbus_mmio_get_region(s, 0)); 1647 } 1648 1649 static void create_tag_ram(MemoryRegion *tag_sysmem, 1650 hwaddr base, hwaddr size, 1651 const char *name) 1652 { 1653 MemoryRegion *tagram = g_new(MemoryRegion, 1); 1654 1655 memory_region_init_ram(tagram, NULL, name, size / 32, &error_fatal); 1656 memory_region_add_subregion(tag_sysmem, base / 32, tagram); 1657 } 1658 1659 static void create_secure_ram(VirtMachineState *vms, 1660 MemoryRegion *secure_sysmem, 1661 MemoryRegion *secure_tag_sysmem) 1662 { 1663 MemoryRegion *secram = g_new(MemoryRegion, 1); 1664 char *nodename; 1665 hwaddr base = vms->memmap[VIRT_SECURE_MEM].base; 1666 hwaddr size = vms->memmap[VIRT_SECURE_MEM].size; 1667 MachineState *ms = MACHINE(vms); 1668 1669 memory_region_init_ram(secram, NULL, "virt.secure-ram", size, 1670 &error_fatal); 1671 memory_region_add_subregion(secure_sysmem, base, secram); 1672 1673 nodename = g_strdup_printf("/secram@%" PRIx64, base); 1674 qemu_fdt_add_subnode(ms->fdt, nodename); 1675 qemu_fdt_setprop_string(ms->fdt, nodename, "device_type", "memory"); 1676 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg", 2, base, 2, size); 1677 qemu_fdt_setprop_string(ms->fdt, nodename, "status", "disabled"); 1678 qemu_fdt_setprop_string(ms->fdt, nodename, "secure-status", "okay"); 1679 1680 if (secure_tag_sysmem) { 1681 create_tag_ram(secure_tag_sysmem, base, size, "mach-virt.secure-tag"); 1682 } 1683 1684 g_free(nodename); 1685 } 1686 1687 static void *machvirt_dtb(const struct arm_boot_info *binfo, int *fdt_size) 1688 { 1689 const VirtMachineState *board = container_of(binfo, VirtMachineState, 1690 bootinfo); 1691 MachineState *ms = MACHINE(board); 1692 1693 1694 *fdt_size = board->fdt_size; 1695 return ms->fdt; 1696 } 1697 1698 static void virt_build_smbios(VirtMachineState *vms) 1699 { 1700 MachineClass *mc = MACHINE_GET_CLASS(vms); 1701 MachineState *ms = MACHINE(vms); 1702 uint8_t *smbios_tables, *smbios_anchor; 1703 size_t smbios_tables_len, smbios_anchor_len; 1704 struct smbios_phys_mem_area mem_array; 1705 const char *product = "QEMU Virtual Machine"; 1706 1707 if (kvm_enabled()) { 1708 product = "KVM Virtual Machine"; 1709 } 1710 1711 smbios_set_defaults("QEMU", product, mc->name); 1712 1713 /* build the array of physical mem area from base_memmap */ 1714 mem_array.address = vms->memmap[VIRT_MEM].base; 1715 mem_array.length = ms->ram_size; 1716 1717 smbios_get_tables(ms, SMBIOS_ENTRY_POINT_TYPE_64, &mem_array, 1, 1718 &smbios_tables, &smbios_tables_len, 1719 &smbios_anchor, &smbios_anchor_len, 1720 &error_fatal); 1721 1722 if (smbios_anchor) { 1723 fw_cfg_add_file(vms->fw_cfg, "etc/smbios/smbios-tables", 1724 smbios_tables, smbios_tables_len); 1725 fw_cfg_add_file(vms->fw_cfg, "etc/smbios/smbios-anchor", 1726 smbios_anchor, smbios_anchor_len); 1727 } 1728 } 1729 1730 static 1731 void virt_machine_done(Notifier *notifier, void *data) 1732 { 1733 VirtMachineState *vms = container_of(notifier, VirtMachineState, 1734 machine_done); 1735 MachineState *ms = MACHINE(vms); 1736 ARMCPU *cpu = ARM_CPU(first_cpu); 1737 struct arm_boot_info *info = &vms->bootinfo; 1738 AddressSpace *as = arm_boot_address_space(cpu, info); 1739 1740 /* 1741 * If the user provided a dtb, we assume the dynamic sysbus nodes 1742 * already are integrated there. This corresponds to a use case where 1743 * the dynamic sysbus nodes are complex and their generation is not yet 1744 * supported. In that case the user can take charge of the guest dt 1745 * while qemu takes charge of the qom stuff. 1746 */ 1747 if (info->dtb_filename == NULL) { 1748 platform_bus_add_all_fdt_nodes(ms->fdt, "/intc", 1749 vms->memmap[VIRT_PLATFORM_BUS].base, 1750 vms->memmap[VIRT_PLATFORM_BUS].size, 1751 vms->irqmap[VIRT_PLATFORM_BUS]); 1752 } 1753 if (arm_load_dtb(info->dtb_start, info, info->dtb_limit, as, ms, cpu) < 0) { 1754 exit(1); 1755 } 1756 1757 pci_bus_add_fw_cfg_extra_pci_roots(vms->fw_cfg, vms->bus, 1758 &error_abort); 1759 1760 virt_acpi_setup(vms); 1761 virt_build_smbios(vms); 1762 } 1763 1764 static uint64_t virt_cpu_mp_affinity(VirtMachineState *vms, int idx) 1765 { 1766 uint8_t clustersz; 1767 1768 /* 1769 * Adjust MPIDR like 64-bit KVM hosts, which incorporate the 1770 * GIC's target-list limitations. 32-bit KVM hosts currently 1771 * always create clusters of 4 CPUs, but that is expected to 1772 * change when they gain support for gicv3. When KVM is enabled 1773 * it will override the changes we make here, therefore our 1774 * purposes are to make TCG consistent (with 64-bit KVM hosts) 1775 * and to improve SGI efficiency. 1776 */ 1777 if (vms->gic_version == VIRT_GIC_VERSION_2) { 1778 clustersz = GIC_TARGETLIST_BITS; 1779 } else { 1780 clustersz = GICV3_TARGETLIST_BITS; 1781 } 1782 1783 return arm_build_mp_affinity(idx, clustersz); 1784 } 1785 1786 static inline bool *virt_get_high_memmap_enabled(VirtMachineState *vms, 1787 int index) 1788 { 1789 bool *enabled_array[] = { 1790 &vms->highmem_redists, 1791 &vms->highmem_ecam, 1792 &vms->highmem_mmio, 1793 }; 1794 1795 assert(ARRAY_SIZE(extended_memmap) - VIRT_LOWMEMMAP_LAST == 1796 ARRAY_SIZE(enabled_array)); 1797 assert(index - VIRT_LOWMEMMAP_LAST < ARRAY_SIZE(enabled_array)); 1798 1799 return enabled_array[index - VIRT_LOWMEMMAP_LAST]; 1800 } 1801 1802 static void virt_set_high_memmap(VirtMachineState *vms, 1803 hwaddr base, int pa_bits) 1804 { 1805 hwaddr region_base, region_size; 1806 bool *region_enabled, fits; 1807 int i; 1808 1809 for (i = VIRT_LOWMEMMAP_LAST; i < ARRAY_SIZE(extended_memmap); i++) { 1810 region_enabled = virt_get_high_memmap_enabled(vms, i); 1811 region_base = ROUND_UP(base, extended_memmap[i].size); 1812 region_size = extended_memmap[i].size; 1813 1814 vms->memmap[i].base = region_base; 1815 vms->memmap[i].size = region_size; 1816 1817 /* 1818 * Check each device to see if it fits in the PA space, 1819 * moving highest_gpa as we go. For compatibility, move 1820 * highest_gpa for disabled fitting devices as well, if 1821 * the compact layout has been disabled. 1822 * 1823 * For each device that doesn't fit, disable it. 1824 */ 1825 fits = (region_base + region_size) <= BIT_ULL(pa_bits); 1826 *region_enabled &= fits; 1827 if (vms->highmem_compact && !*region_enabled) { 1828 continue; 1829 } 1830 1831 base = region_base + region_size; 1832 if (fits) { 1833 vms->highest_gpa = base - 1; 1834 } 1835 } 1836 } 1837 1838 static void virt_set_memmap(VirtMachineState *vms, int pa_bits) 1839 { 1840 MachineState *ms = MACHINE(vms); 1841 hwaddr base, device_memory_base, device_memory_size, memtop; 1842 int i; 1843 1844 vms->memmap = extended_memmap; 1845 1846 for (i = 0; i < ARRAY_SIZE(base_memmap); i++) { 1847 vms->memmap[i] = base_memmap[i]; 1848 } 1849 1850 if (ms->ram_slots > ACPI_MAX_RAM_SLOTS) { 1851 error_report("unsupported number of memory slots: %"PRIu64, 1852 ms->ram_slots); 1853 exit(EXIT_FAILURE); 1854 } 1855 1856 /* 1857 * !highmem is exactly the same as limiting the PA space to 32bit, 1858 * irrespective of the underlying capabilities of the HW. 1859 */ 1860 if (!vms->highmem) { 1861 pa_bits = 32; 1862 } 1863 1864 /* 1865 * We compute the base of the high IO region depending on the 1866 * amount of initial and device memory. The device memory start/size 1867 * is aligned on 1GiB. We never put the high IO region below 256GiB 1868 * so that if maxram_size is < 255GiB we keep the legacy memory map. 1869 * The device region size assumes 1GiB page max alignment per slot. 1870 */ 1871 device_memory_base = 1872 ROUND_UP(vms->memmap[VIRT_MEM].base + ms->ram_size, GiB); 1873 device_memory_size = ms->maxram_size - ms->ram_size + ms->ram_slots * GiB; 1874 1875 /* Base address of the high IO region */ 1876 memtop = base = device_memory_base + ROUND_UP(device_memory_size, GiB); 1877 if (memtop > BIT_ULL(pa_bits)) { 1878 error_report("Addressing limited to %d bits, but memory exceeds it by %llu bytes", 1879 pa_bits, memtop - BIT_ULL(pa_bits)); 1880 exit(EXIT_FAILURE); 1881 } 1882 if (base < device_memory_base) { 1883 error_report("maxmem/slots too huge"); 1884 exit(EXIT_FAILURE); 1885 } 1886 if (base < vms->memmap[VIRT_MEM].base + LEGACY_RAMLIMIT_BYTES) { 1887 base = vms->memmap[VIRT_MEM].base + LEGACY_RAMLIMIT_BYTES; 1888 } 1889 1890 /* We know for sure that at least the memory fits in the PA space */ 1891 vms->highest_gpa = memtop - 1; 1892 1893 virt_set_high_memmap(vms, base, pa_bits); 1894 1895 if (device_memory_size > 0) { 1896 machine_memory_devices_init(ms, device_memory_base, device_memory_size); 1897 } 1898 } 1899 1900 static VirtGICType finalize_gic_version_do(const char *accel_name, 1901 VirtGICType gic_version, 1902 int gics_supported, 1903 unsigned int max_cpus) 1904 { 1905 /* Convert host/max/nosel to GIC version number */ 1906 switch (gic_version) { 1907 case VIRT_GIC_VERSION_HOST: 1908 if (!kvm_enabled()) { 1909 error_report("gic-version=host requires KVM"); 1910 exit(1); 1911 } 1912 1913 /* For KVM, gic-version=host means gic-version=max */ 1914 return finalize_gic_version_do(accel_name, VIRT_GIC_VERSION_MAX, 1915 gics_supported, max_cpus); 1916 case VIRT_GIC_VERSION_MAX: 1917 if (gics_supported & VIRT_GIC_VERSION_4_MASK) { 1918 gic_version = VIRT_GIC_VERSION_4; 1919 } else if (gics_supported & VIRT_GIC_VERSION_3_MASK) { 1920 gic_version = VIRT_GIC_VERSION_3; 1921 } else { 1922 gic_version = VIRT_GIC_VERSION_2; 1923 } 1924 break; 1925 case VIRT_GIC_VERSION_NOSEL: 1926 if ((gics_supported & VIRT_GIC_VERSION_2_MASK) && 1927 max_cpus <= GIC_NCPU) { 1928 gic_version = VIRT_GIC_VERSION_2; 1929 } else if (gics_supported & VIRT_GIC_VERSION_3_MASK) { 1930 /* 1931 * in case the host does not support v2 emulation or 1932 * the end-user requested more than 8 VCPUs we now default 1933 * to v3. In any case defaulting to v2 would be broken. 1934 */ 1935 gic_version = VIRT_GIC_VERSION_3; 1936 } else if (max_cpus > GIC_NCPU) { 1937 error_report("%s only supports GICv2 emulation but more than 8 " 1938 "vcpus are requested", accel_name); 1939 exit(1); 1940 } 1941 break; 1942 case VIRT_GIC_VERSION_2: 1943 case VIRT_GIC_VERSION_3: 1944 case VIRT_GIC_VERSION_4: 1945 break; 1946 } 1947 1948 /* Check chosen version is effectively supported */ 1949 switch (gic_version) { 1950 case VIRT_GIC_VERSION_2: 1951 if (!(gics_supported & VIRT_GIC_VERSION_2_MASK)) { 1952 error_report("%s does not support GICv2 emulation", accel_name); 1953 exit(1); 1954 } 1955 break; 1956 case VIRT_GIC_VERSION_3: 1957 if (!(gics_supported & VIRT_GIC_VERSION_3_MASK)) { 1958 error_report("%s does not support GICv3 emulation", accel_name); 1959 exit(1); 1960 } 1961 break; 1962 case VIRT_GIC_VERSION_4: 1963 if (!(gics_supported & VIRT_GIC_VERSION_4_MASK)) { 1964 error_report("%s does not support GICv4 emulation, is virtualization=on?", 1965 accel_name); 1966 exit(1); 1967 } 1968 break; 1969 default: 1970 error_report("logic error in finalize_gic_version"); 1971 exit(1); 1972 break; 1973 } 1974 1975 return gic_version; 1976 } 1977 1978 /* 1979 * finalize_gic_version - Determines the final gic_version 1980 * according to the gic-version property 1981 * 1982 * Default GIC type is v2 1983 */ 1984 static void finalize_gic_version(VirtMachineState *vms) 1985 { 1986 const char *accel_name = current_accel_name(); 1987 unsigned int max_cpus = MACHINE(vms)->smp.max_cpus; 1988 int gics_supported = 0; 1989 1990 /* Determine which GIC versions the current environment supports */ 1991 if (kvm_enabled() && kvm_irqchip_in_kernel()) { 1992 int probe_bitmap = kvm_arm_vgic_probe(); 1993 1994 if (!probe_bitmap) { 1995 error_report("Unable to determine GIC version supported by host"); 1996 exit(1); 1997 } 1998 1999 if (probe_bitmap & KVM_ARM_VGIC_V2) { 2000 gics_supported |= VIRT_GIC_VERSION_2_MASK; 2001 } 2002 if (probe_bitmap & KVM_ARM_VGIC_V3) { 2003 gics_supported |= VIRT_GIC_VERSION_3_MASK; 2004 } 2005 } else if (kvm_enabled() && !kvm_irqchip_in_kernel()) { 2006 /* KVM w/o kernel irqchip can only deal with GICv2 */ 2007 gics_supported |= VIRT_GIC_VERSION_2_MASK; 2008 accel_name = "KVM with kernel-irqchip=off"; 2009 } else if (tcg_enabled() || hvf_enabled() || qtest_enabled()) { 2010 gics_supported |= VIRT_GIC_VERSION_2_MASK; 2011 if (module_object_class_by_name("arm-gicv3")) { 2012 gics_supported |= VIRT_GIC_VERSION_3_MASK; 2013 if (vms->virt) { 2014 /* GICv4 only makes sense if CPU has EL2 */ 2015 gics_supported |= VIRT_GIC_VERSION_4_MASK; 2016 } 2017 } 2018 } else { 2019 error_report("Unsupported accelerator, can not determine GIC support"); 2020 exit(1); 2021 } 2022 2023 /* 2024 * Then convert helpers like host/max to concrete GIC versions and ensure 2025 * the desired version is supported 2026 */ 2027 vms->gic_version = finalize_gic_version_do(accel_name, vms->gic_version, 2028 gics_supported, max_cpus); 2029 } 2030 2031 /* 2032 * virt_cpu_post_init() must be called after the CPUs have 2033 * been realized and the GIC has been created. 2034 */ 2035 static void virt_cpu_post_init(VirtMachineState *vms, MemoryRegion *sysmem) 2036 { 2037 int max_cpus = MACHINE(vms)->smp.max_cpus; 2038 bool aarch64, pmu, steal_time; 2039 CPUState *cpu; 2040 2041 aarch64 = object_property_get_bool(OBJECT(first_cpu), "aarch64", NULL); 2042 pmu = object_property_get_bool(OBJECT(first_cpu), "pmu", NULL); 2043 steal_time = object_property_get_bool(OBJECT(first_cpu), 2044 "kvm-steal-time", NULL); 2045 2046 if (kvm_enabled()) { 2047 hwaddr pvtime_reg_base = vms->memmap[VIRT_PVTIME].base; 2048 hwaddr pvtime_reg_size = vms->memmap[VIRT_PVTIME].size; 2049 2050 if (steal_time) { 2051 MemoryRegion *pvtime = g_new(MemoryRegion, 1); 2052 hwaddr pvtime_size = max_cpus * PVTIME_SIZE_PER_CPU; 2053 2054 /* The memory region size must be a multiple of host page size. */ 2055 pvtime_size = REAL_HOST_PAGE_ALIGN(pvtime_size); 2056 2057 if (pvtime_size > pvtime_reg_size) { 2058 error_report("pvtime requires a %" HWADDR_PRId 2059 " byte memory region for %d CPUs," 2060 " but only %" HWADDR_PRId " has been reserved", 2061 pvtime_size, max_cpus, pvtime_reg_size); 2062 exit(1); 2063 } 2064 2065 memory_region_init_ram(pvtime, NULL, "pvtime", pvtime_size, NULL); 2066 memory_region_add_subregion(sysmem, pvtime_reg_base, pvtime); 2067 } 2068 2069 CPU_FOREACH(cpu) { 2070 if (pmu) { 2071 assert(arm_feature(&ARM_CPU(cpu)->env, ARM_FEATURE_PMU)); 2072 if (kvm_irqchip_in_kernel()) { 2073 kvm_arm_pmu_set_irq(ARM_CPU(cpu), VIRTUAL_PMU_IRQ); 2074 } 2075 kvm_arm_pmu_init(ARM_CPU(cpu)); 2076 } 2077 if (steal_time) { 2078 kvm_arm_pvtime_init(ARM_CPU(cpu), pvtime_reg_base 2079 + cpu->cpu_index 2080 * PVTIME_SIZE_PER_CPU); 2081 } 2082 } 2083 } else { 2084 if (aarch64 && vms->highmem) { 2085 int requested_pa_size = 64 - clz64(vms->highest_gpa); 2086 int pamax = arm_pamax(ARM_CPU(first_cpu)); 2087 2088 if (pamax < requested_pa_size) { 2089 error_report("VCPU supports less PA bits (%d) than " 2090 "requested by the memory map (%d)", 2091 pamax, requested_pa_size); 2092 exit(1); 2093 } 2094 } 2095 } 2096 } 2097 2098 static void machvirt_init(MachineState *machine) 2099 { 2100 VirtMachineState *vms = VIRT_MACHINE(machine); 2101 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(machine); 2102 MachineClass *mc = MACHINE_GET_CLASS(machine); 2103 const CPUArchIdList *possible_cpus; 2104 MemoryRegion *sysmem = get_system_memory(); 2105 MemoryRegion *secure_sysmem = NULL; 2106 MemoryRegion *tag_sysmem = NULL; 2107 MemoryRegion *secure_tag_sysmem = NULL; 2108 int n, virt_max_cpus; 2109 bool firmware_loaded; 2110 bool aarch64 = true; 2111 bool has_ged = !vmc->no_ged; 2112 unsigned int smp_cpus = machine->smp.cpus; 2113 unsigned int max_cpus = machine->smp.max_cpus; 2114 2115 possible_cpus = mc->possible_cpu_arch_ids(machine); 2116 2117 /* 2118 * In accelerated mode, the memory map is computed earlier in kvm_type() 2119 * for Linux, or hvf_get_physical_address_range() for macOS to create a 2120 * VM with the right number of IPA bits. 2121 */ 2122 if (!vms->memmap) { 2123 Object *cpuobj; 2124 ARMCPU *armcpu; 2125 int pa_bits; 2126 2127 /* 2128 * Instantiate a temporary CPU object to find out about what 2129 * we are about to deal with. Once this is done, get rid of 2130 * the object. 2131 */ 2132 cpuobj = object_new(possible_cpus->cpus[0].type); 2133 armcpu = ARM_CPU(cpuobj); 2134 2135 pa_bits = arm_pamax(armcpu); 2136 2137 object_unref(cpuobj); 2138 2139 virt_set_memmap(vms, pa_bits); 2140 } 2141 2142 /* We can probe only here because during property set 2143 * KVM is not available yet 2144 */ 2145 finalize_gic_version(vms); 2146 2147 if (vms->secure) { 2148 /* 2149 * The Secure view of the world is the same as the NonSecure, 2150 * but with a few extra devices. Create it as a container region 2151 * containing the system memory at low priority; any secure-only 2152 * devices go in at higher priority and take precedence. 2153 */ 2154 secure_sysmem = g_new(MemoryRegion, 1); 2155 memory_region_init(secure_sysmem, OBJECT(machine), "secure-memory", 2156 UINT64_MAX); 2157 memory_region_add_subregion_overlap(secure_sysmem, 0, sysmem, -1); 2158 } 2159 2160 firmware_loaded = virt_firmware_init(vms, sysmem, 2161 secure_sysmem ?: sysmem); 2162 2163 /* If we have an EL3 boot ROM then the assumption is that it will 2164 * implement PSCI itself, so disable QEMU's internal implementation 2165 * so it doesn't get in the way. Instead of starting secondary 2166 * CPUs in PSCI powerdown state we will start them all running and 2167 * let the boot ROM sort them out. 2168 * The usual case is that we do use QEMU's PSCI implementation; 2169 * if the guest has EL2 then we will use SMC as the conduit, 2170 * and otherwise we will use HVC (for backwards compatibility and 2171 * because if we're using KVM then we must use HVC). 2172 */ 2173 if (vms->secure && firmware_loaded) { 2174 vms->psci_conduit = QEMU_PSCI_CONDUIT_DISABLED; 2175 } else if (vms->virt) { 2176 vms->psci_conduit = QEMU_PSCI_CONDUIT_SMC; 2177 } else { 2178 vms->psci_conduit = QEMU_PSCI_CONDUIT_HVC; 2179 } 2180 2181 /* 2182 * The maximum number of CPUs depends on the GIC version, or on how 2183 * many redistributors we can fit into the memory map (which in turn 2184 * depends on whether this is a GICv3 or v4). 2185 */ 2186 if (vms->gic_version == VIRT_GIC_VERSION_2) { 2187 virt_max_cpus = GIC_NCPU; 2188 } else { 2189 virt_max_cpus = virt_redist_capacity(vms, VIRT_GIC_REDIST); 2190 if (vms->highmem_redists) { 2191 virt_max_cpus += virt_redist_capacity(vms, VIRT_HIGH_GIC_REDIST2); 2192 } 2193 } 2194 2195 if (max_cpus > virt_max_cpus) { 2196 error_report("Number of SMP CPUs requested (%d) exceeds max CPUs " 2197 "supported by machine 'mach-virt' (%d)", 2198 max_cpus, virt_max_cpus); 2199 if (vms->gic_version != VIRT_GIC_VERSION_2 && !vms->highmem_redists) { 2200 error_printf("Try 'highmem-redists=on' for more CPUs\n"); 2201 } 2202 2203 exit(1); 2204 } 2205 2206 if (vms->secure && (kvm_enabled() || hvf_enabled())) { 2207 error_report("mach-virt: %s does not support providing " 2208 "Security extensions (TrustZone) to the guest CPU", 2209 current_accel_name()); 2210 exit(1); 2211 } 2212 2213 if (vms->virt && (kvm_enabled() || hvf_enabled())) { 2214 error_report("mach-virt: %s does not support providing " 2215 "Virtualization extensions to the guest CPU", 2216 current_accel_name()); 2217 exit(1); 2218 } 2219 2220 if (vms->mte && hvf_enabled()) { 2221 error_report("mach-virt: %s does not support providing " 2222 "MTE to the guest CPU", 2223 current_accel_name()); 2224 exit(1); 2225 } 2226 2227 create_fdt(vms); 2228 2229 assert(possible_cpus->len == max_cpus); 2230 for (n = 0; n < possible_cpus->len; n++) { 2231 Object *cpuobj; 2232 CPUState *cs; 2233 2234 if (n >= smp_cpus) { 2235 break; 2236 } 2237 2238 cpuobj = object_new(possible_cpus->cpus[n].type); 2239 object_property_set_int(cpuobj, "mp-affinity", 2240 possible_cpus->cpus[n].arch_id, NULL); 2241 2242 cs = CPU(cpuobj); 2243 cs->cpu_index = n; 2244 2245 numa_cpu_pre_plug(&possible_cpus->cpus[cs->cpu_index], DEVICE(cpuobj), 2246 &error_fatal); 2247 2248 aarch64 &= object_property_get_bool(cpuobj, "aarch64", NULL); 2249 2250 if (!vms->secure) { 2251 object_property_set_bool(cpuobj, "has_el3", false, NULL); 2252 } 2253 2254 if (!vms->virt && object_property_find(cpuobj, "has_el2")) { 2255 object_property_set_bool(cpuobj, "has_el2", false, NULL); 2256 } 2257 2258 if (vmc->kvm_no_adjvtime && 2259 object_property_find(cpuobj, "kvm-no-adjvtime")) { 2260 object_property_set_bool(cpuobj, "kvm-no-adjvtime", true, NULL); 2261 } 2262 2263 if (vmc->no_kvm_steal_time && 2264 object_property_find(cpuobj, "kvm-steal-time")) { 2265 object_property_set_bool(cpuobj, "kvm-steal-time", false, NULL); 2266 } 2267 2268 if (vmc->no_tcg_lpa2 && object_property_find(cpuobj, "lpa2")) { 2269 object_property_set_bool(cpuobj, "lpa2", false, NULL); 2270 } 2271 2272 if (object_property_find(cpuobj, "reset-cbar")) { 2273 object_property_set_int(cpuobj, "reset-cbar", 2274 vms->memmap[VIRT_CPUPERIPHS].base, 2275 &error_abort); 2276 } 2277 2278 object_property_set_link(cpuobj, "memory", OBJECT(sysmem), 2279 &error_abort); 2280 if (vms->secure) { 2281 object_property_set_link(cpuobj, "secure-memory", 2282 OBJECT(secure_sysmem), &error_abort); 2283 } 2284 2285 if (vms->mte) { 2286 if (tcg_enabled()) { 2287 /* Create the memory region only once, but link to all cpus. */ 2288 if (!tag_sysmem) { 2289 /* 2290 * The property exists only if MemTag is supported. 2291 * If it is, we must allocate the ram to back that up. 2292 */ 2293 if (!object_property_find(cpuobj, "tag-memory")) { 2294 error_report("MTE requested, but not supported " 2295 "by the guest CPU"); 2296 exit(1); 2297 } 2298 2299 tag_sysmem = g_new(MemoryRegion, 1); 2300 memory_region_init(tag_sysmem, OBJECT(machine), 2301 "tag-memory", UINT64_MAX / 32); 2302 2303 if (vms->secure) { 2304 secure_tag_sysmem = g_new(MemoryRegion, 1); 2305 memory_region_init(secure_tag_sysmem, OBJECT(machine), 2306 "secure-tag-memory", 2307 UINT64_MAX / 32); 2308 2309 /* As with ram, secure-tag takes precedence over tag. */ 2310 memory_region_add_subregion_overlap(secure_tag_sysmem, 2311 0, tag_sysmem, -1); 2312 } 2313 } 2314 2315 object_property_set_link(cpuobj, "tag-memory", 2316 OBJECT(tag_sysmem), &error_abort); 2317 if (vms->secure) { 2318 object_property_set_link(cpuobj, "secure-tag-memory", 2319 OBJECT(secure_tag_sysmem), 2320 &error_abort); 2321 } 2322 } else if (kvm_enabled()) { 2323 if (!kvm_arm_mte_supported()) { 2324 error_report("MTE requested, but not supported by KVM"); 2325 exit(1); 2326 } 2327 kvm_arm_enable_mte(cpuobj, &error_abort); 2328 } else { 2329 error_report("MTE requested, but not supported "); 2330 exit(1); 2331 } 2332 } 2333 2334 qdev_realize(DEVICE(cpuobj), NULL, &error_fatal); 2335 object_unref(cpuobj); 2336 } 2337 2338 /* Now we've created the CPUs we can see if they have the hypvirt timer */ 2339 vms->ns_el2_virt_timer_irq = ns_el2_virt_timer_present() && 2340 !vmc->no_ns_el2_virt_timer_irq; 2341 2342 fdt_add_timer_nodes(vms); 2343 fdt_add_cpu_nodes(vms); 2344 2345 memory_region_add_subregion(sysmem, vms->memmap[VIRT_MEM].base, 2346 machine->ram); 2347 2348 virt_flash_fdt(vms, sysmem, secure_sysmem ?: sysmem); 2349 2350 create_gic(vms, sysmem); 2351 2352 virt_cpu_post_init(vms, sysmem); 2353 2354 fdt_add_pmu_nodes(vms); 2355 2356 /* 2357 * The first UART always exists. If the security extensions are 2358 * enabled, the second UART also always exists. Otherwise, it only exists 2359 * if a backend is configured explicitly via '-serial <backend>'. 2360 * This avoids potentially breaking existing user setups that expect 2361 * only one NonSecure UART to be present (for instance, older EDK2 2362 * binaries). 2363 * 2364 * The nodes end up in the DTB in reverse order of creation, so we must 2365 * create UART0 last to ensure it appears as the first node in the DTB, 2366 * for compatibility with guest software that just iterates through the 2367 * DTB to find the first UART, as older versions of EDK2 do. 2368 * DTB readers that follow the spec, as Linux does, should honour the 2369 * aliases node information and /chosen/stdout-path regardless of 2370 * the order that nodes appear in the DTB. 2371 * 2372 * For similar back-compatibility reasons, if UART1 is the secure UART 2373 * we create it second (and so it appears first in the DTB), because 2374 * that's what QEMU has always done. 2375 */ 2376 if (!vms->secure) { 2377 Chardev *serial1 = serial_hd(1); 2378 2379 if (serial1) { 2380 vms->second_ns_uart_present = true; 2381 create_uart(vms, VIRT_UART1, sysmem, serial1, false); 2382 } 2383 } 2384 create_uart(vms, VIRT_UART0, sysmem, serial_hd(0), false); 2385 if (vms->secure) { 2386 create_uart(vms, VIRT_UART1, secure_sysmem, serial_hd(1), true); 2387 } 2388 2389 if (vms->secure) { 2390 create_secure_ram(vms, secure_sysmem, secure_tag_sysmem); 2391 } 2392 2393 if (tag_sysmem) { 2394 create_tag_ram(tag_sysmem, vms->memmap[VIRT_MEM].base, 2395 machine->ram_size, "mach-virt.tag"); 2396 } 2397 2398 vms->highmem_ecam &= (!firmware_loaded || aarch64); 2399 2400 create_rtc(vms); 2401 2402 create_pcie(vms); 2403 2404 if (has_ged && aarch64 && firmware_loaded && virt_is_acpi_enabled(vms)) { 2405 vms->acpi_dev = create_acpi_ged(vms); 2406 } else { 2407 create_gpio_devices(vms, VIRT_GPIO, sysmem); 2408 } 2409 2410 if (vms->secure && !vmc->no_secure_gpio) { 2411 create_gpio_devices(vms, VIRT_SECURE_GPIO, secure_sysmem); 2412 } 2413 2414 /* connect powerdown request */ 2415 vms->powerdown_notifier.notify = virt_powerdown_req; 2416 qemu_register_powerdown_notifier(&vms->powerdown_notifier); 2417 2418 /* Create mmio transports, so the user can create virtio backends 2419 * (which will be automatically plugged in to the transports). If 2420 * no backend is created the transport will just sit harmlessly idle. 2421 */ 2422 create_virtio_devices(vms); 2423 2424 vms->fw_cfg = create_fw_cfg(vms, &address_space_memory); 2425 rom_set_fw(vms->fw_cfg); 2426 2427 create_platform_bus(vms); 2428 2429 if (machine->nvdimms_state->is_enabled) { 2430 const struct AcpiGenericAddress arm_virt_nvdimm_acpi_dsmio = { 2431 .space_id = AML_AS_SYSTEM_MEMORY, 2432 .address = vms->memmap[VIRT_NVDIMM_ACPI].base, 2433 .bit_width = NVDIMM_ACPI_IO_LEN << 3 2434 }; 2435 2436 nvdimm_init_acpi_state(machine->nvdimms_state, sysmem, 2437 arm_virt_nvdimm_acpi_dsmio, 2438 vms->fw_cfg, OBJECT(vms)); 2439 } 2440 2441 vms->bootinfo.ram_size = machine->ram_size; 2442 vms->bootinfo.board_id = -1; 2443 vms->bootinfo.loader_start = vms->memmap[VIRT_MEM].base; 2444 vms->bootinfo.get_dtb = machvirt_dtb; 2445 vms->bootinfo.skip_dtb_autoload = true; 2446 vms->bootinfo.firmware_loaded = firmware_loaded; 2447 vms->bootinfo.psci_conduit = vms->psci_conduit; 2448 arm_load_kernel(ARM_CPU(first_cpu), machine, &vms->bootinfo); 2449 2450 vms->machine_done.notify = virt_machine_done; 2451 qemu_add_machine_init_done_notifier(&vms->machine_done); 2452 } 2453 2454 static bool virt_get_secure(Object *obj, Error **errp) 2455 { 2456 VirtMachineState *vms = VIRT_MACHINE(obj); 2457 2458 return vms->secure; 2459 } 2460 2461 static void virt_set_secure(Object *obj, bool value, Error **errp) 2462 { 2463 VirtMachineState *vms = VIRT_MACHINE(obj); 2464 2465 vms->secure = value; 2466 } 2467 2468 static bool virt_get_virt(Object *obj, Error **errp) 2469 { 2470 VirtMachineState *vms = VIRT_MACHINE(obj); 2471 2472 return vms->virt; 2473 } 2474 2475 static void virt_set_virt(Object *obj, bool value, Error **errp) 2476 { 2477 VirtMachineState *vms = VIRT_MACHINE(obj); 2478 2479 vms->virt = value; 2480 } 2481 2482 static bool virt_get_highmem(Object *obj, Error **errp) 2483 { 2484 VirtMachineState *vms = VIRT_MACHINE(obj); 2485 2486 return vms->highmem; 2487 } 2488 2489 static void virt_set_highmem(Object *obj, bool value, Error **errp) 2490 { 2491 VirtMachineState *vms = VIRT_MACHINE(obj); 2492 2493 vms->highmem = value; 2494 } 2495 2496 static bool virt_get_compact_highmem(Object *obj, Error **errp) 2497 { 2498 VirtMachineState *vms = VIRT_MACHINE(obj); 2499 2500 return vms->highmem_compact; 2501 } 2502 2503 static void virt_set_compact_highmem(Object *obj, bool value, Error **errp) 2504 { 2505 VirtMachineState *vms = VIRT_MACHINE(obj); 2506 2507 vms->highmem_compact = value; 2508 } 2509 2510 static bool virt_get_highmem_redists(Object *obj, Error **errp) 2511 { 2512 VirtMachineState *vms = VIRT_MACHINE(obj); 2513 2514 return vms->highmem_redists; 2515 } 2516 2517 static void virt_set_highmem_redists(Object *obj, bool value, Error **errp) 2518 { 2519 VirtMachineState *vms = VIRT_MACHINE(obj); 2520 2521 vms->highmem_redists = value; 2522 } 2523 2524 static bool virt_get_highmem_ecam(Object *obj, Error **errp) 2525 { 2526 VirtMachineState *vms = VIRT_MACHINE(obj); 2527 2528 return vms->highmem_ecam; 2529 } 2530 2531 static void virt_set_highmem_ecam(Object *obj, bool value, Error **errp) 2532 { 2533 VirtMachineState *vms = VIRT_MACHINE(obj); 2534 2535 vms->highmem_ecam = value; 2536 } 2537 2538 static bool virt_get_highmem_mmio(Object *obj, Error **errp) 2539 { 2540 VirtMachineState *vms = VIRT_MACHINE(obj); 2541 2542 return vms->highmem_mmio; 2543 } 2544 2545 static void virt_set_highmem_mmio(Object *obj, bool value, Error **errp) 2546 { 2547 VirtMachineState *vms = VIRT_MACHINE(obj); 2548 2549 vms->highmem_mmio = value; 2550 } 2551 2552 static void virt_get_highmem_mmio_size(Object *obj, Visitor *v, 2553 const char *name, void *opaque, 2554 Error **errp) 2555 { 2556 uint64_t size = extended_memmap[VIRT_HIGH_PCIE_MMIO].size; 2557 2558 visit_type_size(v, name, &size, errp); 2559 } 2560 2561 static void virt_set_highmem_mmio_size(Object *obj, Visitor *v, 2562 const char *name, void *opaque, 2563 Error **errp) 2564 { 2565 uint64_t size; 2566 2567 if (!visit_type_size(v, name, &size, errp)) { 2568 return; 2569 } 2570 2571 if (!is_power_of_2(size)) { 2572 error_setg(errp, "highmem-mmio-size is not a power of 2"); 2573 return; 2574 } 2575 2576 if (size < DEFAULT_HIGH_PCIE_MMIO_SIZE) { 2577 char *sz = size_to_str(DEFAULT_HIGH_PCIE_MMIO_SIZE); 2578 error_setg(errp, "highmem-mmio-size cannot be set to a lower value " 2579 "than the default (%s)", sz); 2580 g_free(sz); 2581 return; 2582 } 2583 2584 extended_memmap[VIRT_HIGH_PCIE_MMIO].size = size; 2585 } 2586 2587 static bool virt_get_its(Object *obj, Error **errp) 2588 { 2589 VirtMachineState *vms = VIRT_MACHINE(obj); 2590 2591 return vms->its; 2592 } 2593 2594 static void virt_set_its(Object *obj, bool value, Error **errp) 2595 { 2596 VirtMachineState *vms = VIRT_MACHINE(obj); 2597 2598 vms->its = value; 2599 } 2600 2601 static bool virt_get_dtb_randomness(Object *obj, Error **errp) 2602 { 2603 VirtMachineState *vms = VIRT_MACHINE(obj); 2604 2605 return vms->dtb_randomness; 2606 } 2607 2608 static void virt_set_dtb_randomness(Object *obj, bool value, Error **errp) 2609 { 2610 VirtMachineState *vms = VIRT_MACHINE(obj); 2611 2612 vms->dtb_randomness = value; 2613 } 2614 2615 static char *virt_get_oem_id(Object *obj, Error **errp) 2616 { 2617 VirtMachineState *vms = VIRT_MACHINE(obj); 2618 2619 return g_strdup(vms->oem_id); 2620 } 2621 2622 static void virt_set_oem_id(Object *obj, const char *value, Error **errp) 2623 { 2624 VirtMachineState *vms = VIRT_MACHINE(obj); 2625 size_t len = strlen(value); 2626 2627 if (len > 6) { 2628 error_setg(errp, 2629 "User specified oem-id value is bigger than 6 bytes in size"); 2630 return; 2631 } 2632 2633 strncpy(vms->oem_id, value, 6); 2634 } 2635 2636 static char *virt_get_oem_table_id(Object *obj, Error **errp) 2637 { 2638 VirtMachineState *vms = VIRT_MACHINE(obj); 2639 2640 return g_strdup(vms->oem_table_id); 2641 } 2642 2643 static void virt_set_oem_table_id(Object *obj, const char *value, 2644 Error **errp) 2645 { 2646 VirtMachineState *vms = VIRT_MACHINE(obj); 2647 size_t len = strlen(value); 2648 2649 if (len > 8) { 2650 error_setg(errp, 2651 "User specified oem-table-id value is bigger than 8 bytes in size"); 2652 return; 2653 } 2654 strncpy(vms->oem_table_id, value, 8); 2655 } 2656 2657 2658 bool virt_is_acpi_enabled(VirtMachineState *vms) 2659 { 2660 if (vms->acpi == ON_OFF_AUTO_OFF) { 2661 return false; 2662 } 2663 return true; 2664 } 2665 2666 static void virt_get_acpi(Object *obj, Visitor *v, const char *name, 2667 void *opaque, Error **errp) 2668 { 2669 VirtMachineState *vms = VIRT_MACHINE(obj); 2670 OnOffAuto acpi = vms->acpi; 2671 2672 visit_type_OnOffAuto(v, name, &acpi, errp); 2673 } 2674 2675 static void virt_set_acpi(Object *obj, Visitor *v, const char *name, 2676 void *opaque, Error **errp) 2677 { 2678 VirtMachineState *vms = VIRT_MACHINE(obj); 2679 2680 visit_type_OnOffAuto(v, name, &vms->acpi, errp); 2681 } 2682 2683 static bool virt_get_ras(Object *obj, Error **errp) 2684 { 2685 VirtMachineState *vms = VIRT_MACHINE(obj); 2686 2687 return vms->ras; 2688 } 2689 2690 static void virt_set_ras(Object *obj, bool value, Error **errp) 2691 { 2692 VirtMachineState *vms = VIRT_MACHINE(obj); 2693 2694 vms->ras = value; 2695 } 2696 2697 static bool virt_get_mte(Object *obj, Error **errp) 2698 { 2699 VirtMachineState *vms = VIRT_MACHINE(obj); 2700 2701 return vms->mte; 2702 } 2703 2704 static void virt_set_mte(Object *obj, bool value, Error **errp) 2705 { 2706 VirtMachineState *vms = VIRT_MACHINE(obj); 2707 2708 vms->mte = value; 2709 } 2710 2711 static char *virt_get_gic_version(Object *obj, Error **errp) 2712 { 2713 VirtMachineState *vms = VIRT_MACHINE(obj); 2714 const char *val; 2715 2716 switch (vms->gic_version) { 2717 case VIRT_GIC_VERSION_4: 2718 val = "4"; 2719 break; 2720 case VIRT_GIC_VERSION_3: 2721 val = "3"; 2722 break; 2723 default: 2724 val = "2"; 2725 break; 2726 } 2727 return g_strdup(val); 2728 } 2729 2730 static void virt_set_gic_version(Object *obj, const char *value, Error **errp) 2731 { 2732 VirtMachineState *vms = VIRT_MACHINE(obj); 2733 2734 if (!strcmp(value, "4")) { 2735 vms->gic_version = VIRT_GIC_VERSION_4; 2736 } else if (!strcmp(value, "3")) { 2737 vms->gic_version = VIRT_GIC_VERSION_3; 2738 } else if (!strcmp(value, "2")) { 2739 vms->gic_version = VIRT_GIC_VERSION_2; 2740 } else if (!strcmp(value, "host")) { 2741 vms->gic_version = VIRT_GIC_VERSION_HOST; /* Will probe later */ 2742 } else if (!strcmp(value, "max")) { 2743 vms->gic_version = VIRT_GIC_VERSION_MAX; /* Will probe later */ 2744 } else { 2745 error_setg(errp, "Invalid gic-version value"); 2746 error_append_hint(errp, "Valid values are 3, 2, host, max.\n"); 2747 } 2748 } 2749 2750 static char *virt_get_iommu(Object *obj, Error **errp) 2751 { 2752 VirtMachineState *vms = VIRT_MACHINE(obj); 2753 2754 switch (vms->iommu) { 2755 case VIRT_IOMMU_NONE: 2756 return g_strdup("none"); 2757 case VIRT_IOMMU_SMMUV3: 2758 return g_strdup("smmuv3"); 2759 default: 2760 g_assert_not_reached(); 2761 } 2762 } 2763 2764 static void virt_set_iommu(Object *obj, const char *value, Error **errp) 2765 { 2766 VirtMachineState *vms = VIRT_MACHINE(obj); 2767 2768 if (!strcmp(value, "smmuv3")) { 2769 vms->iommu = VIRT_IOMMU_SMMUV3; 2770 } else if (!strcmp(value, "none")) { 2771 vms->iommu = VIRT_IOMMU_NONE; 2772 } else { 2773 error_setg(errp, "Invalid iommu value"); 2774 error_append_hint(errp, "Valid values are none, smmuv3.\n"); 2775 } 2776 } 2777 2778 static bool virt_get_default_bus_bypass_iommu(Object *obj, Error **errp) 2779 { 2780 VirtMachineState *vms = VIRT_MACHINE(obj); 2781 2782 return vms->default_bus_bypass_iommu; 2783 } 2784 2785 static void virt_set_default_bus_bypass_iommu(Object *obj, bool value, 2786 Error **errp) 2787 { 2788 VirtMachineState *vms = VIRT_MACHINE(obj); 2789 2790 vms->default_bus_bypass_iommu = value; 2791 } 2792 2793 static CpuInstanceProperties 2794 virt_cpu_index_to_props(MachineState *ms, unsigned cpu_index) 2795 { 2796 MachineClass *mc = MACHINE_GET_CLASS(ms); 2797 const CPUArchIdList *possible_cpus = mc->possible_cpu_arch_ids(ms); 2798 2799 assert(cpu_index < possible_cpus->len); 2800 return possible_cpus->cpus[cpu_index].props; 2801 } 2802 2803 static int64_t virt_get_default_cpu_node_id(const MachineState *ms, int idx) 2804 { 2805 int64_t socket_id = ms->possible_cpus->cpus[idx].props.socket_id; 2806 2807 return socket_id % ms->numa_state->num_nodes; 2808 } 2809 2810 static const CPUArchIdList *virt_possible_cpu_arch_ids(MachineState *ms) 2811 { 2812 int n; 2813 unsigned int max_cpus = ms->smp.max_cpus; 2814 VirtMachineState *vms = VIRT_MACHINE(ms); 2815 MachineClass *mc = MACHINE_GET_CLASS(vms); 2816 2817 if (ms->possible_cpus) { 2818 assert(ms->possible_cpus->len == max_cpus); 2819 return ms->possible_cpus; 2820 } 2821 2822 ms->possible_cpus = g_malloc0(sizeof(CPUArchIdList) + 2823 sizeof(CPUArchId) * max_cpus); 2824 ms->possible_cpus->len = max_cpus; 2825 for (n = 0; n < ms->possible_cpus->len; n++) { 2826 ms->possible_cpus->cpus[n].type = ms->cpu_type; 2827 ms->possible_cpus->cpus[n].arch_id = 2828 virt_cpu_mp_affinity(vms, n); 2829 2830 assert(!mc->smp_props.dies_supported); 2831 ms->possible_cpus->cpus[n].props.has_socket_id = true; 2832 ms->possible_cpus->cpus[n].props.socket_id = 2833 n / (ms->smp.clusters * ms->smp.cores * ms->smp.threads); 2834 ms->possible_cpus->cpus[n].props.has_cluster_id = true; 2835 ms->possible_cpus->cpus[n].props.cluster_id = 2836 (n / (ms->smp.cores * ms->smp.threads)) % ms->smp.clusters; 2837 ms->possible_cpus->cpus[n].props.has_core_id = true; 2838 ms->possible_cpus->cpus[n].props.core_id = 2839 (n / ms->smp.threads) % ms->smp.cores; 2840 ms->possible_cpus->cpus[n].props.has_thread_id = true; 2841 ms->possible_cpus->cpus[n].props.thread_id = 2842 n % ms->smp.threads; 2843 } 2844 return ms->possible_cpus; 2845 } 2846 2847 static void virt_memory_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev, 2848 Error **errp) 2849 { 2850 VirtMachineState *vms = VIRT_MACHINE(hotplug_dev); 2851 const MachineState *ms = MACHINE(hotplug_dev); 2852 const bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM); 2853 2854 if (!vms->acpi_dev) { 2855 error_setg(errp, 2856 "memory hotplug is not enabled: missing acpi-ged device"); 2857 return; 2858 } 2859 2860 if (vms->mte) { 2861 error_setg(errp, "memory hotplug is not enabled: MTE is enabled"); 2862 return; 2863 } 2864 2865 if (is_nvdimm && !ms->nvdimms_state->is_enabled) { 2866 error_setg(errp, "nvdimm is not enabled: add 'nvdimm=on' to '-M'"); 2867 return; 2868 } 2869 2870 pc_dimm_pre_plug(PC_DIMM(dev), MACHINE(hotplug_dev), errp); 2871 } 2872 2873 static void virt_memory_plug(HotplugHandler *hotplug_dev, 2874 DeviceState *dev, Error **errp) 2875 { 2876 VirtMachineState *vms = VIRT_MACHINE(hotplug_dev); 2877 MachineState *ms = MACHINE(hotplug_dev); 2878 bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM); 2879 2880 pc_dimm_plug(PC_DIMM(dev), MACHINE(vms)); 2881 2882 if (is_nvdimm) { 2883 nvdimm_plug(ms->nvdimms_state); 2884 } 2885 2886 hotplug_handler_plug(HOTPLUG_HANDLER(vms->acpi_dev), 2887 dev, &error_abort); 2888 } 2889 2890 static void virt_machine_device_pre_plug_cb(HotplugHandler *hotplug_dev, 2891 DeviceState *dev, Error **errp) 2892 { 2893 VirtMachineState *vms = VIRT_MACHINE(hotplug_dev); 2894 2895 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { 2896 virt_memory_pre_plug(hotplug_dev, dev, errp); 2897 } else if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_MD_PCI)) { 2898 virtio_md_pci_pre_plug(VIRTIO_MD_PCI(dev), MACHINE(hotplug_dev), errp); 2899 } else if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_IOMMU_PCI)) { 2900 hwaddr db_start = 0, db_end = 0; 2901 QList *reserved_regions; 2902 char *resv_prop_str; 2903 2904 if (vms->iommu != VIRT_IOMMU_NONE) { 2905 error_setg(errp, "virt machine does not support multiple IOMMUs"); 2906 return; 2907 } 2908 2909 switch (vms->msi_controller) { 2910 case VIRT_MSI_CTRL_NONE: 2911 return; 2912 case VIRT_MSI_CTRL_ITS: 2913 /* GITS_TRANSLATER page */ 2914 db_start = base_memmap[VIRT_GIC_ITS].base + 0x10000; 2915 db_end = base_memmap[VIRT_GIC_ITS].base + 2916 base_memmap[VIRT_GIC_ITS].size - 1; 2917 break; 2918 case VIRT_MSI_CTRL_GICV2M: 2919 /* MSI_SETSPI_NS page */ 2920 db_start = base_memmap[VIRT_GIC_V2M].base; 2921 db_end = db_start + base_memmap[VIRT_GIC_V2M].size - 1; 2922 break; 2923 } 2924 resv_prop_str = g_strdup_printf("0x%"PRIx64":0x%"PRIx64":%u", 2925 db_start, db_end, 2926 VIRTIO_IOMMU_RESV_MEM_T_MSI); 2927 2928 reserved_regions = qlist_new(); 2929 qlist_append_str(reserved_regions, resv_prop_str); 2930 qdev_prop_set_array(dev, "reserved-regions", reserved_regions); 2931 g_free(resv_prop_str); 2932 } 2933 } 2934 2935 static void virt_machine_device_plug_cb(HotplugHandler *hotplug_dev, 2936 DeviceState *dev, Error **errp) 2937 { 2938 VirtMachineState *vms = VIRT_MACHINE(hotplug_dev); 2939 2940 if (vms->platform_bus_dev) { 2941 MachineClass *mc = MACHINE_GET_CLASS(vms); 2942 2943 if (device_is_dynamic_sysbus(mc, dev)) { 2944 platform_bus_link_device(PLATFORM_BUS_DEVICE(vms->platform_bus_dev), 2945 SYS_BUS_DEVICE(dev)); 2946 } 2947 } 2948 2949 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { 2950 virt_memory_plug(hotplug_dev, dev, errp); 2951 } else if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_MD_PCI)) { 2952 virtio_md_pci_plug(VIRTIO_MD_PCI(dev), MACHINE(hotplug_dev), errp); 2953 } 2954 2955 if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_IOMMU_PCI)) { 2956 PCIDevice *pdev = PCI_DEVICE(dev); 2957 2958 vms->iommu = VIRT_IOMMU_VIRTIO; 2959 vms->virtio_iommu_bdf = pci_get_bdf(pdev); 2960 create_virtio_iommu_dt_bindings(vms); 2961 } 2962 } 2963 2964 static void virt_dimm_unplug_request(HotplugHandler *hotplug_dev, 2965 DeviceState *dev, Error **errp) 2966 { 2967 VirtMachineState *vms = VIRT_MACHINE(hotplug_dev); 2968 2969 if (!vms->acpi_dev) { 2970 error_setg(errp, 2971 "memory hotplug is not enabled: missing acpi-ged device"); 2972 return; 2973 } 2974 2975 if (object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM)) { 2976 error_setg(errp, "nvdimm device hot unplug is not supported yet."); 2977 return; 2978 } 2979 2980 hotplug_handler_unplug_request(HOTPLUG_HANDLER(vms->acpi_dev), dev, 2981 errp); 2982 } 2983 2984 static void virt_dimm_unplug(HotplugHandler *hotplug_dev, 2985 DeviceState *dev, Error **errp) 2986 { 2987 VirtMachineState *vms = VIRT_MACHINE(hotplug_dev); 2988 Error *local_err = NULL; 2989 2990 hotplug_handler_unplug(HOTPLUG_HANDLER(vms->acpi_dev), dev, &local_err); 2991 if (local_err) { 2992 goto out; 2993 } 2994 2995 pc_dimm_unplug(PC_DIMM(dev), MACHINE(vms)); 2996 qdev_unrealize(dev); 2997 2998 out: 2999 error_propagate(errp, local_err); 3000 } 3001 3002 static void virt_machine_device_unplug_request_cb(HotplugHandler *hotplug_dev, 3003 DeviceState *dev, Error **errp) 3004 { 3005 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { 3006 virt_dimm_unplug_request(hotplug_dev, dev, errp); 3007 } else if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_MD_PCI)) { 3008 virtio_md_pci_unplug_request(VIRTIO_MD_PCI(dev), MACHINE(hotplug_dev), 3009 errp); 3010 } else { 3011 error_setg(errp, "device unplug request for unsupported device" 3012 " type: %s", object_get_typename(OBJECT(dev))); 3013 } 3014 } 3015 3016 static void virt_machine_device_unplug_cb(HotplugHandler *hotplug_dev, 3017 DeviceState *dev, Error **errp) 3018 { 3019 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { 3020 virt_dimm_unplug(hotplug_dev, dev, errp); 3021 } else if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_MD_PCI)) { 3022 virtio_md_pci_unplug(VIRTIO_MD_PCI(dev), MACHINE(hotplug_dev), errp); 3023 } else { 3024 error_setg(errp, "virt: device unplug for unsupported device" 3025 " type: %s", object_get_typename(OBJECT(dev))); 3026 } 3027 } 3028 3029 static HotplugHandler *virt_machine_get_hotplug_handler(MachineState *machine, 3030 DeviceState *dev) 3031 { 3032 MachineClass *mc = MACHINE_GET_CLASS(machine); 3033 3034 if (device_is_dynamic_sysbus(mc, dev) || 3035 object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) || 3036 object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_MD_PCI) || 3037 object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_IOMMU_PCI)) { 3038 return HOTPLUG_HANDLER(machine); 3039 } 3040 return NULL; 3041 } 3042 3043 /* 3044 * for arm64 kvm_type [7-0] encodes the requested number of bits 3045 * in the IPA address space 3046 */ 3047 static int virt_kvm_type(MachineState *ms, const char *type_str) 3048 { 3049 VirtMachineState *vms = VIRT_MACHINE(ms); 3050 int max_vm_pa_size, requested_pa_size; 3051 bool fixed_ipa; 3052 3053 max_vm_pa_size = kvm_arm_get_max_vm_ipa_size(ms, &fixed_ipa); 3054 3055 /* we freeze the memory map to compute the highest gpa */ 3056 virt_set_memmap(vms, max_vm_pa_size); 3057 3058 requested_pa_size = 64 - clz64(vms->highest_gpa); 3059 3060 /* 3061 * KVM requires the IPA size to be at least 32 bits. 3062 */ 3063 if (requested_pa_size < 32) { 3064 requested_pa_size = 32; 3065 } 3066 3067 if (requested_pa_size > max_vm_pa_size) { 3068 error_report("-m and ,maxmem option values " 3069 "require an IPA range (%d bits) larger than " 3070 "the one supported by the host (%d bits)", 3071 requested_pa_size, max_vm_pa_size); 3072 return -1; 3073 } 3074 /* 3075 * We return the requested PA log size, unless KVM only supports 3076 * the implicit legacy 40b IPA setting, in which case the kvm_type 3077 * must be 0. 3078 */ 3079 return fixed_ipa ? 0 : requested_pa_size; 3080 } 3081 3082 static int virt_hvf_get_physical_address_range(MachineState *ms) 3083 { 3084 VirtMachineState *vms = VIRT_MACHINE(ms); 3085 3086 int default_ipa_size = hvf_arm_get_default_ipa_bit_size(); 3087 int max_ipa_size = hvf_arm_get_max_ipa_bit_size(); 3088 3089 /* We freeze the memory map to compute the highest gpa */ 3090 virt_set_memmap(vms, max_ipa_size); 3091 3092 int requested_ipa_size = 64 - clz64(vms->highest_gpa); 3093 3094 /* 3095 * If we're <= the default IPA size just use the default. 3096 * If we're above the default but below the maximum, round up to 3097 * the maximum. hvf_arm_get_max_ipa_bit_size() conveniently only 3098 * returns values that are valid ARM PARange values. 3099 */ 3100 if (requested_ipa_size <= default_ipa_size) { 3101 requested_ipa_size = default_ipa_size; 3102 } else if (requested_ipa_size <= max_ipa_size) { 3103 requested_ipa_size = max_ipa_size; 3104 } else { 3105 error_report("-m and ,maxmem option values " 3106 "require an IPA range (%d bits) larger than " 3107 "the one supported by the host (%d bits)", 3108 requested_ipa_size, max_ipa_size); 3109 return -1; 3110 } 3111 3112 return requested_ipa_size; 3113 } 3114 3115 static void virt_machine_class_init(ObjectClass *oc, const void *data) 3116 { 3117 MachineClass *mc = MACHINE_CLASS(oc); 3118 HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc); 3119 static const char * const valid_cpu_types[] = { 3120 #ifdef CONFIG_TCG 3121 ARM_CPU_TYPE_NAME("cortex-a7"), 3122 ARM_CPU_TYPE_NAME("cortex-a15"), 3123 #ifdef TARGET_AARCH64 3124 ARM_CPU_TYPE_NAME("cortex-a35"), 3125 ARM_CPU_TYPE_NAME("cortex-a55"), 3126 ARM_CPU_TYPE_NAME("cortex-a72"), 3127 ARM_CPU_TYPE_NAME("cortex-a76"), 3128 ARM_CPU_TYPE_NAME("cortex-a710"), 3129 ARM_CPU_TYPE_NAME("a64fx"), 3130 ARM_CPU_TYPE_NAME("neoverse-n1"), 3131 ARM_CPU_TYPE_NAME("neoverse-v1"), 3132 ARM_CPU_TYPE_NAME("neoverse-n2"), 3133 #endif /* TARGET_AARCH64 */ 3134 #endif /* CONFIG_TCG */ 3135 #ifdef TARGET_AARCH64 3136 ARM_CPU_TYPE_NAME("cortex-a53"), 3137 ARM_CPU_TYPE_NAME("cortex-a57"), 3138 #if defined(CONFIG_KVM) || defined(CONFIG_HVF) 3139 ARM_CPU_TYPE_NAME("host"), 3140 #endif /* CONFIG_KVM || CONFIG_HVF */ 3141 #endif /* TARGET_AARCH64 */ 3142 ARM_CPU_TYPE_NAME("max"), 3143 NULL 3144 }; 3145 3146 mc->init = machvirt_init; 3147 /* Start with max_cpus set to 512, which is the maximum supported by KVM. 3148 * The value may be reduced later when we have more information about the 3149 * configuration of the particular instance. 3150 */ 3151 mc->max_cpus = 512; 3152 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_VFIO_CALXEDA_XGMAC); 3153 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_VFIO_AMD_XGBE); 3154 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_RAMFB_DEVICE); 3155 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_VFIO_PLATFORM); 3156 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_UEFI_VARS_SYSBUS); 3157 #ifdef CONFIG_TPM 3158 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_TPM_TIS_SYSBUS); 3159 #endif 3160 mc->block_default_type = IF_VIRTIO; 3161 mc->no_cdrom = 1; 3162 mc->pci_allow_0_address = true; 3163 /* We know we will never create a pre-ARMv7 CPU which needs 1K pages */ 3164 mc->minimum_page_bits = 12; 3165 mc->possible_cpu_arch_ids = virt_possible_cpu_arch_ids; 3166 mc->cpu_index_to_instance_props = virt_cpu_index_to_props; 3167 #ifdef CONFIG_TCG 3168 mc->default_cpu_type = ARM_CPU_TYPE_NAME("cortex-a15"); 3169 #else 3170 mc->default_cpu_type = ARM_CPU_TYPE_NAME("max"); 3171 #endif 3172 mc->valid_cpu_types = valid_cpu_types; 3173 mc->get_default_cpu_node_id = virt_get_default_cpu_node_id; 3174 mc->kvm_type = virt_kvm_type; 3175 mc->hvf_get_physical_address_range = virt_hvf_get_physical_address_range; 3176 assert(!mc->get_hotplug_handler); 3177 mc->get_hotplug_handler = virt_machine_get_hotplug_handler; 3178 hc->pre_plug = virt_machine_device_pre_plug_cb; 3179 hc->plug = virt_machine_device_plug_cb; 3180 hc->unplug_request = virt_machine_device_unplug_request_cb; 3181 hc->unplug = virt_machine_device_unplug_cb; 3182 mc->nvdimm_supported = true; 3183 mc->smp_props.clusters_supported = true; 3184 mc->auto_enable_numa_with_memhp = true; 3185 mc->auto_enable_numa_with_memdev = true; 3186 /* platform instead of architectural choice */ 3187 mc->cpu_cluster_has_numa_boundary = true; 3188 mc->default_ram_id = "mach-virt.ram"; 3189 mc->default_nic = "virtio-net-pci"; 3190 3191 object_class_property_add(oc, "acpi", "OnOffAuto", 3192 virt_get_acpi, virt_set_acpi, 3193 NULL, NULL); 3194 object_class_property_set_description(oc, "acpi", 3195 "Enable ACPI"); 3196 object_class_property_add_bool(oc, "secure", virt_get_secure, 3197 virt_set_secure); 3198 object_class_property_set_description(oc, "secure", 3199 "Set on/off to enable/disable the ARM " 3200 "Security Extensions (TrustZone)"); 3201 3202 object_class_property_add_bool(oc, "virtualization", virt_get_virt, 3203 virt_set_virt); 3204 object_class_property_set_description(oc, "virtualization", 3205 "Set on/off to enable/disable emulating a " 3206 "guest CPU which implements the ARM " 3207 "Virtualization Extensions"); 3208 3209 object_class_property_add_bool(oc, "highmem", virt_get_highmem, 3210 virt_set_highmem); 3211 object_class_property_set_description(oc, "highmem", 3212 "Set on/off to enable/disable using " 3213 "physical address space above 32 bits"); 3214 3215 object_class_property_add_bool(oc, "compact-highmem", 3216 virt_get_compact_highmem, 3217 virt_set_compact_highmem); 3218 object_class_property_set_description(oc, "compact-highmem", 3219 "Set on/off to enable/disable compact " 3220 "layout for high memory regions"); 3221 3222 object_class_property_add_bool(oc, "highmem-redists", 3223 virt_get_highmem_redists, 3224 virt_set_highmem_redists); 3225 object_class_property_set_description(oc, "highmem-redists", 3226 "Set on/off to enable/disable high " 3227 "memory region for GICv3 or GICv4 " 3228 "redistributor"); 3229 3230 object_class_property_add_bool(oc, "highmem-ecam", 3231 virt_get_highmem_ecam, 3232 virt_set_highmem_ecam); 3233 object_class_property_set_description(oc, "highmem-ecam", 3234 "Set on/off to enable/disable high " 3235 "memory region for PCI ECAM"); 3236 3237 object_class_property_add_bool(oc, "highmem-mmio", 3238 virt_get_highmem_mmio, 3239 virt_set_highmem_mmio); 3240 object_class_property_set_description(oc, "highmem-mmio", 3241 "Set on/off to enable/disable high " 3242 "memory region for PCI MMIO"); 3243 3244 object_class_property_add(oc, "highmem-mmio-size", "size", 3245 virt_get_highmem_mmio_size, 3246 virt_set_highmem_mmio_size, 3247 NULL, NULL); 3248 object_class_property_set_description(oc, "highmem-mmio-size", 3249 "Set the high memory region size " 3250 "for PCI MMIO"); 3251 3252 object_class_property_add_str(oc, "gic-version", virt_get_gic_version, 3253 virt_set_gic_version); 3254 object_class_property_set_description(oc, "gic-version", 3255 "Set GIC version. " 3256 "Valid values are 2, 3, 4, host and max"); 3257 3258 object_class_property_add_str(oc, "iommu", virt_get_iommu, virt_set_iommu); 3259 object_class_property_set_description(oc, "iommu", 3260 "Set the IOMMU type. " 3261 "Valid values are none and smmuv3"); 3262 3263 object_class_property_add_bool(oc, "default-bus-bypass-iommu", 3264 virt_get_default_bus_bypass_iommu, 3265 virt_set_default_bus_bypass_iommu); 3266 object_class_property_set_description(oc, "default-bus-bypass-iommu", 3267 "Set on/off to enable/disable " 3268 "bypass_iommu for default root bus"); 3269 3270 object_class_property_add_bool(oc, "ras", virt_get_ras, 3271 virt_set_ras); 3272 object_class_property_set_description(oc, "ras", 3273 "Set on/off to enable/disable reporting host memory errors " 3274 "to a KVM guest using ACPI and guest external abort exceptions"); 3275 3276 object_class_property_add_bool(oc, "mte", virt_get_mte, virt_set_mte); 3277 object_class_property_set_description(oc, "mte", 3278 "Set on/off to enable/disable emulating a " 3279 "guest CPU which implements the ARM " 3280 "Memory Tagging Extension"); 3281 3282 object_class_property_add_bool(oc, "its", virt_get_its, 3283 virt_set_its); 3284 object_class_property_set_description(oc, "its", 3285 "Set on/off to enable/disable " 3286 "ITS instantiation"); 3287 3288 object_class_property_add_bool(oc, "dtb-randomness", 3289 virt_get_dtb_randomness, 3290 virt_set_dtb_randomness); 3291 object_class_property_set_description(oc, "dtb-randomness", 3292 "Set off to disable passing random or " 3293 "non-deterministic dtb nodes to guest"); 3294 3295 object_class_property_add_bool(oc, "dtb-kaslr-seed", 3296 virt_get_dtb_randomness, 3297 virt_set_dtb_randomness); 3298 object_class_property_set_description(oc, "dtb-kaslr-seed", 3299 "Deprecated synonym of dtb-randomness"); 3300 3301 object_class_property_add_str(oc, "x-oem-id", 3302 virt_get_oem_id, 3303 virt_set_oem_id); 3304 object_class_property_set_description(oc, "x-oem-id", 3305 "Override the default value of field OEMID " 3306 "in ACPI table header." 3307 "The string may be up to 6 bytes in size"); 3308 3309 3310 object_class_property_add_str(oc, "x-oem-table-id", 3311 virt_get_oem_table_id, 3312 virt_set_oem_table_id); 3313 object_class_property_set_description(oc, "x-oem-table-id", 3314 "Override the default value of field OEM Table ID " 3315 "in ACPI table header." 3316 "The string may be up to 8 bytes in size"); 3317 3318 } 3319 3320 static void virt_instance_init(Object *obj) 3321 { 3322 VirtMachineState *vms = VIRT_MACHINE(obj); 3323 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms); 3324 3325 /* EL3 is disabled by default on virt: this makes us consistent 3326 * between KVM and TCG for this board, and it also allows us to 3327 * boot UEFI blobs which assume no TrustZone support. 3328 */ 3329 vms->secure = false; 3330 3331 /* EL2 is also disabled by default, for similar reasons */ 3332 vms->virt = false; 3333 3334 /* High memory is enabled by default */ 3335 vms->highmem = true; 3336 vms->highmem_compact = !vmc->no_highmem_compact; 3337 vms->gic_version = VIRT_GIC_VERSION_NOSEL; 3338 3339 vms->highmem_ecam = true; 3340 vms->highmem_mmio = true; 3341 vms->highmem_redists = true; 3342 3343 /* Default allows ITS instantiation */ 3344 vms->its = true; 3345 3346 if (vmc->no_tcg_its) { 3347 vms->tcg_its = false; 3348 } else { 3349 vms->tcg_its = true; 3350 } 3351 3352 /* Default disallows iommu instantiation */ 3353 vms->iommu = VIRT_IOMMU_NONE; 3354 3355 /* The default root bus is attached to iommu by default */ 3356 vms->default_bus_bypass_iommu = false; 3357 3358 /* Default disallows RAS instantiation */ 3359 vms->ras = false; 3360 3361 /* MTE is disabled by default. */ 3362 vms->mte = false; 3363 3364 /* Supply kaslr-seed and rng-seed by default */ 3365 vms->dtb_randomness = true; 3366 3367 vms->irqmap = a15irqmap; 3368 3369 virt_flash_create(vms); 3370 3371 vms->oem_id = g_strndup(ACPI_BUILD_APPNAME6, 6); 3372 vms->oem_table_id = g_strndup(ACPI_BUILD_APPNAME8, 8); 3373 } 3374 3375 static const TypeInfo virt_machine_info = { 3376 .name = TYPE_VIRT_MACHINE, 3377 .parent = TYPE_MACHINE, 3378 .abstract = true, 3379 .instance_size = sizeof(VirtMachineState), 3380 .class_size = sizeof(VirtMachineClass), 3381 .class_init = virt_machine_class_init, 3382 .instance_init = virt_instance_init, 3383 .interfaces = (const InterfaceInfo[]) { 3384 { TYPE_HOTPLUG_HANDLER }, 3385 { } 3386 }, 3387 }; 3388 3389 static void machvirt_machine_init(void) 3390 { 3391 type_register_static(&virt_machine_info); 3392 } 3393 type_init(machvirt_machine_init); 3394 3395 static void virt_machine_10_1_options(MachineClass *mc) 3396 { 3397 } 3398 DEFINE_VIRT_MACHINE_AS_LATEST(10, 1) 3399 3400 static void virt_machine_10_0_options(MachineClass *mc) 3401 { 3402 virt_machine_10_1_options(mc); 3403 compat_props_add(mc->compat_props, hw_compat_10_0, hw_compat_10_0_len); 3404 } 3405 DEFINE_VIRT_MACHINE(10, 0) 3406 3407 static void virt_machine_9_2_options(MachineClass *mc) 3408 { 3409 virt_machine_10_0_options(mc); 3410 compat_props_add(mc->compat_props, hw_compat_9_2, hw_compat_9_2_len); 3411 } 3412 DEFINE_VIRT_MACHINE(9, 2) 3413 3414 static void virt_machine_9_1_options(MachineClass *mc) 3415 { 3416 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc)); 3417 3418 virt_machine_9_2_options(mc); 3419 compat_props_add(mc->compat_props, hw_compat_9_1, hw_compat_9_1_len); 3420 /* 9.1 and earlier have only a stage-1 SMMU, not a nested s1+2 one */ 3421 vmc->no_nested_smmu = true; 3422 } 3423 DEFINE_VIRT_MACHINE(9, 1) 3424 3425 static void virt_machine_9_0_options(MachineClass *mc) 3426 { 3427 virt_machine_9_1_options(mc); 3428 mc->smbios_memory_device_size = 16 * GiB; 3429 compat_props_add(mc->compat_props, hw_compat_9_0, hw_compat_9_0_len); 3430 } 3431 DEFINE_VIRT_MACHINE(9, 0) 3432 3433 static void virt_machine_8_2_options(MachineClass *mc) 3434 { 3435 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc)); 3436 3437 virt_machine_9_0_options(mc); 3438 compat_props_add(mc->compat_props, hw_compat_8_2, hw_compat_8_2_len); 3439 /* 3440 * Don't expose NS_EL2_VIRT timer IRQ in DTB on ACPI on 8.2 and 3441 * earlier machines. (Exposing it tickles a bug in older EDK2 3442 * guest BIOS binaries.) 3443 */ 3444 vmc->no_ns_el2_virt_timer_irq = true; 3445 } 3446 DEFINE_VIRT_MACHINE(8, 2) 3447 3448 static void virt_machine_8_1_options(MachineClass *mc) 3449 { 3450 virt_machine_8_2_options(mc); 3451 compat_props_add(mc->compat_props, hw_compat_8_1, hw_compat_8_1_len); 3452 } 3453 DEFINE_VIRT_MACHINE(8, 1) 3454 3455 static void virt_machine_8_0_options(MachineClass *mc) 3456 { 3457 virt_machine_8_1_options(mc); 3458 compat_props_add(mc->compat_props, hw_compat_8_0, hw_compat_8_0_len); 3459 } 3460 DEFINE_VIRT_MACHINE(8, 0) 3461 3462 static void virt_machine_7_2_options(MachineClass *mc) 3463 { 3464 virt_machine_8_0_options(mc); 3465 compat_props_add(mc->compat_props, hw_compat_7_2, hw_compat_7_2_len); 3466 } 3467 DEFINE_VIRT_MACHINE(7, 2) 3468 3469 static void virt_machine_7_1_options(MachineClass *mc) 3470 { 3471 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc)); 3472 3473 virt_machine_7_2_options(mc); 3474 compat_props_add(mc->compat_props, hw_compat_7_1, hw_compat_7_1_len); 3475 /* Compact layout for high memory regions was introduced with 7.2 */ 3476 vmc->no_highmem_compact = true; 3477 } 3478 DEFINE_VIRT_MACHINE(7, 1) 3479 3480 static void virt_machine_7_0_options(MachineClass *mc) 3481 { 3482 virt_machine_7_1_options(mc); 3483 compat_props_add(mc->compat_props, hw_compat_7_0, hw_compat_7_0_len); 3484 } 3485 DEFINE_VIRT_MACHINE(7, 0) 3486 3487 static void virt_machine_6_2_options(MachineClass *mc) 3488 { 3489 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc)); 3490 3491 virt_machine_7_0_options(mc); 3492 compat_props_add(mc->compat_props, hw_compat_6_2, hw_compat_6_2_len); 3493 vmc->no_tcg_lpa2 = true; 3494 } 3495 DEFINE_VIRT_MACHINE(6, 2) 3496 3497 static void virt_machine_6_1_options(MachineClass *mc) 3498 { 3499 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc)); 3500 3501 virt_machine_6_2_options(mc); 3502 compat_props_add(mc->compat_props, hw_compat_6_1, hw_compat_6_1_len); 3503 mc->smp_props.prefer_sockets = true; 3504 vmc->no_cpu_topology = true; 3505 3506 /* qemu ITS was introduced with 6.2 */ 3507 vmc->no_tcg_its = true; 3508 } 3509 DEFINE_VIRT_MACHINE(6, 1) 3510 3511 static void virt_machine_6_0_options(MachineClass *mc) 3512 { 3513 virt_machine_6_1_options(mc); 3514 compat_props_add(mc->compat_props, hw_compat_6_0, hw_compat_6_0_len); 3515 } 3516 DEFINE_VIRT_MACHINE(6, 0) 3517 3518 static void virt_machine_5_2_options(MachineClass *mc) 3519 { 3520 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc)); 3521 3522 virt_machine_6_0_options(mc); 3523 compat_props_add(mc->compat_props, hw_compat_5_2, hw_compat_5_2_len); 3524 vmc->no_secure_gpio = true; 3525 } 3526 DEFINE_VIRT_MACHINE(5, 2) 3527 3528 static void virt_machine_5_1_options(MachineClass *mc) 3529 { 3530 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc)); 3531 3532 virt_machine_5_2_options(mc); 3533 compat_props_add(mc->compat_props, hw_compat_5_1, hw_compat_5_1_len); 3534 vmc->no_kvm_steal_time = true; 3535 } 3536 DEFINE_VIRT_MACHINE(5, 1) 3537 3538 static void virt_machine_5_0_options(MachineClass *mc) 3539 { 3540 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc)); 3541 3542 virt_machine_5_1_options(mc); 3543 compat_props_add(mc->compat_props, hw_compat_5_0, hw_compat_5_0_len); 3544 mc->numa_mem_supported = true; 3545 vmc->acpi_expose_flash = true; 3546 mc->auto_enable_numa_with_memdev = false; 3547 } 3548 DEFINE_VIRT_MACHINE(5, 0) 3549 3550 static void virt_machine_4_2_options(MachineClass *mc) 3551 { 3552 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc)); 3553 3554 virt_machine_5_0_options(mc); 3555 compat_props_add(mc->compat_props, hw_compat_4_2, hw_compat_4_2_len); 3556 vmc->kvm_no_adjvtime = true; 3557 } 3558 DEFINE_VIRT_MACHINE(4, 2) 3559 3560 static void virt_machine_4_1_options(MachineClass *mc) 3561 { 3562 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc)); 3563 3564 virt_machine_4_2_options(mc); 3565 compat_props_add(mc->compat_props, hw_compat_4_1, hw_compat_4_1_len); 3566 vmc->no_ged = true; 3567 mc->auto_enable_numa_with_memhp = false; 3568 } 3569 DEFINE_VIRT_MACHINE(4, 1) 3570 3571 static void virt_machine_4_0_options(MachineClass *mc) 3572 { 3573 virt_machine_4_1_options(mc); 3574 compat_props_add(mc->compat_props, hw_compat_4_0, hw_compat_4_0_len); 3575 } 3576 DEFINE_VIRT_MACHINE(4, 0) 3577 3578 static void virt_machine_3_1_options(MachineClass *mc) 3579 { 3580 virt_machine_4_0_options(mc); 3581 compat_props_add(mc->compat_props, hw_compat_3_1, hw_compat_3_1_len); 3582 } 3583 DEFINE_VIRT_MACHINE(3, 1) 3584 3585 static void virt_machine_3_0_options(MachineClass *mc) 3586 { 3587 virt_machine_3_1_options(mc); 3588 compat_props_add(mc->compat_props, hw_compat_3_0, hw_compat_3_0_len); 3589 } 3590 DEFINE_VIRT_MACHINE(3, 0) 3591