1 /* 2 * ARM mach-virt emulation 3 * 4 * Copyright (c) 2013 Linaro Limited 5 * 6 * This program is free software; you can redistribute it and/or modify it 7 * under the terms and conditions of the GNU General Public License, 8 * version 2 or later, as published by the Free Software Foundation. 9 * 10 * This program is distributed in the hope it will be useful, but WITHOUT 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 13 * more details. 14 * 15 * You should have received a copy of the GNU General Public License along with 16 * this program. If not, see <http://www.gnu.org/licenses/>. 17 * 18 * Emulate a virtual board which works by passing Linux all the information 19 * it needs about what devices are present via the device tree. 20 * There are some restrictions about what we can do here: 21 * + we can only present devices whose Linux drivers will work based 22 * purely on the device tree with no platform data at all 23 * + we want to present a very stripped-down minimalist platform, 24 * both because this reduces the security attack surface from the guest 25 * and also because it reduces our exposure to being broken when 26 * the kernel updates its device tree bindings and requires further 27 * information in a device binding that we aren't providing. 28 * This is essentially the same approach kvmtool uses. 29 */ 30 31 #include "qemu/osdep.h" 32 #include "qemu/datadir.h" 33 #include "qemu/units.h" 34 #include "qemu/option.h" 35 #include "monitor/qdev.h" 36 #include "hw/sysbus.h" 37 #include "hw/arm/boot.h" 38 #include "hw/arm/primecell.h" 39 #include "hw/arm/virt.h" 40 #include "hw/block/flash.h" 41 #include "hw/vfio/vfio-calxeda-xgmac.h" 42 #include "hw/vfio/vfio-amd-xgbe.h" 43 #include "hw/display/ramfb.h" 44 #include "net/net.h" 45 #include "system/device_tree.h" 46 #include "system/numa.h" 47 #include "system/runstate.h" 48 #include "system/tpm.h" 49 #include "system/tcg.h" 50 #include "system/kvm.h" 51 #include "system/hvf.h" 52 #include "system/qtest.h" 53 #include "hw/loader.h" 54 #include "qapi/error.h" 55 #include "qemu/bitops.h" 56 #include "qemu/cutils.h" 57 #include "qemu/error-report.h" 58 #include "qemu/module.h" 59 #include "hw/pci-host/gpex.h" 60 #include "hw/virtio/virtio-pci.h" 61 #include "hw/core/sysbus-fdt.h" 62 #include "hw/platform-bus.h" 63 #include "hw/qdev-properties.h" 64 #include "hw/arm/fdt.h" 65 #include "hw/intc/arm_gic.h" 66 #include "hw/intc/arm_gicv3_common.h" 67 #include "hw/intc/arm_gicv3_its_common.h" 68 #include "hw/irq.h" 69 #include "kvm_arm.h" 70 #include "hvf_arm.h" 71 #include "hw/firmware/smbios.h" 72 #include "qapi/visitor.h" 73 #include "qapi/qapi-visit-common.h" 74 #include "qobject/qlist.h" 75 #include "standard-headers/linux/input.h" 76 #include "hw/arm/smmuv3.h" 77 #include "hw/acpi/acpi.h" 78 #include "target/arm/cpu-qom.h" 79 #include "target/arm/internals.h" 80 #include "target/arm/multiprocessing.h" 81 #include "target/arm/gtimer.h" 82 #include "hw/mem/pc-dimm.h" 83 #include "hw/mem/nvdimm.h" 84 #include "hw/acpi/generic_event_device.h" 85 #include "hw/uefi/var-service-api.h" 86 #include "hw/virtio/virtio-md-pci.h" 87 #include "hw/virtio/virtio-iommu.h" 88 #include "hw/char/pl011.h" 89 #include "qemu/guest-random.h" 90 91 static GlobalProperty arm_virt_compat[] = { 92 { TYPE_VIRTIO_IOMMU_PCI, "aw-bits", "48" }, 93 }; 94 static const size_t arm_virt_compat_len = G_N_ELEMENTS(arm_virt_compat); 95 96 /* 97 * This cannot be called from the virt_machine_class_init() because 98 * TYPE_VIRT_MACHINE is abstract and mc->compat_props g_ptr_array_new() 99 * only is called on virt non abstract class init. 100 */ 101 static void arm_virt_compat_set(MachineClass *mc) 102 { 103 compat_props_add(mc->compat_props, arm_virt_compat, 104 arm_virt_compat_len); 105 } 106 107 #define DEFINE_VIRT_MACHINE_IMPL(latest, ...) \ 108 static void MACHINE_VER_SYM(class_init, virt, __VA_ARGS__)( \ 109 ObjectClass *oc, \ 110 void *data) \ 111 { \ 112 MachineClass *mc = MACHINE_CLASS(oc); \ 113 arm_virt_compat_set(mc); \ 114 MACHINE_VER_SYM(options, virt, __VA_ARGS__)(mc); \ 115 mc->desc = "QEMU " MACHINE_VER_STR(__VA_ARGS__) " ARM Virtual Machine"; \ 116 MACHINE_VER_DEPRECATION(__VA_ARGS__); \ 117 if (latest) { \ 118 mc->alias = "virt"; \ 119 } \ 120 } \ 121 static const TypeInfo MACHINE_VER_SYM(info, virt, __VA_ARGS__) = \ 122 { \ 123 .name = MACHINE_VER_TYPE_NAME("virt", __VA_ARGS__), \ 124 .parent = TYPE_VIRT_MACHINE, \ 125 .class_init = MACHINE_VER_SYM(class_init, virt, __VA_ARGS__), \ 126 }; \ 127 static void MACHINE_VER_SYM(register, virt, __VA_ARGS__)(void) \ 128 { \ 129 MACHINE_VER_DELETION(__VA_ARGS__); \ 130 type_register_static(&MACHINE_VER_SYM(info, virt, __VA_ARGS__)); \ 131 } \ 132 type_init(MACHINE_VER_SYM(register, virt, __VA_ARGS__)); 133 134 #define DEFINE_VIRT_MACHINE_AS_LATEST(major, minor) \ 135 DEFINE_VIRT_MACHINE_IMPL(true, major, minor) 136 #define DEFINE_VIRT_MACHINE(major, minor) \ 137 DEFINE_VIRT_MACHINE_IMPL(false, major, minor) 138 139 140 /* Number of external interrupt lines to configure the GIC with */ 141 #define NUM_IRQS 256 142 143 #define PLATFORM_BUS_NUM_IRQS 64 144 145 /* Legacy RAM limit in GB (< version 4.0) */ 146 #define LEGACY_RAMLIMIT_GB 255 147 #define LEGACY_RAMLIMIT_BYTES (LEGACY_RAMLIMIT_GB * GiB) 148 149 /* Addresses and sizes of our components. 150 * 0..128MB is space for a flash device so we can run bootrom code such as UEFI. 151 * 128MB..256MB is used for miscellaneous device I/O. 152 * 256MB..1GB is reserved for possible future PCI support (ie where the 153 * PCI memory window will go if we add a PCI host controller). 154 * 1GB and up is RAM (which may happily spill over into the 155 * high memory region beyond 4GB). 156 * This represents a compromise between how much RAM can be given to 157 * a 32 bit VM and leaving space for expansion and in particular for PCI. 158 * Note that devices should generally be placed at multiples of 0x10000, 159 * to accommodate guests using 64K pages. 160 */ 161 static const MemMapEntry base_memmap[] = { 162 /* Space up to 0x8000000 is reserved for a boot ROM */ 163 [VIRT_FLASH] = { 0, 0x08000000 }, 164 [VIRT_CPUPERIPHS] = { 0x08000000, 0x00020000 }, 165 /* GIC distributor and CPU interfaces sit inside the CPU peripheral space */ 166 [VIRT_GIC_DIST] = { 0x08000000, 0x00010000 }, 167 [VIRT_GIC_CPU] = { 0x08010000, 0x00010000 }, 168 [VIRT_GIC_V2M] = { 0x08020000, 0x00001000 }, 169 [VIRT_GIC_HYP] = { 0x08030000, 0x00010000 }, 170 [VIRT_GIC_VCPU] = { 0x08040000, 0x00010000 }, 171 /* The space in between here is reserved for GICv3 CPU/vCPU/HYP */ 172 [VIRT_GIC_ITS] = { 0x08080000, 0x00020000 }, 173 /* This redistributor space allows up to 2*64kB*123 CPUs */ 174 [VIRT_GIC_REDIST] = { 0x080A0000, 0x00F60000 }, 175 [VIRT_UART0] = { 0x09000000, 0x00001000 }, 176 [VIRT_RTC] = { 0x09010000, 0x00001000 }, 177 [VIRT_FW_CFG] = { 0x09020000, 0x00000018 }, 178 [VIRT_GPIO] = { 0x09030000, 0x00001000 }, 179 [VIRT_UART1] = { 0x09040000, 0x00001000 }, 180 [VIRT_SMMU] = { 0x09050000, 0x00020000 }, 181 [VIRT_PCDIMM_ACPI] = { 0x09070000, MEMORY_HOTPLUG_IO_LEN }, 182 [VIRT_ACPI_GED] = { 0x09080000, ACPI_GED_EVT_SEL_LEN }, 183 [VIRT_NVDIMM_ACPI] = { 0x09090000, NVDIMM_ACPI_IO_LEN}, 184 [VIRT_PVTIME] = { 0x090a0000, 0x00010000 }, 185 [VIRT_SECURE_GPIO] = { 0x090b0000, 0x00001000 }, 186 [VIRT_MMIO] = { 0x0a000000, 0x00000200 }, 187 /* ...repeating for a total of NUM_VIRTIO_TRANSPORTS, each of that size */ 188 [VIRT_PLATFORM_BUS] = { 0x0c000000, 0x02000000 }, 189 [VIRT_SECURE_MEM] = { 0x0e000000, 0x01000000 }, 190 [VIRT_PCIE_MMIO] = { 0x10000000, 0x2eff0000 }, 191 [VIRT_PCIE_PIO] = { 0x3eff0000, 0x00010000 }, 192 [VIRT_PCIE_ECAM] = { 0x3f000000, 0x01000000 }, 193 /* Actual RAM size depends on initial RAM and device memory settings */ 194 [VIRT_MEM] = { GiB, LEGACY_RAMLIMIT_BYTES }, 195 }; 196 197 /* Update the docs for highmem-mmio-size when changing this default */ 198 #define DEFAULT_HIGH_PCIE_MMIO_SIZE_GB 512 199 #define DEFAULT_HIGH_PCIE_MMIO_SIZE (DEFAULT_HIGH_PCIE_MMIO_SIZE_GB * GiB) 200 201 /* 202 * Highmem IO Regions: This memory map is floating, located after the RAM. 203 * Each MemMapEntry base (GPA) will be dynamically computed, depending on the 204 * top of the RAM, so that its base get the same alignment as the size, 205 * ie. a 512GiB entry will be aligned on a 512GiB boundary. If there is 206 * less than 256GiB of RAM, the floating area starts at the 256GiB mark. 207 * Note the extended_memmap is sized so that it eventually also includes the 208 * base_memmap entries (VIRT_HIGH_GIC_REDIST2 index is greater than the last 209 * index of base_memmap). 210 * 211 * The memory map for these Highmem IO Regions can be in legacy or compact 212 * layout, depending on 'compact-highmem' property. With legacy layout, the 213 * PA space for one specific region is always reserved, even if the region 214 * has been disabled or doesn't fit into the PA space. However, the PA space 215 * for the region won't be reserved in these circumstances with compact layout. 216 * 217 * Note that the highmem-mmio-size property will update the high PCIE MMIO size 218 * field in this array. 219 */ 220 static MemMapEntry extended_memmap[] = { 221 /* Additional 64 MB redist region (can contain up to 512 redistributors) */ 222 [VIRT_HIGH_GIC_REDIST2] = { 0x0, 64 * MiB }, 223 [VIRT_HIGH_PCIE_ECAM] = { 0x0, 256 * MiB }, 224 /* Second PCIe window */ 225 [VIRT_HIGH_PCIE_MMIO] = { 0x0, DEFAULT_HIGH_PCIE_MMIO_SIZE }, 226 }; 227 228 static const int a15irqmap[] = { 229 [VIRT_UART0] = 1, 230 [VIRT_RTC] = 2, 231 [VIRT_PCIE] = 3, /* ... to 6 */ 232 [VIRT_GPIO] = 7, 233 [VIRT_UART1] = 8, 234 [VIRT_ACPI_GED] = 9, 235 [VIRT_MMIO] = 16, /* ...to 16 + NUM_VIRTIO_TRANSPORTS - 1 */ 236 [VIRT_GIC_V2M] = 48, /* ...to 48 + NUM_GICV2M_SPIS - 1 */ 237 [VIRT_SMMU] = 74, /* ...to 74 + NUM_SMMU_IRQS - 1 */ 238 [VIRT_PLATFORM_BUS] = 112, /* ...to 112 + PLATFORM_BUS_NUM_IRQS -1 */ 239 }; 240 241 static void create_randomness(MachineState *ms, const char *node) 242 { 243 struct { 244 uint64_t kaslr; 245 uint8_t rng[32]; 246 } seed; 247 248 if (qemu_guest_getrandom(&seed, sizeof(seed), NULL)) { 249 return; 250 } 251 qemu_fdt_setprop_u64(ms->fdt, node, "kaslr-seed", seed.kaslr); 252 qemu_fdt_setprop(ms->fdt, node, "rng-seed", seed.rng, sizeof(seed.rng)); 253 } 254 255 /* 256 * The CPU object always exposes the NS EL2 virt timer IRQ line, 257 * but we don't want to advertise it to the guest in the dtb or ACPI 258 * table unless it's really going to do something. 259 */ 260 static bool ns_el2_virt_timer_present(void) 261 { 262 ARMCPU *cpu = ARM_CPU(qemu_get_cpu(0)); 263 CPUARMState *env = &cpu->env; 264 265 return arm_feature(env, ARM_FEATURE_AARCH64) && 266 arm_feature(env, ARM_FEATURE_EL2) && cpu_isar_feature(aa64_vh, cpu); 267 } 268 269 static void create_fdt(VirtMachineState *vms) 270 { 271 MachineState *ms = MACHINE(vms); 272 int nb_numa_nodes = ms->numa_state->num_nodes; 273 void *fdt = create_device_tree(&vms->fdt_size); 274 275 if (!fdt) { 276 error_report("create_device_tree() failed"); 277 exit(1); 278 } 279 280 ms->fdt = fdt; 281 282 /* Header */ 283 qemu_fdt_setprop_string(fdt, "/", "compatible", "linux,dummy-virt"); 284 qemu_fdt_setprop_cell(fdt, "/", "#address-cells", 0x2); 285 qemu_fdt_setprop_cell(fdt, "/", "#size-cells", 0x2); 286 qemu_fdt_setprop_string(fdt, "/", "model", "linux,dummy-virt"); 287 288 /* 289 * For QEMU, all DMA is coherent. Advertising this in the root node 290 * has two benefits: 291 * 292 * - It avoids potential bugs where we forget to mark a DMA 293 * capable device as being dma-coherent 294 * - It avoids spurious warnings from the Linux kernel about 295 * devices which can't do DMA at all 296 */ 297 qemu_fdt_setprop(fdt, "/", "dma-coherent", NULL, 0); 298 299 /* /chosen must exist for load_dtb to fill in necessary properties later */ 300 qemu_fdt_add_subnode(fdt, "/chosen"); 301 if (vms->dtb_randomness) { 302 create_randomness(ms, "/chosen"); 303 } 304 305 if (vms->secure) { 306 qemu_fdt_add_subnode(fdt, "/secure-chosen"); 307 if (vms->dtb_randomness) { 308 create_randomness(ms, "/secure-chosen"); 309 } 310 } 311 312 qemu_fdt_add_subnode(fdt, "/aliases"); 313 314 /* Clock node, for the benefit of the UART. The kernel device tree 315 * binding documentation claims the PL011 node clock properties are 316 * optional but in practice if you omit them the kernel refuses to 317 * probe for the device. 318 */ 319 vms->clock_phandle = qemu_fdt_alloc_phandle(fdt); 320 qemu_fdt_add_subnode(fdt, "/apb-pclk"); 321 qemu_fdt_setprop_string(fdt, "/apb-pclk", "compatible", "fixed-clock"); 322 qemu_fdt_setprop_cell(fdt, "/apb-pclk", "#clock-cells", 0x0); 323 qemu_fdt_setprop_cell(fdt, "/apb-pclk", "clock-frequency", 24000000); 324 qemu_fdt_setprop_string(fdt, "/apb-pclk", "clock-output-names", 325 "clk24mhz"); 326 qemu_fdt_setprop_cell(fdt, "/apb-pclk", "phandle", vms->clock_phandle); 327 328 if (nb_numa_nodes > 0 && ms->numa_state->have_numa_distance) { 329 int size = nb_numa_nodes * nb_numa_nodes * 3 * sizeof(uint32_t); 330 uint32_t *matrix = g_malloc0(size); 331 int idx, i, j; 332 333 for (i = 0; i < nb_numa_nodes; i++) { 334 for (j = 0; j < nb_numa_nodes; j++) { 335 idx = (i * nb_numa_nodes + j) * 3; 336 matrix[idx + 0] = cpu_to_be32(i); 337 matrix[idx + 1] = cpu_to_be32(j); 338 matrix[idx + 2] = 339 cpu_to_be32(ms->numa_state->nodes[i].distance[j]); 340 } 341 } 342 343 qemu_fdt_add_subnode(fdt, "/distance-map"); 344 qemu_fdt_setprop_string(fdt, "/distance-map", "compatible", 345 "numa-distance-map-v1"); 346 qemu_fdt_setprop(fdt, "/distance-map", "distance-matrix", 347 matrix, size); 348 g_free(matrix); 349 } 350 } 351 352 static void fdt_add_timer_nodes(const VirtMachineState *vms) 353 { 354 /* On real hardware these interrupts are level-triggered. 355 * On KVM they were edge-triggered before host kernel version 4.4, 356 * and level-triggered afterwards. 357 * On emulated QEMU they are level-triggered. 358 * 359 * Getting the DTB info about them wrong is awkward for some 360 * guest kernels: 361 * pre-4.8 ignore the DT and leave the interrupt configured 362 * with whatever the GIC reset value (or the bootloader) left it at 363 * 4.8 before rc6 honour the incorrect data by programming it back 364 * into the GIC, causing problems 365 * 4.8rc6 and later ignore the DT and always write "level triggered" 366 * into the GIC 367 * 368 * For backwards-compatibility, virt-2.8 and earlier will continue 369 * to say these are edge-triggered, but later machines will report 370 * the correct information. 371 */ 372 ARMCPU *armcpu; 373 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms); 374 uint32_t irqflags = GIC_FDT_IRQ_FLAGS_LEVEL_HI; 375 MachineState *ms = MACHINE(vms); 376 377 if (vmc->claim_edge_triggered_timers) { 378 irqflags = GIC_FDT_IRQ_FLAGS_EDGE_LO_HI; 379 } 380 381 if (vms->gic_version == VIRT_GIC_VERSION_2) { 382 irqflags = deposit32(irqflags, GIC_FDT_IRQ_PPI_CPU_START, 383 GIC_FDT_IRQ_PPI_CPU_WIDTH, 384 (1 << MACHINE(vms)->smp.cpus) - 1); 385 } 386 387 qemu_fdt_add_subnode(ms->fdt, "/timer"); 388 389 armcpu = ARM_CPU(qemu_get_cpu(0)); 390 if (arm_feature(&armcpu->env, ARM_FEATURE_V8)) { 391 const char compat[] = "arm,armv8-timer\0arm,armv7-timer"; 392 qemu_fdt_setprop(ms->fdt, "/timer", "compatible", 393 compat, sizeof(compat)); 394 } else { 395 qemu_fdt_setprop_string(ms->fdt, "/timer", "compatible", 396 "arm,armv7-timer"); 397 } 398 qemu_fdt_setprop(ms->fdt, "/timer", "always-on", NULL, 0); 399 if (vms->ns_el2_virt_timer_irq) { 400 qemu_fdt_setprop_cells(ms->fdt, "/timer", "interrupts", 401 GIC_FDT_IRQ_TYPE_PPI, 402 INTID_TO_PPI(ARCH_TIMER_S_EL1_IRQ), irqflags, 403 GIC_FDT_IRQ_TYPE_PPI, 404 INTID_TO_PPI(ARCH_TIMER_NS_EL1_IRQ), irqflags, 405 GIC_FDT_IRQ_TYPE_PPI, 406 INTID_TO_PPI(ARCH_TIMER_VIRT_IRQ), irqflags, 407 GIC_FDT_IRQ_TYPE_PPI, 408 INTID_TO_PPI(ARCH_TIMER_NS_EL2_IRQ), irqflags, 409 GIC_FDT_IRQ_TYPE_PPI, 410 INTID_TO_PPI(ARCH_TIMER_NS_EL2_VIRT_IRQ), irqflags); 411 } else { 412 qemu_fdt_setprop_cells(ms->fdt, "/timer", "interrupts", 413 GIC_FDT_IRQ_TYPE_PPI, 414 INTID_TO_PPI(ARCH_TIMER_S_EL1_IRQ), irqflags, 415 GIC_FDT_IRQ_TYPE_PPI, 416 INTID_TO_PPI(ARCH_TIMER_NS_EL1_IRQ), irqflags, 417 GIC_FDT_IRQ_TYPE_PPI, 418 INTID_TO_PPI(ARCH_TIMER_VIRT_IRQ), irqflags, 419 GIC_FDT_IRQ_TYPE_PPI, 420 INTID_TO_PPI(ARCH_TIMER_NS_EL2_IRQ), irqflags); 421 } 422 } 423 424 static void fdt_add_cpu_nodes(const VirtMachineState *vms) 425 { 426 int cpu; 427 int addr_cells = 1; 428 const MachineState *ms = MACHINE(vms); 429 const VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms); 430 int smp_cpus = ms->smp.cpus; 431 432 /* 433 * See Linux Documentation/devicetree/bindings/arm/cpus.yaml 434 * On ARM v8 64-bit systems value should be set to 2, 435 * that corresponds to the MPIDR_EL1 register size. 436 * If MPIDR_EL1[63:32] value is equal to 0 on all CPUs 437 * in the system, #address-cells can be set to 1, since 438 * MPIDR_EL1[63:32] bits are not used for CPUs 439 * identification. 440 * 441 * Here we actually don't know whether our system is 32- or 64-bit one. 442 * The simplest way to go is to examine affinity IDs of all our CPUs. If 443 * at least one of them has Aff3 populated, we set #address-cells to 2. 444 */ 445 for (cpu = 0; cpu < smp_cpus; cpu++) { 446 ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu)); 447 448 if (arm_cpu_mp_affinity(armcpu) & ARM_AFF3_MASK) { 449 addr_cells = 2; 450 break; 451 } 452 } 453 454 qemu_fdt_add_subnode(ms->fdt, "/cpus"); 455 qemu_fdt_setprop_cell(ms->fdt, "/cpus", "#address-cells", addr_cells); 456 qemu_fdt_setprop_cell(ms->fdt, "/cpus", "#size-cells", 0x0); 457 458 for (cpu = smp_cpus - 1; cpu >= 0; cpu--) { 459 char *nodename = g_strdup_printf("/cpus/cpu@%d", cpu); 460 ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu)); 461 CPUState *cs = CPU(armcpu); 462 463 qemu_fdt_add_subnode(ms->fdt, nodename); 464 qemu_fdt_setprop_string(ms->fdt, nodename, "device_type", "cpu"); 465 qemu_fdt_setprop_string(ms->fdt, nodename, "compatible", 466 armcpu->dtb_compatible); 467 468 if (vms->psci_conduit != QEMU_PSCI_CONDUIT_DISABLED && smp_cpus > 1) { 469 qemu_fdt_setprop_string(ms->fdt, nodename, 470 "enable-method", "psci"); 471 } 472 473 if (addr_cells == 2) { 474 qemu_fdt_setprop_u64(ms->fdt, nodename, "reg", 475 arm_cpu_mp_affinity(armcpu)); 476 } else { 477 qemu_fdt_setprop_cell(ms->fdt, nodename, "reg", 478 arm_cpu_mp_affinity(armcpu)); 479 } 480 481 if (ms->possible_cpus->cpus[cs->cpu_index].props.has_node_id) { 482 qemu_fdt_setprop_cell(ms->fdt, nodename, "numa-node-id", 483 ms->possible_cpus->cpus[cs->cpu_index].props.node_id); 484 } 485 486 if (!vmc->no_cpu_topology) { 487 qemu_fdt_setprop_cell(ms->fdt, nodename, "phandle", 488 qemu_fdt_alloc_phandle(ms->fdt)); 489 } 490 491 g_free(nodename); 492 } 493 494 if (!vmc->no_cpu_topology) { 495 /* 496 * Add vCPU topology description through fdt node cpu-map. 497 * 498 * See Linux Documentation/devicetree/bindings/cpu/cpu-topology.txt 499 * In a SMP system, the hierarchy of CPUs can be defined through 500 * four entities that are used to describe the layout of CPUs in 501 * the system: socket/cluster/core/thread. 502 * 503 * A socket node represents the boundary of system physical package 504 * and its child nodes must be one or more cluster nodes. A system 505 * can contain several layers of clustering within a single physical 506 * package and cluster nodes can be contained in parent cluster nodes. 507 * 508 * Note: currently we only support one layer of clustering within 509 * each physical package. 510 */ 511 qemu_fdt_add_subnode(ms->fdt, "/cpus/cpu-map"); 512 513 for (cpu = smp_cpus - 1; cpu >= 0; cpu--) { 514 char *cpu_path = g_strdup_printf("/cpus/cpu@%d", cpu); 515 char *map_path; 516 517 if (ms->smp.threads > 1) { 518 map_path = g_strdup_printf( 519 "/cpus/cpu-map/socket%d/cluster%d/core%d/thread%d", 520 cpu / (ms->smp.clusters * ms->smp.cores * ms->smp.threads), 521 (cpu / (ms->smp.cores * ms->smp.threads)) % ms->smp.clusters, 522 (cpu / ms->smp.threads) % ms->smp.cores, 523 cpu % ms->smp.threads); 524 } else { 525 map_path = g_strdup_printf( 526 "/cpus/cpu-map/socket%d/cluster%d/core%d", 527 cpu / (ms->smp.clusters * ms->smp.cores), 528 (cpu / ms->smp.cores) % ms->smp.clusters, 529 cpu % ms->smp.cores); 530 } 531 qemu_fdt_add_path(ms->fdt, map_path); 532 qemu_fdt_setprop_phandle(ms->fdt, map_path, "cpu", cpu_path); 533 534 g_free(map_path); 535 g_free(cpu_path); 536 } 537 } 538 } 539 540 static void fdt_add_its_gic_node(VirtMachineState *vms) 541 { 542 char *nodename; 543 MachineState *ms = MACHINE(vms); 544 545 vms->msi_phandle = qemu_fdt_alloc_phandle(ms->fdt); 546 nodename = g_strdup_printf("/intc/its@%" PRIx64, 547 vms->memmap[VIRT_GIC_ITS].base); 548 qemu_fdt_add_subnode(ms->fdt, nodename); 549 qemu_fdt_setprop_string(ms->fdt, nodename, "compatible", 550 "arm,gic-v3-its"); 551 qemu_fdt_setprop(ms->fdt, nodename, "msi-controller", NULL, 0); 552 qemu_fdt_setprop_cell(ms->fdt, nodename, "#msi-cells", 1); 553 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg", 554 2, vms->memmap[VIRT_GIC_ITS].base, 555 2, vms->memmap[VIRT_GIC_ITS].size); 556 qemu_fdt_setprop_cell(ms->fdt, nodename, "phandle", vms->msi_phandle); 557 g_free(nodename); 558 } 559 560 static void fdt_add_v2m_gic_node(VirtMachineState *vms) 561 { 562 MachineState *ms = MACHINE(vms); 563 char *nodename; 564 565 nodename = g_strdup_printf("/intc/v2m@%" PRIx64, 566 vms->memmap[VIRT_GIC_V2M].base); 567 vms->msi_phandle = qemu_fdt_alloc_phandle(ms->fdt); 568 qemu_fdt_add_subnode(ms->fdt, nodename); 569 qemu_fdt_setprop_string(ms->fdt, nodename, "compatible", 570 "arm,gic-v2m-frame"); 571 qemu_fdt_setprop(ms->fdt, nodename, "msi-controller", NULL, 0); 572 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg", 573 2, vms->memmap[VIRT_GIC_V2M].base, 574 2, vms->memmap[VIRT_GIC_V2M].size); 575 qemu_fdt_setprop_cell(ms->fdt, nodename, "phandle", vms->msi_phandle); 576 g_free(nodename); 577 } 578 579 static void fdt_add_gic_node(VirtMachineState *vms) 580 { 581 MachineState *ms = MACHINE(vms); 582 char *nodename; 583 584 vms->gic_phandle = qemu_fdt_alloc_phandle(ms->fdt); 585 qemu_fdt_setprop_cell(ms->fdt, "/", "interrupt-parent", vms->gic_phandle); 586 587 nodename = g_strdup_printf("/intc@%" PRIx64, 588 vms->memmap[VIRT_GIC_DIST].base); 589 qemu_fdt_add_subnode(ms->fdt, nodename); 590 qemu_fdt_setprop_cell(ms->fdt, nodename, "#interrupt-cells", 3); 591 qemu_fdt_setprop(ms->fdt, nodename, "interrupt-controller", NULL, 0); 592 qemu_fdt_setprop_cell(ms->fdt, nodename, "#address-cells", 0x2); 593 qemu_fdt_setprop_cell(ms->fdt, nodename, "#size-cells", 0x2); 594 qemu_fdt_setprop(ms->fdt, nodename, "ranges", NULL, 0); 595 if (vms->gic_version != VIRT_GIC_VERSION_2) { 596 int nb_redist_regions = virt_gicv3_redist_region_count(vms); 597 598 qemu_fdt_setprop_string(ms->fdt, nodename, "compatible", 599 "arm,gic-v3"); 600 601 qemu_fdt_setprop_cell(ms->fdt, nodename, 602 "#redistributor-regions", nb_redist_regions); 603 604 if (nb_redist_regions == 1) { 605 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg", 606 2, vms->memmap[VIRT_GIC_DIST].base, 607 2, vms->memmap[VIRT_GIC_DIST].size, 608 2, vms->memmap[VIRT_GIC_REDIST].base, 609 2, vms->memmap[VIRT_GIC_REDIST].size); 610 } else { 611 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg", 612 2, vms->memmap[VIRT_GIC_DIST].base, 613 2, vms->memmap[VIRT_GIC_DIST].size, 614 2, vms->memmap[VIRT_GIC_REDIST].base, 615 2, vms->memmap[VIRT_GIC_REDIST].size, 616 2, vms->memmap[VIRT_HIGH_GIC_REDIST2].base, 617 2, vms->memmap[VIRT_HIGH_GIC_REDIST2].size); 618 } 619 620 if (vms->virt) { 621 qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupts", 622 GIC_FDT_IRQ_TYPE_PPI, 623 INTID_TO_PPI(ARCH_GIC_MAINT_IRQ), 624 GIC_FDT_IRQ_FLAGS_LEVEL_HI); 625 } 626 } else { 627 /* 'cortex-a15-gic' means 'GIC v2' */ 628 qemu_fdt_setprop_string(ms->fdt, nodename, "compatible", 629 "arm,cortex-a15-gic"); 630 if (!vms->virt) { 631 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg", 632 2, vms->memmap[VIRT_GIC_DIST].base, 633 2, vms->memmap[VIRT_GIC_DIST].size, 634 2, vms->memmap[VIRT_GIC_CPU].base, 635 2, vms->memmap[VIRT_GIC_CPU].size); 636 } else { 637 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg", 638 2, vms->memmap[VIRT_GIC_DIST].base, 639 2, vms->memmap[VIRT_GIC_DIST].size, 640 2, vms->memmap[VIRT_GIC_CPU].base, 641 2, vms->memmap[VIRT_GIC_CPU].size, 642 2, vms->memmap[VIRT_GIC_HYP].base, 643 2, vms->memmap[VIRT_GIC_HYP].size, 644 2, vms->memmap[VIRT_GIC_VCPU].base, 645 2, vms->memmap[VIRT_GIC_VCPU].size); 646 qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupts", 647 GIC_FDT_IRQ_TYPE_PPI, 648 INTID_TO_PPI(ARCH_GIC_MAINT_IRQ), 649 GIC_FDT_IRQ_FLAGS_LEVEL_HI); 650 } 651 } 652 653 qemu_fdt_setprop_cell(ms->fdt, nodename, "phandle", vms->gic_phandle); 654 g_free(nodename); 655 } 656 657 static void fdt_add_pmu_nodes(const VirtMachineState *vms) 658 { 659 ARMCPU *armcpu = ARM_CPU(first_cpu); 660 uint32_t irqflags = GIC_FDT_IRQ_FLAGS_LEVEL_HI; 661 MachineState *ms = MACHINE(vms); 662 663 if (!arm_feature(&armcpu->env, ARM_FEATURE_PMU)) { 664 assert(!object_property_get_bool(OBJECT(armcpu), "pmu", NULL)); 665 return; 666 } 667 668 if (vms->gic_version == VIRT_GIC_VERSION_2) { 669 irqflags = deposit32(irqflags, GIC_FDT_IRQ_PPI_CPU_START, 670 GIC_FDT_IRQ_PPI_CPU_WIDTH, 671 (1 << MACHINE(vms)->smp.cpus) - 1); 672 } 673 674 qemu_fdt_add_subnode(ms->fdt, "/pmu"); 675 if (arm_feature(&armcpu->env, ARM_FEATURE_V8)) { 676 const char compat[] = "arm,armv8-pmuv3"; 677 qemu_fdt_setprop(ms->fdt, "/pmu", "compatible", 678 compat, sizeof(compat)); 679 qemu_fdt_setprop_cells(ms->fdt, "/pmu", "interrupts", 680 GIC_FDT_IRQ_TYPE_PPI, 681 INTID_TO_PPI(VIRTUAL_PMU_IRQ), irqflags); 682 } 683 } 684 685 static inline DeviceState *create_acpi_ged(VirtMachineState *vms) 686 { 687 DeviceState *dev; 688 MachineState *ms = MACHINE(vms); 689 int irq = vms->irqmap[VIRT_ACPI_GED]; 690 uint32_t event = ACPI_GED_PWR_DOWN_EVT; 691 692 if (ms->ram_slots) { 693 event |= ACPI_GED_MEM_HOTPLUG_EVT; 694 } 695 696 if (ms->nvdimms_state->is_enabled) { 697 event |= ACPI_GED_NVDIMM_HOTPLUG_EVT; 698 } 699 700 dev = qdev_new(TYPE_ACPI_GED); 701 qdev_prop_set_uint32(dev, "ged-event", event); 702 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal); 703 704 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vms->memmap[VIRT_ACPI_GED].base); 705 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 1, vms->memmap[VIRT_PCDIMM_ACPI].base); 706 sysbus_connect_irq(SYS_BUS_DEVICE(dev), 0, qdev_get_gpio_in(vms->gic, irq)); 707 708 return dev; 709 } 710 711 static void create_its(VirtMachineState *vms) 712 { 713 const char *itsclass = its_class_name(); 714 DeviceState *dev; 715 716 if (!strcmp(itsclass, "arm-gicv3-its")) { 717 if (!vms->tcg_its) { 718 itsclass = NULL; 719 } 720 } 721 722 if (!itsclass) { 723 /* Do nothing if not supported */ 724 return; 725 } 726 727 dev = qdev_new(itsclass); 728 729 object_property_set_link(OBJECT(dev), "parent-gicv3", OBJECT(vms->gic), 730 &error_abort); 731 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal); 732 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vms->memmap[VIRT_GIC_ITS].base); 733 734 fdt_add_its_gic_node(vms); 735 vms->msi_controller = VIRT_MSI_CTRL_ITS; 736 } 737 738 static void create_v2m(VirtMachineState *vms) 739 { 740 int i; 741 int irq = vms->irqmap[VIRT_GIC_V2M]; 742 DeviceState *dev; 743 744 dev = qdev_new("arm-gicv2m"); 745 qdev_prop_set_uint32(dev, "base-spi", irq); 746 qdev_prop_set_uint32(dev, "num-spi", NUM_GICV2M_SPIS); 747 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal); 748 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vms->memmap[VIRT_GIC_V2M].base); 749 750 for (i = 0; i < NUM_GICV2M_SPIS; i++) { 751 sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, 752 qdev_get_gpio_in(vms->gic, irq + i)); 753 } 754 755 fdt_add_v2m_gic_node(vms); 756 vms->msi_controller = VIRT_MSI_CTRL_GICV2M; 757 } 758 759 /* 760 * If the CPU has FEAT_NMI, then turn on the NMI support in the GICv3 too. 761 * It's permitted to have a configuration with NMI in the CPU (and thus the 762 * GICv3 CPU interface) but not in the distributor/redistributors, but it's 763 * not very useful. 764 */ 765 static bool gicv3_nmi_present(VirtMachineState *vms) 766 { 767 ARMCPU *cpu = ARM_CPU(qemu_get_cpu(0)); 768 769 return tcg_enabled() && cpu_isar_feature(aa64_nmi, cpu) && 770 (vms->gic_version != VIRT_GIC_VERSION_2); 771 } 772 773 static void create_gic(VirtMachineState *vms, MemoryRegion *mem) 774 { 775 MachineState *ms = MACHINE(vms); 776 /* We create a standalone GIC */ 777 SysBusDevice *gicbusdev; 778 const char *gictype; 779 int i; 780 unsigned int smp_cpus = ms->smp.cpus; 781 uint32_t nb_redist_regions = 0; 782 int revision; 783 784 if (vms->gic_version == VIRT_GIC_VERSION_2) { 785 gictype = gic_class_name(); 786 } else { 787 gictype = gicv3_class_name(); 788 } 789 790 switch (vms->gic_version) { 791 case VIRT_GIC_VERSION_2: 792 revision = 2; 793 break; 794 case VIRT_GIC_VERSION_3: 795 revision = 3; 796 break; 797 case VIRT_GIC_VERSION_4: 798 revision = 4; 799 break; 800 default: 801 g_assert_not_reached(); 802 } 803 vms->gic = qdev_new(gictype); 804 qdev_prop_set_uint32(vms->gic, "revision", revision); 805 qdev_prop_set_uint32(vms->gic, "num-cpu", smp_cpus); 806 /* Note that the num-irq property counts both internal and external 807 * interrupts; there are always 32 of the former (mandated by GIC spec). 808 */ 809 qdev_prop_set_uint32(vms->gic, "num-irq", NUM_IRQS + 32); 810 if (!kvm_irqchip_in_kernel()) { 811 qdev_prop_set_bit(vms->gic, "has-security-extensions", vms->secure); 812 } 813 814 if (vms->gic_version != VIRT_GIC_VERSION_2) { 815 QList *redist_region_count; 816 uint32_t redist0_capacity = virt_redist_capacity(vms, VIRT_GIC_REDIST); 817 uint32_t redist0_count = MIN(smp_cpus, redist0_capacity); 818 819 nb_redist_regions = virt_gicv3_redist_region_count(vms); 820 821 redist_region_count = qlist_new(); 822 qlist_append_int(redist_region_count, redist0_count); 823 if (nb_redist_regions == 2) { 824 uint32_t redist1_capacity = 825 virt_redist_capacity(vms, VIRT_HIGH_GIC_REDIST2); 826 827 qlist_append_int(redist_region_count, 828 MIN(smp_cpus - redist0_count, redist1_capacity)); 829 } 830 qdev_prop_set_array(vms->gic, "redist-region-count", 831 redist_region_count); 832 833 if (!kvm_irqchip_in_kernel()) { 834 if (vms->tcg_its) { 835 object_property_set_link(OBJECT(vms->gic), "sysmem", 836 OBJECT(mem), &error_fatal); 837 qdev_prop_set_bit(vms->gic, "has-lpi", true); 838 } 839 } 840 } else { 841 if (!kvm_irqchip_in_kernel()) { 842 qdev_prop_set_bit(vms->gic, "has-virtualization-extensions", 843 vms->virt); 844 } 845 } 846 847 if (gicv3_nmi_present(vms)) { 848 qdev_prop_set_bit(vms->gic, "has-nmi", true); 849 } 850 851 gicbusdev = SYS_BUS_DEVICE(vms->gic); 852 sysbus_realize_and_unref(gicbusdev, &error_fatal); 853 sysbus_mmio_map(gicbusdev, 0, vms->memmap[VIRT_GIC_DIST].base); 854 if (vms->gic_version != VIRT_GIC_VERSION_2) { 855 sysbus_mmio_map(gicbusdev, 1, vms->memmap[VIRT_GIC_REDIST].base); 856 if (nb_redist_regions == 2) { 857 sysbus_mmio_map(gicbusdev, 2, 858 vms->memmap[VIRT_HIGH_GIC_REDIST2].base); 859 } 860 } else { 861 sysbus_mmio_map(gicbusdev, 1, vms->memmap[VIRT_GIC_CPU].base); 862 if (vms->virt) { 863 sysbus_mmio_map(gicbusdev, 2, vms->memmap[VIRT_GIC_HYP].base); 864 sysbus_mmio_map(gicbusdev, 3, vms->memmap[VIRT_GIC_VCPU].base); 865 } 866 } 867 868 /* Wire the outputs from each CPU's generic timer and the GICv3 869 * maintenance interrupt signal to the appropriate GIC PPI inputs, 870 * and the GIC's IRQ/FIQ/VIRQ/VFIQ/NMI/VINMI interrupt outputs to the 871 * CPU's inputs. 872 */ 873 for (i = 0; i < smp_cpus; i++) { 874 DeviceState *cpudev = DEVICE(qemu_get_cpu(i)); 875 int intidbase = NUM_IRQS + i * GIC_INTERNAL; 876 /* Mapping from the output timer irq lines from the CPU to the 877 * GIC PPI inputs we use for the virt board. 878 */ 879 const int timer_irq[] = { 880 [GTIMER_PHYS] = ARCH_TIMER_NS_EL1_IRQ, 881 [GTIMER_VIRT] = ARCH_TIMER_VIRT_IRQ, 882 [GTIMER_HYP] = ARCH_TIMER_NS_EL2_IRQ, 883 [GTIMER_SEC] = ARCH_TIMER_S_EL1_IRQ, 884 [GTIMER_HYPVIRT] = ARCH_TIMER_NS_EL2_VIRT_IRQ, 885 [GTIMER_S_EL2_PHYS] = ARCH_TIMER_S_EL2_IRQ, 886 [GTIMER_S_EL2_VIRT] = ARCH_TIMER_S_EL2_VIRT_IRQ, 887 }; 888 889 for (unsigned irq = 0; irq < ARRAY_SIZE(timer_irq); irq++) { 890 qdev_connect_gpio_out(cpudev, irq, 891 qdev_get_gpio_in(vms->gic, 892 intidbase + timer_irq[irq])); 893 } 894 895 if (vms->gic_version != VIRT_GIC_VERSION_2) { 896 qemu_irq irq = qdev_get_gpio_in(vms->gic, 897 intidbase + ARCH_GIC_MAINT_IRQ); 898 qdev_connect_gpio_out_named(cpudev, "gicv3-maintenance-interrupt", 899 0, irq); 900 } else if (vms->virt) { 901 qemu_irq irq = qdev_get_gpio_in(vms->gic, 902 intidbase + ARCH_GIC_MAINT_IRQ); 903 sysbus_connect_irq(gicbusdev, i + 4 * smp_cpus, irq); 904 } 905 906 qdev_connect_gpio_out_named(cpudev, "pmu-interrupt", 0, 907 qdev_get_gpio_in(vms->gic, intidbase 908 + VIRTUAL_PMU_IRQ)); 909 910 sysbus_connect_irq(gicbusdev, i, qdev_get_gpio_in(cpudev, ARM_CPU_IRQ)); 911 sysbus_connect_irq(gicbusdev, i + smp_cpus, 912 qdev_get_gpio_in(cpudev, ARM_CPU_FIQ)); 913 sysbus_connect_irq(gicbusdev, i + 2 * smp_cpus, 914 qdev_get_gpio_in(cpudev, ARM_CPU_VIRQ)); 915 sysbus_connect_irq(gicbusdev, i + 3 * smp_cpus, 916 qdev_get_gpio_in(cpudev, ARM_CPU_VFIQ)); 917 918 if (vms->gic_version != VIRT_GIC_VERSION_2) { 919 sysbus_connect_irq(gicbusdev, i + 4 * smp_cpus, 920 qdev_get_gpio_in(cpudev, ARM_CPU_NMI)); 921 sysbus_connect_irq(gicbusdev, i + 5 * smp_cpus, 922 qdev_get_gpio_in(cpudev, ARM_CPU_VINMI)); 923 } 924 } 925 926 fdt_add_gic_node(vms); 927 928 if (vms->gic_version != VIRT_GIC_VERSION_2 && vms->its) { 929 create_its(vms); 930 } else if (vms->gic_version == VIRT_GIC_VERSION_2) { 931 create_v2m(vms); 932 } 933 } 934 935 static void create_uart(const VirtMachineState *vms, int uart, 936 MemoryRegion *mem, Chardev *chr, bool secure) 937 { 938 char *nodename; 939 hwaddr base = vms->memmap[uart].base; 940 hwaddr size = vms->memmap[uart].size; 941 int irq = vms->irqmap[uart]; 942 const char compat[] = "arm,pl011\0arm,primecell"; 943 const char clocknames[] = "uartclk\0apb_pclk"; 944 DeviceState *dev = qdev_new(TYPE_PL011); 945 SysBusDevice *s = SYS_BUS_DEVICE(dev); 946 MachineState *ms = MACHINE(vms); 947 948 qdev_prop_set_chr(dev, "chardev", chr); 949 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal); 950 memory_region_add_subregion(mem, base, 951 sysbus_mmio_get_region(s, 0)); 952 sysbus_connect_irq(s, 0, qdev_get_gpio_in(vms->gic, irq)); 953 954 nodename = g_strdup_printf("/pl011@%" PRIx64, base); 955 qemu_fdt_add_subnode(ms->fdt, nodename); 956 /* Note that we can't use setprop_string because of the embedded NUL */ 957 qemu_fdt_setprop(ms->fdt, nodename, "compatible", 958 compat, sizeof(compat)); 959 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg", 960 2, base, 2, size); 961 qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupts", 962 GIC_FDT_IRQ_TYPE_SPI, irq, 963 GIC_FDT_IRQ_FLAGS_LEVEL_HI); 964 qemu_fdt_setprop_cells(ms->fdt, nodename, "clocks", 965 vms->clock_phandle, vms->clock_phandle); 966 qemu_fdt_setprop(ms->fdt, nodename, "clock-names", 967 clocknames, sizeof(clocknames)); 968 969 if (uart == VIRT_UART0) { 970 qemu_fdt_setprop_string(ms->fdt, "/chosen", "stdout-path", nodename); 971 qemu_fdt_setprop_string(ms->fdt, "/aliases", "serial0", nodename); 972 } else { 973 qemu_fdt_setprop_string(ms->fdt, "/aliases", "serial1", nodename); 974 } 975 if (secure) { 976 /* Mark as not usable by the normal world */ 977 qemu_fdt_setprop_string(ms->fdt, nodename, "status", "disabled"); 978 qemu_fdt_setprop_string(ms->fdt, nodename, "secure-status", "okay"); 979 980 qemu_fdt_setprop_string(ms->fdt, "/secure-chosen", "stdout-path", 981 nodename); 982 } 983 984 g_free(nodename); 985 } 986 987 static void create_rtc(const VirtMachineState *vms) 988 { 989 char *nodename; 990 hwaddr base = vms->memmap[VIRT_RTC].base; 991 hwaddr size = vms->memmap[VIRT_RTC].size; 992 int irq = vms->irqmap[VIRT_RTC]; 993 const char compat[] = "arm,pl031\0arm,primecell"; 994 MachineState *ms = MACHINE(vms); 995 996 sysbus_create_simple("pl031", base, qdev_get_gpio_in(vms->gic, irq)); 997 998 nodename = g_strdup_printf("/pl031@%" PRIx64, base); 999 qemu_fdt_add_subnode(ms->fdt, nodename); 1000 qemu_fdt_setprop(ms->fdt, nodename, "compatible", compat, sizeof(compat)); 1001 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg", 1002 2, base, 2, size); 1003 qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupts", 1004 GIC_FDT_IRQ_TYPE_SPI, irq, 1005 GIC_FDT_IRQ_FLAGS_LEVEL_HI); 1006 qemu_fdt_setprop_cell(ms->fdt, nodename, "clocks", vms->clock_phandle); 1007 qemu_fdt_setprop_string(ms->fdt, nodename, "clock-names", "apb_pclk"); 1008 g_free(nodename); 1009 } 1010 1011 static DeviceState *gpio_key_dev; 1012 static void virt_powerdown_req(Notifier *n, void *opaque) 1013 { 1014 VirtMachineState *s = container_of(n, VirtMachineState, powerdown_notifier); 1015 1016 if (s->acpi_dev) { 1017 acpi_send_event(s->acpi_dev, ACPI_POWER_DOWN_STATUS); 1018 } else { 1019 /* use gpio Pin for power button event */ 1020 qemu_set_irq(qdev_get_gpio_in(gpio_key_dev, 0), 1); 1021 } 1022 } 1023 1024 static void create_gpio_keys(char *fdt, DeviceState *pl061_dev, 1025 uint32_t phandle) 1026 { 1027 gpio_key_dev = sysbus_create_simple("gpio-key", -1, 1028 qdev_get_gpio_in(pl061_dev, 1029 GPIO_PIN_POWER_BUTTON)); 1030 1031 qemu_fdt_add_subnode(fdt, "/gpio-keys"); 1032 qemu_fdt_setprop_string(fdt, "/gpio-keys", "compatible", "gpio-keys"); 1033 1034 qemu_fdt_add_subnode(fdt, "/gpio-keys/poweroff"); 1035 qemu_fdt_setprop_string(fdt, "/gpio-keys/poweroff", 1036 "label", "GPIO Key Poweroff"); 1037 qemu_fdt_setprop_cell(fdt, "/gpio-keys/poweroff", "linux,code", 1038 KEY_POWER); 1039 qemu_fdt_setprop_cells(fdt, "/gpio-keys/poweroff", 1040 "gpios", phandle, GPIO_PIN_POWER_BUTTON, 0); 1041 } 1042 1043 #define SECURE_GPIO_POWEROFF 0 1044 #define SECURE_GPIO_RESET 1 1045 1046 static void create_secure_gpio_pwr(char *fdt, DeviceState *pl061_dev, 1047 uint32_t phandle) 1048 { 1049 DeviceState *gpio_pwr_dev; 1050 1051 /* gpio-pwr */ 1052 gpio_pwr_dev = sysbus_create_simple("gpio-pwr", -1, NULL); 1053 1054 /* connect secure pl061 to gpio-pwr */ 1055 qdev_connect_gpio_out(pl061_dev, SECURE_GPIO_RESET, 1056 qdev_get_gpio_in_named(gpio_pwr_dev, "reset", 0)); 1057 qdev_connect_gpio_out(pl061_dev, SECURE_GPIO_POWEROFF, 1058 qdev_get_gpio_in_named(gpio_pwr_dev, "shutdown", 0)); 1059 1060 qemu_fdt_add_subnode(fdt, "/gpio-poweroff"); 1061 qemu_fdt_setprop_string(fdt, "/gpio-poweroff", "compatible", 1062 "gpio-poweroff"); 1063 qemu_fdt_setprop_cells(fdt, "/gpio-poweroff", 1064 "gpios", phandle, SECURE_GPIO_POWEROFF, 0); 1065 qemu_fdt_setprop_string(fdt, "/gpio-poweroff", "status", "disabled"); 1066 qemu_fdt_setprop_string(fdt, "/gpio-poweroff", "secure-status", 1067 "okay"); 1068 1069 qemu_fdt_add_subnode(fdt, "/gpio-restart"); 1070 qemu_fdt_setprop_string(fdt, "/gpio-restart", "compatible", 1071 "gpio-restart"); 1072 qemu_fdt_setprop_cells(fdt, "/gpio-restart", 1073 "gpios", phandle, SECURE_GPIO_RESET, 0); 1074 qemu_fdt_setprop_string(fdt, "/gpio-restart", "status", "disabled"); 1075 qemu_fdt_setprop_string(fdt, "/gpio-restart", "secure-status", 1076 "okay"); 1077 } 1078 1079 static void create_gpio_devices(const VirtMachineState *vms, int gpio, 1080 MemoryRegion *mem) 1081 { 1082 char *nodename; 1083 DeviceState *pl061_dev; 1084 hwaddr base = vms->memmap[gpio].base; 1085 hwaddr size = vms->memmap[gpio].size; 1086 int irq = vms->irqmap[gpio]; 1087 const char compat[] = "arm,pl061\0arm,primecell"; 1088 SysBusDevice *s; 1089 MachineState *ms = MACHINE(vms); 1090 1091 pl061_dev = qdev_new("pl061"); 1092 /* Pull lines down to 0 if not driven by the PL061 */ 1093 qdev_prop_set_uint32(pl061_dev, "pullups", 0); 1094 qdev_prop_set_uint32(pl061_dev, "pulldowns", 0xff); 1095 s = SYS_BUS_DEVICE(pl061_dev); 1096 sysbus_realize_and_unref(s, &error_fatal); 1097 memory_region_add_subregion(mem, base, sysbus_mmio_get_region(s, 0)); 1098 sysbus_connect_irq(s, 0, qdev_get_gpio_in(vms->gic, irq)); 1099 1100 uint32_t phandle = qemu_fdt_alloc_phandle(ms->fdt); 1101 nodename = g_strdup_printf("/pl061@%" PRIx64, base); 1102 qemu_fdt_add_subnode(ms->fdt, nodename); 1103 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg", 1104 2, base, 2, size); 1105 qemu_fdt_setprop(ms->fdt, nodename, "compatible", compat, sizeof(compat)); 1106 qemu_fdt_setprop_cell(ms->fdt, nodename, "#gpio-cells", 2); 1107 qemu_fdt_setprop(ms->fdt, nodename, "gpio-controller", NULL, 0); 1108 qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupts", 1109 GIC_FDT_IRQ_TYPE_SPI, irq, 1110 GIC_FDT_IRQ_FLAGS_LEVEL_HI); 1111 qemu_fdt_setprop_cell(ms->fdt, nodename, "clocks", vms->clock_phandle); 1112 qemu_fdt_setprop_string(ms->fdt, nodename, "clock-names", "apb_pclk"); 1113 qemu_fdt_setprop_cell(ms->fdt, nodename, "phandle", phandle); 1114 1115 if (gpio != VIRT_GPIO) { 1116 /* Mark as not usable by the normal world */ 1117 qemu_fdt_setprop_string(ms->fdt, nodename, "status", "disabled"); 1118 qemu_fdt_setprop_string(ms->fdt, nodename, "secure-status", "okay"); 1119 } 1120 g_free(nodename); 1121 1122 /* Child gpio devices */ 1123 if (gpio == VIRT_GPIO) { 1124 create_gpio_keys(ms->fdt, pl061_dev, phandle); 1125 } else { 1126 create_secure_gpio_pwr(ms->fdt, pl061_dev, phandle); 1127 } 1128 } 1129 1130 static void create_virtio_devices(const VirtMachineState *vms) 1131 { 1132 int i; 1133 hwaddr size = vms->memmap[VIRT_MMIO].size; 1134 MachineState *ms = MACHINE(vms); 1135 1136 /* We create the transports in forwards order. Since qbus_realize() 1137 * prepends (not appends) new child buses, the incrementing loop below will 1138 * create a list of virtio-mmio buses with decreasing base addresses. 1139 * 1140 * When a -device option is processed from the command line, 1141 * qbus_find_recursive() picks the next free virtio-mmio bus in forwards 1142 * order. The upshot is that -device options in increasing command line 1143 * order are mapped to virtio-mmio buses with decreasing base addresses. 1144 * 1145 * When this code was originally written, that arrangement ensured that the 1146 * guest Linux kernel would give the lowest "name" (/dev/vda, eth0, etc) to 1147 * the first -device on the command line. (The end-to-end order is a 1148 * function of this loop, qbus_realize(), qbus_find_recursive(), and the 1149 * guest kernel's name-to-address assignment strategy.) 1150 * 1151 * Meanwhile, the kernel's traversal seems to have been reversed; see eg. 1152 * the message, if not necessarily the code, of commit 70161ff336. 1153 * Therefore the loop now establishes the inverse of the original intent. 1154 * 1155 * Unfortunately, we can't counteract the kernel change by reversing the 1156 * loop; it would break existing command lines. 1157 * 1158 * In any case, the kernel makes no guarantee about the stability of 1159 * enumeration order of virtio devices (as demonstrated by it changing 1160 * between kernel versions). For reliable and stable identification 1161 * of disks users must use UUIDs or similar mechanisms. 1162 */ 1163 for (i = 0; i < NUM_VIRTIO_TRANSPORTS; i++) { 1164 int irq = vms->irqmap[VIRT_MMIO] + i; 1165 hwaddr base = vms->memmap[VIRT_MMIO].base + i * size; 1166 1167 sysbus_create_simple("virtio-mmio", base, 1168 qdev_get_gpio_in(vms->gic, irq)); 1169 } 1170 1171 /* We add dtb nodes in reverse order so that they appear in the finished 1172 * device tree lowest address first. 1173 * 1174 * Note that this mapping is independent of the loop above. The previous 1175 * loop influences virtio device to virtio transport assignment, whereas 1176 * this loop controls how virtio transports are laid out in the dtb. 1177 */ 1178 for (i = NUM_VIRTIO_TRANSPORTS - 1; i >= 0; i--) { 1179 char *nodename; 1180 int irq = vms->irqmap[VIRT_MMIO] + i; 1181 hwaddr base = vms->memmap[VIRT_MMIO].base + i * size; 1182 1183 nodename = g_strdup_printf("/virtio_mmio@%" PRIx64, base); 1184 qemu_fdt_add_subnode(ms->fdt, nodename); 1185 qemu_fdt_setprop_string(ms->fdt, nodename, 1186 "compatible", "virtio,mmio"); 1187 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg", 1188 2, base, 2, size); 1189 qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupts", 1190 GIC_FDT_IRQ_TYPE_SPI, irq, 1191 GIC_FDT_IRQ_FLAGS_EDGE_LO_HI); 1192 qemu_fdt_setprop(ms->fdt, nodename, "dma-coherent", NULL, 0); 1193 g_free(nodename); 1194 } 1195 } 1196 1197 #define VIRT_FLASH_SECTOR_SIZE (256 * KiB) 1198 1199 static PFlashCFI01 *virt_flash_create1(VirtMachineState *vms, 1200 const char *name, 1201 const char *alias_prop_name) 1202 { 1203 /* 1204 * Create a single flash device. We use the same parameters as 1205 * the flash devices on the Versatile Express board. 1206 */ 1207 DeviceState *dev = qdev_new(TYPE_PFLASH_CFI01); 1208 1209 qdev_prop_set_uint64(dev, "sector-length", VIRT_FLASH_SECTOR_SIZE); 1210 qdev_prop_set_uint8(dev, "width", 4); 1211 qdev_prop_set_uint8(dev, "device-width", 2); 1212 qdev_prop_set_bit(dev, "big-endian", false); 1213 qdev_prop_set_uint16(dev, "id0", 0x89); 1214 qdev_prop_set_uint16(dev, "id1", 0x18); 1215 qdev_prop_set_uint16(dev, "id2", 0x00); 1216 qdev_prop_set_uint16(dev, "id3", 0x00); 1217 qdev_prop_set_string(dev, "name", name); 1218 object_property_add_child(OBJECT(vms), name, OBJECT(dev)); 1219 object_property_add_alias(OBJECT(vms), alias_prop_name, 1220 OBJECT(dev), "drive"); 1221 return PFLASH_CFI01(dev); 1222 } 1223 1224 static void virt_flash_create(VirtMachineState *vms) 1225 { 1226 vms->flash[0] = virt_flash_create1(vms, "virt.flash0", "pflash0"); 1227 vms->flash[1] = virt_flash_create1(vms, "virt.flash1", "pflash1"); 1228 } 1229 1230 static void virt_flash_map1(PFlashCFI01 *flash, 1231 hwaddr base, hwaddr size, 1232 MemoryRegion *sysmem) 1233 { 1234 DeviceState *dev = DEVICE(flash); 1235 1236 assert(QEMU_IS_ALIGNED(size, VIRT_FLASH_SECTOR_SIZE)); 1237 assert(size / VIRT_FLASH_SECTOR_SIZE <= UINT32_MAX); 1238 qdev_prop_set_uint32(dev, "num-blocks", size / VIRT_FLASH_SECTOR_SIZE); 1239 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal); 1240 1241 memory_region_add_subregion(sysmem, base, 1242 sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 1243 0)); 1244 } 1245 1246 static void virt_flash_map(VirtMachineState *vms, 1247 MemoryRegion *sysmem, 1248 MemoryRegion *secure_sysmem) 1249 { 1250 /* 1251 * Map two flash devices to fill the VIRT_FLASH space in the memmap. 1252 * sysmem is the system memory space. secure_sysmem is the secure view 1253 * of the system, and the first flash device should be made visible only 1254 * there. The second flash device is visible to both secure and nonsecure. 1255 * If sysmem == secure_sysmem this means there is no separate Secure 1256 * address space and both flash devices are generally visible. 1257 */ 1258 hwaddr flashsize = vms->memmap[VIRT_FLASH].size / 2; 1259 hwaddr flashbase = vms->memmap[VIRT_FLASH].base; 1260 1261 virt_flash_map1(vms->flash[0], flashbase, flashsize, 1262 secure_sysmem); 1263 virt_flash_map1(vms->flash[1], flashbase + flashsize, flashsize, 1264 sysmem); 1265 } 1266 1267 static void virt_flash_fdt(VirtMachineState *vms, 1268 MemoryRegion *sysmem, 1269 MemoryRegion *secure_sysmem) 1270 { 1271 hwaddr flashsize = vms->memmap[VIRT_FLASH].size / 2; 1272 hwaddr flashbase = vms->memmap[VIRT_FLASH].base; 1273 MachineState *ms = MACHINE(vms); 1274 char *nodename; 1275 1276 if (sysmem == secure_sysmem) { 1277 /* Report both flash devices as a single node in the DT */ 1278 nodename = g_strdup_printf("/flash@%" PRIx64, flashbase); 1279 qemu_fdt_add_subnode(ms->fdt, nodename); 1280 qemu_fdt_setprop_string(ms->fdt, nodename, "compatible", "cfi-flash"); 1281 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg", 1282 2, flashbase, 2, flashsize, 1283 2, flashbase + flashsize, 2, flashsize); 1284 qemu_fdt_setprop_cell(ms->fdt, nodename, "bank-width", 4); 1285 g_free(nodename); 1286 } else { 1287 /* 1288 * Report the devices as separate nodes so we can mark one as 1289 * only visible to the secure world. 1290 */ 1291 nodename = g_strdup_printf("/secflash@%" PRIx64, flashbase); 1292 qemu_fdt_add_subnode(ms->fdt, nodename); 1293 qemu_fdt_setprop_string(ms->fdt, nodename, "compatible", "cfi-flash"); 1294 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg", 1295 2, flashbase, 2, flashsize); 1296 qemu_fdt_setprop_cell(ms->fdt, nodename, "bank-width", 4); 1297 qemu_fdt_setprop_string(ms->fdt, nodename, "status", "disabled"); 1298 qemu_fdt_setprop_string(ms->fdt, nodename, "secure-status", "okay"); 1299 g_free(nodename); 1300 1301 nodename = g_strdup_printf("/flash@%" PRIx64, flashbase + flashsize); 1302 qemu_fdt_add_subnode(ms->fdt, nodename); 1303 qemu_fdt_setprop_string(ms->fdt, nodename, "compatible", "cfi-flash"); 1304 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg", 1305 2, flashbase + flashsize, 2, flashsize); 1306 qemu_fdt_setprop_cell(ms->fdt, nodename, "bank-width", 4); 1307 g_free(nodename); 1308 } 1309 } 1310 1311 static bool virt_firmware_init(VirtMachineState *vms, 1312 MemoryRegion *sysmem, 1313 MemoryRegion *secure_sysmem) 1314 { 1315 int i; 1316 const char *bios_name; 1317 BlockBackend *pflash_blk0; 1318 1319 /* Map legacy -drive if=pflash to machine properties */ 1320 for (i = 0; i < ARRAY_SIZE(vms->flash); i++) { 1321 pflash_cfi01_legacy_drive(vms->flash[i], 1322 drive_get(IF_PFLASH, 0, i)); 1323 } 1324 1325 virt_flash_map(vms, sysmem, secure_sysmem); 1326 1327 pflash_blk0 = pflash_cfi01_get_blk(vms->flash[0]); 1328 1329 bios_name = MACHINE(vms)->firmware; 1330 if (bios_name) { 1331 char *fname; 1332 MemoryRegion *mr; 1333 int image_size; 1334 1335 if (pflash_blk0) { 1336 error_report("The contents of the first flash device may be " 1337 "specified with -bios or with -drive if=pflash... " 1338 "but you cannot use both options at once"); 1339 exit(1); 1340 } 1341 1342 /* Fall back to -bios */ 1343 1344 fname = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name); 1345 if (!fname) { 1346 error_report("Could not find ROM image '%s'", bios_name); 1347 exit(1); 1348 } 1349 mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(vms->flash[0]), 0); 1350 image_size = load_image_mr(fname, mr); 1351 g_free(fname); 1352 if (image_size < 0) { 1353 error_report("Could not load ROM image '%s'", bios_name); 1354 exit(1); 1355 } 1356 } 1357 1358 return pflash_blk0 || bios_name; 1359 } 1360 1361 static FWCfgState *create_fw_cfg(const VirtMachineState *vms, AddressSpace *as) 1362 { 1363 MachineState *ms = MACHINE(vms); 1364 hwaddr base = vms->memmap[VIRT_FW_CFG].base; 1365 hwaddr size = vms->memmap[VIRT_FW_CFG].size; 1366 FWCfgState *fw_cfg; 1367 char *nodename; 1368 1369 fw_cfg = fw_cfg_init_mem_wide(base + 8, base, 8, base + 16, as); 1370 fw_cfg_add_i16(fw_cfg, FW_CFG_NB_CPUS, (uint16_t)ms->smp.cpus); 1371 1372 nodename = g_strdup_printf("/fw-cfg@%" PRIx64, base); 1373 qemu_fdt_add_subnode(ms->fdt, nodename); 1374 qemu_fdt_setprop_string(ms->fdt, nodename, 1375 "compatible", "qemu,fw-cfg-mmio"); 1376 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg", 1377 2, base, 2, size); 1378 qemu_fdt_setprop(ms->fdt, nodename, "dma-coherent", NULL, 0); 1379 g_free(nodename); 1380 return fw_cfg; 1381 } 1382 1383 static void create_pcie_irq_map(const MachineState *ms, 1384 uint32_t gic_phandle, 1385 int first_irq, const char *nodename) 1386 { 1387 int devfn, pin; 1388 uint32_t full_irq_map[4 * 4 * 10] = { 0 }; 1389 uint32_t *irq_map = full_irq_map; 1390 1391 for (devfn = 0; devfn <= 0x18; devfn += 0x8) { 1392 for (pin = 0; pin < 4; pin++) { 1393 int irq_type = GIC_FDT_IRQ_TYPE_SPI; 1394 int irq_nr = first_irq + ((pin + PCI_SLOT(devfn)) % PCI_NUM_PINS); 1395 int irq_level = GIC_FDT_IRQ_FLAGS_LEVEL_HI; 1396 int i; 1397 1398 uint32_t map[] = { 1399 devfn << 8, 0, 0, /* devfn */ 1400 pin + 1, /* PCI pin */ 1401 gic_phandle, 0, 0, irq_type, irq_nr, irq_level }; /* GIC irq */ 1402 1403 /* Convert map to big endian */ 1404 for (i = 0; i < 10; i++) { 1405 irq_map[i] = cpu_to_be32(map[i]); 1406 } 1407 irq_map += 10; 1408 } 1409 } 1410 1411 qemu_fdt_setprop(ms->fdt, nodename, "interrupt-map", 1412 full_irq_map, sizeof(full_irq_map)); 1413 1414 qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupt-map-mask", 1415 cpu_to_be16(PCI_DEVFN(3, 0)), /* Slot 3 */ 1416 0, 0, 1417 0x7 /* PCI irq */); 1418 } 1419 1420 static void create_smmu(const VirtMachineState *vms, 1421 PCIBus *bus) 1422 { 1423 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms); 1424 char *node; 1425 const char compat[] = "arm,smmu-v3"; 1426 int irq = vms->irqmap[VIRT_SMMU]; 1427 int i; 1428 hwaddr base = vms->memmap[VIRT_SMMU].base; 1429 hwaddr size = vms->memmap[VIRT_SMMU].size; 1430 const char irq_names[] = "eventq\0priq\0cmdq-sync\0gerror"; 1431 DeviceState *dev; 1432 MachineState *ms = MACHINE(vms); 1433 1434 if (vms->iommu != VIRT_IOMMU_SMMUV3 || !vms->iommu_phandle) { 1435 return; 1436 } 1437 1438 dev = qdev_new(TYPE_ARM_SMMUV3); 1439 1440 if (!vmc->no_nested_smmu) { 1441 object_property_set_str(OBJECT(dev), "stage", "nested", &error_fatal); 1442 } 1443 object_property_set_link(OBJECT(dev), "primary-bus", OBJECT(bus), 1444 &error_abort); 1445 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal); 1446 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, base); 1447 for (i = 0; i < NUM_SMMU_IRQS; i++) { 1448 sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, 1449 qdev_get_gpio_in(vms->gic, irq + i)); 1450 } 1451 1452 node = g_strdup_printf("/smmuv3@%" PRIx64, base); 1453 qemu_fdt_add_subnode(ms->fdt, node); 1454 qemu_fdt_setprop(ms->fdt, node, "compatible", compat, sizeof(compat)); 1455 qemu_fdt_setprop_sized_cells(ms->fdt, node, "reg", 2, base, 2, size); 1456 1457 qemu_fdt_setprop_cells(ms->fdt, node, "interrupts", 1458 GIC_FDT_IRQ_TYPE_SPI, irq , GIC_FDT_IRQ_FLAGS_EDGE_LO_HI, 1459 GIC_FDT_IRQ_TYPE_SPI, irq + 1, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI, 1460 GIC_FDT_IRQ_TYPE_SPI, irq + 2, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI, 1461 GIC_FDT_IRQ_TYPE_SPI, irq + 3, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI); 1462 1463 qemu_fdt_setprop(ms->fdt, node, "interrupt-names", irq_names, 1464 sizeof(irq_names)); 1465 1466 qemu_fdt_setprop(ms->fdt, node, "dma-coherent", NULL, 0); 1467 1468 qemu_fdt_setprop_cell(ms->fdt, node, "#iommu-cells", 1); 1469 1470 qemu_fdt_setprop_cell(ms->fdt, node, "phandle", vms->iommu_phandle); 1471 g_free(node); 1472 } 1473 1474 static void create_virtio_iommu_dt_bindings(VirtMachineState *vms) 1475 { 1476 const char compat[] = "virtio,pci-iommu\0pci1af4,1057"; 1477 uint16_t bdf = vms->virtio_iommu_bdf; 1478 MachineState *ms = MACHINE(vms); 1479 char *node; 1480 1481 vms->iommu_phandle = qemu_fdt_alloc_phandle(ms->fdt); 1482 1483 node = g_strdup_printf("%s/virtio_iommu@%x,%x", vms->pciehb_nodename, 1484 PCI_SLOT(bdf), PCI_FUNC(bdf)); 1485 qemu_fdt_add_subnode(ms->fdt, node); 1486 qemu_fdt_setprop(ms->fdt, node, "compatible", compat, sizeof(compat)); 1487 qemu_fdt_setprop_sized_cells(ms->fdt, node, "reg", 1488 1, bdf << 8, 1, 0, 1, 0, 1489 1, 0, 1, 0); 1490 1491 qemu_fdt_setprop_cell(ms->fdt, node, "#iommu-cells", 1); 1492 qemu_fdt_setprop_cell(ms->fdt, node, "phandle", vms->iommu_phandle); 1493 g_free(node); 1494 1495 qemu_fdt_setprop_cells(ms->fdt, vms->pciehb_nodename, "iommu-map", 1496 0x0, vms->iommu_phandle, 0x0, bdf, 1497 bdf + 1, vms->iommu_phandle, bdf + 1, 0xffff - bdf); 1498 } 1499 1500 static void create_pcie(VirtMachineState *vms) 1501 { 1502 hwaddr base_mmio = vms->memmap[VIRT_PCIE_MMIO].base; 1503 hwaddr size_mmio = vms->memmap[VIRT_PCIE_MMIO].size; 1504 hwaddr base_mmio_high = vms->memmap[VIRT_HIGH_PCIE_MMIO].base; 1505 hwaddr size_mmio_high = vms->memmap[VIRT_HIGH_PCIE_MMIO].size; 1506 hwaddr base_pio = vms->memmap[VIRT_PCIE_PIO].base; 1507 hwaddr size_pio = vms->memmap[VIRT_PCIE_PIO].size; 1508 hwaddr base_ecam, size_ecam; 1509 hwaddr base = base_mmio; 1510 int nr_pcie_buses; 1511 int irq = vms->irqmap[VIRT_PCIE]; 1512 MemoryRegion *mmio_alias; 1513 MemoryRegion *mmio_reg; 1514 MemoryRegion *ecam_alias; 1515 MemoryRegion *ecam_reg; 1516 DeviceState *dev; 1517 char *nodename; 1518 int i, ecam_id; 1519 PCIHostState *pci; 1520 MachineState *ms = MACHINE(vms); 1521 MachineClass *mc = MACHINE_GET_CLASS(ms); 1522 1523 dev = qdev_new(TYPE_GPEX_HOST); 1524 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal); 1525 1526 ecam_id = VIRT_ECAM_ID(vms->highmem_ecam); 1527 base_ecam = vms->memmap[ecam_id].base; 1528 size_ecam = vms->memmap[ecam_id].size; 1529 nr_pcie_buses = size_ecam / PCIE_MMCFG_SIZE_MIN; 1530 /* Map only the first size_ecam bytes of ECAM space */ 1531 ecam_alias = g_new0(MemoryRegion, 1); 1532 ecam_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 0); 1533 memory_region_init_alias(ecam_alias, OBJECT(dev), "pcie-ecam", 1534 ecam_reg, 0, size_ecam); 1535 memory_region_add_subregion(get_system_memory(), base_ecam, ecam_alias); 1536 1537 /* Map the MMIO window into system address space so as to expose 1538 * the section of PCI MMIO space which starts at the same base address 1539 * (ie 1:1 mapping for that part of PCI MMIO space visible through 1540 * the window). 1541 */ 1542 mmio_alias = g_new0(MemoryRegion, 1); 1543 mmio_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 1); 1544 memory_region_init_alias(mmio_alias, OBJECT(dev), "pcie-mmio", 1545 mmio_reg, base_mmio, size_mmio); 1546 memory_region_add_subregion(get_system_memory(), base_mmio, mmio_alias); 1547 1548 if (vms->highmem_mmio) { 1549 /* Map high MMIO space */ 1550 MemoryRegion *high_mmio_alias = g_new0(MemoryRegion, 1); 1551 1552 memory_region_init_alias(high_mmio_alias, OBJECT(dev), "pcie-mmio-high", 1553 mmio_reg, base_mmio_high, size_mmio_high); 1554 memory_region_add_subregion(get_system_memory(), base_mmio_high, 1555 high_mmio_alias); 1556 } 1557 1558 /* Map IO port space */ 1559 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 2, base_pio); 1560 1561 for (i = 0; i < PCI_NUM_PINS; i++) { 1562 sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, 1563 qdev_get_gpio_in(vms->gic, irq + i)); 1564 gpex_set_irq_num(GPEX_HOST(dev), i, irq + i); 1565 } 1566 1567 pci = PCI_HOST_BRIDGE(dev); 1568 pci->bypass_iommu = vms->default_bus_bypass_iommu; 1569 vms->bus = pci->bus; 1570 if (vms->bus) { 1571 pci_init_nic_devices(pci->bus, mc->default_nic); 1572 } 1573 1574 nodename = vms->pciehb_nodename = g_strdup_printf("/pcie@%" PRIx64, base); 1575 qemu_fdt_add_subnode(ms->fdt, nodename); 1576 qemu_fdt_setprop_string(ms->fdt, nodename, 1577 "compatible", "pci-host-ecam-generic"); 1578 qemu_fdt_setprop_string(ms->fdt, nodename, "device_type", "pci"); 1579 qemu_fdt_setprop_cell(ms->fdt, nodename, "#address-cells", 3); 1580 qemu_fdt_setprop_cell(ms->fdt, nodename, "#size-cells", 2); 1581 qemu_fdt_setprop_cell(ms->fdt, nodename, "linux,pci-domain", 0); 1582 qemu_fdt_setprop_cells(ms->fdt, nodename, "bus-range", 0, 1583 nr_pcie_buses - 1); 1584 qemu_fdt_setprop(ms->fdt, nodename, "dma-coherent", NULL, 0); 1585 1586 if (vms->msi_phandle) { 1587 qemu_fdt_setprop_cells(ms->fdt, nodename, "msi-map", 1588 0, vms->msi_phandle, 0, 0x10000); 1589 } 1590 1591 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg", 1592 2, base_ecam, 2, size_ecam); 1593 1594 if (vms->highmem_mmio) { 1595 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "ranges", 1596 1, FDT_PCI_RANGE_IOPORT, 2, 0, 1597 2, base_pio, 2, size_pio, 1598 1, FDT_PCI_RANGE_MMIO, 2, base_mmio, 1599 2, base_mmio, 2, size_mmio, 1600 1, FDT_PCI_RANGE_MMIO_64BIT, 1601 2, base_mmio_high, 1602 2, base_mmio_high, 2, size_mmio_high); 1603 } else { 1604 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "ranges", 1605 1, FDT_PCI_RANGE_IOPORT, 2, 0, 1606 2, base_pio, 2, size_pio, 1607 1, FDT_PCI_RANGE_MMIO, 2, base_mmio, 1608 2, base_mmio, 2, size_mmio); 1609 } 1610 1611 qemu_fdt_setprop_cell(ms->fdt, nodename, "#interrupt-cells", 1); 1612 create_pcie_irq_map(ms, vms->gic_phandle, irq, nodename); 1613 1614 if (vms->iommu) { 1615 vms->iommu_phandle = qemu_fdt_alloc_phandle(ms->fdt); 1616 1617 switch (vms->iommu) { 1618 case VIRT_IOMMU_SMMUV3: 1619 create_smmu(vms, vms->bus); 1620 qemu_fdt_setprop_cells(ms->fdt, nodename, "iommu-map", 1621 0x0, vms->iommu_phandle, 0x0, 0x10000); 1622 break; 1623 default: 1624 g_assert_not_reached(); 1625 } 1626 } 1627 } 1628 1629 static void create_platform_bus(VirtMachineState *vms) 1630 { 1631 DeviceState *dev; 1632 SysBusDevice *s; 1633 int i; 1634 MemoryRegion *sysmem = get_system_memory(); 1635 1636 dev = qdev_new(TYPE_PLATFORM_BUS_DEVICE); 1637 dev->id = g_strdup(TYPE_PLATFORM_BUS_DEVICE); 1638 qdev_prop_set_uint32(dev, "num_irqs", PLATFORM_BUS_NUM_IRQS); 1639 qdev_prop_set_uint32(dev, "mmio_size", vms->memmap[VIRT_PLATFORM_BUS].size); 1640 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal); 1641 vms->platform_bus_dev = dev; 1642 1643 s = SYS_BUS_DEVICE(dev); 1644 for (i = 0; i < PLATFORM_BUS_NUM_IRQS; i++) { 1645 int irq = vms->irqmap[VIRT_PLATFORM_BUS] + i; 1646 sysbus_connect_irq(s, i, qdev_get_gpio_in(vms->gic, irq)); 1647 } 1648 1649 memory_region_add_subregion(sysmem, 1650 vms->memmap[VIRT_PLATFORM_BUS].base, 1651 sysbus_mmio_get_region(s, 0)); 1652 } 1653 1654 static void create_tag_ram(MemoryRegion *tag_sysmem, 1655 hwaddr base, hwaddr size, 1656 const char *name) 1657 { 1658 MemoryRegion *tagram = g_new(MemoryRegion, 1); 1659 1660 memory_region_init_ram(tagram, NULL, name, size / 32, &error_fatal); 1661 memory_region_add_subregion(tag_sysmem, base / 32, tagram); 1662 } 1663 1664 static void create_secure_ram(VirtMachineState *vms, 1665 MemoryRegion *secure_sysmem, 1666 MemoryRegion *secure_tag_sysmem) 1667 { 1668 MemoryRegion *secram = g_new(MemoryRegion, 1); 1669 char *nodename; 1670 hwaddr base = vms->memmap[VIRT_SECURE_MEM].base; 1671 hwaddr size = vms->memmap[VIRT_SECURE_MEM].size; 1672 MachineState *ms = MACHINE(vms); 1673 1674 memory_region_init_ram(secram, NULL, "virt.secure-ram", size, 1675 &error_fatal); 1676 memory_region_add_subregion(secure_sysmem, base, secram); 1677 1678 nodename = g_strdup_printf("/secram@%" PRIx64, base); 1679 qemu_fdt_add_subnode(ms->fdt, nodename); 1680 qemu_fdt_setprop_string(ms->fdt, nodename, "device_type", "memory"); 1681 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg", 2, base, 2, size); 1682 qemu_fdt_setprop_string(ms->fdt, nodename, "status", "disabled"); 1683 qemu_fdt_setprop_string(ms->fdt, nodename, "secure-status", "okay"); 1684 1685 if (secure_tag_sysmem) { 1686 create_tag_ram(secure_tag_sysmem, base, size, "mach-virt.secure-tag"); 1687 } 1688 1689 g_free(nodename); 1690 } 1691 1692 static void *machvirt_dtb(const struct arm_boot_info *binfo, int *fdt_size) 1693 { 1694 const VirtMachineState *board = container_of(binfo, VirtMachineState, 1695 bootinfo); 1696 MachineState *ms = MACHINE(board); 1697 1698 1699 *fdt_size = board->fdt_size; 1700 return ms->fdt; 1701 } 1702 1703 static void virt_build_smbios(VirtMachineState *vms) 1704 { 1705 MachineClass *mc = MACHINE_GET_CLASS(vms); 1706 MachineState *ms = MACHINE(vms); 1707 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms); 1708 uint8_t *smbios_tables, *smbios_anchor; 1709 size_t smbios_tables_len, smbios_anchor_len; 1710 struct smbios_phys_mem_area mem_array; 1711 const char *product = "QEMU Virtual Machine"; 1712 1713 if (kvm_enabled()) { 1714 product = "KVM Virtual Machine"; 1715 } 1716 1717 smbios_set_defaults("QEMU", product, 1718 vmc->smbios_old_sys_ver ? "1.0" : mc->name); 1719 1720 /* build the array of physical mem area from base_memmap */ 1721 mem_array.address = vms->memmap[VIRT_MEM].base; 1722 mem_array.length = ms->ram_size; 1723 1724 smbios_get_tables(ms, SMBIOS_ENTRY_POINT_TYPE_64, &mem_array, 1, 1725 &smbios_tables, &smbios_tables_len, 1726 &smbios_anchor, &smbios_anchor_len, 1727 &error_fatal); 1728 1729 if (smbios_anchor) { 1730 fw_cfg_add_file(vms->fw_cfg, "etc/smbios/smbios-tables", 1731 smbios_tables, smbios_tables_len); 1732 fw_cfg_add_file(vms->fw_cfg, "etc/smbios/smbios-anchor", 1733 smbios_anchor, smbios_anchor_len); 1734 } 1735 } 1736 1737 static 1738 void virt_machine_done(Notifier *notifier, void *data) 1739 { 1740 VirtMachineState *vms = container_of(notifier, VirtMachineState, 1741 machine_done); 1742 MachineState *ms = MACHINE(vms); 1743 ARMCPU *cpu = ARM_CPU(first_cpu); 1744 struct arm_boot_info *info = &vms->bootinfo; 1745 AddressSpace *as = arm_boot_address_space(cpu, info); 1746 1747 /* 1748 * If the user provided a dtb, we assume the dynamic sysbus nodes 1749 * already are integrated there. This corresponds to a use case where 1750 * the dynamic sysbus nodes are complex and their generation is not yet 1751 * supported. In that case the user can take charge of the guest dt 1752 * while qemu takes charge of the qom stuff. 1753 */ 1754 if (info->dtb_filename == NULL) { 1755 platform_bus_add_all_fdt_nodes(ms->fdt, "/intc", 1756 vms->memmap[VIRT_PLATFORM_BUS].base, 1757 vms->memmap[VIRT_PLATFORM_BUS].size, 1758 vms->irqmap[VIRT_PLATFORM_BUS]); 1759 } 1760 if (arm_load_dtb(info->dtb_start, info, info->dtb_limit, as, ms, cpu) < 0) { 1761 exit(1); 1762 } 1763 1764 pci_bus_add_fw_cfg_extra_pci_roots(vms->fw_cfg, vms->bus, 1765 &error_abort); 1766 1767 virt_acpi_setup(vms); 1768 virt_build_smbios(vms); 1769 } 1770 1771 static uint64_t virt_cpu_mp_affinity(VirtMachineState *vms, int idx) 1772 { 1773 uint8_t clustersz = ARM_DEFAULT_CPUS_PER_CLUSTER; 1774 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms); 1775 1776 if (!vmc->disallow_affinity_adjustment) { 1777 /* Adjust MPIDR like 64-bit KVM hosts, which incorporate the 1778 * GIC's target-list limitations. 32-bit KVM hosts currently 1779 * always create clusters of 4 CPUs, but that is expected to 1780 * change when they gain support for gicv3. When KVM is enabled 1781 * it will override the changes we make here, therefore our 1782 * purposes are to make TCG consistent (with 64-bit KVM hosts) 1783 * and to improve SGI efficiency. 1784 */ 1785 if (vms->gic_version == VIRT_GIC_VERSION_2) { 1786 clustersz = GIC_TARGETLIST_BITS; 1787 } else { 1788 clustersz = GICV3_TARGETLIST_BITS; 1789 } 1790 } 1791 return arm_build_mp_affinity(idx, clustersz); 1792 } 1793 1794 static inline bool *virt_get_high_memmap_enabled(VirtMachineState *vms, 1795 int index) 1796 { 1797 bool *enabled_array[] = { 1798 &vms->highmem_redists, 1799 &vms->highmem_ecam, 1800 &vms->highmem_mmio, 1801 }; 1802 1803 assert(ARRAY_SIZE(extended_memmap) - VIRT_LOWMEMMAP_LAST == 1804 ARRAY_SIZE(enabled_array)); 1805 assert(index - VIRT_LOWMEMMAP_LAST < ARRAY_SIZE(enabled_array)); 1806 1807 return enabled_array[index - VIRT_LOWMEMMAP_LAST]; 1808 } 1809 1810 static void virt_set_high_memmap(VirtMachineState *vms, 1811 hwaddr base, int pa_bits) 1812 { 1813 hwaddr region_base, region_size; 1814 bool *region_enabled, fits; 1815 int i; 1816 1817 for (i = VIRT_LOWMEMMAP_LAST; i < ARRAY_SIZE(extended_memmap); i++) { 1818 region_enabled = virt_get_high_memmap_enabled(vms, i); 1819 region_base = ROUND_UP(base, extended_memmap[i].size); 1820 region_size = extended_memmap[i].size; 1821 1822 vms->memmap[i].base = region_base; 1823 vms->memmap[i].size = region_size; 1824 1825 /* 1826 * Check each device to see if it fits in the PA space, 1827 * moving highest_gpa as we go. For compatibility, move 1828 * highest_gpa for disabled fitting devices as well, if 1829 * the compact layout has been disabled. 1830 * 1831 * For each device that doesn't fit, disable it. 1832 */ 1833 fits = (region_base + region_size) <= BIT_ULL(pa_bits); 1834 *region_enabled &= fits; 1835 if (vms->highmem_compact && !*region_enabled) { 1836 continue; 1837 } 1838 1839 base = region_base + region_size; 1840 if (fits) { 1841 vms->highest_gpa = base - 1; 1842 } 1843 } 1844 } 1845 1846 static void virt_set_memmap(VirtMachineState *vms, int pa_bits) 1847 { 1848 MachineState *ms = MACHINE(vms); 1849 hwaddr base, device_memory_base, device_memory_size, memtop; 1850 int i; 1851 1852 vms->memmap = extended_memmap; 1853 1854 for (i = 0; i < ARRAY_SIZE(base_memmap); i++) { 1855 vms->memmap[i] = base_memmap[i]; 1856 } 1857 1858 if (ms->ram_slots > ACPI_MAX_RAM_SLOTS) { 1859 error_report("unsupported number of memory slots: %"PRIu64, 1860 ms->ram_slots); 1861 exit(EXIT_FAILURE); 1862 } 1863 1864 /* 1865 * !highmem is exactly the same as limiting the PA space to 32bit, 1866 * irrespective of the underlying capabilities of the HW. 1867 */ 1868 if (!vms->highmem) { 1869 pa_bits = 32; 1870 } 1871 1872 /* 1873 * We compute the base of the high IO region depending on the 1874 * amount of initial and device memory. The device memory start/size 1875 * is aligned on 1GiB. We never put the high IO region below 256GiB 1876 * so that if maxram_size is < 255GiB we keep the legacy memory map. 1877 * The device region size assumes 1GiB page max alignment per slot. 1878 */ 1879 device_memory_base = 1880 ROUND_UP(vms->memmap[VIRT_MEM].base + ms->ram_size, GiB); 1881 device_memory_size = ms->maxram_size - ms->ram_size + ms->ram_slots * GiB; 1882 1883 /* Base address of the high IO region */ 1884 memtop = base = device_memory_base + ROUND_UP(device_memory_size, GiB); 1885 if (memtop > BIT_ULL(pa_bits)) { 1886 error_report("Addressing limited to %d bits, but memory exceeds it by %llu bytes", 1887 pa_bits, memtop - BIT_ULL(pa_bits)); 1888 exit(EXIT_FAILURE); 1889 } 1890 if (base < device_memory_base) { 1891 error_report("maxmem/slots too huge"); 1892 exit(EXIT_FAILURE); 1893 } 1894 if (base < vms->memmap[VIRT_MEM].base + LEGACY_RAMLIMIT_BYTES) { 1895 base = vms->memmap[VIRT_MEM].base + LEGACY_RAMLIMIT_BYTES; 1896 } 1897 1898 /* We know for sure that at least the memory fits in the PA space */ 1899 vms->highest_gpa = memtop - 1; 1900 1901 virt_set_high_memmap(vms, base, pa_bits); 1902 1903 if (device_memory_size > 0) { 1904 machine_memory_devices_init(ms, device_memory_base, device_memory_size); 1905 } 1906 } 1907 1908 static VirtGICType finalize_gic_version_do(const char *accel_name, 1909 VirtGICType gic_version, 1910 int gics_supported, 1911 unsigned int max_cpus) 1912 { 1913 /* Convert host/max/nosel to GIC version number */ 1914 switch (gic_version) { 1915 case VIRT_GIC_VERSION_HOST: 1916 if (!kvm_enabled()) { 1917 error_report("gic-version=host requires KVM"); 1918 exit(1); 1919 } 1920 1921 /* For KVM, gic-version=host means gic-version=max */ 1922 return finalize_gic_version_do(accel_name, VIRT_GIC_VERSION_MAX, 1923 gics_supported, max_cpus); 1924 case VIRT_GIC_VERSION_MAX: 1925 if (gics_supported & VIRT_GIC_VERSION_4_MASK) { 1926 gic_version = VIRT_GIC_VERSION_4; 1927 } else if (gics_supported & VIRT_GIC_VERSION_3_MASK) { 1928 gic_version = VIRT_GIC_VERSION_3; 1929 } else { 1930 gic_version = VIRT_GIC_VERSION_2; 1931 } 1932 break; 1933 case VIRT_GIC_VERSION_NOSEL: 1934 if ((gics_supported & VIRT_GIC_VERSION_2_MASK) && 1935 max_cpus <= GIC_NCPU) { 1936 gic_version = VIRT_GIC_VERSION_2; 1937 } else if (gics_supported & VIRT_GIC_VERSION_3_MASK) { 1938 /* 1939 * in case the host does not support v2 emulation or 1940 * the end-user requested more than 8 VCPUs we now default 1941 * to v3. In any case defaulting to v2 would be broken. 1942 */ 1943 gic_version = VIRT_GIC_VERSION_3; 1944 } else if (max_cpus > GIC_NCPU) { 1945 error_report("%s only supports GICv2 emulation but more than 8 " 1946 "vcpus are requested", accel_name); 1947 exit(1); 1948 } 1949 break; 1950 case VIRT_GIC_VERSION_2: 1951 case VIRT_GIC_VERSION_3: 1952 case VIRT_GIC_VERSION_4: 1953 break; 1954 } 1955 1956 /* Check chosen version is effectively supported */ 1957 switch (gic_version) { 1958 case VIRT_GIC_VERSION_2: 1959 if (!(gics_supported & VIRT_GIC_VERSION_2_MASK)) { 1960 error_report("%s does not support GICv2 emulation", accel_name); 1961 exit(1); 1962 } 1963 break; 1964 case VIRT_GIC_VERSION_3: 1965 if (!(gics_supported & VIRT_GIC_VERSION_3_MASK)) { 1966 error_report("%s does not support GICv3 emulation", accel_name); 1967 exit(1); 1968 } 1969 break; 1970 case VIRT_GIC_VERSION_4: 1971 if (!(gics_supported & VIRT_GIC_VERSION_4_MASK)) { 1972 error_report("%s does not support GICv4 emulation, is virtualization=on?", 1973 accel_name); 1974 exit(1); 1975 } 1976 break; 1977 default: 1978 error_report("logic error in finalize_gic_version"); 1979 exit(1); 1980 break; 1981 } 1982 1983 return gic_version; 1984 } 1985 1986 /* 1987 * finalize_gic_version - Determines the final gic_version 1988 * according to the gic-version property 1989 * 1990 * Default GIC type is v2 1991 */ 1992 static void finalize_gic_version(VirtMachineState *vms) 1993 { 1994 const char *accel_name = current_accel_name(); 1995 unsigned int max_cpus = MACHINE(vms)->smp.max_cpus; 1996 int gics_supported = 0; 1997 1998 /* Determine which GIC versions the current environment supports */ 1999 if (kvm_enabled() && kvm_irqchip_in_kernel()) { 2000 int probe_bitmap = kvm_arm_vgic_probe(); 2001 2002 if (!probe_bitmap) { 2003 error_report("Unable to determine GIC version supported by host"); 2004 exit(1); 2005 } 2006 2007 if (probe_bitmap & KVM_ARM_VGIC_V2) { 2008 gics_supported |= VIRT_GIC_VERSION_2_MASK; 2009 } 2010 if (probe_bitmap & KVM_ARM_VGIC_V3) { 2011 gics_supported |= VIRT_GIC_VERSION_3_MASK; 2012 } 2013 } else if (kvm_enabled() && !kvm_irqchip_in_kernel()) { 2014 /* KVM w/o kernel irqchip can only deal with GICv2 */ 2015 gics_supported |= VIRT_GIC_VERSION_2_MASK; 2016 accel_name = "KVM with kernel-irqchip=off"; 2017 } else if (tcg_enabled() || hvf_enabled() || qtest_enabled()) { 2018 gics_supported |= VIRT_GIC_VERSION_2_MASK; 2019 if (module_object_class_by_name("arm-gicv3")) { 2020 gics_supported |= VIRT_GIC_VERSION_3_MASK; 2021 if (vms->virt) { 2022 /* GICv4 only makes sense if CPU has EL2 */ 2023 gics_supported |= VIRT_GIC_VERSION_4_MASK; 2024 } 2025 } 2026 } else { 2027 error_report("Unsupported accelerator, can not determine GIC support"); 2028 exit(1); 2029 } 2030 2031 /* 2032 * Then convert helpers like host/max to concrete GIC versions and ensure 2033 * the desired version is supported 2034 */ 2035 vms->gic_version = finalize_gic_version_do(accel_name, vms->gic_version, 2036 gics_supported, max_cpus); 2037 } 2038 2039 /* 2040 * virt_cpu_post_init() must be called after the CPUs have 2041 * been realized and the GIC has been created. 2042 */ 2043 static void virt_cpu_post_init(VirtMachineState *vms, MemoryRegion *sysmem) 2044 { 2045 int max_cpus = MACHINE(vms)->smp.max_cpus; 2046 bool aarch64, pmu, steal_time; 2047 CPUState *cpu; 2048 2049 aarch64 = object_property_get_bool(OBJECT(first_cpu), "aarch64", NULL); 2050 pmu = object_property_get_bool(OBJECT(first_cpu), "pmu", NULL); 2051 steal_time = object_property_get_bool(OBJECT(first_cpu), 2052 "kvm-steal-time", NULL); 2053 2054 if (kvm_enabled()) { 2055 hwaddr pvtime_reg_base = vms->memmap[VIRT_PVTIME].base; 2056 hwaddr pvtime_reg_size = vms->memmap[VIRT_PVTIME].size; 2057 2058 if (steal_time) { 2059 MemoryRegion *pvtime = g_new(MemoryRegion, 1); 2060 hwaddr pvtime_size = max_cpus * PVTIME_SIZE_PER_CPU; 2061 2062 /* The memory region size must be a multiple of host page size. */ 2063 pvtime_size = REAL_HOST_PAGE_ALIGN(pvtime_size); 2064 2065 if (pvtime_size > pvtime_reg_size) { 2066 error_report("pvtime requires a %" HWADDR_PRId 2067 " byte memory region for %d CPUs," 2068 " but only %" HWADDR_PRId " has been reserved", 2069 pvtime_size, max_cpus, pvtime_reg_size); 2070 exit(1); 2071 } 2072 2073 memory_region_init_ram(pvtime, NULL, "pvtime", pvtime_size, NULL); 2074 memory_region_add_subregion(sysmem, pvtime_reg_base, pvtime); 2075 } 2076 2077 CPU_FOREACH(cpu) { 2078 if (pmu) { 2079 assert(arm_feature(&ARM_CPU(cpu)->env, ARM_FEATURE_PMU)); 2080 if (kvm_irqchip_in_kernel()) { 2081 kvm_arm_pmu_set_irq(ARM_CPU(cpu), VIRTUAL_PMU_IRQ); 2082 } 2083 kvm_arm_pmu_init(ARM_CPU(cpu)); 2084 } 2085 if (steal_time) { 2086 kvm_arm_pvtime_init(ARM_CPU(cpu), pvtime_reg_base 2087 + cpu->cpu_index 2088 * PVTIME_SIZE_PER_CPU); 2089 } 2090 } 2091 } else { 2092 if (aarch64 && vms->highmem) { 2093 int requested_pa_size = 64 - clz64(vms->highest_gpa); 2094 int pamax = arm_pamax(ARM_CPU(first_cpu)); 2095 2096 if (pamax < requested_pa_size) { 2097 error_report("VCPU supports less PA bits (%d) than " 2098 "requested by the memory map (%d)", 2099 pamax, requested_pa_size); 2100 exit(1); 2101 } 2102 } 2103 } 2104 } 2105 2106 static void machvirt_init(MachineState *machine) 2107 { 2108 VirtMachineState *vms = VIRT_MACHINE(machine); 2109 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(machine); 2110 MachineClass *mc = MACHINE_GET_CLASS(machine); 2111 const CPUArchIdList *possible_cpus; 2112 MemoryRegion *sysmem = get_system_memory(); 2113 MemoryRegion *secure_sysmem = NULL; 2114 MemoryRegion *tag_sysmem = NULL; 2115 MemoryRegion *secure_tag_sysmem = NULL; 2116 int n, virt_max_cpus; 2117 bool firmware_loaded; 2118 bool aarch64 = true; 2119 bool has_ged = !vmc->no_ged; 2120 unsigned int smp_cpus = machine->smp.cpus; 2121 unsigned int max_cpus = machine->smp.max_cpus; 2122 2123 possible_cpus = mc->possible_cpu_arch_ids(machine); 2124 2125 /* 2126 * In accelerated mode, the memory map is computed earlier in kvm_type() 2127 * for Linux, or hvf_get_physical_address_range() for macOS to create a 2128 * VM with the right number of IPA bits. 2129 */ 2130 if (!vms->memmap) { 2131 Object *cpuobj; 2132 ARMCPU *armcpu; 2133 int pa_bits; 2134 2135 /* 2136 * Instantiate a temporary CPU object to find out about what 2137 * we are about to deal with. Once this is done, get rid of 2138 * the object. 2139 */ 2140 cpuobj = object_new(possible_cpus->cpus[0].type); 2141 armcpu = ARM_CPU(cpuobj); 2142 2143 pa_bits = arm_pamax(armcpu); 2144 2145 object_unref(cpuobj); 2146 2147 virt_set_memmap(vms, pa_bits); 2148 } 2149 2150 /* We can probe only here because during property set 2151 * KVM is not available yet 2152 */ 2153 finalize_gic_version(vms); 2154 2155 if (vms->secure) { 2156 /* 2157 * The Secure view of the world is the same as the NonSecure, 2158 * but with a few extra devices. Create it as a container region 2159 * containing the system memory at low priority; any secure-only 2160 * devices go in at higher priority and take precedence. 2161 */ 2162 secure_sysmem = g_new(MemoryRegion, 1); 2163 memory_region_init(secure_sysmem, OBJECT(machine), "secure-memory", 2164 UINT64_MAX); 2165 memory_region_add_subregion_overlap(secure_sysmem, 0, sysmem, -1); 2166 } 2167 2168 firmware_loaded = virt_firmware_init(vms, sysmem, 2169 secure_sysmem ?: sysmem); 2170 2171 /* If we have an EL3 boot ROM then the assumption is that it will 2172 * implement PSCI itself, so disable QEMU's internal implementation 2173 * so it doesn't get in the way. Instead of starting secondary 2174 * CPUs in PSCI powerdown state we will start them all running and 2175 * let the boot ROM sort them out. 2176 * The usual case is that we do use QEMU's PSCI implementation; 2177 * if the guest has EL2 then we will use SMC as the conduit, 2178 * and otherwise we will use HVC (for backwards compatibility and 2179 * because if we're using KVM then we must use HVC). 2180 */ 2181 if (vms->secure && firmware_loaded) { 2182 vms->psci_conduit = QEMU_PSCI_CONDUIT_DISABLED; 2183 } else if (vms->virt) { 2184 vms->psci_conduit = QEMU_PSCI_CONDUIT_SMC; 2185 } else { 2186 vms->psci_conduit = QEMU_PSCI_CONDUIT_HVC; 2187 } 2188 2189 /* 2190 * The maximum number of CPUs depends on the GIC version, or on how 2191 * many redistributors we can fit into the memory map (which in turn 2192 * depends on whether this is a GICv3 or v4). 2193 */ 2194 if (vms->gic_version == VIRT_GIC_VERSION_2) { 2195 virt_max_cpus = GIC_NCPU; 2196 } else { 2197 virt_max_cpus = virt_redist_capacity(vms, VIRT_GIC_REDIST); 2198 if (vms->highmem_redists) { 2199 virt_max_cpus += virt_redist_capacity(vms, VIRT_HIGH_GIC_REDIST2); 2200 } 2201 } 2202 2203 if (max_cpus > virt_max_cpus) { 2204 error_report("Number of SMP CPUs requested (%d) exceeds max CPUs " 2205 "supported by machine 'mach-virt' (%d)", 2206 max_cpus, virt_max_cpus); 2207 if (vms->gic_version != VIRT_GIC_VERSION_2 && !vms->highmem_redists) { 2208 error_printf("Try 'highmem-redists=on' for more CPUs\n"); 2209 } 2210 2211 exit(1); 2212 } 2213 2214 if (vms->secure && (kvm_enabled() || hvf_enabled())) { 2215 error_report("mach-virt: %s does not support providing " 2216 "Security extensions (TrustZone) to the guest CPU", 2217 current_accel_name()); 2218 exit(1); 2219 } 2220 2221 if (vms->virt && (kvm_enabled() || hvf_enabled())) { 2222 error_report("mach-virt: %s does not support providing " 2223 "Virtualization extensions to the guest CPU", 2224 current_accel_name()); 2225 exit(1); 2226 } 2227 2228 if (vms->mte && hvf_enabled()) { 2229 error_report("mach-virt: %s does not support providing " 2230 "MTE to the guest CPU", 2231 current_accel_name()); 2232 exit(1); 2233 } 2234 2235 create_fdt(vms); 2236 2237 assert(possible_cpus->len == max_cpus); 2238 for (n = 0; n < possible_cpus->len; n++) { 2239 Object *cpuobj; 2240 CPUState *cs; 2241 2242 if (n >= smp_cpus) { 2243 break; 2244 } 2245 2246 cpuobj = object_new(possible_cpus->cpus[n].type); 2247 object_property_set_int(cpuobj, "mp-affinity", 2248 possible_cpus->cpus[n].arch_id, NULL); 2249 2250 cs = CPU(cpuobj); 2251 cs->cpu_index = n; 2252 2253 numa_cpu_pre_plug(&possible_cpus->cpus[cs->cpu_index], DEVICE(cpuobj), 2254 &error_fatal); 2255 2256 aarch64 &= object_property_get_bool(cpuobj, "aarch64", NULL); 2257 2258 if (!vms->secure) { 2259 object_property_set_bool(cpuobj, "has_el3", false, NULL); 2260 } 2261 2262 if (!vms->virt && object_property_find(cpuobj, "has_el2")) { 2263 object_property_set_bool(cpuobj, "has_el2", false, NULL); 2264 } 2265 2266 if (vmc->kvm_no_adjvtime && 2267 object_property_find(cpuobj, "kvm-no-adjvtime")) { 2268 object_property_set_bool(cpuobj, "kvm-no-adjvtime", true, NULL); 2269 } 2270 2271 if (vmc->no_kvm_steal_time && 2272 object_property_find(cpuobj, "kvm-steal-time")) { 2273 object_property_set_bool(cpuobj, "kvm-steal-time", false, NULL); 2274 } 2275 2276 if (vmc->no_pmu && object_property_find(cpuobj, "pmu")) { 2277 object_property_set_bool(cpuobj, "pmu", false, NULL); 2278 } 2279 2280 if (vmc->no_tcg_lpa2 && object_property_find(cpuobj, "lpa2")) { 2281 object_property_set_bool(cpuobj, "lpa2", false, NULL); 2282 } 2283 2284 if (object_property_find(cpuobj, "reset-cbar")) { 2285 object_property_set_int(cpuobj, "reset-cbar", 2286 vms->memmap[VIRT_CPUPERIPHS].base, 2287 &error_abort); 2288 } 2289 2290 object_property_set_link(cpuobj, "memory", OBJECT(sysmem), 2291 &error_abort); 2292 if (vms->secure) { 2293 object_property_set_link(cpuobj, "secure-memory", 2294 OBJECT(secure_sysmem), &error_abort); 2295 } 2296 2297 if (vms->mte) { 2298 if (tcg_enabled()) { 2299 /* Create the memory region only once, but link to all cpus. */ 2300 if (!tag_sysmem) { 2301 /* 2302 * The property exists only if MemTag is supported. 2303 * If it is, we must allocate the ram to back that up. 2304 */ 2305 if (!object_property_find(cpuobj, "tag-memory")) { 2306 error_report("MTE requested, but not supported " 2307 "by the guest CPU"); 2308 exit(1); 2309 } 2310 2311 tag_sysmem = g_new(MemoryRegion, 1); 2312 memory_region_init(tag_sysmem, OBJECT(machine), 2313 "tag-memory", UINT64_MAX / 32); 2314 2315 if (vms->secure) { 2316 secure_tag_sysmem = g_new(MemoryRegion, 1); 2317 memory_region_init(secure_tag_sysmem, OBJECT(machine), 2318 "secure-tag-memory", 2319 UINT64_MAX / 32); 2320 2321 /* As with ram, secure-tag takes precedence over tag. */ 2322 memory_region_add_subregion_overlap(secure_tag_sysmem, 2323 0, tag_sysmem, -1); 2324 } 2325 } 2326 2327 object_property_set_link(cpuobj, "tag-memory", 2328 OBJECT(tag_sysmem), &error_abort); 2329 if (vms->secure) { 2330 object_property_set_link(cpuobj, "secure-tag-memory", 2331 OBJECT(secure_tag_sysmem), 2332 &error_abort); 2333 } 2334 } else if (kvm_enabled()) { 2335 if (!kvm_arm_mte_supported()) { 2336 error_report("MTE requested, but not supported by KVM"); 2337 exit(1); 2338 } 2339 kvm_arm_enable_mte(cpuobj, &error_abort); 2340 } else { 2341 error_report("MTE requested, but not supported "); 2342 exit(1); 2343 } 2344 } 2345 2346 qdev_realize(DEVICE(cpuobj), NULL, &error_fatal); 2347 object_unref(cpuobj); 2348 } 2349 2350 /* Now we've created the CPUs we can see if they have the hypvirt timer */ 2351 vms->ns_el2_virt_timer_irq = ns_el2_virt_timer_present() && 2352 !vmc->no_ns_el2_virt_timer_irq; 2353 2354 fdt_add_timer_nodes(vms); 2355 fdt_add_cpu_nodes(vms); 2356 2357 memory_region_add_subregion(sysmem, vms->memmap[VIRT_MEM].base, 2358 machine->ram); 2359 2360 virt_flash_fdt(vms, sysmem, secure_sysmem ?: sysmem); 2361 2362 create_gic(vms, sysmem); 2363 2364 virt_cpu_post_init(vms, sysmem); 2365 2366 fdt_add_pmu_nodes(vms); 2367 2368 /* 2369 * The first UART always exists. If the security extensions are 2370 * enabled, the second UART also always exists. Otherwise, it only exists 2371 * if a backend is configured explicitly via '-serial <backend>'. 2372 * This avoids potentially breaking existing user setups that expect 2373 * only one NonSecure UART to be present (for instance, older EDK2 2374 * binaries). 2375 * 2376 * The nodes end up in the DTB in reverse order of creation, so we must 2377 * create UART0 last to ensure it appears as the first node in the DTB, 2378 * for compatibility with guest software that just iterates through the 2379 * DTB to find the first UART, as older versions of EDK2 do. 2380 * DTB readers that follow the spec, as Linux does, should honour the 2381 * aliases node information and /chosen/stdout-path regardless of 2382 * the order that nodes appear in the DTB. 2383 * 2384 * For similar back-compatibility reasons, if UART1 is the secure UART 2385 * we create it second (and so it appears first in the DTB), because 2386 * that's what QEMU has always done. 2387 */ 2388 if (!vms->secure) { 2389 Chardev *serial1 = serial_hd(1); 2390 2391 if (serial1) { 2392 vms->second_ns_uart_present = true; 2393 create_uart(vms, VIRT_UART1, sysmem, serial1, false); 2394 } 2395 } 2396 create_uart(vms, VIRT_UART0, sysmem, serial_hd(0), false); 2397 if (vms->secure) { 2398 create_uart(vms, VIRT_UART1, secure_sysmem, serial_hd(1), true); 2399 } 2400 2401 if (vms->secure) { 2402 create_secure_ram(vms, secure_sysmem, secure_tag_sysmem); 2403 } 2404 2405 if (tag_sysmem) { 2406 create_tag_ram(tag_sysmem, vms->memmap[VIRT_MEM].base, 2407 machine->ram_size, "mach-virt.tag"); 2408 } 2409 2410 vms->highmem_ecam &= (!firmware_loaded || aarch64); 2411 2412 create_rtc(vms); 2413 2414 create_pcie(vms); 2415 2416 if (has_ged && aarch64 && firmware_loaded && virt_is_acpi_enabled(vms)) { 2417 vms->acpi_dev = create_acpi_ged(vms); 2418 } else { 2419 create_gpio_devices(vms, VIRT_GPIO, sysmem); 2420 } 2421 2422 if (vms->secure && !vmc->no_secure_gpio) { 2423 create_gpio_devices(vms, VIRT_SECURE_GPIO, secure_sysmem); 2424 } 2425 2426 /* connect powerdown request */ 2427 vms->powerdown_notifier.notify = virt_powerdown_req; 2428 qemu_register_powerdown_notifier(&vms->powerdown_notifier); 2429 2430 /* Create mmio transports, so the user can create virtio backends 2431 * (which will be automatically plugged in to the transports). If 2432 * no backend is created the transport will just sit harmlessly idle. 2433 */ 2434 create_virtio_devices(vms); 2435 2436 vms->fw_cfg = create_fw_cfg(vms, &address_space_memory); 2437 rom_set_fw(vms->fw_cfg); 2438 2439 create_platform_bus(vms); 2440 2441 if (machine->nvdimms_state->is_enabled) { 2442 const struct AcpiGenericAddress arm_virt_nvdimm_acpi_dsmio = { 2443 .space_id = AML_AS_SYSTEM_MEMORY, 2444 .address = vms->memmap[VIRT_NVDIMM_ACPI].base, 2445 .bit_width = NVDIMM_ACPI_IO_LEN << 3 2446 }; 2447 2448 nvdimm_init_acpi_state(machine->nvdimms_state, sysmem, 2449 arm_virt_nvdimm_acpi_dsmio, 2450 vms->fw_cfg, OBJECT(vms)); 2451 } 2452 2453 vms->bootinfo.ram_size = machine->ram_size; 2454 vms->bootinfo.board_id = -1; 2455 vms->bootinfo.loader_start = vms->memmap[VIRT_MEM].base; 2456 vms->bootinfo.get_dtb = machvirt_dtb; 2457 vms->bootinfo.skip_dtb_autoload = true; 2458 vms->bootinfo.firmware_loaded = firmware_loaded; 2459 vms->bootinfo.psci_conduit = vms->psci_conduit; 2460 arm_load_kernel(ARM_CPU(first_cpu), machine, &vms->bootinfo); 2461 2462 vms->machine_done.notify = virt_machine_done; 2463 qemu_add_machine_init_done_notifier(&vms->machine_done); 2464 } 2465 2466 static bool virt_get_secure(Object *obj, Error **errp) 2467 { 2468 VirtMachineState *vms = VIRT_MACHINE(obj); 2469 2470 return vms->secure; 2471 } 2472 2473 static void virt_set_secure(Object *obj, bool value, Error **errp) 2474 { 2475 VirtMachineState *vms = VIRT_MACHINE(obj); 2476 2477 vms->secure = value; 2478 } 2479 2480 static bool virt_get_virt(Object *obj, Error **errp) 2481 { 2482 VirtMachineState *vms = VIRT_MACHINE(obj); 2483 2484 return vms->virt; 2485 } 2486 2487 static void virt_set_virt(Object *obj, bool value, Error **errp) 2488 { 2489 VirtMachineState *vms = VIRT_MACHINE(obj); 2490 2491 vms->virt = value; 2492 } 2493 2494 static bool virt_get_highmem(Object *obj, Error **errp) 2495 { 2496 VirtMachineState *vms = VIRT_MACHINE(obj); 2497 2498 return vms->highmem; 2499 } 2500 2501 static void virt_set_highmem(Object *obj, bool value, Error **errp) 2502 { 2503 VirtMachineState *vms = VIRT_MACHINE(obj); 2504 2505 vms->highmem = value; 2506 } 2507 2508 static bool virt_get_compact_highmem(Object *obj, Error **errp) 2509 { 2510 VirtMachineState *vms = VIRT_MACHINE(obj); 2511 2512 return vms->highmem_compact; 2513 } 2514 2515 static void virt_set_compact_highmem(Object *obj, bool value, Error **errp) 2516 { 2517 VirtMachineState *vms = VIRT_MACHINE(obj); 2518 2519 vms->highmem_compact = value; 2520 } 2521 2522 static bool virt_get_highmem_redists(Object *obj, Error **errp) 2523 { 2524 VirtMachineState *vms = VIRT_MACHINE(obj); 2525 2526 return vms->highmem_redists; 2527 } 2528 2529 static void virt_set_highmem_redists(Object *obj, bool value, Error **errp) 2530 { 2531 VirtMachineState *vms = VIRT_MACHINE(obj); 2532 2533 vms->highmem_redists = value; 2534 } 2535 2536 static bool virt_get_highmem_ecam(Object *obj, Error **errp) 2537 { 2538 VirtMachineState *vms = VIRT_MACHINE(obj); 2539 2540 return vms->highmem_ecam; 2541 } 2542 2543 static void virt_set_highmem_ecam(Object *obj, bool value, Error **errp) 2544 { 2545 VirtMachineState *vms = VIRT_MACHINE(obj); 2546 2547 vms->highmem_ecam = value; 2548 } 2549 2550 static bool virt_get_highmem_mmio(Object *obj, Error **errp) 2551 { 2552 VirtMachineState *vms = VIRT_MACHINE(obj); 2553 2554 return vms->highmem_mmio; 2555 } 2556 2557 static void virt_set_highmem_mmio(Object *obj, bool value, Error **errp) 2558 { 2559 VirtMachineState *vms = VIRT_MACHINE(obj); 2560 2561 vms->highmem_mmio = value; 2562 } 2563 2564 static void virt_get_highmem_mmio_size(Object *obj, Visitor *v, 2565 const char *name, void *opaque, 2566 Error **errp) 2567 { 2568 uint64_t size = extended_memmap[VIRT_HIGH_PCIE_MMIO].size; 2569 2570 visit_type_size(v, name, &size, errp); 2571 } 2572 2573 static void virt_set_highmem_mmio_size(Object *obj, Visitor *v, 2574 const char *name, void *opaque, 2575 Error **errp) 2576 { 2577 uint64_t size; 2578 2579 if (!visit_type_size(v, name, &size, errp)) { 2580 return; 2581 } 2582 2583 if (!is_power_of_2(size)) { 2584 error_setg(errp, "highmem-mmio-size is not a power of 2"); 2585 return; 2586 } 2587 2588 if (size < DEFAULT_HIGH_PCIE_MMIO_SIZE) { 2589 char *sz = size_to_str(DEFAULT_HIGH_PCIE_MMIO_SIZE); 2590 error_setg(errp, "highmem-mmio-size cannot be set to a lower value " 2591 "than the default (%s)", sz); 2592 g_free(sz); 2593 return; 2594 } 2595 2596 extended_memmap[VIRT_HIGH_PCIE_MMIO].size = size; 2597 } 2598 2599 static bool virt_get_its(Object *obj, Error **errp) 2600 { 2601 VirtMachineState *vms = VIRT_MACHINE(obj); 2602 2603 return vms->its; 2604 } 2605 2606 static void virt_set_its(Object *obj, bool value, Error **errp) 2607 { 2608 VirtMachineState *vms = VIRT_MACHINE(obj); 2609 2610 vms->its = value; 2611 } 2612 2613 static bool virt_get_dtb_randomness(Object *obj, Error **errp) 2614 { 2615 VirtMachineState *vms = VIRT_MACHINE(obj); 2616 2617 return vms->dtb_randomness; 2618 } 2619 2620 static void virt_set_dtb_randomness(Object *obj, bool value, Error **errp) 2621 { 2622 VirtMachineState *vms = VIRT_MACHINE(obj); 2623 2624 vms->dtb_randomness = value; 2625 } 2626 2627 static char *virt_get_oem_id(Object *obj, Error **errp) 2628 { 2629 VirtMachineState *vms = VIRT_MACHINE(obj); 2630 2631 return g_strdup(vms->oem_id); 2632 } 2633 2634 static void virt_set_oem_id(Object *obj, const char *value, Error **errp) 2635 { 2636 VirtMachineState *vms = VIRT_MACHINE(obj); 2637 size_t len = strlen(value); 2638 2639 if (len > 6) { 2640 error_setg(errp, 2641 "User specified oem-id value is bigger than 6 bytes in size"); 2642 return; 2643 } 2644 2645 strncpy(vms->oem_id, value, 6); 2646 } 2647 2648 static char *virt_get_oem_table_id(Object *obj, Error **errp) 2649 { 2650 VirtMachineState *vms = VIRT_MACHINE(obj); 2651 2652 return g_strdup(vms->oem_table_id); 2653 } 2654 2655 static void virt_set_oem_table_id(Object *obj, const char *value, 2656 Error **errp) 2657 { 2658 VirtMachineState *vms = VIRT_MACHINE(obj); 2659 size_t len = strlen(value); 2660 2661 if (len > 8) { 2662 error_setg(errp, 2663 "User specified oem-table-id value is bigger than 8 bytes in size"); 2664 return; 2665 } 2666 strncpy(vms->oem_table_id, value, 8); 2667 } 2668 2669 2670 bool virt_is_acpi_enabled(VirtMachineState *vms) 2671 { 2672 if (vms->acpi == ON_OFF_AUTO_OFF) { 2673 return false; 2674 } 2675 return true; 2676 } 2677 2678 static void virt_get_acpi(Object *obj, Visitor *v, const char *name, 2679 void *opaque, Error **errp) 2680 { 2681 VirtMachineState *vms = VIRT_MACHINE(obj); 2682 OnOffAuto acpi = vms->acpi; 2683 2684 visit_type_OnOffAuto(v, name, &acpi, errp); 2685 } 2686 2687 static void virt_set_acpi(Object *obj, Visitor *v, const char *name, 2688 void *opaque, Error **errp) 2689 { 2690 VirtMachineState *vms = VIRT_MACHINE(obj); 2691 2692 visit_type_OnOffAuto(v, name, &vms->acpi, errp); 2693 } 2694 2695 static bool virt_get_ras(Object *obj, Error **errp) 2696 { 2697 VirtMachineState *vms = VIRT_MACHINE(obj); 2698 2699 return vms->ras; 2700 } 2701 2702 static void virt_set_ras(Object *obj, bool value, Error **errp) 2703 { 2704 VirtMachineState *vms = VIRT_MACHINE(obj); 2705 2706 vms->ras = value; 2707 } 2708 2709 static bool virt_get_mte(Object *obj, Error **errp) 2710 { 2711 VirtMachineState *vms = VIRT_MACHINE(obj); 2712 2713 return vms->mte; 2714 } 2715 2716 static void virt_set_mte(Object *obj, bool value, Error **errp) 2717 { 2718 VirtMachineState *vms = VIRT_MACHINE(obj); 2719 2720 vms->mte = value; 2721 } 2722 2723 static char *virt_get_gic_version(Object *obj, Error **errp) 2724 { 2725 VirtMachineState *vms = VIRT_MACHINE(obj); 2726 const char *val; 2727 2728 switch (vms->gic_version) { 2729 case VIRT_GIC_VERSION_4: 2730 val = "4"; 2731 break; 2732 case VIRT_GIC_VERSION_3: 2733 val = "3"; 2734 break; 2735 default: 2736 val = "2"; 2737 break; 2738 } 2739 return g_strdup(val); 2740 } 2741 2742 static void virt_set_gic_version(Object *obj, const char *value, Error **errp) 2743 { 2744 VirtMachineState *vms = VIRT_MACHINE(obj); 2745 2746 if (!strcmp(value, "4")) { 2747 vms->gic_version = VIRT_GIC_VERSION_4; 2748 } else if (!strcmp(value, "3")) { 2749 vms->gic_version = VIRT_GIC_VERSION_3; 2750 } else if (!strcmp(value, "2")) { 2751 vms->gic_version = VIRT_GIC_VERSION_2; 2752 } else if (!strcmp(value, "host")) { 2753 vms->gic_version = VIRT_GIC_VERSION_HOST; /* Will probe later */ 2754 } else if (!strcmp(value, "max")) { 2755 vms->gic_version = VIRT_GIC_VERSION_MAX; /* Will probe later */ 2756 } else { 2757 error_setg(errp, "Invalid gic-version value"); 2758 error_append_hint(errp, "Valid values are 3, 2, host, max.\n"); 2759 } 2760 } 2761 2762 static char *virt_get_iommu(Object *obj, Error **errp) 2763 { 2764 VirtMachineState *vms = VIRT_MACHINE(obj); 2765 2766 switch (vms->iommu) { 2767 case VIRT_IOMMU_NONE: 2768 return g_strdup("none"); 2769 case VIRT_IOMMU_SMMUV3: 2770 return g_strdup("smmuv3"); 2771 default: 2772 g_assert_not_reached(); 2773 } 2774 } 2775 2776 static void virt_set_iommu(Object *obj, const char *value, Error **errp) 2777 { 2778 VirtMachineState *vms = VIRT_MACHINE(obj); 2779 2780 if (!strcmp(value, "smmuv3")) { 2781 vms->iommu = VIRT_IOMMU_SMMUV3; 2782 } else if (!strcmp(value, "none")) { 2783 vms->iommu = VIRT_IOMMU_NONE; 2784 } else { 2785 error_setg(errp, "Invalid iommu value"); 2786 error_append_hint(errp, "Valid values are none, smmuv3.\n"); 2787 } 2788 } 2789 2790 static bool virt_get_default_bus_bypass_iommu(Object *obj, Error **errp) 2791 { 2792 VirtMachineState *vms = VIRT_MACHINE(obj); 2793 2794 return vms->default_bus_bypass_iommu; 2795 } 2796 2797 static void virt_set_default_bus_bypass_iommu(Object *obj, bool value, 2798 Error **errp) 2799 { 2800 VirtMachineState *vms = VIRT_MACHINE(obj); 2801 2802 vms->default_bus_bypass_iommu = value; 2803 } 2804 2805 static CpuInstanceProperties 2806 virt_cpu_index_to_props(MachineState *ms, unsigned cpu_index) 2807 { 2808 MachineClass *mc = MACHINE_GET_CLASS(ms); 2809 const CPUArchIdList *possible_cpus = mc->possible_cpu_arch_ids(ms); 2810 2811 assert(cpu_index < possible_cpus->len); 2812 return possible_cpus->cpus[cpu_index].props; 2813 } 2814 2815 static int64_t virt_get_default_cpu_node_id(const MachineState *ms, int idx) 2816 { 2817 int64_t socket_id = ms->possible_cpus->cpus[idx].props.socket_id; 2818 2819 return socket_id % ms->numa_state->num_nodes; 2820 } 2821 2822 static const CPUArchIdList *virt_possible_cpu_arch_ids(MachineState *ms) 2823 { 2824 int n; 2825 unsigned int max_cpus = ms->smp.max_cpus; 2826 VirtMachineState *vms = VIRT_MACHINE(ms); 2827 MachineClass *mc = MACHINE_GET_CLASS(vms); 2828 2829 if (ms->possible_cpus) { 2830 assert(ms->possible_cpus->len == max_cpus); 2831 return ms->possible_cpus; 2832 } 2833 2834 ms->possible_cpus = g_malloc0(sizeof(CPUArchIdList) + 2835 sizeof(CPUArchId) * max_cpus); 2836 ms->possible_cpus->len = max_cpus; 2837 for (n = 0; n < ms->possible_cpus->len; n++) { 2838 ms->possible_cpus->cpus[n].type = ms->cpu_type; 2839 ms->possible_cpus->cpus[n].arch_id = 2840 virt_cpu_mp_affinity(vms, n); 2841 2842 assert(!mc->smp_props.dies_supported); 2843 ms->possible_cpus->cpus[n].props.has_socket_id = true; 2844 ms->possible_cpus->cpus[n].props.socket_id = 2845 n / (ms->smp.clusters * ms->smp.cores * ms->smp.threads); 2846 ms->possible_cpus->cpus[n].props.has_cluster_id = true; 2847 ms->possible_cpus->cpus[n].props.cluster_id = 2848 (n / (ms->smp.cores * ms->smp.threads)) % ms->smp.clusters; 2849 ms->possible_cpus->cpus[n].props.has_core_id = true; 2850 ms->possible_cpus->cpus[n].props.core_id = 2851 (n / ms->smp.threads) % ms->smp.cores; 2852 ms->possible_cpus->cpus[n].props.has_thread_id = true; 2853 ms->possible_cpus->cpus[n].props.thread_id = 2854 n % ms->smp.threads; 2855 } 2856 return ms->possible_cpus; 2857 } 2858 2859 static void virt_memory_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev, 2860 Error **errp) 2861 { 2862 VirtMachineState *vms = VIRT_MACHINE(hotplug_dev); 2863 const MachineState *ms = MACHINE(hotplug_dev); 2864 const bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM); 2865 2866 if (!vms->acpi_dev) { 2867 error_setg(errp, 2868 "memory hotplug is not enabled: missing acpi-ged device"); 2869 return; 2870 } 2871 2872 if (vms->mte) { 2873 error_setg(errp, "memory hotplug is not enabled: MTE is enabled"); 2874 return; 2875 } 2876 2877 if (is_nvdimm && !ms->nvdimms_state->is_enabled) { 2878 error_setg(errp, "nvdimm is not enabled: add 'nvdimm=on' to '-M'"); 2879 return; 2880 } 2881 2882 pc_dimm_pre_plug(PC_DIMM(dev), MACHINE(hotplug_dev), errp); 2883 } 2884 2885 static void virt_memory_plug(HotplugHandler *hotplug_dev, 2886 DeviceState *dev, Error **errp) 2887 { 2888 VirtMachineState *vms = VIRT_MACHINE(hotplug_dev); 2889 MachineState *ms = MACHINE(hotplug_dev); 2890 bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM); 2891 2892 pc_dimm_plug(PC_DIMM(dev), MACHINE(vms)); 2893 2894 if (is_nvdimm) { 2895 nvdimm_plug(ms->nvdimms_state); 2896 } 2897 2898 hotplug_handler_plug(HOTPLUG_HANDLER(vms->acpi_dev), 2899 dev, &error_abort); 2900 } 2901 2902 static void virt_machine_device_pre_plug_cb(HotplugHandler *hotplug_dev, 2903 DeviceState *dev, Error **errp) 2904 { 2905 VirtMachineState *vms = VIRT_MACHINE(hotplug_dev); 2906 2907 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { 2908 virt_memory_pre_plug(hotplug_dev, dev, errp); 2909 } else if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_MD_PCI)) { 2910 virtio_md_pci_pre_plug(VIRTIO_MD_PCI(dev), MACHINE(hotplug_dev), errp); 2911 } else if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_IOMMU_PCI)) { 2912 hwaddr db_start = 0, db_end = 0; 2913 QList *reserved_regions; 2914 char *resv_prop_str; 2915 2916 if (vms->iommu != VIRT_IOMMU_NONE) { 2917 error_setg(errp, "virt machine does not support multiple IOMMUs"); 2918 return; 2919 } 2920 2921 switch (vms->msi_controller) { 2922 case VIRT_MSI_CTRL_NONE: 2923 return; 2924 case VIRT_MSI_CTRL_ITS: 2925 /* GITS_TRANSLATER page */ 2926 db_start = base_memmap[VIRT_GIC_ITS].base + 0x10000; 2927 db_end = base_memmap[VIRT_GIC_ITS].base + 2928 base_memmap[VIRT_GIC_ITS].size - 1; 2929 break; 2930 case VIRT_MSI_CTRL_GICV2M: 2931 /* MSI_SETSPI_NS page */ 2932 db_start = base_memmap[VIRT_GIC_V2M].base; 2933 db_end = db_start + base_memmap[VIRT_GIC_V2M].size - 1; 2934 break; 2935 } 2936 resv_prop_str = g_strdup_printf("0x%"PRIx64":0x%"PRIx64":%u", 2937 db_start, db_end, 2938 VIRTIO_IOMMU_RESV_MEM_T_MSI); 2939 2940 reserved_regions = qlist_new(); 2941 qlist_append_str(reserved_regions, resv_prop_str); 2942 qdev_prop_set_array(dev, "reserved-regions", reserved_regions); 2943 g_free(resv_prop_str); 2944 } 2945 } 2946 2947 static void virt_machine_device_plug_cb(HotplugHandler *hotplug_dev, 2948 DeviceState *dev, Error **errp) 2949 { 2950 VirtMachineState *vms = VIRT_MACHINE(hotplug_dev); 2951 2952 if (vms->platform_bus_dev) { 2953 MachineClass *mc = MACHINE_GET_CLASS(vms); 2954 2955 if (device_is_dynamic_sysbus(mc, dev)) { 2956 platform_bus_link_device(PLATFORM_BUS_DEVICE(vms->platform_bus_dev), 2957 SYS_BUS_DEVICE(dev)); 2958 } 2959 } 2960 2961 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { 2962 virt_memory_plug(hotplug_dev, dev, errp); 2963 } else if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_MD_PCI)) { 2964 virtio_md_pci_plug(VIRTIO_MD_PCI(dev), MACHINE(hotplug_dev), errp); 2965 } 2966 2967 if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_IOMMU_PCI)) { 2968 PCIDevice *pdev = PCI_DEVICE(dev); 2969 2970 vms->iommu = VIRT_IOMMU_VIRTIO; 2971 vms->virtio_iommu_bdf = pci_get_bdf(pdev); 2972 create_virtio_iommu_dt_bindings(vms); 2973 } 2974 } 2975 2976 static void virt_dimm_unplug_request(HotplugHandler *hotplug_dev, 2977 DeviceState *dev, Error **errp) 2978 { 2979 VirtMachineState *vms = VIRT_MACHINE(hotplug_dev); 2980 2981 if (!vms->acpi_dev) { 2982 error_setg(errp, 2983 "memory hotplug is not enabled: missing acpi-ged device"); 2984 return; 2985 } 2986 2987 if (object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM)) { 2988 error_setg(errp, "nvdimm device hot unplug is not supported yet."); 2989 return; 2990 } 2991 2992 hotplug_handler_unplug_request(HOTPLUG_HANDLER(vms->acpi_dev), dev, 2993 errp); 2994 } 2995 2996 static void virt_dimm_unplug(HotplugHandler *hotplug_dev, 2997 DeviceState *dev, Error **errp) 2998 { 2999 VirtMachineState *vms = VIRT_MACHINE(hotplug_dev); 3000 Error *local_err = NULL; 3001 3002 hotplug_handler_unplug(HOTPLUG_HANDLER(vms->acpi_dev), dev, &local_err); 3003 if (local_err) { 3004 goto out; 3005 } 3006 3007 pc_dimm_unplug(PC_DIMM(dev), MACHINE(vms)); 3008 qdev_unrealize(dev); 3009 3010 out: 3011 error_propagate(errp, local_err); 3012 } 3013 3014 static void virt_machine_device_unplug_request_cb(HotplugHandler *hotplug_dev, 3015 DeviceState *dev, Error **errp) 3016 { 3017 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { 3018 virt_dimm_unplug_request(hotplug_dev, dev, errp); 3019 } else if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_MD_PCI)) { 3020 virtio_md_pci_unplug_request(VIRTIO_MD_PCI(dev), MACHINE(hotplug_dev), 3021 errp); 3022 } else { 3023 error_setg(errp, "device unplug request for unsupported device" 3024 " type: %s", object_get_typename(OBJECT(dev))); 3025 } 3026 } 3027 3028 static void virt_machine_device_unplug_cb(HotplugHandler *hotplug_dev, 3029 DeviceState *dev, Error **errp) 3030 { 3031 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { 3032 virt_dimm_unplug(hotplug_dev, dev, errp); 3033 } else if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_MD_PCI)) { 3034 virtio_md_pci_unplug(VIRTIO_MD_PCI(dev), MACHINE(hotplug_dev), errp); 3035 } else { 3036 error_setg(errp, "virt: device unplug for unsupported device" 3037 " type: %s", object_get_typename(OBJECT(dev))); 3038 } 3039 } 3040 3041 static HotplugHandler *virt_machine_get_hotplug_handler(MachineState *machine, 3042 DeviceState *dev) 3043 { 3044 MachineClass *mc = MACHINE_GET_CLASS(machine); 3045 3046 if (device_is_dynamic_sysbus(mc, dev) || 3047 object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) || 3048 object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_MD_PCI) || 3049 object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_IOMMU_PCI)) { 3050 return HOTPLUG_HANDLER(machine); 3051 } 3052 return NULL; 3053 } 3054 3055 /* 3056 * for arm64 kvm_type [7-0] encodes the requested number of bits 3057 * in the IPA address space 3058 */ 3059 static int virt_kvm_type(MachineState *ms, const char *type_str) 3060 { 3061 VirtMachineState *vms = VIRT_MACHINE(ms); 3062 int max_vm_pa_size, requested_pa_size; 3063 bool fixed_ipa; 3064 3065 max_vm_pa_size = kvm_arm_get_max_vm_ipa_size(ms, &fixed_ipa); 3066 3067 /* we freeze the memory map to compute the highest gpa */ 3068 virt_set_memmap(vms, max_vm_pa_size); 3069 3070 requested_pa_size = 64 - clz64(vms->highest_gpa); 3071 3072 /* 3073 * KVM requires the IPA size to be at least 32 bits. 3074 */ 3075 if (requested_pa_size < 32) { 3076 requested_pa_size = 32; 3077 } 3078 3079 if (requested_pa_size > max_vm_pa_size) { 3080 error_report("-m and ,maxmem option values " 3081 "require an IPA range (%d bits) larger than " 3082 "the one supported by the host (%d bits)", 3083 requested_pa_size, max_vm_pa_size); 3084 return -1; 3085 } 3086 /* 3087 * We return the requested PA log size, unless KVM only supports 3088 * the implicit legacy 40b IPA setting, in which case the kvm_type 3089 * must be 0. 3090 */ 3091 return fixed_ipa ? 0 : requested_pa_size; 3092 } 3093 3094 static int virt_hvf_get_physical_address_range(MachineState *ms) 3095 { 3096 VirtMachineState *vms = VIRT_MACHINE(ms); 3097 3098 int default_ipa_size = hvf_arm_get_default_ipa_bit_size(); 3099 int max_ipa_size = hvf_arm_get_max_ipa_bit_size(); 3100 3101 /* We freeze the memory map to compute the highest gpa */ 3102 virt_set_memmap(vms, max_ipa_size); 3103 3104 int requested_ipa_size = 64 - clz64(vms->highest_gpa); 3105 3106 /* 3107 * If we're <= the default IPA size just use the default. 3108 * If we're above the default but below the maximum, round up to 3109 * the maximum. hvf_arm_get_max_ipa_bit_size() conveniently only 3110 * returns values that are valid ARM PARange values. 3111 */ 3112 if (requested_ipa_size <= default_ipa_size) { 3113 requested_ipa_size = default_ipa_size; 3114 } else if (requested_ipa_size <= max_ipa_size) { 3115 requested_ipa_size = max_ipa_size; 3116 } else { 3117 error_report("-m and ,maxmem option values " 3118 "require an IPA range (%d bits) larger than " 3119 "the one supported by the host (%d bits)", 3120 requested_ipa_size, max_ipa_size); 3121 return -1; 3122 } 3123 3124 return requested_ipa_size; 3125 } 3126 3127 static void virt_machine_class_init(ObjectClass *oc, void *data) 3128 { 3129 MachineClass *mc = MACHINE_CLASS(oc); 3130 HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc); 3131 static const char * const valid_cpu_types[] = { 3132 #ifdef CONFIG_TCG 3133 ARM_CPU_TYPE_NAME("cortex-a7"), 3134 ARM_CPU_TYPE_NAME("cortex-a15"), 3135 #ifdef TARGET_AARCH64 3136 ARM_CPU_TYPE_NAME("cortex-a35"), 3137 ARM_CPU_TYPE_NAME("cortex-a55"), 3138 ARM_CPU_TYPE_NAME("cortex-a72"), 3139 ARM_CPU_TYPE_NAME("cortex-a76"), 3140 ARM_CPU_TYPE_NAME("cortex-a710"), 3141 ARM_CPU_TYPE_NAME("a64fx"), 3142 ARM_CPU_TYPE_NAME("neoverse-n1"), 3143 ARM_CPU_TYPE_NAME("neoverse-v1"), 3144 ARM_CPU_TYPE_NAME("neoverse-n2"), 3145 #endif /* TARGET_AARCH64 */ 3146 #endif /* CONFIG_TCG */ 3147 #ifdef TARGET_AARCH64 3148 ARM_CPU_TYPE_NAME("cortex-a53"), 3149 ARM_CPU_TYPE_NAME("cortex-a57"), 3150 #if defined(CONFIG_KVM) || defined(CONFIG_HVF) 3151 ARM_CPU_TYPE_NAME("host"), 3152 #endif /* CONFIG_KVM || CONFIG_HVF */ 3153 #endif /* TARGET_AARCH64 */ 3154 ARM_CPU_TYPE_NAME("max"), 3155 NULL 3156 }; 3157 3158 mc->init = machvirt_init; 3159 /* Start with max_cpus set to 512, which is the maximum supported by KVM. 3160 * The value may be reduced later when we have more information about the 3161 * configuration of the particular instance. 3162 */ 3163 mc->max_cpus = 512; 3164 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_VFIO_CALXEDA_XGMAC); 3165 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_VFIO_AMD_XGBE); 3166 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_RAMFB_DEVICE); 3167 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_VFIO_PLATFORM); 3168 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_UEFI_VARS_SYSBUS); 3169 #ifdef CONFIG_TPM 3170 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_TPM_TIS_SYSBUS); 3171 #endif 3172 mc->block_default_type = IF_VIRTIO; 3173 mc->no_cdrom = 1; 3174 mc->pci_allow_0_address = true; 3175 /* We know we will never create a pre-ARMv7 CPU which needs 1K pages */ 3176 mc->minimum_page_bits = 12; 3177 mc->possible_cpu_arch_ids = virt_possible_cpu_arch_ids; 3178 mc->cpu_index_to_instance_props = virt_cpu_index_to_props; 3179 #ifdef CONFIG_TCG 3180 mc->default_cpu_type = ARM_CPU_TYPE_NAME("cortex-a15"); 3181 #else 3182 mc->default_cpu_type = ARM_CPU_TYPE_NAME("max"); 3183 #endif 3184 mc->valid_cpu_types = valid_cpu_types; 3185 mc->get_default_cpu_node_id = virt_get_default_cpu_node_id; 3186 mc->kvm_type = virt_kvm_type; 3187 mc->hvf_get_physical_address_range = virt_hvf_get_physical_address_range; 3188 assert(!mc->get_hotplug_handler); 3189 mc->get_hotplug_handler = virt_machine_get_hotplug_handler; 3190 hc->pre_plug = virt_machine_device_pre_plug_cb; 3191 hc->plug = virt_machine_device_plug_cb; 3192 hc->unplug_request = virt_machine_device_unplug_request_cb; 3193 hc->unplug = virt_machine_device_unplug_cb; 3194 mc->nvdimm_supported = true; 3195 mc->smp_props.clusters_supported = true; 3196 mc->auto_enable_numa_with_memhp = true; 3197 mc->auto_enable_numa_with_memdev = true; 3198 /* platform instead of architectural choice */ 3199 mc->cpu_cluster_has_numa_boundary = true; 3200 mc->default_ram_id = "mach-virt.ram"; 3201 mc->default_nic = "virtio-net-pci"; 3202 3203 object_class_property_add(oc, "acpi", "OnOffAuto", 3204 virt_get_acpi, virt_set_acpi, 3205 NULL, NULL); 3206 object_class_property_set_description(oc, "acpi", 3207 "Enable ACPI"); 3208 object_class_property_add_bool(oc, "secure", virt_get_secure, 3209 virt_set_secure); 3210 object_class_property_set_description(oc, "secure", 3211 "Set on/off to enable/disable the ARM " 3212 "Security Extensions (TrustZone)"); 3213 3214 object_class_property_add_bool(oc, "virtualization", virt_get_virt, 3215 virt_set_virt); 3216 object_class_property_set_description(oc, "virtualization", 3217 "Set on/off to enable/disable emulating a " 3218 "guest CPU which implements the ARM " 3219 "Virtualization Extensions"); 3220 3221 object_class_property_add_bool(oc, "highmem", virt_get_highmem, 3222 virt_set_highmem); 3223 object_class_property_set_description(oc, "highmem", 3224 "Set on/off to enable/disable using " 3225 "physical address space above 32 bits"); 3226 3227 object_class_property_add_bool(oc, "compact-highmem", 3228 virt_get_compact_highmem, 3229 virt_set_compact_highmem); 3230 object_class_property_set_description(oc, "compact-highmem", 3231 "Set on/off to enable/disable compact " 3232 "layout for high memory regions"); 3233 3234 object_class_property_add_bool(oc, "highmem-redists", 3235 virt_get_highmem_redists, 3236 virt_set_highmem_redists); 3237 object_class_property_set_description(oc, "highmem-redists", 3238 "Set on/off to enable/disable high " 3239 "memory region for GICv3 or GICv4 " 3240 "redistributor"); 3241 3242 object_class_property_add_bool(oc, "highmem-ecam", 3243 virt_get_highmem_ecam, 3244 virt_set_highmem_ecam); 3245 object_class_property_set_description(oc, "highmem-ecam", 3246 "Set on/off to enable/disable high " 3247 "memory region for PCI ECAM"); 3248 3249 object_class_property_add_bool(oc, "highmem-mmio", 3250 virt_get_highmem_mmio, 3251 virt_set_highmem_mmio); 3252 object_class_property_set_description(oc, "highmem-mmio", 3253 "Set on/off to enable/disable high " 3254 "memory region for PCI MMIO"); 3255 3256 object_class_property_add(oc, "highmem-mmio-size", "size", 3257 virt_get_highmem_mmio_size, 3258 virt_set_highmem_mmio_size, 3259 NULL, NULL); 3260 object_class_property_set_description(oc, "highmem-mmio-size", 3261 "Set the high memory region size " 3262 "for PCI MMIO"); 3263 3264 object_class_property_add_str(oc, "gic-version", virt_get_gic_version, 3265 virt_set_gic_version); 3266 object_class_property_set_description(oc, "gic-version", 3267 "Set GIC version. " 3268 "Valid values are 2, 3, 4, host and max"); 3269 3270 object_class_property_add_str(oc, "iommu", virt_get_iommu, virt_set_iommu); 3271 object_class_property_set_description(oc, "iommu", 3272 "Set the IOMMU type. " 3273 "Valid values are none and smmuv3"); 3274 3275 object_class_property_add_bool(oc, "default-bus-bypass-iommu", 3276 virt_get_default_bus_bypass_iommu, 3277 virt_set_default_bus_bypass_iommu); 3278 object_class_property_set_description(oc, "default-bus-bypass-iommu", 3279 "Set on/off to enable/disable " 3280 "bypass_iommu for default root bus"); 3281 3282 object_class_property_add_bool(oc, "ras", virt_get_ras, 3283 virt_set_ras); 3284 object_class_property_set_description(oc, "ras", 3285 "Set on/off to enable/disable reporting host memory errors " 3286 "to a KVM guest using ACPI and guest external abort exceptions"); 3287 3288 object_class_property_add_bool(oc, "mte", virt_get_mte, virt_set_mte); 3289 object_class_property_set_description(oc, "mte", 3290 "Set on/off to enable/disable emulating a " 3291 "guest CPU which implements the ARM " 3292 "Memory Tagging Extension"); 3293 3294 object_class_property_add_bool(oc, "its", virt_get_its, 3295 virt_set_its); 3296 object_class_property_set_description(oc, "its", 3297 "Set on/off to enable/disable " 3298 "ITS instantiation"); 3299 3300 object_class_property_add_bool(oc, "dtb-randomness", 3301 virt_get_dtb_randomness, 3302 virt_set_dtb_randomness); 3303 object_class_property_set_description(oc, "dtb-randomness", 3304 "Set off to disable passing random or " 3305 "non-deterministic dtb nodes to guest"); 3306 3307 object_class_property_add_bool(oc, "dtb-kaslr-seed", 3308 virt_get_dtb_randomness, 3309 virt_set_dtb_randomness); 3310 object_class_property_set_description(oc, "dtb-kaslr-seed", 3311 "Deprecated synonym of dtb-randomness"); 3312 3313 object_class_property_add_str(oc, "x-oem-id", 3314 virt_get_oem_id, 3315 virt_set_oem_id); 3316 object_class_property_set_description(oc, "x-oem-id", 3317 "Override the default value of field OEMID " 3318 "in ACPI table header." 3319 "The string may be up to 6 bytes in size"); 3320 3321 3322 object_class_property_add_str(oc, "x-oem-table-id", 3323 virt_get_oem_table_id, 3324 virt_set_oem_table_id); 3325 object_class_property_set_description(oc, "x-oem-table-id", 3326 "Override the default value of field OEM Table ID " 3327 "in ACPI table header." 3328 "The string may be up to 8 bytes in size"); 3329 3330 } 3331 3332 static void virt_instance_init(Object *obj) 3333 { 3334 VirtMachineState *vms = VIRT_MACHINE(obj); 3335 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms); 3336 3337 /* EL3 is disabled by default on virt: this makes us consistent 3338 * between KVM and TCG for this board, and it also allows us to 3339 * boot UEFI blobs which assume no TrustZone support. 3340 */ 3341 vms->secure = false; 3342 3343 /* EL2 is also disabled by default, for similar reasons */ 3344 vms->virt = false; 3345 3346 /* High memory is enabled by default */ 3347 vms->highmem = true; 3348 vms->highmem_compact = !vmc->no_highmem_compact; 3349 vms->gic_version = VIRT_GIC_VERSION_NOSEL; 3350 3351 vms->highmem_ecam = !vmc->no_highmem_ecam; 3352 vms->highmem_mmio = true; 3353 vms->highmem_redists = true; 3354 3355 if (vmc->no_its) { 3356 vms->its = false; 3357 } else { 3358 /* Default allows ITS instantiation */ 3359 vms->its = true; 3360 3361 if (vmc->no_tcg_its) { 3362 vms->tcg_its = false; 3363 } else { 3364 vms->tcg_its = true; 3365 } 3366 } 3367 3368 /* Default disallows iommu instantiation */ 3369 vms->iommu = VIRT_IOMMU_NONE; 3370 3371 /* The default root bus is attached to iommu by default */ 3372 vms->default_bus_bypass_iommu = false; 3373 3374 /* Default disallows RAS instantiation */ 3375 vms->ras = false; 3376 3377 /* MTE is disabled by default. */ 3378 vms->mte = false; 3379 3380 /* Supply kaslr-seed and rng-seed by default */ 3381 vms->dtb_randomness = true; 3382 3383 vms->irqmap = a15irqmap; 3384 3385 virt_flash_create(vms); 3386 3387 vms->oem_id = g_strndup(ACPI_BUILD_APPNAME6, 6); 3388 vms->oem_table_id = g_strndup(ACPI_BUILD_APPNAME8, 8); 3389 } 3390 3391 static const TypeInfo virt_machine_info = { 3392 .name = TYPE_VIRT_MACHINE, 3393 .parent = TYPE_MACHINE, 3394 .abstract = true, 3395 .instance_size = sizeof(VirtMachineState), 3396 .class_size = sizeof(VirtMachineClass), 3397 .class_init = virt_machine_class_init, 3398 .instance_init = virt_instance_init, 3399 .interfaces = (InterfaceInfo[]) { 3400 { TYPE_HOTPLUG_HANDLER }, 3401 { } 3402 }, 3403 }; 3404 3405 static void machvirt_machine_init(void) 3406 { 3407 type_register_static(&virt_machine_info); 3408 } 3409 type_init(machvirt_machine_init); 3410 3411 static void virt_machine_10_0_options(MachineClass *mc) 3412 { 3413 } 3414 DEFINE_VIRT_MACHINE_AS_LATEST(10, 0) 3415 3416 static void virt_machine_9_2_options(MachineClass *mc) 3417 { 3418 virt_machine_10_0_options(mc); 3419 compat_props_add(mc->compat_props, hw_compat_9_2, hw_compat_9_2_len); 3420 } 3421 DEFINE_VIRT_MACHINE(9, 2) 3422 3423 static void virt_machine_9_1_options(MachineClass *mc) 3424 { 3425 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc)); 3426 3427 virt_machine_9_2_options(mc); 3428 compat_props_add(mc->compat_props, hw_compat_9_1, hw_compat_9_1_len); 3429 /* 9.1 and earlier have only a stage-1 SMMU, not a nested s1+2 one */ 3430 vmc->no_nested_smmu = true; 3431 } 3432 DEFINE_VIRT_MACHINE(9, 1) 3433 3434 static void virt_machine_9_0_options(MachineClass *mc) 3435 { 3436 virt_machine_9_1_options(mc); 3437 mc->smbios_memory_device_size = 16 * GiB; 3438 compat_props_add(mc->compat_props, hw_compat_9_0, hw_compat_9_0_len); 3439 } 3440 DEFINE_VIRT_MACHINE(9, 0) 3441 3442 static void virt_machine_8_2_options(MachineClass *mc) 3443 { 3444 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc)); 3445 3446 virt_machine_9_0_options(mc); 3447 compat_props_add(mc->compat_props, hw_compat_8_2, hw_compat_8_2_len); 3448 /* 3449 * Don't expose NS_EL2_VIRT timer IRQ in DTB on ACPI on 8.2 and 3450 * earlier machines. (Exposing it tickles a bug in older EDK2 3451 * guest BIOS binaries.) 3452 */ 3453 vmc->no_ns_el2_virt_timer_irq = true; 3454 } 3455 DEFINE_VIRT_MACHINE(8, 2) 3456 3457 static void virt_machine_8_1_options(MachineClass *mc) 3458 { 3459 virt_machine_8_2_options(mc); 3460 compat_props_add(mc->compat_props, hw_compat_8_1, hw_compat_8_1_len); 3461 } 3462 DEFINE_VIRT_MACHINE(8, 1) 3463 3464 static void virt_machine_8_0_options(MachineClass *mc) 3465 { 3466 virt_machine_8_1_options(mc); 3467 compat_props_add(mc->compat_props, hw_compat_8_0, hw_compat_8_0_len); 3468 } 3469 DEFINE_VIRT_MACHINE(8, 0) 3470 3471 static void virt_machine_7_2_options(MachineClass *mc) 3472 { 3473 virt_machine_8_0_options(mc); 3474 compat_props_add(mc->compat_props, hw_compat_7_2, hw_compat_7_2_len); 3475 } 3476 DEFINE_VIRT_MACHINE(7, 2) 3477 3478 static void virt_machine_7_1_options(MachineClass *mc) 3479 { 3480 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc)); 3481 3482 virt_machine_7_2_options(mc); 3483 compat_props_add(mc->compat_props, hw_compat_7_1, hw_compat_7_1_len); 3484 /* Compact layout for high memory regions was introduced with 7.2 */ 3485 vmc->no_highmem_compact = true; 3486 } 3487 DEFINE_VIRT_MACHINE(7, 1) 3488 3489 static void virt_machine_7_0_options(MachineClass *mc) 3490 { 3491 virt_machine_7_1_options(mc); 3492 compat_props_add(mc->compat_props, hw_compat_7_0, hw_compat_7_0_len); 3493 } 3494 DEFINE_VIRT_MACHINE(7, 0) 3495 3496 static void virt_machine_6_2_options(MachineClass *mc) 3497 { 3498 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc)); 3499 3500 virt_machine_7_0_options(mc); 3501 compat_props_add(mc->compat_props, hw_compat_6_2, hw_compat_6_2_len); 3502 vmc->no_tcg_lpa2 = true; 3503 } 3504 DEFINE_VIRT_MACHINE(6, 2) 3505 3506 static void virt_machine_6_1_options(MachineClass *mc) 3507 { 3508 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc)); 3509 3510 virt_machine_6_2_options(mc); 3511 compat_props_add(mc->compat_props, hw_compat_6_1, hw_compat_6_1_len); 3512 mc->smp_props.prefer_sockets = true; 3513 vmc->no_cpu_topology = true; 3514 3515 /* qemu ITS was introduced with 6.2 */ 3516 vmc->no_tcg_its = true; 3517 } 3518 DEFINE_VIRT_MACHINE(6, 1) 3519 3520 static void virt_machine_6_0_options(MachineClass *mc) 3521 { 3522 virt_machine_6_1_options(mc); 3523 compat_props_add(mc->compat_props, hw_compat_6_0, hw_compat_6_0_len); 3524 } 3525 DEFINE_VIRT_MACHINE(6, 0) 3526 3527 static void virt_machine_5_2_options(MachineClass *mc) 3528 { 3529 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc)); 3530 3531 virt_machine_6_0_options(mc); 3532 compat_props_add(mc->compat_props, hw_compat_5_2, hw_compat_5_2_len); 3533 vmc->no_secure_gpio = true; 3534 } 3535 DEFINE_VIRT_MACHINE(5, 2) 3536 3537 static void virt_machine_5_1_options(MachineClass *mc) 3538 { 3539 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc)); 3540 3541 virt_machine_5_2_options(mc); 3542 compat_props_add(mc->compat_props, hw_compat_5_1, hw_compat_5_1_len); 3543 vmc->no_kvm_steal_time = true; 3544 } 3545 DEFINE_VIRT_MACHINE(5, 1) 3546 3547 static void virt_machine_5_0_options(MachineClass *mc) 3548 { 3549 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc)); 3550 3551 virt_machine_5_1_options(mc); 3552 compat_props_add(mc->compat_props, hw_compat_5_0, hw_compat_5_0_len); 3553 mc->numa_mem_supported = true; 3554 vmc->acpi_expose_flash = true; 3555 mc->auto_enable_numa_with_memdev = false; 3556 } 3557 DEFINE_VIRT_MACHINE(5, 0) 3558 3559 static void virt_machine_4_2_options(MachineClass *mc) 3560 { 3561 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc)); 3562 3563 virt_machine_5_0_options(mc); 3564 compat_props_add(mc->compat_props, hw_compat_4_2, hw_compat_4_2_len); 3565 vmc->kvm_no_adjvtime = true; 3566 } 3567 DEFINE_VIRT_MACHINE(4, 2) 3568 3569 static void virt_machine_4_1_options(MachineClass *mc) 3570 { 3571 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc)); 3572 3573 virt_machine_4_2_options(mc); 3574 compat_props_add(mc->compat_props, hw_compat_4_1, hw_compat_4_1_len); 3575 vmc->no_ged = true; 3576 mc->auto_enable_numa_with_memhp = false; 3577 } 3578 DEFINE_VIRT_MACHINE(4, 1) 3579 3580 static void virt_machine_4_0_options(MachineClass *mc) 3581 { 3582 virt_machine_4_1_options(mc); 3583 compat_props_add(mc->compat_props, hw_compat_4_0, hw_compat_4_0_len); 3584 } 3585 DEFINE_VIRT_MACHINE(4, 0) 3586 3587 static void virt_machine_3_1_options(MachineClass *mc) 3588 { 3589 virt_machine_4_0_options(mc); 3590 compat_props_add(mc->compat_props, hw_compat_3_1, hw_compat_3_1_len); 3591 } 3592 DEFINE_VIRT_MACHINE(3, 1) 3593 3594 static void virt_machine_3_0_options(MachineClass *mc) 3595 { 3596 virt_machine_3_1_options(mc); 3597 compat_props_add(mc->compat_props, hw_compat_3_0, hw_compat_3_0_len); 3598 } 3599 DEFINE_VIRT_MACHINE(3, 0) 3600 3601 static void virt_machine_2_12_options(MachineClass *mc) 3602 { 3603 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc)); 3604 3605 virt_machine_3_0_options(mc); 3606 compat_props_add(mc->compat_props, hw_compat_2_12, hw_compat_2_12_len); 3607 vmc->no_highmem_ecam = true; 3608 mc->max_cpus = 255; 3609 } 3610 DEFINE_VIRT_MACHINE(2, 12) 3611 3612 static void virt_machine_2_11_options(MachineClass *mc) 3613 { 3614 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc)); 3615 3616 virt_machine_2_12_options(mc); 3617 compat_props_add(mc->compat_props, hw_compat_2_11, hw_compat_2_11_len); 3618 vmc->smbios_old_sys_ver = true; 3619 } 3620 DEFINE_VIRT_MACHINE(2, 11) 3621 3622 static void virt_machine_2_10_options(MachineClass *mc) 3623 { 3624 virt_machine_2_11_options(mc); 3625 compat_props_add(mc->compat_props, hw_compat_2_10, hw_compat_2_10_len); 3626 /* before 2.11 we never faulted accesses to bad addresses */ 3627 mc->ignore_memory_transaction_failures = true; 3628 } 3629 DEFINE_VIRT_MACHINE(2, 10) 3630 3631 static void virt_machine_2_9_options(MachineClass *mc) 3632 { 3633 virt_machine_2_10_options(mc); 3634 compat_props_add(mc->compat_props, hw_compat_2_9, hw_compat_2_9_len); 3635 } 3636 DEFINE_VIRT_MACHINE(2, 9) 3637 3638 static void virt_machine_2_8_options(MachineClass *mc) 3639 { 3640 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc)); 3641 3642 virt_machine_2_9_options(mc); 3643 compat_props_add(mc->compat_props, hw_compat_2_8, hw_compat_2_8_len); 3644 /* For 2.8 and earlier we falsely claimed in the DT that 3645 * our timers were edge-triggered, not level-triggered. 3646 */ 3647 vmc->claim_edge_triggered_timers = true; 3648 } 3649 DEFINE_VIRT_MACHINE(2, 8) 3650 3651 static void virt_machine_2_7_options(MachineClass *mc) 3652 { 3653 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc)); 3654 3655 virt_machine_2_8_options(mc); 3656 compat_props_add(mc->compat_props, hw_compat_2_7, hw_compat_2_7_len); 3657 /* ITS was introduced with 2.8 */ 3658 vmc->no_its = true; 3659 /* Stick with 1K pages for migration compatibility */ 3660 mc->minimum_page_bits = 0; 3661 } 3662 DEFINE_VIRT_MACHINE(2, 7) 3663 3664 static void virt_machine_2_6_options(MachineClass *mc) 3665 { 3666 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc)); 3667 3668 virt_machine_2_7_options(mc); 3669 compat_props_add(mc->compat_props, hw_compat_2_6, hw_compat_2_6_len); 3670 vmc->disallow_affinity_adjustment = true; 3671 /* Disable PMU for 2.6 as PMU support was first introduced in 2.7 */ 3672 vmc->no_pmu = true; 3673 } 3674 DEFINE_VIRT_MACHINE(2, 6) 3675