xref: /qemu/hw/arm/virt.c (revision 897c68fb795cf03b89b6688a6f945d68a765c3e4)
1 /*
2  * ARM mach-virt emulation
3  *
4  * Copyright (c) 2013 Linaro Limited
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms and conditions of the GNU General Public License,
8  * version 2 or later, as published by the Free Software Foundation.
9  *
10  * This program is distributed in the hope it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  * more details.
14  *
15  * You should have received a copy of the GNU General Public License along with
16  * this program.  If not, see <http://www.gnu.org/licenses/>.
17  *
18  * Emulate a virtual board which works by passing Linux all the information
19  * it needs about what devices are present via the device tree.
20  * There are some restrictions about what we can do here:
21  *  + we can only present devices whose Linux drivers will work based
22  *    purely on the device tree with no platform data at all
23  *  + we want to present a very stripped-down minimalist platform,
24  *    both because this reduces the security attack surface from the guest
25  *    and also because it reduces our exposure to being broken when
26  *    the kernel updates its device tree bindings and requires further
27  *    information in a device binding that we aren't providing.
28  * This is essentially the same approach kvmtool uses.
29  */
30 
31 #include "qemu/osdep.h"
32 #include "qemu/datadir.h"
33 #include "qemu/units.h"
34 #include "qemu/option.h"
35 #include "monitor/qdev.h"
36 #include "hw/sysbus.h"
37 #include "hw/arm/boot.h"
38 #include "hw/arm/primecell.h"
39 #include "hw/arm/virt.h"
40 #include "hw/block/flash.h"
41 #include "hw/vfio/vfio-calxeda-xgmac.h"
42 #include "hw/vfio/vfio-amd-xgbe.h"
43 #include "hw/display/ramfb.h"
44 #include "net/net.h"
45 #include "system/device_tree.h"
46 #include "system/numa.h"
47 #include "system/runstate.h"
48 #include "system/tpm.h"
49 #include "system/tcg.h"
50 #include "system/kvm.h"
51 #include "system/hvf.h"
52 #include "system/qtest.h"
53 #include "hw/loader.h"
54 #include "qapi/error.h"
55 #include "qemu/bitops.h"
56 #include "qemu/cutils.h"
57 #include "qemu/error-report.h"
58 #include "qemu/module.h"
59 #include "hw/pci-host/gpex.h"
60 #include "hw/virtio/virtio-pci.h"
61 #include "hw/core/sysbus-fdt.h"
62 #include "hw/platform-bus.h"
63 #include "hw/qdev-properties.h"
64 #include "hw/arm/fdt.h"
65 #include "hw/intc/arm_gic.h"
66 #include "hw/intc/arm_gicv3_common.h"
67 #include "hw/intc/arm_gicv3_its_common.h"
68 #include "hw/irq.h"
69 #include "kvm_arm.h"
70 #include "hvf_arm.h"
71 #include "hw/firmware/smbios.h"
72 #include "qapi/visitor.h"
73 #include "qapi/qapi-visit-common.h"
74 #include "qobject/qlist.h"
75 #include "standard-headers/linux/input.h"
76 #include "hw/arm/smmuv3.h"
77 #include "hw/acpi/acpi.h"
78 #include "target/arm/cpu-qom.h"
79 #include "target/arm/internals.h"
80 #include "target/arm/multiprocessing.h"
81 #include "target/arm/gtimer.h"
82 #include "hw/mem/pc-dimm.h"
83 #include "hw/mem/nvdimm.h"
84 #include "hw/acpi/generic_event_device.h"
85 #include "hw/uefi/var-service-api.h"
86 #include "hw/virtio/virtio-md-pci.h"
87 #include "hw/virtio/virtio-iommu.h"
88 #include "hw/char/pl011.h"
89 #include "qemu/guest-random.h"
90 
91 static GlobalProperty arm_virt_compat[] = {
92     { TYPE_VIRTIO_IOMMU_PCI, "aw-bits", "48" },
93 };
94 static const size_t arm_virt_compat_len = G_N_ELEMENTS(arm_virt_compat);
95 
96 /*
97  * This cannot be called from the virt_machine_class_init() because
98  * TYPE_VIRT_MACHINE is abstract and mc->compat_props g_ptr_array_new()
99  * only is called on virt non abstract class init.
100  */
101 static void arm_virt_compat_set(MachineClass *mc)
102 {
103     compat_props_add(mc->compat_props, arm_virt_compat,
104                      arm_virt_compat_len);
105 }
106 
107 #define DEFINE_VIRT_MACHINE_IMPL(latest, ...) \
108     static void MACHINE_VER_SYM(class_init, virt, __VA_ARGS__)( \
109         ObjectClass *oc, \
110         void *data) \
111     { \
112         MachineClass *mc = MACHINE_CLASS(oc); \
113         arm_virt_compat_set(mc); \
114         MACHINE_VER_SYM(options, virt, __VA_ARGS__)(mc); \
115         mc->desc = "QEMU " MACHINE_VER_STR(__VA_ARGS__) " ARM Virtual Machine"; \
116         MACHINE_VER_DEPRECATION(__VA_ARGS__); \
117         if (latest) { \
118             mc->alias = "virt"; \
119         } \
120     } \
121     static const TypeInfo MACHINE_VER_SYM(info, virt, __VA_ARGS__) = \
122     { \
123         .name = MACHINE_VER_TYPE_NAME("virt", __VA_ARGS__), \
124         .parent = TYPE_VIRT_MACHINE, \
125         .class_init = MACHINE_VER_SYM(class_init, virt, __VA_ARGS__), \
126     }; \
127     static void MACHINE_VER_SYM(register, virt, __VA_ARGS__)(void) \
128     { \
129         MACHINE_VER_DELETION(__VA_ARGS__); \
130         type_register_static(&MACHINE_VER_SYM(info, virt, __VA_ARGS__)); \
131     } \
132     type_init(MACHINE_VER_SYM(register, virt, __VA_ARGS__));
133 
134 #define DEFINE_VIRT_MACHINE_AS_LATEST(major, minor) \
135     DEFINE_VIRT_MACHINE_IMPL(true, major, minor)
136 #define DEFINE_VIRT_MACHINE(major, minor) \
137     DEFINE_VIRT_MACHINE_IMPL(false, major, minor)
138 
139 
140 /* Number of external interrupt lines to configure the GIC with */
141 #define NUM_IRQS 256
142 
143 #define PLATFORM_BUS_NUM_IRQS 64
144 
145 /* Legacy RAM limit in GB (< version 4.0) */
146 #define LEGACY_RAMLIMIT_GB 255
147 #define LEGACY_RAMLIMIT_BYTES (LEGACY_RAMLIMIT_GB * GiB)
148 
149 /* Addresses and sizes of our components.
150  * 0..128MB is space for a flash device so we can run bootrom code such as UEFI.
151  * 128MB..256MB is used for miscellaneous device I/O.
152  * 256MB..1GB is reserved for possible future PCI support (ie where the
153  * PCI memory window will go if we add a PCI host controller).
154  * 1GB and up is RAM (which may happily spill over into the
155  * high memory region beyond 4GB).
156  * This represents a compromise between how much RAM can be given to
157  * a 32 bit VM and leaving space for expansion and in particular for PCI.
158  * Note that devices should generally be placed at multiples of 0x10000,
159  * to accommodate guests using 64K pages.
160  */
161 static const MemMapEntry base_memmap[] = {
162     /* Space up to 0x8000000 is reserved for a boot ROM */
163     [VIRT_FLASH] =              {          0, 0x08000000 },
164     [VIRT_CPUPERIPHS] =         { 0x08000000, 0x00020000 },
165     /* GIC distributor and CPU interfaces sit inside the CPU peripheral space */
166     [VIRT_GIC_DIST] =           { 0x08000000, 0x00010000 },
167     [VIRT_GIC_CPU] =            { 0x08010000, 0x00010000 },
168     [VIRT_GIC_V2M] =            { 0x08020000, 0x00001000 },
169     [VIRT_GIC_HYP] =            { 0x08030000, 0x00010000 },
170     [VIRT_GIC_VCPU] =           { 0x08040000, 0x00010000 },
171     /* The space in between here is reserved for GICv3 CPU/vCPU/HYP */
172     [VIRT_GIC_ITS] =            { 0x08080000, 0x00020000 },
173     /* This redistributor space allows up to 2*64kB*123 CPUs */
174     [VIRT_GIC_REDIST] =         { 0x080A0000, 0x00F60000 },
175     [VIRT_UART0] =              { 0x09000000, 0x00001000 },
176     [VIRT_RTC] =                { 0x09010000, 0x00001000 },
177     [VIRT_FW_CFG] =             { 0x09020000, 0x00000018 },
178     [VIRT_GPIO] =               { 0x09030000, 0x00001000 },
179     [VIRT_UART1] =              { 0x09040000, 0x00001000 },
180     [VIRT_SMMU] =               { 0x09050000, 0x00020000 },
181     [VIRT_PCDIMM_ACPI] =        { 0x09070000, MEMORY_HOTPLUG_IO_LEN },
182     [VIRT_ACPI_GED] =           { 0x09080000, ACPI_GED_EVT_SEL_LEN },
183     [VIRT_NVDIMM_ACPI] =        { 0x09090000, NVDIMM_ACPI_IO_LEN},
184     [VIRT_PVTIME] =             { 0x090a0000, 0x00010000 },
185     [VIRT_SECURE_GPIO] =        { 0x090b0000, 0x00001000 },
186     [VIRT_MMIO] =               { 0x0a000000, 0x00000200 },
187     /* ...repeating for a total of NUM_VIRTIO_TRANSPORTS, each of that size */
188     [VIRT_PLATFORM_BUS] =       { 0x0c000000, 0x02000000 },
189     [VIRT_SECURE_MEM] =         { 0x0e000000, 0x01000000 },
190     [VIRT_PCIE_MMIO] =          { 0x10000000, 0x2eff0000 },
191     [VIRT_PCIE_PIO] =           { 0x3eff0000, 0x00010000 },
192     [VIRT_PCIE_ECAM] =          { 0x3f000000, 0x01000000 },
193     /* Actual RAM size depends on initial RAM and device memory settings */
194     [VIRT_MEM] =                { GiB, LEGACY_RAMLIMIT_BYTES },
195 };
196 
197 /* Update the docs for highmem-mmio-size when changing this default */
198 #define DEFAULT_HIGH_PCIE_MMIO_SIZE_GB 512
199 #define DEFAULT_HIGH_PCIE_MMIO_SIZE (DEFAULT_HIGH_PCIE_MMIO_SIZE_GB * GiB)
200 
201 /*
202  * Highmem IO Regions: This memory map is floating, located after the RAM.
203  * Each MemMapEntry base (GPA) will be dynamically computed, depending on the
204  * top of the RAM, so that its base get the same alignment as the size,
205  * ie. a 512GiB entry will be aligned on a 512GiB boundary. If there is
206  * less than 256GiB of RAM, the floating area starts at the 256GiB mark.
207  * Note the extended_memmap is sized so that it eventually also includes the
208  * base_memmap entries (VIRT_HIGH_GIC_REDIST2 index is greater than the last
209  * index of base_memmap).
210  *
211  * The memory map for these Highmem IO Regions can be in legacy or compact
212  * layout, depending on 'compact-highmem' property. With legacy layout, the
213  * PA space for one specific region is always reserved, even if the region
214  * has been disabled or doesn't fit into the PA space. However, the PA space
215  * for the region won't be reserved in these circumstances with compact layout.
216  *
217  * Note that the highmem-mmio-size property will update the high PCIE MMIO size
218  * field in this array.
219  */
220 static MemMapEntry extended_memmap[] = {
221     /* Additional 64 MB redist region (can contain up to 512 redistributors) */
222     [VIRT_HIGH_GIC_REDIST2] =   { 0x0, 64 * MiB },
223     [VIRT_HIGH_PCIE_ECAM] =     { 0x0, 256 * MiB },
224     /* Second PCIe window */
225     [VIRT_HIGH_PCIE_MMIO] =     { 0x0, DEFAULT_HIGH_PCIE_MMIO_SIZE },
226 };
227 
228 static const int a15irqmap[] = {
229     [VIRT_UART0] = 1,
230     [VIRT_RTC] = 2,
231     [VIRT_PCIE] = 3, /* ... to 6 */
232     [VIRT_GPIO] = 7,
233     [VIRT_UART1] = 8,
234     [VIRT_ACPI_GED] = 9,
235     [VIRT_MMIO] = 16, /* ...to 16 + NUM_VIRTIO_TRANSPORTS - 1 */
236     [VIRT_GIC_V2M] = 48, /* ...to 48 + NUM_GICV2M_SPIS - 1 */
237     [VIRT_SMMU] = 74,    /* ...to 74 + NUM_SMMU_IRQS - 1 */
238     [VIRT_PLATFORM_BUS] = 112, /* ...to 112 + PLATFORM_BUS_NUM_IRQS -1 */
239 };
240 
241 static void create_randomness(MachineState *ms, const char *node)
242 {
243     struct {
244         uint64_t kaslr;
245         uint8_t rng[32];
246     } seed;
247 
248     if (qemu_guest_getrandom(&seed, sizeof(seed), NULL)) {
249         return;
250     }
251     qemu_fdt_setprop_u64(ms->fdt, node, "kaslr-seed", seed.kaslr);
252     qemu_fdt_setprop(ms->fdt, node, "rng-seed", seed.rng, sizeof(seed.rng));
253 }
254 
255 /*
256  * The CPU object always exposes the NS EL2 virt timer IRQ line,
257  * but we don't want to advertise it to the guest in the dtb or ACPI
258  * table unless it's really going to do something.
259  */
260 static bool ns_el2_virt_timer_present(void)
261 {
262     ARMCPU *cpu = ARM_CPU(qemu_get_cpu(0));
263     CPUARMState *env = &cpu->env;
264 
265     return arm_feature(env, ARM_FEATURE_AARCH64) &&
266         arm_feature(env, ARM_FEATURE_EL2) && cpu_isar_feature(aa64_vh, cpu);
267 }
268 
269 static void create_fdt(VirtMachineState *vms)
270 {
271     MachineState *ms = MACHINE(vms);
272     int nb_numa_nodes = ms->numa_state->num_nodes;
273     void *fdt = create_device_tree(&vms->fdt_size);
274 
275     if (!fdt) {
276         error_report("create_device_tree() failed");
277         exit(1);
278     }
279 
280     ms->fdt = fdt;
281 
282     /* Header */
283     qemu_fdt_setprop_string(fdt, "/", "compatible", "linux,dummy-virt");
284     qemu_fdt_setprop_cell(fdt, "/", "#address-cells", 0x2);
285     qemu_fdt_setprop_cell(fdt, "/", "#size-cells", 0x2);
286     qemu_fdt_setprop_string(fdt, "/", "model", "linux,dummy-virt");
287 
288     /*
289      * For QEMU, all DMA is coherent. Advertising this in the root node
290      * has two benefits:
291      *
292      * - It avoids potential bugs where we forget to mark a DMA
293      *   capable device as being dma-coherent
294      * - It avoids spurious warnings from the Linux kernel about
295      *   devices which can't do DMA at all
296      */
297     qemu_fdt_setprop(fdt, "/", "dma-coherent", NULL, 0);
298 
299     /* /chosen must exist for load_dtb to fill in necessary properties later */
300     qemu_fdt_add_subnode(fdt, "/chosen");
301     if (vms->dtb_randomness) {
302         create_randomness(ms, "/chosen");
303     }
304 
305     if (vms->secure) {
306         qemu_fdt_add_subnode(fdt, "/secure-chosen");
307         if (vms->dtb_randomness) {
308             create_randomness(ms, "/secure-chosen");
309         }
310     }
311 
312     qemu_fdt_add_subnode(fdt, "/aliases");
313 
314     /* Clock node, for the benefit of the UART. The kernel device tree
315      * binding documentation claims the PL011 node clock properties are
316      * optional but in practice if you omit them the kernel refuses to
317      * probe for the device.
318      */
319     vms->clock_phandle = qemu_fdt_alloc_phandle(fdt);
320     qemu_fdt_add_subnode(fdt, "/apb-pclk");
321     qemu_fdt_setprop_string(fdt, "/apb-pclk", "compatible", "fixed-clock");
322     qemu_fdt_setprop_cell(fdt, "/apb-pclk", "#clock-cells", 0x0);
323     qemu_fdt_setprop_cell(fdt, "/apb-pclk", "clock-frequency", 24000000);
324     qemu_fdt_setprop_string(fdt, "/apb-pclk", "clock-output-names",
325                                 "clk24mhz");
326     qemu_fdt_setprop_cell(fdt, "/apb-pclk", "phandle", vms->clock_phandle);
327 
328     if (nb_numa_nodes > 0 && ms->numa_state->have_numa_distance) {
329         int size = nb_numa_nodes * nb_numa_nodes * 3 * sizeof(uint32_t);
330         uint32_t *matrix = g_malloc0(size);
331         int idx, i, j;
332 
333         for (i = 0; i < nb_numa_nodes; i++) {
334             for (j = 0; j < nb_numa_nodes; j++) {
335                 idx = (i * nb_numa_nodes + j) * 3;
336                 matrix[idx + 0] = cpu_to_be32(i);
337                 matrix[idx + 1] = cpu_to_be32(j);
338                 matrix[idx + 2] =
339                     cpu_to_be32(ms->numa_state->nodes[i].distance[j]);
340             }
341         }
342 
343         qemu_fdt_add_subnode(fdt, "/distance-map");
344         qemu_fdt_setprop_string(fdt, "/distance-map", "compatible",
345                                 "numa-distance-map-v1");
346         qemu_fdt_setprop(fdt, "/distance-map", "distance-matrix",
347                          matrix, size);
348         g_free(matrix);
349     }
350 }
351 
352 static void fdt_add_timer_nodes(const VirtMachineState *vms)
353 {
354     /* On real hardware these interrupts are level-triggered.
355      * On KVM they were edge-triggered before host kernel version 4.4,
356      * and level-triggered afterwards.
357      * On emulated QEMU they are level-triggered.
358      *
359      * Getting the DTB info about them wrong is awkward for some
360      * guest kernels:
361      *  pre-4.8 ignore the DT and leave the interrupt configured
362      *   with whatever the GIC reset value (or the bootloader) left it at
363      *  4.8 before rc6 honour the incorrect data by programming it back
364      *   into the GIC, causing problems
365      *  4.8rc6 and later ignore the DT and always write "level triggered"
366      *   into the GIC
367      *
368      * For backwards-compatibility, virt-2.8 and earlier will continue
369      * to say these are edge-triggered, but later machines will report
370      * the correct information.
371      */
372     ARMCPU *armcpu;
373     VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
374     uint32_t irqflags = GIC_FDT_IRQ_FLAGS_LEVEL_HI;
375     MachineState *ms = MACHINE(vms);
376 
377     if (vmc->claim_edge_triggered_timers) {
378         irqflags = GIC_FDT_IRQ_FLAGS_EDGE_LO_HI;
379     }
380 
381     if (vms->gic_version == VIRT_GIC_VERSION_2) {
382         irqflags = deposit32(irqflags, GIC_FDT_IRQ_PPI_CPU_START,
383                              GIC_FDT_IRQ_PPI_CPU_WIDTH,
384                              (1 << MACHINE(vms)->smp.cpus) - 1);
385     }
386 
387     qemu_fdt_add_subnode(ms->fdt, "/timer");
388 
389     armcpu = ARM_CPU(qemu_get_cpu(0));
390     if (arm_feature(&armcpu->env, ARM_FEATURE_V8)) {
391         const char compat[] = "arm,armv8-timer\0arm,armv7-timer";
392         qemu_fdt_setprop(ms->fdt, "/timer", "compatible",
393                          compat, sizeof(compat));
394     } else {
395         qemu_fdt_setprop_string(ms->fdt, "/timer", "compatible",
396                                 "arm,armv7-timer");
397     }
398     qemu_fdt_setprop(ms->fdt, "/timer", "always-on", NULL, 0);
399     if (vms->ns_el2_virt_timer_irq) {
400         qemu_fdt_setprop_cells(ms->fdt, "/timer", "interrupts",
401                                GIC_FDT_IRQ_TYPE_PPI,
402                                INTID_TO_PPI(ARCH_TIMER_S_EL1_IRQ), irqflags,
403                                GIC_FDT_IRQ_TYPE_PPI,
404                                INTID_TO_PPI(ARCH_TIMER_NS_EL1_IRQ), irqflags,
405                                GIC_FDT_IRQ_TYPE_PPI,
406                                INTID_TO_PPI(ARCH_TIMER_VIRT_IRQ), irqflags,
407                                GIC_FDT_IRQ_TYPE_PPI,
408                                INTID_TO_PPI(ARCH_TIMER_NS_EL2_IRQ), irqflags,
409                                GIC_FDT_IRQ_TYPE_PPI,
410                                INTID_TO_PPI(ARCH_TIMER_NS_EL2_VIRT_IRQ), irqflags);
411     } else {
412         qemu_fdt_setprop_cells(ms->fdt, "/timer", "interrupts",
413                                GIC_FDT_IRQ_TYPE_PPI,
414                                INTID_TO_PPI(ARCH_TIMER_S_EL1_IRQ), irqflags,
415                                GIC_FDT_IRQ_TYPE_PPI,
416                                INTID_TO_PPI(ARCH_TIMER_NS_EL1_IRQ), irqflags,
417                                GIC_FDT_IRQ_TYPE_PPI,
418                                INTID_TO_PPI(ARCH_TIMER_VIRT_IRQ), irqflags,
419                                GIC_FDT_IRQ_TYPE_PPI,
420                                INTID_TO_PPI(ARCH_TIMER_NS_EL2_IRQ), irqflags);
421     }
422 }
423 
424 static void fdt_add_cpu_nodes(const VirtMachineState *vms)
425 {
426     int cpu;
427     int addr_cells = 1;
428     const MachineState *ms = MACHINE(vms);
429     const VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
430     int smp_cpus = ms->smp.cpus;
431 
432     /*
433      * See Linux Documentation/devicetree/bindings/arm/cpus.yaml
434      * On ARM v8 64-bit systems value should be set to 2,
435      * that corresponds to the MPIDR_EL1 register size.
436      * If MPIDR_EL1[63:32] value is equal to 0 on all CPUs
437      * in the system, #address-cells can be set to 1, since
438      * MPIDR_EL1[63:32] bits are not used for CPUs
439      * identification.
440      *
441      * Here we actually don't know whether our system is 32- or 64-bit one.
442      * The simplest way to go is to examine affinity IDs of all our CPUs. If
443      * at least one of them has Aff3 populated, we set #address-cells to 2.
444      */
445     for (cpu = 0; cpu < smp_cpus; cpu++) {
446         ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu));
447 
448         if (arm_cpu_mp_affinity(armcpu) & ARM_AFF3_MASK) {
449             addr_cells = 2;
450             break;
451         }
452     }
453 
454     qemu_fdt_add_subnode(ms->fdt, "/cpus");
455     qemu_fdt_setprop_cell(ms->fdt, "/cpus", "#address-cells", addr_cells);
456     qemu_fdt_setprop_cell(ms->fdt, "/cpus", "#size-cells", 0x0);
457 
458     for (cpu = smp_cpus - 1; cpu >= 0; cpu--) {
459         char *nodename = g_strdup_printf("/cpus/cpu@%d", cpu);
460         ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu));
461         CPUState *cs = CPU(armcpu);
462 
463         qemu_fdt_add_subnode(ms->fdt, nodename);
464         qemu_fdt_setprop_string(ms->fdt, nodename, "device_type", "cpu");
465         qemu_fdt_setprop_string(ms->fdt, nodename, "compatible",
466                                     armcpu->dtb_compatible);
467 
468         if (vms->psci_conduit != QEMU_PSCI_CONDUIT_DISABLED && smp_cpus > 1) {
469             qemu_fdt_setprop_string(ms->fdt, nodename,
470                                         "enable-method", "psci");
471         }
472 
473         if (addr_cells == 2) {
474             qemu_fdt_setprop_u64(ms->fdt, nodename, "reg",
475                                  arm_cpu_mp_affinity(armcpu));
476         } else {
477             qemu_fdt_setprop_cell(ms->fdt, nodename, "reg",
478                                   arm_cpu_mp_affinity(armcpu));
479         }
480 
481         if (ms->possible_cpus->cpus[cs->cpu_index].props.has_node_id) {
482             qemu_fdt_setprop_cell(ms->fdt, nodename, "numa-node-id",
483                 ms->possible_cpus->cpus[cs->cpu_index].props.node_id);
484         }
485 
486         if (!vmc->no_cpu_topology) {
487             qemu_fdt_setprop_cell(ms->fdt, nodename, "phandle",
488                                   qemu_fdt_alloc_phandle(ms->fdt));
489         }
490 
491         g_free(nodename);
492     }
493 
494     if (!vmc->no_cpu_topology) {
495         /*
496          * Add vCPU topology description through fdt node cpu-map.
497          *
498          * See Linux Documentation/devicetree/bindings/cpu/cpu-topology.txt
499          * In a SMP system, the hierarchy of CPUs can be defined through
500          * four entities that are used to describe the layout of CPUs in
501          * the system: socket/cluster/core/thread.
502          *
503          * A socket node represents the boundary of system physical package
504          * and its child nodes must be one or more cluster nodes. A system
505          * can contain several layers of clustering within a single physical
506          * package and cluster nodes can be contained in parent cluster nodes.
507          *
508          * Note: currently we only support one layer of clustering within
509          * each physical package.
510          */
511         qemu_fdt_add_subnode(ms->fdt, "/cpus/cpu-map");
512 
513         for (cpu = smp_cpus - 1; cpu >= 0; cpu--) {
514             char *cpu_path = g_strdup_printf("/cpus/cpu@%d", cpu);
515             char *map_path;
516 
517             if (ms->smp.threads > 1) {
518                 map_path = g_strdup_printf(
519                     "/cpus/cpu-map/socket%d/cluster%d/core%d/thread%d",
520                     cpu / (ms->smp.clusters * ms->smp.cores * ms->smp.threads),
521                     (cpu / (ms->smp.cores * ms->smp.threads)) % ms->smp.clusters,
522                     (cpu / ms->smp.threads) % ms->smp.cores,
523                     cpu % ms->smp.threads);
524             } else {
525                 map_path = g_strdup_printf(
526                     "/cpus/cpu-map/socket%d/cluster%d/core%d",
527                     cpu / (ms->smp.clusters * ms->smp.cores),
528                     (cpu / ms->smp.cores) % ms->smp.clusters,
529                     cpu % ms->smp.cores);
530             }
531             qemu_fdt_add_path(ms->fdt, map_path);
532             qemu_fdt_setprop_phandle(ms->fdt, map_path, "cpu", cpu_path);
533 
534             g_free(map_path);
535             g_free(cpu_path);
536         }
537     }
538 }
539 
540 static void fdt_add_its_gic_node(VirtMachineState *vms)
541 {
542     char *nodename;
543     MachineState *ms = MACHINE(vms);
544 
545     vms->msi_phandle = qemu_fdt_alloc_phandle(ms->fdt);
546     nodename = g_strdup_printf("/intc/its@%" PRIx64,
547                                vms->memmap[VIRT_GIC_ITS].base);
548     qemu_fdt_add_subnode(ms->fdt, nodename);
549     qemu_fdt_setprop_string(ms->fdt, nodename, "compatible",
550                             "arm,gic-v3-its");
551     qemu_fdt_setprop(ms->fdt, nodename, "msi-controller", NULL, 0);
552     qemu_fdt_setprop_cell(ms->fdt, nodename, "#msi-cells", 1);
553     qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
554                                  2, vms->memmap[VIRT_GIC_ITS].base,
555                                  2, vms->memmap[VIRT_GIC_ITS].size);
556     qemu_fdt_setprop_cell(ms->fdt, nodename, "phandle", vms->msi_phandle);
557     g_free(nodename);
558 }
559 
560 static void fdt_add_v2m_gic_node(VirtMachineState *vms)
561 {
562     MachineState *ms = MACHINE(vms);
563     char *nodename;
564 
565     nodename = g_strdup_printf("/intc/v2m@%" PRIx64,
566                                vms->memmap[VIRT_GIC_V2M].base);
567     vms->msi_phandle = qemu_fdt_alloc_phandle(ms->fdt);
568     qemu_fdt_add_subnode(ms->fdt, nodename);
569     qemu_fdt_setprop_string(ms->fdt, nodename, "compatible",
570                             "arm,gic-v2m-frame");
571     qemu_fdt_setprop(ms->fdt, nodename, "msi-controller", NULL, 0);
572     qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
573                                  2, vms->memmap[VIRT_GIC_V2M].base,
574                                  2, vms->memmap[VIRT_GIC_V2M].size);
575     qemu_fdt_setprop_cell(ms->fdt, nodename, "phandle", vms->msi_phandle);
576     g_free(nodename);
577 }
578 
579 static void fdt_add_gic_node(VirtMachineState *vms)
580 {
581     MachineState *ms = MACHINE(vms);
582     char *nodename;
583 
584     vms->gic_phandle = qemu_fdt_alloc_phandle(ms->fdt);
585     qemu_fdt_setprop_cell(ms->fdt, "/", "interrupt-parent", vms->gic_phandle);
586 
587     nodename = g_strdup_printf("/intc@%" PRIx64,
588                                vms->memmap[VIRT_GIC_DIST].base);
589     qemu_fdt_add_subnode(ms->fdt, nodename);
590     qemu_fdt_setprop_cell(ms->fdt, nodename, "#interrupt-cells", 3);
591     qemu_fdt_setprop(ms->fdt, nodename, "interrupt-controller", NULL, 0);
592     qemu_fdt_setprop_cell(ms->fdt, nodename, "#address-cells", 0x2);
593     qemu_fdt_setprop_cell(ms->fdt, nodename, "#size-cells", 0x2);
594     qemu_fdt_setprop(ms->fdt, nodename, "ranges", NULL, 0);
595     if (vms->gic_version != VIRT_GIC_VERSION_2) {
596         int nb_redist_regions = virt_gicv3_redist_region_count(vms);
597 
598         qemu_fdt_setprop_string(ms->fdt, nodename, "compatible",
599                                 "arm,gic-v3");
600 
601         qemu_fdt_setprop_cell(ms->fdt, nodename,
602                               "#redistributor-regions", nb_redist_regions);
603 
604         if (nb_redist_regions == 1) {
605             qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
606                                          2, vms->memmap[VIRT_GIC_DIST].base,
607                                          2, vms->memmap[VIRT_GIC_DIST].size,
608                                          2, vms->memmap[VIRT_GIC_REDIST].base,
609                                          2, vms->memmap[VIRT_GIC_REDIST].size);
610         } else {
611             qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
612                                  2, vms->memmap[VIRT_GIC_DIST].base,
613                                  2, vms->memmap[VIRT_GIC_DIST].size,
614                                  2, vms->memmap[VIRT_GIC_REDIST].base,
615                                  2, vms->memmap[VIRT_GIC_REDIST].size,
616                                  2, vms->memmap[VIRT_HIGH_GIC_REDIST2].base,
617                                  2, vms->memmap[VIRT_HIGH_GIC_REDIST2].size);
618         }
619 
620         if (vms->virt) {
621             qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupts",
622                                    GIC_FDT_IRQ_TYPE_PPI,
623                                    INTID_TO_PPI(ARCH_GIC_MAINT_IRQ),
624                                    GIC_FDT_IRQ_FLAGS_LEVEL_HI);
625         }
626     } else {
627         /* 'cortex-a15-gic' means 'GIC v2' */
628         qemu_fdt_setprop_string(ms->fdt, nodename, "compatible",
629                                 "arm,cortex-a15-gic");
630         if (!vms->virt) {
631             qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
632                                          2, vms->memmap[VIRT_GIC_DIST].base,
633                                          2, vms->memmap[VIRT_GIC_DIST].size,
634                                          2, vms->memmap[VIRT_GIC_CPU].base,
635                                          2, vms->memmap[VIRT_GIC_CPU].size);
636         } else {
637             qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
638                                          2, vms->memmap[VIRT_GIC_DIST].base,
639                                          2, vms->memmap[VIRT_GIC_DIST].size,
640                                          2, vms->memmap[VIRT_GIC_CPU].base,
641                                          2, vms->memmap[VIRT_GIC_CPU].size,
642                                          2, vms->memmap[VIRT_GIC_HYP].base,
643                                          2, vms->memmap[VIRT_GIC_HYP].size,
644                                          2, vms->memmap[VIRT_GIC_VCPU].base,
645                                          2, vms->memmap[VIRT_GIC_VCPU].size);
646             qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupts",
647                                    GIC_FDT_IRQ_TYPE_PPI,
648                                    INTID_TO_PPI(ARCH_GIC_MAINT_IRQ),
649                                    GIC_FDT_IRQ_FLAGS_LEVEL_HI);
650         }
651     }
652 
653     qemu_fdt_setprop_cell(ms->fdt, nodename, "phandle", vms->gic_phandle);
654     g_free(nodename);
655 }
656 
657 static void fdt_add_pmu_nodes(const VirtMachineState *vms)
658 {
659     ARMCPU *armcpu = ARM_CPU(first_cpu);
660     uint32_t irqflags = GIC_FDT_IRQ_FLAGS_LEVEL_HI;
661     MachineState *ms = MACHINE(vms);
662 
663     if (!arm_feature(&armcpu->env, ARM_FEATURE_PMU)) {
664         assert(!object_property_get_bool(OBJECT(armcpu), "pmu", NULL));
665         return;
666     }
667 
668     if (vms->gic_version == VIRT_GIC_VERSION_2) {
669         irqflags = deposit32(irqflags, GIC_FDT_IRQ_PPI_CPU_START,
670                              GIC_FDT_IRQ_PPI_CPU_WIDTH,
671                              (1 << MACHINE(vms)->smp.cpus) - 1);
672     }
673 
674     qemu_fdt_add_subnode(ms->fdt, "/pmu");
675     if (arm_feature(&armcpu->env, ARM_FEATURE_V8)) {
676         const char compat[] = "arm,armv8-pmuv3";
677         qemu_fdt_setprop(ms->fdt, "/pmu", "compatible",
678                          compat, sizeof(compat));
679         qemu_fdt_setprop_cells(ms->fdt, "/pmu", "interrupts",
680                                GIC_FDT_IRQ_TYPE_PPI,
681                                INTID_TO_PPI(VIRTUAL_PMU_IRQ), irqflags);
682     }
683 }
684 
685 static inline DeviceState *create_acpi_ged(VirtMachineState *vms)
686 {
687     DeviceState *dev;
688     MachineState *ms = MACHINE(vms);
689     int irq = vms->irqmap[VIRT_ACPI_GED];
690     uint32_t event = ACPI_GED_PWR_DOWN_EVT;
691 
692     if (ms->ram_slots) {
693         event |= ACPI_GED_MEM_HOTPLUG_EVT;
694     }
695 
696     if (ms->nvdimms_state->is_enabled) {
697         event |= ACPI_GED_NVDIMM_HOTPLUG_EVT;
698     }
699 
700     dev = qdev_new(TYPE_ACPI_GED);
701     qdev_prop_set_uint32(dev, "ged-event", event);
702     sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
703 
704     sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vms->memmap[VIRT_ACPI_GED].base);
705     sysbus_mmio_map(SYS_BUS_DEVICE(dev), 1, vms->memmap[VIRT_PCDIMM_ACPI].base);
706     sysbus_connect_irq(SYS_BUS_DEVICE(dev), 0, qdev_get_gpio_in(vms->gic, irq));
707 
708     return dev;
709 }
710 
711 static void create_its(VirtMachineState *vms)
712 {
713     const char *itsclass = its_class_name();
714     DeviceState *dev;
715 
716     if (!strcmp(itsclass, "arm-gicv3-its")) {
717         if (!vms->tcg_its) {
718             itsclass = NULL;
719         }
720     }
721 
722     if (!itsclass) {
723         /* Do nothing if not supported */
724         return;
725     }
726 
727     dev = qdev_new(itsclass);
728 
729     object_property_set_link(OBJECT(dev), "parent-gicv3", OBJECT(vms->gic),
730                              &error_abort);
731     sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
732     sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vms->memmap[VIRT_GIC_ITS].base);
733 
734     fdt_add_its_gic_node(vms);
735     vms->msi_controller = VIRT_MSI_CTRL_ITS;
736 }
737 
738 static void create_v2m(VirtMachineState *vms)
739 {
740     int i;
741     int irq = vms->irqmap[VIRT_GIC_V2M];
742     DeviceState *dev;
743 
744     dev = qdev_new("arm-gicv2m");
745     qdev_prop_set_uint32(dev, "base-spi", irq);
746     qdev_prop_set_uint32(dev, "num-spi", NUM_GICV2M_SPIS);
747     sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
748     sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vms->memmap[VIRT_GIC_V2M].base);
749 
750     for (i = 0; i < NUM_GICV2M_SPIS; i++) {
751         sysbus_connect_irq(SYS_BUS_DEVICE(dev), i,
752                            qdev_get_gpio_in(vms->gic, irq + i));
753     }
754 
755     fdt_add_v2m_gic_node(vms);
756     vms->msi_controller = VIRT_MSI_CTRL_GICV2M;
757 }
758 
759 /*
760  * If the CPU has FEAT_NMI, then turn on the NMI support in the GICv3 too.
761  * It's permitted to have a configuration with NMI in the CPU (and thus the
762  * GICv3 CPU interface) but not in the distributor/redistributors, but it's
763  * not very useful.
764  */
765 static bool gicv3_nmi_present(VirtMachineState *vms)
766 {
767     ARMCPU *cpu = ARM_CPU(qemu_get_cpu(0));
768 
769     return tcg_enabled() && cpu_isar_feature(aa64_nmi, cpu) &&
770            (vms->gic_version != VIRT_GIC_VERSION_2);
771 }
772 
773 static void create_gic(VirtMachineState *vms, MemoryRegion *mem)
774 {
775     MachineState *ms = MACHINE(vms);
776     /* We create a standalone GIC */
777     SysBusDevice *gicbusdev;
778     const char *gictype;
779     int i;
780     unsigned int smp_cpus = ms->smp.cpus;
781     uint32_t nb_redist_regions = 0;
782     int revision;
783 
784     if (vms->gic_version == VIRT_GIC_VERSION_2) {
785         gictype = gic_class_name();
786     } else {
787         gictype = gicv3_class_name();
788     }
789 
790     switch (vms->gic_version) {
791     case VIRT_GIC_VERSION_2:
792         revision = 2;
793         break;
794     case VIRT_GIC_VERSION_3:
795         revision = 3;
796         break;
797     case VIRT_GIC_VERSION_4:
798         revision = 4;
799         break;
800     default:
801         g_assert_not_reached();
802     }
803     vms->gic = qdev_new(gictype);
804     qdev_prop_set_uint32(vms->gic, "revision", revision);
805     qdev_prop_set_uint32(vms->gic, "num-cpu", smp_cpus);
806     /* Note that the num-irq property counts both internal and external
807      * interrupts; there are always 32 of the former (mandated by GIC spec).
808      */
809     qdev_prop_set_uint32(vms->gic, "num-irq", NUM_IRQS + 32);
810     if (!kvm_irqchip_in_kernel()) {
811         qdev_prop_set_bit(vms->gic, "has-security-extensions", vms->secure);
812     }
813 
814     if (vms->gic_version != VIRT_GIC_VERSION_2) {
815         QList *redist_region_count;
816         uint32_t redist0_capacity = virt_redist_capacity(vms, VIRT_GIC_REDIST);
817         uint32_t redist0_count = MIN(smp_cpus, redist0_capacity);
818 
819         nb_redist_regions = virt_gicv3_redist_region_count(vms);
820 
821         redist_region_count = qlist_new();
822         qlist_append_int(redist_region_count, redist0_count);
823         if (nb_redist_regions == 2) {
824             uint32_t redist1_capacity =
825                 virt_redist_capacity(vms, VIRT_HIGH_GIC_REDIST2);
826 
827             qlist_append_int(redist_region_count,
828                 MIN(smp_cpus - redist0_count, redist1_capacity));
829         }
830         qdev_prop_set_array(vms->gic, "redist-region-count",
831                             redist_region_count);
832 
833         if (!kvm_irqchip_in_kernel()) {
834             if (vms->tcg_its) {
835                 object_property_set_link(OBJECT(vms->gic), "sysmem",
836                                          OBJECT(mem), &error_fatal);
837                 qdev_prop_set_bit(vms->gic, "has-lpi", true);
838             }
839         }
840     } else {
841         if (!kvm_irqchip_in_kernel()) {
842             qdev_prop_set_bit(vms->gic, "has-virtualization-extensions",
843                               vms->virt);
844         }
845     }
846 
847     if (gicv3_nmi_present(vms)) {
848         qdev_prop_set_bit(vms->gic, "has-nmi", true);
849     }
850 
851     gicbusdev = SYS_BUS_DEVICE(vms->gic);
852     sysbus_realize_and_unref(gicbusdev, &error_fatal);
853     sysbus_mmio_map(gicbusdev, 0, vms->memmap[VIRT_GIC_DIST].base);
854     if (vms->gic_version != VIRT_GIC_VERSION_2) {
855         sysbus_mmio_map(gicbusdev, 1, vms->memmap[VIRT_GIC_REDIST].base);
856         if (nb_redist_regions == 2) {
857             sysbus_mmio_map(gicbusdev, 2,
858                             vms->memmap[VIRT_HIGH_GIC_REDIST2].base);
859         }
860     } else {
861         sysbus_mmio_map(gicbusdev, 1, vms->memmap[VIRT_GIC_CPU].base);
862         if (vms->virt) {
863             sysbus_mmio_map(gicbusdev, 2, vms->memmap[VIRT_GIC_HYP].base);
864             sysbus_mmio_map(gicbusdev, 3, vms->memmap[VIRT_GIC_VCPU].base);
865         }
866     }
867 
868     /* Wire the outputs from each CPU's generic timer and the GICv3
869      * maintenance interrupt signal to the appropriate GIC PPI inputs,
870      * and the GIC's IRQ/FIQ/VIRQ/VFIQ/NMI/VINMI interrupt outputs to the
871      * CPU's inputs.
872      */
873     for (i = 0; i < smp_cpus; i++) {
874         DeviceState *cpudev = DEVICE(qemu_get_cpu(i));
875         int intidbase = NUM_IRQS + i * GIC_INTERNAL;
876         /* Mapping from the output timer irq lines from the CPU to the
877          * GIC PPI inputs we use for the virt board.
878          */
879         const int timer_irq[] = {
880             [GTIMER_PHYS] = ARCH_TIMER_NS_EL1_IRQ,
881             [GTIMER_VIRT] = ARCH_TIMER_VIRT_IRQ,
882             [GTIMER_HYP]  = ARCH_TIMER_NS_EL2_IRQ,
883             [GTIMER_SEC]  = ARCH_TIMER_S_EL1_IRQ,
884             [GTIMER_HYPVIRT] = ARCH_TIMER_NS_EL2_VIRT_IRQ,
885             [GTIMER_S_EL2_PHYS] = ARCH_TIMER_S_EL2_IRQ,
886             [GTIMER_S_EL2_VIRT] = ARCH_TIMER_S_EL2_VIRT_IRQ,
887         };
888 
889         for (unsigned irq = 0; irq < ARRAY_SIZE(timer_irq); irq++) {
890             qdev_connect_gpio_out(cpudev, irq,
891                                   qdev_get_gpio_in(vms->gic,
892                                                    intidbase + timer_irq[irq]));
893         }
894 
895         if (vms->gic_version != VIRT_GIC_VERSION_2) {
896             qemu_irq irq = qdev_get_gpio_in(vms->gic,
897                                             intidbase + ARCH_GIC_MAINT_IRQ);
898             qdev_connect_gpio_out_named(cpudev, "gicv3-maintenance-interrupt",
899                                         0, irq);
900         } else if (vms->virt) {
901             qemu_irq irq = qdev_get_gpio_in(vms->gic,
902                                             intidbase + ARCH_GIC_MAINT_IRQ);
903             sysbus_connect_irq(gicbusdev, i + 4 * smp_cpus, irq);
904         }
905 
906         qdev_connect_gpio_out_named(cpudev, "pmu-interrupt", 0,
907                                     qdev_get_gpio_in(vms->gic, intidbase
908                                                      + VIRTUAL_PMU_IRQ));
909 
910         sysbus_connect_irq(gicbusdev, i, qdev_get_gpio_in(cpudev, ARM_CPU_IRQ));
911         sysbus_connect_irq(gicbusdev, i + smp_cpus,
912                            qdev_get_gpio_in(cpudev, ARM_CPU_FIQ));
913         sysbus_connect_irq(gicbusdev, i + 2 * smp_cpus,
914                            qdev_get_gpio_in(cpudev, ARM_CPU_VIRQ));
915         sysbus_connect_irq(gicbusdev, i + 3 * smp_cpus,
916                            qdev_get_gpio_in(cpudev, ARM_CPU_VFIQ));
917 
918         if (vms->gic_version != VIRT_GIC_VERSION_2) {
919             sysbus_connect_irq(gicbusdev, i + 4 * smp_cpus,
920                                qdev_get_gpio_in(cpudev, ARM_CPU_NMI));
921             sysbus_connect_irq(gicbusdev, i + 5 * smp_cpus,
922                                qdev_get_gpio_in(cpudev, ARM_CPU_VINMI));
923         }
924     }
925 
926     fdt_add_gic_node(vms);
927 
928     if (vms->gic_version != VIRT_GIC_VERSION_2 && vms->its) {
929         create_its(vms);
930     } else if (vms->gic_version == VIRT_GIC_VERSION_2) {
931         create_v2m(vms);
932     }
933 }
934 
935 static void create_uart(const VirtMachineState *vms, int uart,
936                         MemoryRegion *mem, Chardev *chr, bool secure)
937 {
938     char *nodename;
939     hwaddr base = vms->memmap[uart].base;
940     hwaddr size = vms->memmap[uart].size;
941     int irq = vms->irqmap[uart];
942     const char compat[] = "arm,pl011\0arm,primecell";
943     const char clocknames[] = "uartclk\0apb_pclk";
944     DeviceState *dev = qdev_new(TYPE_PL011);
945     SysBusDevice *s = SYS_BUS_DEVICE(dev);
946     MachineState *ms = MACHINE(vms);
947 
948     qdev_prop_set_chr(dev, "chardev", chr);
949     sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
950     memory_region_add_subregion(mem, base,
951                                 sysbus_mmio_get_region(s, 0));
952     sysbus_connect_irq(s, 0, qdev_get_gpio_in(vms->gic, irq));
953 
954     nodename = g_strdup_printf("/pl011@%" PRIx64, base);
955     qemu_fdt_add_subnode(ms->fdt, nodename);
956     /* Note that we can't use setprop_string because of the embedded NUL */
957     qemu_fdt_setprop(ms->fdt, nodename, "compatible",
958                          compat, sizeof(compat));
959     qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
960                                      2, base, 2, size);
961     qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupts",
962                                GIC_FDT_IRQ_TYPE_SPI, irq,
963                                GIC_FDT_IRQ_FLAGS_LEVEL_HI);
964     qemu_fdt_setprop_cells(ms->fdt, nodename, "clocks",
965                                vms->clock_phandle, vms->clock_phandle);
966     qemu_fdt_setprop(ms->fdt, nodename, "clock-names",
967                          clocknames, sizeof(clocknames));
968 
969     if (uart == VIRT_UART0) {
970         qemu_fdt_setprop_string(ms->fdt, "/chosen", "stdout-path", nodename);
971         qemu_fdt_setprop_string(ms->fdt, "/aliases", "serial0", nodename);
972     } else {
973         qemu_fdt_setprop_string(ms->fdt, "/aliases", "serial1", nodename);
974     }
975     if (secure) {
976         /* Mark as not usable by the normal world */
977         qemu_fdt_setprop_string(ms->fdt, nodename, "status", "disabled");
978         qemu_fdt_setprop_string(ms->fdt, nodename, "secure-status", "okay");
979 
980         qemu_fdt_setprop_string(ms->fdt, "/secure-chosen", "stdout-path",
981                                 nodename);
982     }
983 
984     g_free(nodename);
985 }
986 
987 static void create_rtc(const VirtMachineState *vms)
988 {
989     char *nodename;
990     hwaddr base = vms->memmap[VIRT_RTC].base;
991     hwaddr size = vms->memmap[VIRT_RTC].size;
992     int irq = vms->irqmap[VIRT_RTC];
993     const char compat[] = "arm,pl031\0arm,primecell";
994     MachineState *ms = MACHINE(vms);
995 
996     sysbus_create_simple("pl031", base, qdev_get_gpio_in(vms->gic, irq));
997 
998     nodename = g_strdup_printf("/pl031@%" PRIx64, base);
999     qemu_fdt_add_subnode(ms->fdt, nodename);
1000     qemu_fdt_setprop(ms->fdt, nodename, "compatible", compat, sizeof(compat));
1001     qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
1002                                  2, base, 2, size);
1003     qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupts",
1004                            GIC_FDT_IRQ_TYPE_SPI, irq,
1005                            GIC_FDT_IRQ_FLAGS_LEVEL_HI);
1006     qemu_fdt_setprop_cell(ms->fdt, nodename, "clocks", vms->clock_phandle);
1007     qemu_fdt_setprop_string(ms->fdt, nodename, "clock-names", "apb_pclk");
1008     g_free(nodename);
1009 }
1010 
1011 static DeviceState *gpio_key_dev;
1012 static void virt_powerdown_req(Notifier *n, void *opaque)
1013 {
1014     VirtMachineState *s = container_of(n, VirtMachineState, powerdown_notifier);
1015 
1016     if (s->acpi_dev) {
1017         acpi_send_event(s->acpi_dev, ACPI_POWER_DOWN_STATUS);
1018     } else {
1019         /* use gpio Pin for power button event */
1020         qemu_set_irq(qdev_get_gpio_in(gpio_key_dev, 0), 1);
1021     }
1022 }
1023 
1024 static void create_gpio_keys(char *fdt, DeviceState *pl061_dev,
1025                              uint32_t phandle)
1026 {
1027     gpio_key_dev = sysbus_create_simple("gpio-key", -1,
1028                                         qdev_get_gpio_in(pl061_dev,
1029                                                          GPIO_PIN_POWER_BUTTON));
1030 
1031     qemu_fdt_add_subnode(fdt, "/gpio-keys");
1032     qemu_fdt_setprop_string(fdt, "/gpio-keys", "compatible", "gpio-keys");
1033 
1034     qemu_fdt_add_subnode(fdt, "/gpio-keys/poweroff");
1035     qemu_fdt_setprop_string(fdt, "/gpio-keys/poweroff",
1036                             "label", "GPIO Key Poweroff");
1037     qemu_fdt_setprop_cell(fdt, "/gpio-keys/poweroff", "linux,code",
1038                           KEY_POWER);
1039     qemu_fdt_setprop_cells(fdt, "/gpio-keys/poweroff",
1040                            "gpios", phandle, GPIO_PIN_POWER_BUTTON, 0);
1041 }
1042 
1043 #define SECURE_GPIO_POWEROFF 0
1044 #define SECURE_GPIO_RESET    1
1045 
1046 static void create_secure_gpio_pwr(char *fdt, DeviceState *pl061_dev,
1047                                    uint32_t phandle)
1048 {
1049     DeviceState *gpio_pwr_dev;
1050 
1051     /* gpio-pwr */
1052     gpio_pwr_dev = sysbus_create_simple("gpio-pwr", -1, NULL);
1053 
1054     /* connect secure pl061 to gpio-pwr */
1055     qdev_connect_gpio_out(pl061_dev, SECURE_GPIO_RESET,
1056                           qdev_get_gpio_in_named(gpio_pwr_dev, "reset", 0));
1057     qdev_connect_gpio_out(pl061_dev, SECURE_GPIO_POWEROFF,
1058                           qdev_get_gpio_in_named(gpio_pwr_dev, "shutdown", 0));
1059 
1060     qemu_fdt_add_subnode(fdt, "/gpio-poweroff");
1061     qemu_fdt_setprop_string(fdt, "/gpio-poweroff", "compatible",
1062                             "gpio-poweroff");
1063     qemu_fdt_setprop_cells(fdt, "/gpio-poweroff",
1064                            "gpios", phandle, SECURE_GPIO_POWEROFF, 0);
1065     qemu_fdt_setprop_string(fdt, "/gpio-poweroff", "status", "disabled");
1066     qemu_fdt_setprop_string(fdt, "/gpio-poweroff", "secure-status",
1067                             "okay");
1068 
1069     qemu_fdt_add_subnode(fdt, "/gpio-restart");
1070     qemu_fdt_setprop_string(fdt, "/gpio-restart", "compatible",
1071                             "gpio-restart");
1072     qemu_fdt_setprop_cells(fdt, "/gpio-restart",
1073                            "gpios", phandle, SECURE_GPIO_RESET, 0);
1074     qemu_fdt_setprop_string(fdt, "/gpio-restart", "status", "disabled");
1075     qemu_fdt_setprop_string(fdt, "/gpio-restart", "secure-status",
1076                             "okay");
1077 }
1078 
1079 static void create_gpio_devices(const VirtMachineState *vms, int gpio,
1080                                 MemoryRegion *mem)
1081 {
1082     char *nodename;
1083     DeviceState *pl061_dev;
1084     hwaddr base = vms->memmap[gpio].base;
1085     hwaddr size = vms->memmap[gpio].size;
1086     int irq = vms->irqmap[gpio];
1087     const char compat[] = "arm,pl061\0arm,primecell";
1088     SysBusDevice *s;
1089     MachineState *ms = MACHINE(vms);
1090 
1091     pl061_dev = qdev_new("pl061");
1092     /* Pull lines down to 0 if not driven by the PL061 */
1093     qdev_prop_set_uint32(pl061_dev, "pullups", 0);
1094     qdev_prop_set_uint32(pl061_dev, "pulldowns", 0xff);
1095     s = SYS_BUS_DEVICE(pl061_dev);
1096     sysbus_realize_and_unref(s, &error_fatal);
1097     memory_region_add_subregion(mem, base, sysbus_mmio_get_region(s, 0));
1098     sysbus_connect_irq(s, 0, qdev_get_gpio_in(vms->gic, irq));
1099 
1100     uint32_t phandle = qemu_fdt_alloc_phandle(ms->fdt);
1101     nodename = g_strdup_printf("/pl061@%" PRIx64, base);
1102     qemu_fdt_add_subnode(ms->fdt, nodename);
1103     qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
1104                                  2, base, 2, size);
1105     qemu_fdt_setprop(ms->fdt, nodename, "compatible", compat, sizeof(compat));
1106     qemu_fdt_setprop_cell(ms->fdt, nodename, "#gpio-cells", 2);
1107     qemu_fdt_setprop(ms->fdt, nodename, "gpio-controller", NULL, 0);
1108     qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupts",
1109                            GIC_FDT_IRQ_TYPE_SPI, irq,
1110                            GIC_FDT_IRQ_FLAGS_LEVEL_HI);
1111     qemu_fdt_setprop_cell(ms->fdt, nodename, "clocks", vms->clock_phandle);
1112     qemu_fdt_setprop_string(ms->fdt, nodename, "clock-names", "apb_pclk");
1113     qemu_fdt_setprop_cell(ms->fdt, nodename, "phandle", phandle);
1114 
1115     if (gpio != VIRT_GPIO) {
1116         /* Mark as not usable by the normal world */
1117         qemu_fdt_setprop_string(ms->fdt, nodename, "status", "disabled");
1118         qemu_fdt_setprop_string(ms->fdt, nodename, "secure-status", "okay");
1119     }
1120     g_free(nodename);
1121 
1122     /* Child gpio devices */
1123     if (gpio == VIRT_GPIO) {
1124         create_gpio_keys(ms->fdt, pl061_dev, phandle);
1125     } else {
1126         create_secure_gpio_pwr(ms->fdt, pl061_dev, phandle);
1127     }
1128 }
1129 
1130 static void create_virtio_devices(const VirtMachineState *vms)
1131 {
1132     int i;
1133     hwaddr size = vms->memmap[VIRT_MMIO].size;
1134     MachineState *ms = MACHINE(vms);
1135 
1136     /* We create the transports in forwards order. Since qbus_realize()
1137      * prepends (not appends) new child buses, the incrementing loop below will
1138      * create a list of virtio-mmio buses with decreasing base addresses.
1139      *
1140      * When a -device option is processed from the command line,
1141      * qbus_find_recursive() picks the next free virtio-mmio bus in forwards
1142      * order. The upshot is that -device options in increasing command line
1143      * order are mapped to virtio-mmio buses with decreasing base addresses.
1144      *
1145      * When this code was originally written, that arrangement ensured that the
1146      * guest Linux kernel would give the lowest "name" (/dev/vda, eth0, etc) to
1147      * the first -device on the command line. (The end-to-end order is a
1148      * function of this loop, qbus_realize(), qbus_find_recursive(), and the
1149      * guest kernel's name-to-address assignment strategy.)
1150      *
1151      * Meanwhile, the kernel's traversal seems to have been reversed; see eg.
1152      * the message, if not necessarily the code, of commit 70161ff336.
1153      * Therefore the loop now establishes the inverse of the original intent.
1154      *
1155      * Unfortunately, we can't counteract the kernel change by reversing the
1156      * loop; it would break existing command lines.
1157      *
1158      * In any case, the kernel makes no guarantee about the stability of
1159      * enumeration order of virtio devices (as demonstrated by it changing
1160      * between kernel versions). For reliable and stable identification
1161      * of disks users must use UUIDs or similar mechanisms.
1162      */
1163     for (i = 0; i < NUM_VIRTIO_TRANSPORTS; i++) {
1164         int irq = vms->irqmap[VIRT_MMIO] + i;
1165         hwaddr base = vms->memmap[VIRT_MMIO].base + i * size;
1166 
1167         sysbus_create_simple("virtio-mmio", base,
1168                              qdev_get_gpio_in(vms->gic, irq));
1169     }
1170 
1171     /* We add dtb nodes in reverse order so that they appear in the finished
1172      * device tree lowest address first.
1173      *
1174      * Note that this mapping is independent of the loop above. The previous
1175      * loop influences virtio device to virtio transport assignment, whereas
1176      * this loop controls how virtio transports are laid out in the dtb.
1177      */
1178     for (i = NUM_VIRTIO_TRANSPORTS - 1; i >= 0; i--) {
1179         char *nodename;
1180         int irq = vms->irqmap[VIRT_MMIO] + i;
1181         hwaddr base = vms->memmap[VIRT_MMIO].base + i * size;
1182 
1183         nodename = g_strdup_printf("/virtio_mmio@%" PRIx64, base);
1184         qemu_fdt_add_subnode(ms->fdt, nodename);
1185         qemu_fdt_setprop_string(ms->fdt, nodename,
1186                                 "compatible", "virtio,mmio");
1187         qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
1188                                      2, base, 2, size);
1189         qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupts",
1190                                GIC_FDT_IRQ_TYPE_SPI, irq,
1191                                GIC_FDT_IRQ_FLAGS_EDGE_LO_HI);
1192         qemu_fdt_setprop(ms->fdt, nodename, "dma-coherent", NULL, 0);
1193         g_free(nodename);
1194     }
1195 }
1196 
1197 #define VIRT_FLASH_SECTOR_SIZE (256 * KiB)
1198 
1199 static PFlashCFI01 *virt_flash_create1(VirtMachineState *vms,
1200                                         const char *name,
1201                                         const char *alias_prop_name)
1202 {
1203     /*
1204      * Create a single flash device.  We use the same parameters as
1205      * the flash devices on the Versatile Express board.
1206      */
1207     DeviceState *dev = qdev_new(TYPE_PFLASH_CFI01);
1208 
1209     qdev_prop_set_uint64(dev, "sector-length", VIRT_FLASH_SECTOR_SIZE);
1210     qdev_prop_set_uint8(dev, "width", 4);
1211     qdev_prop_set_uint8(dev, "device-width", 2);
1212     qdev_prop_set_bit(dev, "big-endian", false);
1213     qdev_prop_set_uint16(dev, "id0", 0x89);
1214     qdev_prop_set_uint16(dev, "id1", 0x18);
1215     qdev_prop_set_uint16(dev, "id2", 0x00);
1216     qdev_prop_set_uint16(dev, "id3", 0x00);
1217     qdev_prop_set_string(dev, "name", name);
1218     object_property_add_child(OBJECT(vms), name, OBJECT(dev));
1219     object_property_add_alias(OBJECT(vms), alias_prop_name,
1220                               OBJECT(dev), "drive");
1221     return PFLASH_CFI01(dev);
1222 }
1223 
1224 static void virt_flash_create(VirtMachineState *vms)
1225 {
1226     vms->flash[0] = virt_flash_create1(vms, "virt.flash0", "pflash0");
1227     vms->flash[1] = virt_flash_create1(vms, "virt.flash1", "pflash1");
1228 }
1229 
1230 static void virt_flash_map1(PFlashCFI01 *flash,
1231                             hwaddr base, hwaddr size,
1232                             MemoryRegion *sysmem)
1233 {
1234     DeviceState *dev = DEVICE(flash);
1235 
1236     assert(QEMU_IS_ALIGNED(size, VIRT_FLASH_SECTOR_SIZE));
1237     assert(size / VIRT_FLASH_SECTOR_SIZE <= UINT32_MAX);
1238     qdev_prop_set_uint32(dev, "num-blocks", size / VIRT_FLASH_SECTOR_SIZE);
1239     sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
1240 
1241     memory_region_add_subregion(sysmem, base,
1242                                 sysbus_mmio_get_region(SYS_BUS_DEVICE(dev),
1243                                                        0));
1244 }
1245 
1246 static void virt_flash_map(VirtMachineState *vms,
1247                            MemoryRegion *sysmem,
1248                            MemoryRegion *secure_sysmem)
1249 {
1250     /*
1251      * Map two flash devices to fill the VIRT_FLASH space in the memmap.
1252      * sysmem is the system memory space. secure_sysmem is the secure view
1253      * of the system, and the first flash device should be made visible only
1254      * there. The second flash device is visible to both secure and nonsecure.
1255      * If sysmem == secure_sysmem this means there is no separate Secure
1256      * address space and both flash devices are generally visible.
1257      */
1258     hwaddr flashsize = vms->memmap[VIRT_FLASH].size / 2;
1259     hwaddr flashbase = vms->memmap[VIRT_FLASH].base;
1260 
1261     virt_flash_map1(vms->flash[0], flashbase, flashsize,
1262                     secure_sysmem);
1263     virt_flash_map1(vms->flash[1], flashbase + flashsize, flashsize,
1264                     sysmem);
1265 }
1266 
1267 static void virt_flash_fdt(VirtMachineState *vms,
1268                            MemoryRegion *sysmem,
1269                            MemoryRegion *secure_sysmem)
1270 {
1271     hwaddr flashsize = vms->memmap[VIRT_FLASH].size / 2;
1272     hwaddr flashbase = vms->memmap[VIRT_FLASH].base;
1273     MachineState *ms = MACHINE(vms);
1274     char *nodename;
1275 
1276     if (sysmem == secure_sysmem) {
1277         /* Report both flash devices as a single node in the DT */
1278         nodename = g_strdup_printf("/flash@%" PRIx64, flashbase);
1279         qemu_fdt_add_subnode(ms->fdt, nodename);
1280         qemu_fdt_setprop_string(ms->fdt, nodename, "compatible", "cfi-flash");
1281         qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
1282                                      2, flashbase, 2, flashsize,
1283                                      2, flashbase + flashsize, 2, flashsize);
1284         qemu_fdt_setprop_cell(ms->fdt, nodename, "bank-width", 4);
1285         g_free(nodename);
1286     } else {
1287         /*
1288          * Report the devices as separate nodes so we can mark one as
1289          * only visible to the secure world.
1290          */
1291         nodename = g_strdup_printf("/secflash@%" PRIx64, flashbase);
1292         qemu_fdt_add_subnode(ms->fdt, nodename);
1293         qemu_fdt_setprop_string(ms->fdt, nodename, "compatible", "cfi-flash");
1294         qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
1295                                      2, flashbase, 2, flashsize);
1296         qemu_fdt_setprop_cell(ms->fdt, nodename, "bank-width", 4);
1297         qemu_fdt_setprop_string(ms->fdt, nodename, "status", "disabled");
1298         qemu_fdt_setprop_string(ms->fdt, nodename, "secure-status", "okay");
1299         g_free(nodename);
1300 
1301         nodename = g_strdup_printf("/flash@%" PRIx64, flashbase + flashsize);
1302         qemu_fdt_add_subnode(ms->fdt, nodename);
1303         qemu_fdt_setprop_string(ms->fdt, nodename, "compatible", "cfi-flash");
1304         qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
1305                                      2, flashbase + flashsize, 2, flashsize);
1306         qemu_fdt_setprop_cell(ms->fdt, nodename, "bank-width", 4);
1307         g_free(nodename);
1308     }
1309 }
1310 
1311 static bool virt_firmware_init(VirtMachineState *vms,
1312                                MemoryRegion *sysmem,
1313                                MemoryRegion *secure_sysmem)
1314 {
1315     int i;
1316     const char *bios_name;
1317     BlockBackend *pflash_blk0;
1318 
1319     /* Map legacy -drive if=pflash to machine properties */
1320     for (i = 0; i < ARRAY_SIZE(vms->flash); i++) {
1321         pflash_cfi01_legacy_drive(vms->flash[i],
1322                                   drive_get(IF_PFLASH, 0, i));
1323     }
1324 
1325     virt_flash_map(vms, sysmem, secure_sysmem);
1326 
1327     pflash_blk0 = pflash_cfi01_get_blk(vms->flash[0]);
1328 
1329     bios_name = MACHINE(vms)->firmware;
1330     if (bios_name) {
1331         char *fname;
1332         MemoryRegion *mr;
1333         int image_size;
1334 
1335         if (pflash_blk0) {
1336             error_report("The contents of the first flash device may be "
1337                          "specified with -bios or with -drive if=pflash... "
1338                          "but you cannot use both options at once");
1339             exit(1);
1340         }
1341 
1342         /* Fall back to -bios */
1343 
1344         fname = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
1345         if (!fname) {
1346             error_report("Could not find ROM image '%s'", bios_name);
1347             exit(1);
1348         }
1349         mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(vms->flash[0]), 0);
1350         image_size = load_image_mr(fname, mr);
1351         g_free(fname);
1352         if (image_size < 0) {
1353             error_report("Could not load ROM image '%s'", bios_name);
1354             exit(1);
1355         }
1356     }
1357 
1358     return pflash_blk0 || bios_name;
1359 }
1360 
1361 static FWCfgState *create_fw_cfg(const VirtMachineState *vms, AddressSpace *as)
1362 {
1363     MachineState *ms = MACHINE(vms);
1364     hwaddr base = vms->memmap[VIRT_FW_CFG].base;
1365     hwaddr size = vms->memmap[VIRT_FW_CFG].size;
1366     FWCfgState *fw_cfg;
1367     char *nodename;
1368 
1369     fw_cfg = fw_cfg_init_mem_wide(base + 8, base, 8, base + 16, as);
1370     fw_cfg_add_i16(fw_cfg, FW_CFG_NB_CPUS, (uint16_t)ms->smp.cpus);
1371 
1372     nodename = g_strdup_printf("/fw-cfg@%" PRIx64, base);
1373     qemu_fdt_add_subnode(ms->fdt, nodename);
1374     qemu_fdt_setprop_string(ms->fdt, nodename,
1375                             "compatible", "qemu,fw-cfg-mmio");
1376     qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
1377                                  2, base, 2, size);
1378     qemu_fdt_setprop(ms->fdt, nodename, "dma-coherent", NULL, 0);
1379     g_free(nodename);
1380     return fw_cfg;
1381 }
1382 
1383 static void create_pcie_irq_map(const MachineState *ms,
1384                                 uint32_t gic_phandle,
1385                                 int first_irq, const char *nodename)
1386 {
1387     int devfn, pin;
1388     uint32_t full_irq_map[4 * 4 * 10] = { 0 };
1389     uint32_t *irq_map = full_irq_map;
1390 
1391     for (devfn = 0; devfn <= 0x18; devfn += 0x8) {
1392         for (pin = 0; pin < 4; pin++) {
1393             int irq_type = GIC_FDT_IRQ_TYPE_SPI;
1394             int irq_nr = first_irq + ((pin + PCI_SLOT(devfn)) % PCI_NUM_PINS);
1395             int irq_level = GIC_FDT_IRQ_FLAGS_LEVEL_HI;
1396             int i;
1397 
1398             uint32_t map[] = {
1399                 devfn << 8, 0, 0,                           /* devfn */
1400                 pin + 1,                                    /* PCI pin */
1401                 gic_phandle, 0, 0, irq_type, irq_nr, irq_level }; /* GIC irq */
1402 
1403             /* Convert map to big endian */
1404             for (i = 0; i < 10; i++) {
1405                 irq_map[i] = cpu_to_be32(map[i]);
1406             }
1407             irq_map += 10;
1408         }
1409     }
1410 
1411     qemu_fdt_setprop(ms->fdt, nodename, "interrupt-map",
1412                      full_irq_map, sizeof(full_irq_map));
1413 
1414     qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupt-map-mask",
1415                            cpu_to_be16(PCI_DEVFN(3, 0)), /* Slot 3 */
1416                            0, 0,
1417                            0x7           /* PCI irq */);
1418 }
1419 
1420 static void create_smmu(const VirtMachineState *vms,
1421                         PCIBus *bus)
1422 {
1423     VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
1424     char *node;
1425     const char compat[] = "arm,smmu-v3";
1426     int irq =  vms->irqmap[VIRT_SMMU];
1427     int i;
1428     hwaddr base = vms->memmap[VIRT_SMMU].base;
1429     hwaddr size = vms->memmap[VIRT_SMMU].size;
1430     const char irq_names[] = "eventq\0priq\0cmdq-sync\0gerror";
1431     DeviceState *dev;
1432     MachineState *ms = MACHINE(vms);
1433 
1434     if (vms->iommu != VIRT_IOMMU_SMMUV3 || !vms->iommu_phandle) {
1435         return;
1436     }
1437 
1438     dev = qdev_new(TYPE_ARM_SMMUV3);
1439 
1440     if (!vmc->no_nested_smmu) {
1441         object_property_set_str(OBJECT(dev), "stage", "nested", &error_fatal);
1442     }
1443     object_property_set_link(OBJECT(dev), "primary-bus", OBJECT(bus),
1444                              &error_abort);
1445     sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
1446     sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, base);
1447     for (i = 0; i < NUM_SMMU_IRQS; i++) {
1448         sysbus_connect_irq(SYS_BUS_DEVICE(dev), i,
1449                            qdev_get_gpio_in(vms->gic, irq + i));
1450     }
1451 
1452     node = g_strdup_printf("/smmuv3@%" PRIx64, base);
1453     qemu_fdt_add_subnode(ms->fdt, node);
1454     qemu_fdt_setprop(ms->fdt, node, "compatible", compat, sizeof(compat));
1455     qemu_fdt_setprop_sized_cells(ms->fdt, node, "reg", 2, base, 2, size);
1456 
1457     qemu_fdt_setprop_cells(ms->fdt, node, "interrupts",
1458             GIC_FDT_IRQ_TYPE_SPI, irq    , GIC_FDT_IRQ_FLAGS_EDGE_LO_HI,
1459             GIC_FDT_IRQ_TYPE_SPI, irq + 1, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI,
1460             GIC_FDT_IRQ_TYPE_SPI, irq + 2, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI,
1461             GIC_FDT_IRQ_TYPE_SPI, irq + 3, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI);
1462 
1463     qemu_fdt_setprop(ms->fdt, node, "interrupt-names", irq_names,
1464                      sizeof(irq_names));
1465 
1466     qemu_fdt_setprop(ms->fdt, node, "dma-coherent", NULL, 0);
1467 
1468     qemu_fdt_setprop_cell(ms->fdt, node, "#iommu-cells", 1);
1469 
1470     qemu_fdt_setprop_cell(ms->fdt, node, "phandle", vms->iommu_phandle);
1471     g_free(node);
1472 }
1473 
1474 static void create_virtio_iommu_dt_bindings(VirtMachineState *vms)
1475 {
1476     const char compat[] = "virtio,pci-iommu\0pci1af4,1057";
1477     uint16_t bdf = vms->virtio_iommu_bdf;
1478     MachineState *ms = MACHINE(vms);
1479     char *node;
1480 
1481     vms->iommu_phandle = qemu_fdt_alloc_phandle(ms->fdt);
1482 
1483     node = g_strdup_printf("%s/virtio_iommu@%x,%x", vms->pciehb_nodename,
1484                            PCI_SLOT(bdf), PCI_FUNC(bdf));
1485     qemu_fdt_add_subnode(ms->fdt, node);
1486     qemu_fdt_setprop(ms->fdt, node, "compatible", compat, sizeof(compat));
1487     qemu_fdt_setprop_sized_cells(ms->fdt, node, "reg",
1488                                  1, bdf << 8, 1, 0, 1, 0,
1489                                  1, 0, 1, 0);
1490 
1491     qemu_fdt_setprop_cell(ms->fdt, node, "#iommu-cells", 1);
1492     qemu_fdt_setprop_cell(ms->fdt, node, "phandle", vms->iommu_phandle);
1493     g_free(node);
1494 
1495     qemu_fdt_setprop_cells(ms->fdt, vms->pciehb_nodename, "iommu-map",
1496                            0x0, vms->iommu_phandle, 0x0, bdf,
1497                            bdf + 1, vms->iommu_phandle, bdf + 1, 0xffff - bdf);
1498 }
1499 
1500 static void create_pcie(VirtMachineState *vms)
1501 {
1502     hwaddr base_mmio = vms->memmap[VIRT_PCIE_MMIO].base;
1503     hwaddr size_mmio = vms->memmap[VIRT_PCIE_MMIO].size;
1504     hwaddr base_mmio_high = vms->memmap[VIRT_HIGH_PCIE_MMIO].base;
1505     hwaddr size_mmio_high = vms->memmap[VIRT_HIGH_PCIE_MMIO].size;
1506     hwaddr base_pio = vms->memmap[VIRT_PCIE_PIO].base;
1507     hwaddr size_pio = vms->memmap[VIRT_PCIE_PIO].size;
1508     hwaddr base_ecam, size_ecam;
1509     hwaddr base = base_mmio;
1510     int nr_pcie_buses;
1511     int irq = vms->irqmap[VIRT_PCIE];
1512     MemoryRegion *mmio_alias;
1513     MemoryRegion *mmio_reg;
1514     MemoryRegion *ecam_alias;
1515     MemoryRegion *ecam_reg;
1516     DeviceState *dev;
1517     char *nodename;
1518     int i, ecam_id;
1519     PCIHostState *pci;
1520     MachineState *ms = MACHINE(vms);
1521     MachineClass *mc = MACHINE_GET_CLASS(ms);
1522 
1523     dev = qdev_new(TYPE_GPEX_HOST);
1524     sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
1525 
1526     ecam_id = VIRT_ECAM_ID(vms->highmem_ecam);
1527     base_ecam = vms->memmap[ecam_id].base;
1528     size_ecam = vms->memmap[ecam_id].size;
1529     nr_pcie_buses = size_ecam / PCIE_MMCFG_SIZE_MIN;
1530     /* Map only the first size_ecam bytes of ECAM space */
1531     ecam_alias = g_new0(MemoryRegion, 1);
1532     ecam_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 0);
1533     memory_region_init_alias(ecam_alias, OBJECT(dev), "pcie-ecam",
1534                              ecam_reg, 0, size_ecam);
1535     memory_region_add_subregion(get_system_memory(), base_ecam, ecam_alias);
1536 
1537     /* Map the MMIO window into system address space so as to expose
1538      * the section of PCI MMIO space which starts at the same base address
1539      * (ie 1:1 mapping for that part of PCI MMIO space visible through
1540      * the window).
1541      */
1542     mmio_alias = g_new0(MemoryRegion, 1);
1543     mmio_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 1);
1544     memory_region_init_alias(mmio_alias, OBJECT(dev), "pcie-mmio",
1545                              mmio_reg, base_mmio, size_mmio);
1546     memory_region_add_subregion(get_system_memory(), base_mmio, mmio_alias);
1547 
1548     if (vms->highmem_mmio) {
1549         /* Map high MMIO space */
1550         MemoryRegion *high_mmio_alias = g_new0(MemoryRegion, 1);
1551 
1552         memory_region_init_alias(high_mmio_alias, OBJECT(dev), "pcie-mmio-high",
1553                                  mmio_reg, base_mmio_high, size_mmio_high);
1554         memory_region_add_subregion(get_system_memory(), base_mmio_high,
1555                                     high_mmio_alias);
1556     }
1557 
1558     /* Map IO port space */
1559     sysbus_mmio_map(SYS_BUS_DEVICE(dev), 2, base_pio);
1560 
1561     for (i = 0; i < PCI_NUM_PINS; i++) {
1562         sysbus_connect_irq(SYS_BUS_DEVICE(dev), i,
1563                            qdev_get_gpio_in(vms->gic, irq + i));
1564         gpex_set_irq_num(GPEX_HOST(dev), i, irq + i);
1565     }
1566 
1567     pci = PCI_HOST_BRIDGE(dev);
1568     pci->bypass_iommu = vms->default_bus_bypass_iommu;
1569     vms->bus = pci->bus;
1570     if (vms->bus) {
1571         pci_init_nic_devices(pci->bus, mc->default_nic);
1572     }
1573 
1574     nodename = vms->pciehb_nodename = g_strdup_printf("/pcie@%" PRIx64, base);
1575     qemu_fdt_add_subnode(ms->fdt, nodename);
1576     qemu_fdt_setprop_string(ms->fdt, nodename,
1577                             "compatible", "pci-host-ecam-generic");
1578     qemu_fdt_setprop_string(ms->fdt, nodename, "device_type", "pci");
1579     qemu_fdt_setprop_cell(ms->fdt, nodename, "#address-cells", 3);
1580     qemu_fdt_setprop_cell(ms->fdt, nodename, "#size-cells", 2);
1581     qemu_fdt_setprop_cell(ms->fdt, nodename, "linux,pci-domain", 0);
1582     qemu_fdt_setprop_cells(ms->fdt, nodename, "bus-range", 0,
1583                            nr_pcie_buses - 1);
1584     qemu_fdt_setprop(ms->fdt, nodename, "dma-coherent", NULL, 0);
1585 
1586     if (vms->msi_phandle) {
1587         qemu_fdt_setprop_cells(ms->fdt, nodename, "msi-map",
1588                                0, vms->msi_phandle, 0, 0x10000);
1589     }
1590 
1591     qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
1592                                  2, base_ecam, 2, size_ecam);
1593 
1594     if (vms->highmem_mmio) {
1595         qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "ranges",
1596                                      1, FDT_PCI_RANGE_IOPORT, 2, 0,
1597                                      2, base_pio, 2, size_pio,
1598                                      1, FDT_PCI_RANGE_MMIO, 2, base_mmio,
1599                                      2, base_mmio, 2, size_mmio,
1600                                      1, FDT_PCI_RANGE_MMIO_64BIT,
1601                                      2, base_mmio_high,
1602                                      2, base_mmio_high, 2, size_mmio_high);
1603     } else {
1604         qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "ranges",
1605                                      1, FDT_PCI_RANGE_IOPORT, 2, 0,
1606                                      2, base_pio, 2, size_pio,
1607                                      1, FDT_PCI_RANGE_MMIO, 2, base_mmio,
1608                                      2, base_mmio, 2, size_mmio);
1609     }
1610 
1611     qemu_fdt_setprop_cell(ms->fdt, nodename, "#interrupt-cells", 1);
1612     create_pcie_irq_map(ms, vms->gic_phandle, irq, nodename);
1613 
1614     if (vms->iommu) {
1615         vms->iommu_phandle = qemu_fdt_alloc_phandle(ms->fdt);
1616 
1617         switch (vms->iommu) {
1618         case VIRT_IOMMU_SMMUV3:
1619             create_smmu(vms, vms->bus);
1620             qemu_fdt_setprop_cells(ms->fdt, nodename, "iommu-map",
1621                                    0x0, vms->iommu_phandle, 0x0, 0x10000);
1622             break;
1623         default:
1624             g_assert_not_reached();
1625         }
1626     }
1627 }
1628 
1629 static void create_platform_bus(VirtMachineState *vms)
1630 {
1631     DeviceState *dev;
1632     SysBusDevice *s;
1633     int i;
1634     MemoryRegion *sysmem = get_system_memory();
1635 
1636     dev = qdev_new(TYPE_PLATFORM_BUS_DEVICE);
1637     dev->id = g_strdup(TYPE_PLATFORM_BUS_DEVICE);
1638     qdev_prop_set_uint32(dev, "num_irqs", PLATFORM_BUS_NUM_IRQS);
1639     qdev_prop_set_uint32(dev, "mmio_size", vms->memmap[VIRT_PLATFORM_BUS].size);
1640     sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
1641     vms->platform_bus_dev = dev;
1642 
1643     s = SYS_BUS_DEVICE(dev);
1644     for (i = 0; i < PLATFORM_BUS_NUM_IRQS; i++) {
1645         int irq = vms->irqmap[VIRT_PLATFORM_BUS] + i;
1646         sysbus_connect_irq(s, i, qdev_get_gpio_in(vms->gic, irq));
1647     }
1648 
1649     memory_region_add_subregion(sysmem,
1650                                 vms->memmap[VIRT_PLATFORM_BUS].base,
1651                                 sysbus_mmio_get_region(s, 0));
1652 }
1653 
1654 static void create_tag_ram(MemoryRegion *tag_sysmem,
1655                            hwaddr base, hwaddr size,
1656                            const char *name)
1657 {
1658     MemoryRegion *tagram = g_new(MemoryRegion, 1);
1659 
1660     memory_region_init_ram(tagram, NULL, name, size / 32, &error_fatal);
1661     memory_region_add_subregion(tag_sysmem, base / 32, tagram);
1662 }
1663 
1664 static void create_secure_ram(VirtMachineState *vms,
1665                               MemoryRegion *secure_sysmem,
1666                               MemoryRegion *secure_tag_sysmem)
1667 {
1668     MemoryRegion *secram = g_new(MemoryRegion, 1);
1669     char *nodename;
1670     hwaddr base = vms->memmap[VIRT_SECURE_MEM].base;
1671     hwaddr size = vms->memmap[VIRT_SECURE_MEM].size;
1672     MachineState *ms = MACHINE(vms);
1673 
1674     memory_region_init_ram(secram, NULL, "virt.secure-ram", size,
1675                            &error_fatal);
1676     memory_region_add_subregion(secure_sysmem, base, secram);
1677 
1678     nodename = g_strdup_printf("/secram@%" PRIx64, base);
1679     qemu_fdt_add_subnode(ms->fdt, nodename);
1680     qemu_fdt_setprop_string(ms->fdt, nodename, "device_type", "memory");
1681     qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg", 2, base, 2, size);
1682     qemu_fdt_setprop_string(ms->fdt, nodename, "status", "disabled");
1683     qemu_fdt_setprop_string(ms->fdt, nodename, "secure-status", "okay");
1684 
1685     if (secure_tag_sysmem) {
1686         create_tag_ram(secure_tag_sysmem, base, size, "mach-virt.secure-tag");
1687     }
1688 
1689     g_free(nodename);
1690 }
1691 
1692 static void *machvirt_dtb(const struct arm_boot_info *binfo, int *fdt_size)
1693 {
1694     const VirtMachineState *board = container_of(binfo, VirtMachineState,
1695                                                  bootinfo);
1696     MachineState *ms = MACHINE(board);
1697 
1698 
1699     *fdt_size = board->fdt_size;
1700     return ms->fdt;
1701 }
1702 
1703 static void virt_build_smbios(VirtMachineState *vms)
1704 {
1705     MachineClass *mc = MACHINE_GET_CLASS(vms);
1706     MachineState *ms = MACHINE(vms);
1707     VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
1708     uint8_t *smbios_tables, *smbios_anchor;
1709     size_t smbios_tables_len, smbios_anchor_len;
1710     struct smbios_phys_mem_area mem_array;
1711     const char *product = "QEMU Virtual Machine";
1712 
1713     if (kvm_enabled()) {
1714         product = "KVM Virtual Machine";
1715     }
1716 
1717     smbios_set_defaults("QEMU", product,
1718                         vmc->smbios_old_sys_ver ? "1.0" : mc->name);
1719 
1720     /* build the array of physical mem area from base_memmap */
1721     mem_array.address = vms->memmap[VIRT_MEM].base;
1722     mem_array.length = ms->ram_size;
1723 
1724     smbios_get_tables(ms, SMBIOS_ENTRY_POINT_TYPE_64, &mem_array, 1,
1725                       &smbios_tables, &smbios_tables_len,
1726                       &smbios_anchor, &smbios_anchor_len,
1727                       &error_fatal);
1728 
1729     if (smbios_anchor) {
1730         fw_cfg_add_file(vms->fw_cfg, "etc/smbios/smbios-tables",
1731                         smbios_tables, smbios_tables_len);
1732         fw_cfg_add_file(vms->fw_cfg, "etc/smbios/smbios-anchor",
1733                         smbios_anchor, smbios_anchor_len);
1734     }
1735 }
1736 
1737 static
1738 void virt_machine_done(Notifier *notifier, void *data)
1739 {
1740     VirtMachineState *vms = container_of(notifier, VirtMachineState,
1741                                          machine_done);
1742     MachineState *ms = MACHINE(vms);
1743     ARMCPU *cpu = ARM_CPU(first_cpu);
1744     struct arm_boot_info *info = &vms->bootinfo;
1745     AddressSpace *as = arm_boot_address_space(cpu, info);
1746 
1747     /*
1748      * If the user provided a dtb, we assume the dynamic sysbus nodes
1749      * already are integrated there. This corresponds to a use case where
1750      * the dynamic sysbus nodes are complex and their generation is not yet
1751      * supported. In that case the user can take charge of the guest dt
1752      * while qemu takes charge of the qom stuff.
1753      */
1754     if (info->dtb_filename == NULL) {
1755         platform_bus_add_all_fdt_nodes(ms->fdt, "/intc",
1756                                        vms->memmap[VIRT_PLATFORM_BUS].base,
1757                                        vms->memmap[VIRT_PLATFORM_BUS].size,
1758                                        vms->irqmap[VIRT_PLATFORM_BUS]);
1759     }
1760     if (arm_load_dtb(info->dtb_start, info, info->dtb_limit, as, ms, cpu) < 0) {
1761         exit(1);
1762     }
1763 
1764     pci_bus_add_fw_cfg_extra_pci_roots(vms->fw_cfg, vms->bus,
1765                                        &error_abort);
1766 
1767     virt_acpi_setup(vms);
1768     virt_build_smbios(vms);
1769 }
1770 
1771 static uint64_t virt_cpu_mp_affinity(VirtMachineState *vms, int idx)
1772 {
1773     uint8_t clustersz = ARM_DEFAULT_CPUS_PER_CLUSTER;
1774     VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
1775 
1776     if (!vmc->disallow_affinity_adjustment) {
1777         /* Adjust MPIDR like 64-bit KVM hosts, which incorporate the
1778          * GIC's target-list limitations. 32-bit KVM hosts currently
1779          * always create clusters of 4 CPUs, but that is expected to
1780          * change when they gain support for gicv3. When KVM is enabled
1781          * it will override the changes we make here, therefore our
1782          * purposes are to make TCG consistent (with 64-bit KVM hosts)
1783          * and to improve SGI efficiency.
1784          */
1785         if (vms->gic_version == VIRT_GIC_VERSION_2) {
1786             clustersz = GIC_TARGETLIST_BITS;
1787         } else {
1788             clustersz = GICV3_TARGETLIST_BITS;
1789         }
1790     }
1791     return arm_build_mp_affinity(idx, clustersz);
1792 }
1793 
1794 static inline bool *virt_get_high_memmap_enabled(VirtMachineState *vms,
1795                                                  int index)
1796 {
1797     bool *enabled_array[] = {
1798         &vms->highmem_redists,
1799         &vms->highmem_ecam,
1800         &vms->highmem_mmio,
1801     };
1802 
1803     assert(ARRAY_SIZE(extended_memmap) - VIRT_LOWMEMMAP_LAST ==
1804            ARRAY_SIZE(enabled_array));
1805     assert(index - VIRT_LOWMEMMAP_LAST < ARRAY_SIZE(enabled_array));
1806 
1807     return enabled_array[index - VIRT_LOWMEMMAP_LAST];
1808 }
1809 
1810 static void virt_set_high_memmap(VirtMachineState *vms,
1811                                  hwaddr base, int pa_bits)
1812 {
1813     hwaddr region_base, region_size;
1814     bool *region_enabled, fits;
1815     int i;
1816 
1817     for (i = VIRT_LOWMEMMAP_LAST; i < ARRAY_SIZE(extended_memmap); i++) {
1818         region_enabled = virt_get_high_memmap_enabled(vms, i);
1819         region_base = ROUND_UP(base, extended_memmap[i].size);
1820         region_size = extended_memmap[i].size;
1821 
1822         vms->memmap[i].base = region_base;
1823         vms->memmap[i].size = region_size;
1824 
1825         /*
1826          * Check each device to see if it fits in the PA space,
1827          * moving highest_gpa as we go. For compatibility, move
1828          * highest_gpa for disabled fitting devices as well, if
1829          * the compact layout has been disabled.
1830          *
1831          * For each device that doesn't fit, disable it.
1832          */
1833         fits = (region_base + region_size) <= BIT_ULL(pa_bits);
1834         *region_enabled &= fits;
1835         if (vms->highmem_compact && !*region_enabled) {
1836             continue;
1837         }
1838 
1839         base = region_base + region_size;
1840         if (fits) {
1841             vms->highest_gpa = base - 1;
1842         }
1843     }
1844 }
1845 
1846 static void virt_set_memmap(VirtMachineState *vms, int pa_bits)
1847 {
1848     MachineState *ms = MACHINE(vms);
1849     hwaddr base, device_memory_base, device_memory_size, memtop;
1850     int i;
1851 
1852     vms->memmap = extended_memmap;
1853 
1854     for (i = 0; i < ARRAY_SIZE(base_memmap); i++) {
1855         vms->memmap[i] = base_memmap[i];
1856     }
1857 
1858     if (ms->ram_slots > ACPI_MAX_RAM_SLOTS) {
1859         error_report("unsupported number of memory slots: %"PRIu64,
1860                      ms->ram_slots);
1861         exit(EXIT_FAILURE);
1862     }
1863 
1864     /*
1865      * !highmem is exactly the same as limiting the PA space to 32bit,
1866      * irrespective of the underlying capabilities of the HW.
1867      */
1868     if (!vms->highmem) {
1869         pa_bits = 32;
1870     }
1871 
1872     /*
1873      * We compute the base of the high IO region depending on the
1874      * amount of initial and device memory. The device memory start/size
1875      * is aligned on 1GiB. We never put the high IO region below 256GiB
1876      * so that if maxram_size is < 255GiB we keep the legacy memory map.
1877      * The device region size assumes 1GiB page max alignment per slot.
1878      */
1879     device_memory_base =
1880         ROUND_UP(vms->memmap[VIRT_MEM].base + ms->ram_size, GiB);
1881     device_memory_size = ms->maxram_size - ms->ram_size + ms->ram_slots * GiB;
1882 
1883     /* Base address of the high IO region */
1884     memtop = base = device_memory_base + ROUND_UP(device_memory_size, GiB);
1885     if (memtop > BIT_ULL(pa_bits)) {
1886         error_report("Addressing limited to %d bits, but memory exceeds it by %llu bytes",
1887                      pa_bits, memtop - BIT_ULL(pa_bits));
1888         exit(EXIT_FAILURE);
1889     }
1890     if (base < device_memory_base) {
1891         error_report("maxmem/slots too huge");
1892         exit(EXIT_FAILURE);
1893     }
1894     if (base < vms->memmap[VIRT_MEM].base + LEGACY_RAMLIMIT_BYTES) {
1895         base = vms->memmap[VIRT_MEM].base + LEGACY_RAMLIMIT_BYTES;
1896     }
1897 
1898     /* We know for sure that at least the memory fits in the PA space */
1899     vms->highest_gpa = memtop - 1;
1900 
1901     virt_set_high_memmap(vms, base, pa_bits);
1902 
1903     if (device_memory_size > 0) {
1904         machine_memory_devices_init(ms, device_memory_base, device_memory_size);
1905     }
1906 }
1907 
1908 static VirtGICType finalize_gic_version_do(const char *accel_name,
1909                                            VirtGICType gic_version,
1910                                            int gics_supported,
1911                                            unsigned int max_cpus)
1912 {
1913     /* Convert host/max/nosel to GIC version number */
1914     switch (gic_version) {
1915     case VIRT_GIC_VERSION_HOST:
1916         if (!kvm_enabled()) {
1917             error_report("gic-version=host requires KVM");
1918             exit(1);
1919         }
1920 
1921         /* For KVM, gic-version=host means gic-version=max */
1922         return finalize_gic_version_do(accel_name, VIRT_GIC_VERSION_MAX,
1923                                        gics_supported, max_cpus);
1924     case VIRT_GIC_VERSION_MAX:
1925         if (gics_supported & VIRT_GIC_VERSION_4_MASK) {
1926             gic_version = VIRT_GIC_VERSION_4;
1927         } else if (gics_supported & VIRT_GIC_VERSION_3_MASK) {
1928             gic_version = VIRT_GIC_VERSION_3;
1929         } else {
1930             gic_version = VIRT_GIC_VERSION_2;
1931         }
1932         break;
1933     case VIRT_GIC_VERSION_NOSEL:
1934         if ((gics_supported & VIRT_GIC_VERSION_2_MASK) &&
1935             max_cpus <= GIC_NCPU) {
1936             gic_version = VIRT_GIC_VERSION_2;
1937         } else if (gics_supported & VIRT_GIC_VERSION_3_MASK) {
1938             /*
1939              * in case the host does not support v2 emulation or
1940              * the end-user requested more than 8 VCPUs we now default
1941              * to v3. In any case defaulting to v2 would be broken.
1942              */
1943             gic_version = VIRT_GIC_VERSION_3;
1944         } else if (max_cpus > GIC_NCPU) {
1945             error_report("%s only supports GICv2 emulation but more than 8 "
1946                          "vcpus are requested", accel_name);
1947             exit(1);
1948         }
1949         break;
1950     case VIRT_GIC_VERSION_2:
1951     case VIRT_GIC_VERSION_3:
1952     case VIRT_GIC_VERSION_4:
1953         break;
1954     }
1955 
1956     /* Check chosen version is effectively supported */
1957     switch (gic_version) {
1958     case VIRT_GIC_VERSION_2:
1959         if (!(gics_supported & VIRT_GIC_VERSION_2_MASK)) {
1960             error_report("%s does not support GICv2 emulation", accel_name);
1961             exit(1);
1962         }
1963         break;
1964     case VIRT_GIC_VERSION_3:
1965         if (!(gics_supported & VIRT_GIC_VERSION_3_MASK)) {
1966             error_report("%s does not support GICv3 emulation", accel_name);
1967             exit(1);
1968         }
1969         break;
1970     case VIRT_GIC_VERSION_4:
1971         if (!(gics_supported & VIRT_GIC_VERSION_4_MASK)) {
1972             error_report("%s does not support GICv4 emulation, is virtualization=on?",
1973                          accel_name);
1974             exit(1);
1975         }
1976         break;
1977     default:
1978         error_report("logic error in finalize_gic_version");
1979         exit(1);
1980         break;
1981     }
1982 
1983     return gic_version;
1984 }
1985 
1986 /*
1987  * finalize_gic_version - Determines the final gic_version
1988  * according to the gic-version property
1989  *
1990  * Default GIC type is v2
1991  */
1992 static void finalize_gic_version(VirtMachineState *vms)
1993 {
1994     const char *accel_name = current_accel_name();
1995     unsigned int max_cpus = MACHINE(vms)->smp.max_cpus;
1996     int gics_supported = 0;
1997 
1998     /* Determine which GIC versions the current environment supports */
1999     if (kvm_enabled() && kvm_irqchip_in_kernel()) {
2000         int probe_bitmap = kvm_arm_vgic_probe();
2001 
2002         if (!probe_bitmap) {
2003             error_report("Unable to determine GIC version supported by host");
2004             exit(1);
2005         }
2006 
2007         if (probe_bitmap & KVM_ARM_VGIC_V2) {
2008             gics_supported |= VIRT_GIC_VERSION_2_MASK;
2009         }
2010         if (probe_bitmap & KVM_ARM_VGIC_V3) {
2011             gics_supported |= VIRT_GIC_VERSION_3_MASK;
2012         }
2013     } else if (kvm_enabled() && !kvm_irqchip_in_kernel()) {
2014         /* KVM w/o kernel irqchip can only deal with GICv2 */
2015         gics_supported |= VIRT_GIC_VERSION_2_MASK;
2016         accel_name = "KVM with kernel-irqchip=off";
2017     } else if (tcg_enabled() || hvf_enabled() || qtest_enabled())  {
2018         gics_supported |= VIRT_GIC_VERSION_2_MASK;
2019         if (module_object_class_by_name("arm-gicv3")) {
2020             gics_supported |= VIRT_GIC_VERSION_3_MASK;
2021             if (vms->virt) {
2022                 /* GICv4 only makes sense if CPU has EL2 */
2023                 gics_supported |= VIRT_GIC_VERSION_4_MASK;
2024             }
2025         }
2026     } else {
2027         error_report("Unsupported accelerator, can not determine GIC support");
2028         exit(1);
2029     }
2030 
2031     /*
2032      * Then convert helpers like host/max to concrete GIC versions and ensure
2033      * the desired version is supported
2034      */
2035     vms->gic_version = finalize_gic_version_do(accel_name, vms->gic_version,
2036                                                gics_supported, max_cpus);
2037 }
2038 
2039 /*
2040  * virt_cpu_post_init() must be called after the CPUs have
2041  * been realized and the GIC has been created.
2042  */
2043 static void virt_cpu_post_init(VirtMachineState *vms, MemoryRegion *sysmem)
2044 {
2045     int max_cpus = MACHINE(vms)->smp.max_cpus;
2046     bool aarch64, pmu, steal_time;
2047     CPUState *cpu;
2048 
2049     aarch64 = object_property_get_bool(OBJECT(first_cpu), "aarch64", NULL);
2050     pmu = object_property_get_bool(OBJECT(first_cpu), "pmu", NULL);
2051     steal_time = object_property_get_bool(OBJECT(first_cpu),
2052                                           "kvm-steal-time", NULL);
2053 
2054     if (kvm_enabled()) {
2055         hwaddr pvtime_reg_base = vms->memmap[VIRT_PVTIME].base;
2056         hwaddr pvtime_reg_size = vms->memmap[VIRT_PVTIME].size;
2057 
2058         if (steal_time) {
2059             MemoryRegion *pvtime = g_new(MemoryRegion, 1);
2060             hwaddr pvtime_size = max_cpus * PVTIME_SIZE_PER_CPU;
2061 
2062             /* The memory region size must be a multiple of host page size. */
2063             pvtime_size = REAL_HOST_PAGE_ALIGN(pvtime_size);
2064 
2065             if (pvtime_size > pvtime_reg_size) {
2066                 error_report("pvtime requires a %" HWADDR_PRId
2067                              " byte memory region for %d CPUs,"
2068                              " but only %" HWADDR_PRId " has been reserved",
2069                              pvtime_size, max_cpus, pvtime_reg_size);
2070                 exit(1);
2071             }
2072 
2073             memory_region_init_ram(pvtime, NULL, "pvtime", pvtime_size, NULL);
2074             memory_region_add_subregion(sysmem, pvtime_reg_base, pvtime);
2075         }
2076 
2077         CPU_FOREACH(cpu) {
2078             if (pmu) {
2079                 assert(arm_feature(&ARM_CPU(cpu)->env, ARM_FEATURE_PMU));
2080                 if (kvm_irqchip_in_kernel()) {
2081                     kvm_arm_pmu_set_irq(ARM_CPU(cpu), VIRTUAL_PMU_IRQ);
2082                 }
2083                 kvm_arm_pmu_init(ARM_CPU(cpu));
2084             }
2085             if (steal_time) {
2086                 kvm_arm_pvtime_init(ARM_CPU(cpu), pvtime_reg_base
2087                                                   + cpu->cpu_index
2088                                                     * PVTIME_SIZE_PER_CPU);
2089             }
2090         }
2091     } else {
2092         if (aarch64 && vms->highmem) {
2093             int requested_pa_size = 64 - clz64(vms->highest_gpa);
2094             int pamax = arm_pamax(ARM_CPU(first_cpu));
2095 
2096             if (pamax < requested_pa_size) {
2097                 error_report("VCPU supports less PA bits (%d) than "
2098                              "requested by the memory map (%d)",
2099                              pamax, requested_pa_size);
2100                 exit(1);
2101             }
2102         }
2103     }
2104 }
2105 
2106 static void machvirt_init(MachineState *machine)
2107 {
2108     VirtMachineState *vms = VIRT_MACHINE(machine);
2109     VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(machine);
2110     MachineClass *mc = MACHINE_GET_CLASS(machine);
2111     const CPUArchIdList *possible_cpus;
2112     MemoryRegion *sysmem = get_system_memory();
2113     MemoryRegion *secure_sysmem = NULL;
2114     MemoryRegion *tag_sysmem = NULL;
2115     MemoryRegion *secure_tag_sysmem = NULL;
2116     int n, virt_max_cpus;
2117     bool firmware_loaded;
2118     bool aarch64 = true;
2119     bool has_ged = !vmc->no_ged;
2120     unsigned int smp_cpus = machine->smp.cpus;
2121     unsigned int max_cpus = machine->smp.max_cpus;
2122 
2123     possible_cpus = mc->possible_cpu_arch_ids(machine);
2124 
2125     /*
2126      * In accelerated mode, the memory map is computed earlier in kvm_type()
2127      * for Linux, or hvf_get_physical_address_range() for macOS to create a
2128      * VM with the right number of IPA bits.
2129      */
2130     if (!vms->memmap) {
2131         Object *cpuobj;
2132         ARMCPU *armcpu;
2133         int pa_bits;
2134 
2135         /*
2136          * Instantiate a temporary CPU object to find out about what
2137          * we are about to deal with. Once this is done, get rid of
2138          * the object.
2139          */
2140         cpuobj = object_new(possible_cpus->cpus[0].type);
2141         armcpu = ARM_CPU(cpuobj);
2142 
2143         pa_bits = arm_pamax(armcpu);
2144 
2145         object_unref(cpuobj);
2146 
2147         virt_set_memmap(vms, pa_bits);
2148     }
2149 
2150     /* We can probe only here because during property set
2151      * KVM is not available yet
2152      */
2153     finalize_gic_version(vms);
2154 
2155     if (vms->secure) {
2156         /*
2157          * The Secure view of the world is the same as the NonSecure,
2158          * but with a few extra devices. Create it as a container region
2159          * containing the system memory at low priority; any secure-only
2160          * devices go in at higher priority and take precedence.
2161          */
2162         secure_sysmem = g_new(MemoryRegion, 1);
2163         memory_region_init(secure_sysmem, OBJECT(machine), "secure-memory",
2164                            UINT64_MAX);
2165         memory_region_add_subregion_overlap(secure_sysmem, 0, sysmem, -1);
2166     }
2167 
2168     firmware_loaded = virt_firmware_init(vms, sysmem,
2169                                          secure_sysmem ?: sysmem);
2170 
2171     /* If we have an EL3 boot ROM then the assumption is that it will
2172      * implement PSCI itself, so disable QEMU's internal implementation
2173      * so it doesn't get in the way. Instead of starting secondary
2174      * CPUs in PSCI powerdown state we will start them all running and
2175      * let the boot ROM sort them out.
2176      * The usual case is that we do use QEMU's PSCI implementation;
2177      * if the guest has EL2 then we will use SMC as the conduit,
2178      * and otherwise we will use HVC (for backwards compatibility and
2179      * because if we're using KVM then we must use HVC).
2180      */
2181     if (vms->secure && firmware_loaded) {
2182         vms->psci_conduit = QEMU_PSCI_CONDUIT_DISABLED;
2183     } else if (vms->virt) {
2184         vms->psci_conduit = QEMU_PSCI_CONDUIT_SMC;
2185     } else {
2186         vms->psci_conduit = QEMU_PSCI_CONDUIT_HVC;
2187     }
2188 
2189     /*
2190      * The maximum number of CPUs depends on the GIC version, or on how
2191      * many redistributors we can fit into the memory map (which in turn
2192      * depends on whether this is a GICv3 or v4).
2193      */
2194     if (vms->gic_version == VIRT_GIC_VERSION_2) {
2195         virt_max_cpus = GIC_NCPU;
2196     } else {
2197         virt_max_cpus = virt_redist_capacity(vms, VIRT_GIC_REDIST);
2198         if (vms->highmem_redists) {
2199             virt_max_cpus += virt_redist_capacity(vms, VIRT_HIGH_GIC_REDIST2);
2200         }
2201     }
2202 
2203     if (max_cpus > virt_max_cpus) {
2204         error_report("Number of SMP CPUs requested (%d) exceeds max CPUs "
2205                      "supported by machine 'mach-virt' (%d)",
2206                      max_cpus, virt_max_cpus);
2207         if (vms->gic_version != VIRT_GIC_VERSION_2 && !vms->highmem_redists) {
2208             error_printf("Try 'highmem-redists=on' for more CPUs\n");
2209         }
2210 
2211         exit(1);
2212     }
2213 
2214     if (vms->secure && (kvm_enabled() || hvf_enabled())) {
2215         error_report("mach-virt: %s does not support providing "
2216                      "Security extensions (TrustZone) to the guest CPU",
2217                      current_accel_name());
2218         exit(1);
2219     }
2220 
2221     if (vms->virt && (kvm_enabled() || hvf_enabled())) {
2222         error_report("mach-virt: %s does not support providing "
2223                      "Virtualization extensions to the guest CPU",
2224                      current_accel_name());
2225         exit(1);
2226     }
2227 
2228     if (vms->mte && hvf_enabled()) {
2229         error_report("mach-virt: %s does not support providing "
2230                      "MTE to the guest CPU",
2231                      current_accel_name());
2232         exit(1);
2233     }
2234 
2235     create_fdt(vms);
2236 
2237     assert(possible_cpus->len == max_cpus);
2238     for (n = 0; n < possible_cpus->len; n++) {
2239         Object *cpuobj;
2240         CPUState *cs;
2241 
2242         if (n >= smp_cpus) {
2243             break;
2244         }
2245 
2246         cpuobj = object_new(possible_cpus->cpus[n].type);
2247         object_property_set_int(cpuobj, "mp-affinity",
2248                                 possible_cpus->cpus[n].arch_id, NULL);
2249 
2250         cs = CPU(cpuobj);
2251         cs->cpu_index = n;
2252 
2253         numa_cpu_pre_plug(&possible_cpus->cpus[cs->cpu_index], DEVICE(cpuobj),
2254                           &error_fatal);
2255 
2256         aarch64 &= object_property_get_bool(cpuobj, "aarch64", NULL);
2257 
2258         if (!vms->secure) {
2259             object_property_set_bool(cpuobj, "has_el3", false, NULL);
2260         }
2261 
2262         if (!vms->virt && object_property_find(cpuobj, "has_el2")) {
2263             object_property_set_bool(cpuobj, "has_el2", false, NULL);
2264         }
2265 
2266         if (vmc->kvm_no_adjvtime &&
2267             object_property_find(cpuobj, "kvm-no-adjvtime")) {
2268             object_property_set_bool(cpuobj, "kvm-no-adjvtime", true, NULL);
2269         }
2270 
2271         if (vmc->no_kvm_steal_time &&
2272             object_property_find(cpuobj, "kvm-steal-time")) {
2273             object_property_set_bool(cpuobj, "kvm-steal-time", false, NULL);
2274         }
2275 
2276         if (vmc->no_pmu && object_property_find(cpuobj, "pmu")) {
2277             object_property_set_bool(cpuobj, "pmu", false, NULL);
2278         }
2279 
2280         if (vmc->no_tcg_lpa2 && object_property_find(cpuobj, "lpa2")) {
2281             object_property_set_bool(cpuobj, "lpa2", false, NULL);
2282         }
2283 
2284         if (object_property_find(cpuobj, "reset-cbar")) {
2285             object_property_set_int(cpuobj, "reset-cbar",
2286                                     vms->memmap[VIRT_CPUPERIPHS].base,
2287                                     &error_abort);
2288         }
2289 
2290         object_property_set_link(cpuobj, "memory", OBJECT(sysmem),
2291                                  &error_abort);
2292         if (vms->secure) {
2293             object_property_set_link(cpuobj, "secure-memory",
2294                                      OBJECT(secure_sysmem), &error_abort);
2295         }
2296 
2297         if (vms->mte) {
2298             if (tcg_enabled()) {
2299                 /* Create the memory region only once, but link to all cpus. */
2300                 if (!tag_sysmem) {
2301                     /*
2302                      * The property exists only if MemTag is supported.
2303                      * If it is, we must allocate the ram to back that up.
2304                      */
2305                     if (!object_property_find(cpuobj, "tag-memory")) {
2306                         error_report("MTE requested, but not supported "
2307                                      "by the guest CPU");
2308                         exit(1);
2309                     }
2310 
2311                     tag_sysmem = g_new(MemoryRegion, 1);
2312                     memory_region_init(tag_sysmem, OBJECT(machine),
2313                                        "tag-memory", UINT64_MAX / 32);
2314 
2315                     if (vms->secure) {
2316                         secure_tag_sysmem = g_new(MemoryRegion, 1);
2317                         memory_region_init(secure_tag_sysmem, OBJECT(machine),
2318                                            "secure-tag-memory",
2319                                            UINT64_MAX / 32);
2320 
2321                         /* As with ram, secure-tag takes precedence over tag. */
2322                         memory_region_add_subregion_overlap(secure_tag_sysmem,
2323                                                             0, tag_sysmem, -1);
2324                     }
2325                 }
2326 
2327                 object_property_set_link(cpuobj, "tag-memory",
2328                                          OBJECT(tag_sysmem), &error_abort);
2329                 if (vms->secure) {
2330                     object_property_set_link(cpuobj, "secure-tag-memory",
2331                                              OBJECT(secure_tag_sysmem),
2332                                              &error_abort);
2333                 }
2334             } else if (kvm_enabled()) {
2335                 if (!kvm_arm_mte_supported()) {
2336                     error_report("MTE requested, but not supported by KVM");
2337                     exit(1);
2338                 }
2339                 kvm_arm_enable_mte(cpuobj, &error_abort);
2340             } else {
2341                     error_report("MTE requested, but not supported ");
2342                     exit(1);
2343             }
2344         }
2345 
2346         qdev_realize(DEVICE(cpuobj), NULL, &error_fatal);
2347         object_unref(cpuobj);
2348     }
2349 
2350     /* Now we've created the CPUs we can see if they have the hypvirt timer */
2351     vms->ns_el2_virt_timer_irq = ns_el2_virt_timer_present() &&
2352         !vmc->no_ns_el2_virt_timer_irq;
2353 
2354     fdt_add_timer_nodes(vms);
2355     fdt_add_cpu_nodes(vms);
2356 
2357     memory_region_add_subregion(sysmem, vms->memmap[VIRT_MEM].base,
2358                                 machine->ram);
2359 
2360     virt_flash_fdt(vms, sysmem, secure_sysmem ?: sysmem);
2361 
2362     create_gic(vms, sysmem);
2363 
2364     virt_cpu_post_init(vms, sysmem);
2365 
2366     fdt_add_pmu_nodes(vms);
2367 
2368     /*
2369      * The first UART always exists. If the security extensions are
2370      * enabled, the second UART also always exists. Otherwise, it only exists
2371      * if a backend is configured explicitly via '-serial <backend>'.
2372      * This avoids potentially breaking existing user setups that expect
2373      * only one NonSecure UART to be present (for instance, older EDK2
2374      * binaries).
2375      *
2376      * The nodes end up in the DTB in reverse order of creation, so we must
2377      * create UART0 last to ensure it appears as the first node in the DTB,
2378      * for compatibility with guest software that just iterates through the
2379      * DTB to find the first UART, as older versions of EDK2 do.
2380      * DTB readers that follow the spec, as Linux does, should honour the
2381      * aliases node information and /chosen/stdout-path regardless of
2382      * the order that nodes appear in the DTB.
2383      *
2384      * For similar back-compatibility reasons, if UART1 is the secure UART
2385      * we create it second (and so it appears first in the DTB), because
2386      * that's what QEMU has always done.
2387      */
2388     if (!vms->secure) {
2389         Chardev *serial1 = serial_hd(1);
2390 
2391         if (serial1) {
2392             vms->second_ns_uart_present = true;
2393             create_uart(vms, VIRT_UART1, sysmem, serial1, false);
2394         }
2395     }
2396     create_uart(vms, VIRT_UART0, sysmem, serial_hd(0), false);
2397     if (vms->secure) {
2398         create_uart(vms, VIRT_UART1, secure_sysmem, serial_hd(1), true);
2399     }
2400 
2401     if (vms->secure) {
2402         create_secure_ram(vms, secure_sysmem, secure_tag_sysmem);
2403     }
2404 
2405     if (tag_sysmem) {
2406         create_tag_ram(tag_sysmem, vms->memmap[VIRT_MEM].base,
2407                        machine->ram_size, "mach-virt.tag");
2408     }
2409 
2410     vms->highmem_ecam &= (!firmware_loaded || aarch64);
2411 
2412     create_rtc(vms);
2413 
2414     create_pcie(vms);
2415 
2416     if (has_ged && aarch64 && firmware_loaded && virt_is_acpi_enabled(vms)) {
2417         vms->acpi_dev = create_acpi_ged(vms);
2418     } else {
2419         create_gpio_devices(vms, VIRT_GPIO, sysmem);
2420     }
2421 
2422     if (vms->secure && !vmc->no_secure_gpio) {
2423         create_gpio_devices(vms, VIRT_SECURE_GPIO, secure_sysmem);
2424     }
2425 
2426      /* connect powerdown request */
2427      vms->powerdown_notifier.notify = virt_powerdown_req;
2428      qemu_register_powerdown_notifier(&vms->powerdown_notifier);
2429 
2430     /* Create mmio transports, so the user can create virtio backends
2431      * (which will be automatically plugged in to the transports). If
2432      * no backend is created the transport will just sit harmlessly idle.
2433      */
2434     create_virtio_devices(vms);
2435 
2436     vms->fw_cfg = create_fw_cfg(vms, &address_space_memory);
2437     rom_set_fw(vms->fw_cfg);
2438 
2439     create_platform_bus(vms);
2440 
2441     if (machine->nvdimms_state->is_enabled) {
2442         const struct AcpiGenericAddress arm_virt_nvdimm_acpi_dsmio = {
2443             .space_id = AML_AS_SYSTEM_MEMORY,
2444             .address = vms->memmap[VIRT_NVDIMM_ACPI].base,
2445             .bit_width = NVDIMM_ACPI_IO_LEN << 3
2446         };
2447 
2448         nvdimm_init_acpi_state(machine->nvdimms_state, sysmem,
2449                                arm_virt_nvdimm_acpi_dsmio,
2450                                vms->fw_cfg, OBJECT(vms));
2451     }
2452 
2453     vms->bootinfo.ram_size = machine->ram_size;
2454     vms->bootinfo.board_id = -1;
2455     vms->bootinfo.loader_start = vms->memmap[VIRT_MEM].base;
2456     vms->bootinfo.get_dtb = machvirt_dtb;
2457     vms->bootinfo.skip_dtb_autoload = true;
2458     vms->bootinfo.firmware_loaded = firmware_loaded;
2459     vms->bootinfo.psci_conduit = vms->psci_conduit;
2460     arm_load_kernel(ARM_CPU(first_cpu), machine, &vms->bootinfo);
2461 
2462     vms->machine_done.notify = virt_machine_done;
2463     qemu_add_machine_init_done_notifier(&vms->machine_done);
2464 }
2465 
2466 static bool virt_get_secure(Object *obj, Error **errp)
2467 {
2468     VirtMachineState *vms = VIRT_MACHINE(obj);
2469 
2470     return vms->secure;
2471 }
2472 
2473 static void virt_set_secure(Object *obj, bool value, Error **errp)
2474 {
2475     VirtMachineState *vms = VIRT_MACHINE(obj);
2476 
2477     vms->secure = value;
2478 }
2479 
2480 static bool virt_get_virt(Object *obj, Error **errp)
2481 {
2482     VirtMachineState *vms = VIRT_MACHINE(obj);
2483 
2484     return vms->virt;
2485 }
2486 
2487 static void virt_set_virt(Object *obj, bool value, Error **errp)
2488 {
2489     VirtMachineState *vms = VIRT_MACHINE(obj);
2490 
2491     vms->virt = value;
2492 }
2493 
2494 static bool virt_get_highmem(Object *obj, Error **errp)
2495 {
2496     VirtMachineState *vms = VIRT_MACHINE(obj);
2497 
2498     return vms->highmem;
2499 }
2500 
2501 static void virt_set_highmem(Object *obj, bool value, Error **errp)
2502 {
2503     VirtMachineState *vms = VIRT_MACHINE(obj);
2504 
2505     vms->highmem = value;
2506 }
2507 
2508 static bool virt_get_compact_highmem(Object *obj, Error **errp)
2509 {
2510     VirtMachineState *vms = VIRT_MACHINE(obj);
2511 
2512     return vms->highmem_compact;
2513 }
2514 
2515 static void virt_set_compact_highmem(Object *obj, bool value, Error **errp)
2516 {
2517     VirtMachineState *vms = VIRT_MACHINE(obj);
2518 
2519     vms->highmem_compact = value;
2520 }
2521 
2522 static bool virt_get_highmem_redists(Object *obj, Error **errp)
2523 {
2524     VirtMachineState *vms = VIRT_MACHINE(obj);
2525 
2526     return vms->highmem_redists;
2527 }
2528 
2529 static void virt_set_highmem_redists(Object *obj, bool value, Error **errp)
2530 {
2531     VirtMachineState *vms = VIRT_MACHINE(obj);
2532 
2533     vms->highmem_redists = value;
2534 }
2535 
2536 static bool virt_get_highmem_ecam(Object *obj, Error **errp)
2537 {
2538     VirtMachineState *vms = VIRT_MACHINE(obj);
2539 
2540     return vms->highmem_ecam;
2541 }
2542 
2543 static void virt_set_highmem_ecam(Object *obj, bool value, Error **errp)
2544 {
2545     VirtMachineState *vms = VIRT_MACHINE(obj);
2546 
2547     vms->highmem_ecam = value;
2548 }
2549 
2550 static bool virt_get_highmem_mmio(Object *obj, Error **errp)
2551 {
2552     VirtMachineState *vms = VIRT_MACHINE(obj);
2553 
2554     return vms->highmem_mmio;
2555 }
2556 
2557 static void virt_set_highmem_mmio(Object *obj, bool value, Error **errp)
2558 {
2559     VirtMachineState *vms = VIRT_MACHINE(obj);
2560 
2561     vms->highmem_mmio = value;
2562 }
2563 
2564 static void virt_get_highmem_mmio_size(Object *obj, Visitor *v,
2565                                        const char *name, void *opaque,
2566                                        Error **errp)
2567 {
2568     uint64_t size = extended_memmap[VIRT_HIGH_PCIE_MMIO].size;
2569 
2570     visit_type_size(v, name, &size, errp);
2571 }
2572 
2573 static void virt_set_highmem_mmio_size(Object *obj, Visitor *v,
2574                                        const char *name, void *opaque,
2575                                        Error **errp)
2576 {
2577     uint64_t size;
2578 
2579     if (!visit_type_size(v, name, &size, errp)) {
2580         return;
2581     }
2582 
2583     if (!is_power_of_2(size)) {
2584         error_setg(errp, "highmem-mmio-size is not a power of 2");
2585         return;
2586     }
2587 
2588     if (size < DEFAULT_HIGH_PCIE_MMIO_SIZE) {
2589         char *sz = size_to_str(DEFAULT_HIGH_PCIE_MMIO_SIZE);
2590         error_setg(errp, "highmem-mmio-size cannot be set to a lower value "
2591                          "than the default (%s)", sz);
2592         g_free(sz);
2593         return;
2594     }
2595 
2596     extended_memmap[VIRT_HIGH_PCIE_MMIO].size = size;
2597 }
2598 
2599 static bool virt_get_its(Object *obj, Error **errp)
2600 {
2601     VirtMachineState *vms = VIRT_MACHINE(obj);
2602 
2603     return vms->its;
2604 }
2605 
2606 static void virt_set_its(Object *obj, bool value, Error **errp)
2607 {
2608     VirtMachineState *vms = VIRT_MACHINE(obj);
2609 
2610     vms->its = value;
2611 }
2612 
2613 static bool virt_get_dtb_randomness(Object *obj, Error **errp)
2614 {
2615     VirtMachineState *vms = VIRT_MACHINE(obj);
2616 
2617     return vms->dtb_randomness;
2618 }
2619 
2620 static void virt_set_dtb_randomness(Object *obj, bool value, Error **errp)
2621 {
2622     VirtMachineState *vms = VIRT_MACHINE(obj);
2623 
2624     vms->dtb_randomness = value;
2625 }
2626 
2627 static char *virt_get_oem_id(Object *obj, Error **errp)
2628 {
2629     VirtMachineState *vms = VIRT_MACHINE(obj);
2630 
2631     return g_strdup(vms->oem_id);
2632 }
2633 
2634 static void virt_set_oem_id(Object *obj, const char *value, Error **errp)
2635 {
2636     VirtMachineState *vms = VIRT_MACHINE(obj);
2637     size_t len = strlen(value);
2638 
2639     if (len > 6) {
2640         error_setg(errp,
2641                    "User specified oem-id value is bigger than 6 bytes in size");
2642         return;
2643     }
2644 
2645     strncpy(vms->oem_id, value, 6);
2646 }
2647 
2648 static char *virt_get_oem_table_id(Object *obj, Error **errp)
2649 {
2650     VirtMachineState *vms = VIRT_MACHINE(obj);
2651 
2652     return g_strdup(vms->oem_table_id);
2653 }
2654 
2655 static void virt_set_oem_table_id(Object *obj, const char *value,
2656                                   Error **errp)
2657 {
2658     VirtMachineState *vms = VIRT_MACHINE(obj);
2659     size_t len = strlen(value);
2660 
2661     if (len > 8) {
2662         error_setg(errp,
2663                    "User specified oem-table-id value is bigger than 8 bytes in size");
2664         return;
2665     }
2666     strncpy(vms->oem_table_id, value, 8);
2667 }
2668 
2669 
2670 bool virt_is_acpi_enabled(VirtMachineState *vms)
2671 {
2672     if (vms->acpi == ON_OFF_AUTO_OFF) {
2673         return false;
2674     }
2675     return true;
2676 }
2677 
2678 static void virt_get_acpi(Object *obj, Visitor *v, const char *name,
2679                           void *opaque, Error **errp)
2680 {
2681     VirtMachineState *vms = VIRT_MACHINE(obj);
2682     OnOffAuto acpi = vms->acpi;
2683 
2684     visit_type_OnOffAuto(v, name, &acpi, errp);
2685 }
2686 
2687 static void virt_set_acpi(Object *obj, Visitor *v, const char *name,
2688                           void *opaque, Error **errp)
2689 {
2690     VirtMachineState *vms = VIRT_MACHINE(obj);
2691 
2692     visit_type_OnOffAuto(v, name, &vms->acpi, errp);
2693 }
2694 
2695 static bool virt_get_ras(Object *obj, Error **errp)
2696 {
2697     VirtMachineState *vms = VIRT_MACHINE(obj);
2698 
2699     return vms->ras;
2700 }
2701 
2702 static void virt_set_ras(Object *obj, bool value, Error **errp)
2703 {
2704     VirtMachineState *vms = VIRT_MACHINE(obj);
2705 
2706     vms->ras = value;
2707 }
2708 
2709 static bool virt_get_mte(Object *obj, Error **errp)
2710 {
2711     VirtMachineState *vms = VIRT_MACHINE(obj);
2712 
2713     return vms->mte;
2714 }
2715 
2716 static void virt_set_mte(Object *obj, bool value, Error **errp)
2717 {
2718     VirtMachineState *vms = VIRT_MACHINE(obj);
2719 
2720     vms->mte = value;
2721 }
2722 
2723 static char *virt_get_gic_version(Object *obj, Error **errp)
2724 {
2725     VirtMachineState *vms = VIRT_MACHINE(obj);
2726     const char *val;
2727 
2728     switch (vms->gic_version) {
2729     case VIRT_GIC_VERSION_4:
2730         val = "4";
2731         break;
2732     case VIRT_GIC_VERSION_3:
2733         val = "3";
2734         break;
2735     default:
2736         val = "2";
2737         break;
2738     }
2739     return g_strdup(val);
2740 }
2741 
2742 static void virt_set_gic_version(Object *obj, const char *value, Error **errp)
2743 {
2744     VirtMachineState *vms = VIRT_MACHINE(obj);
2745 
2746     if (!strcmp(value, "4")) {
2747         vms->gic_version = VIRT_GIC_VERSION_4;
2748     } else if (!strcmp(value, "3")) {
2749         vms->gic_version = VIRT_GIC_VERSION_3;
2750     } else if (!strcmp(value, "2")) {
2751         vms->gic_version = VIRT_GIC_VERSION_2;
2752     } else if (!strcmp(value, "host")) {
2753         vms->gic_version = VIRT_GIC_VERSION_HOST; /* Will probe later */
2754     } else if (!strcmp(value, "max")) {
2755         vms->gic_version = VIRT_GIC_VERSION_MAX; /* Will probe later */
2756     } else {
2757         error_setg(errp, "Invalid gic-version value");
2758         error_append_hint(errp, "Valid values are 3, 2, host, max.\n");
2759     }
2760 }
2761 
2762 static char *virt_get_iommu(Object *obj, Error **errp)
2763 {
2764     VirtMachineState *vms = VIRT_MACHINE(obj);
2765 
2766     switch (vms->iommu) {
2767     case VIRT_IOMMU_NONE:
2768         return g_strdup("none");
2769     case VIRT_IOMMU_SMMUV3:
2770         return g_strdup("smmuv3");
2771     default:
2772         g_assert_not_reached();
2773     }
2774 }
2775 
2776 static void virt_set_iommu(Object *obj, const char *value, Error **errp)
2777 {
2778     VirtMachineState *vms = VIRT_MACHINE(obj);
2779 
2780     if (!strcmp(value, "smmuv3")) {
2781         vms->iommu = VIRT_IOMMU_SMMUV3;
2782     } else if (!strcmp(value, "none")) {
2783         vms->iommu = VIRT_IOMMU_NONE;
2784     } else {
2785         error_setg(errp, "Invalid iommu value");
2786         error_append_hint(errp, "Valid values are none, smmuv3.\n");
2787     }
2788 }
2789 
2790 static bool virt_get_default_bus_bypass_iommu(Object *obj, Error **errp)
2791 {
2792     VirtMachineState *vms = VIRT_MACHINE(obj);
2793 
2794     return vms->default_bus_bypass_iommu;
2795 }
2796 
2797 static void virt_set_default_bus_bypass_iommu(Object *obj, bool value,
2798                                               Error **errp)
2799 {
2800     VirtMachineState *vms = VIRT_MACHINE(obj);
2801 
2802     vms->default_bus_bypass_iommu = value;
2803 }
2804 
2805 static CpuInstanceProperties
2806 virt_cpu_index_to_props(MachineState *ms, unsigned cpu_index)
2807 {
2808     MachineClass *mc = MACHINE_GET_CLASS(ms);
2809     const CPUArchIdList *possible_cpus = mc->possible_cpu_arch_ids(ms);
2810 
2811     assert(cpu_index < possible_cpus->len);
2812     return possible_cpus->cpus[cpu_index].props;
2813 }
2814 
2815 static int64_t virt_get_default_cpu_node_id(const MachineState *ms, int idx)
2816 {
2817     int64_t socket_id = ms->possible_cpus->cpus[idx].props.socket_id;
2818 
2819     return socket_id % ms->numa_state->num_nodes;
2820 }
2821 
2822 static const CPUArchIdList *virt_possible_cpu_arch_ids(MachineState *ms)
2823 {
2824     int n;
2825     unsigned int max_cpus = ms->smp.max_cpus;
2826     VirtMachineState *vms = VIRT_MACHINE(ms);
2827     MachineClass *mc = MACHINE_GET_CLASS(vms);
2828 
2829     if (ms->possible_cpus) {
2830         assert(ms->possible_cpus->len == max_cpus);
2831         return ms->possible_cpus;
2832     }
2833 
2834     ms->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
2835                                   sizeof(CPUArchId) * max_cpus);
2836     ms->possible_cpus->len = max_cpus;
2837     for (n = 0; n < ms->possible_cpus->len; n++) {
2838         ms->possible_cpus->cpus[n].type = ms->cpu_type;
2839         ms->possible_cpus->cpus[n].arch_id =
2840             virt_cpu_mp_affinity(vms, n);
2841 
2842         assert(!mc->smp_props.dies_supported);
2843         ms->possible_cpus->cpus[n].props.has_socket_id = true;
2844         ms->possible_cpus->cpus[n].props.socket_id =
2845             n / (ms->smp.clusters * ms->smp.cores * ms->smp.threads);
2846         ms->possible_cpus->cpus[n].props.has_cluster_id = true;
2847         ms->possible_cpus->cpus[n].props.cluster_id =
2848             (n / (ms->smp.cores * ms->smp.threads)) % ms->smp.clusters;
2849         ms->possible_cpus->cpus[n].props.has_core_id = true;
2850         ms->possible_cpus->cpus[n].props.core_id =
2851             (n / ms->smp.threads) % ms->smp.cores;
2852         ms->possible_cpus->cpus[n].props.has_thread_id = true;
2853         ms->possible_cpus->cpus[n].props.thread_id =
2854             n % ms->smp.threads;
2855     }
2856     return ms->possible_cpus;
2857 }
2858 
2859 static void virt_memory_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
2860                                  Error **errp)
2861 {
2862     VirtMachineState *vms = VIRT_MACHINE(hotplug_dev);
2863     const MachineState *ms = MACHINE(hotplug_dev);
2864     const bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM);
2865 
2866     if (!vms->acpi_dev) {
2867         error_setg(errp,
2868                    "memory hotplug is not enabled: missing acpi-ged device");
2869         return;
2870     }
2871 
2872     if (vms->mte) {
2873         error_setg(errp, "memory hotplug is not enabled: MTE is enabled");
2874         return;
2875     }
2876 
2877     if (is_nvdimm && !ms->nvdimms_state->is_enabled) {
2878         error_setg(errp, "nvdimm is not enabled: add 'nvdimm=on' to '-M'");
2879         return;
2880     }
2881 
2882     pc_dimm_pre_plug(PC_DIMM(dev), MACHINE(hotplug_dev), errp);
2883 }
2884 
2885 static void virt_memory_plug(HotplugHandler *hotplug_dev,
2886                              DeviceState *dev, Error **errp)
2887 {
2888     VirtMachineState *vms = VIRT_MACHINE(hotplug_dev);
2889     MachineState *ms = MACHINE(hotplug_dev);
2890     bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM);
2891 
2892     pc_dimm_plug(PC_DIMM(dev), MACHINE(vms));
2893 
2894     if (is_nvdimm) {
2895         nvdimm_plug(ms->nvdimms_state);
2896     }
2897 
2898     hotplug_handler_plug(HOTPLUG_HANDLER(vms->acpi_dev),
2899                          dev, &error_abort);
2900 }
2901 
2902 static void virt_machine_device_pre_plug_cb(HotplugHandler *hotplug_dev,
2903                                             DeviceState *dev, Error **errp)
2904 {
2905     VirtMachineState *vms = VIRT_MACHINE(hotplug_dev);
2906 
2907     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2908         virt_memory_pre_plug(hotplug_dev, dev, errp);
2909     } else if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_MD_PCI)) {
2910         virtio_md_pci_pre_plug(VIRTIO_MD_PCI(dev), MACHINE(hotplug_dev), errp);
2911     } else if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_IOMMU_PCI)) {
2912         hwaddr db_start = 0, db_end = 0;
2913         QList *reserved_regions;
2914         char *resv_prop_str;
2915 
2916         if (vms->iommu != VIRT_IOMMU_NONE) {
2917             error_setg(errp, "virt machine does not support multiple IOMMUs");
2918             return;
2919         }
2920 
2921         switch (vms->msi_controller) {
2922         case VIRT_MSI_CTRL_NONE:
2923             return;
2924         case VIRT_MSI_CTRL_ITS:
2925             /* GITS_TRANSLATER page */
2926             db_start = base_memmap[VIRT_GIC_ITS].base + 0x10000;
2927             db_end = base_memmap[VIRT_GIC_ITS].base +
2928                      base_memmap[VIRT_GIC_ITS].size - 1;
2929             break;
2930         case VIRT_MSI_CTRL_GICV2M:
2931             /* MSI_SETSPI_NS page */
2932             db_start = base_memmap[VIRT_GIC_V2M].base;
2933             db_end = db_start + base_memmap[VIRT_GIC_V2M].size - 1;
2934             break;
2935         }
2936         resv_prop_str = g_strdup_printf("0x%"PRIx64":0x%"PRIx64":%u",
2937                                         db_start, db_end,
2938                                         VIRTIO_IOMMU_RESV_MEM_T_MSI);
2939 
2940         reserved_regions = qlist_new();
2941         qlist_append_str(reserved_regions, resv_prop_str);
2942         qdev_prop_set_array(dev, "reserved-regions", reserved_regions);
2943         g_free(resv_prop_str);
2944     }
2945 }
2946 
2947 static void virt_machine_device_plug_cb(HotplugHandler *hotplug_dev,
2948                                         DeviceState *dev, Error **errp)
2949 {
2950     VirtMachineState *vms = VIRT_MACHINE(hotplug_dev);
2951 
2952     if (vms->platform_bus_dev) {
2953         MachineClass *mc = MACHINE_GET_CLASS(vms);
2954 
2955         if (device_is_dynamic_sysbus(mc, dev)) {
2956             platform_bus_link_device(PLATFORM_BUS_DEVICE(vms->platform_bus_dev),
2957                                      SYS_BUS_DEVICE(dev));
2958         }
2959     }
2960 
2961     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2962         virt_memory_plug(hotplug_dev, dev, errp);
2963     } else if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_MD_PCI)) {
2964         virtio_md_pci_plug(VIRTIO_MD_PCI(dev), MACHINE(hotplug_dev), errp);
2965     }
2966 
2967     if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_IOMMU_PCI)) {
2968         PCIDevice *pdev = PCI_DEVICE(dev);
2969 
2970         vms->iommu = VIRT_IOMMU_VIRTIO;
2971         vms->virtio_iommu_bdf = pci_get_bdf(pdev);
2972         create_virtio_iommu_dt_bindings(vms);
2973     }
2974 }
2975 
2976 static void virt_dimm_unplug_request(HotplugHandler *hotplug_dev,
2977                                      DeviceState *dev, Error **errp)
2978 {
2979     VirtMachineState *vms = VIRT_MACHINE(hotplug_dev);
2980 
2981     if (!vms->acpi_dev) {
2982         error_setg(errp,
2983                    "memory hotplug is not enabled: missing acpi-ged device");
2984         return;
2985     }
2986 
2987     if (object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM)) {
2988         error_setg(errp, "nvdimm device hot unplug is not supported yet.");
2989         return;
2990     }
2991 
2992     hotplug_handler_unplug_request(HOTPLUG_HANDLER(vms->acpi_dev), dev,
2993                                    errp);
2994 }
2995 
2996 static void virt_dimm_unplug(HotplugHandler *hotplug_dev,
2997                              DeviceState *dev, Error **errp)
2998 {
2999     VirtMachineState *vms = VIRT_MACHINE(hotplug_dev);
3000     Error *local_err = NULL;
3001 
3002     hotplug_handler_unplug(HOTPLUG_HANDLER(vms->acpi_dev), dev, &local_err);
3003     if (local_err) {
3004         goto out;
3005     }
3006 
3007     pc_dimm_unplug(PC_DIMM(dev), MACHINE(vms));
3008     qdev_unrealize(dev);
3009 
3010 out:
3011     error_propagate(errp, local_err);
3012 }
3013 
3014 static void virt_machine_device_unplug_request_cb(HotplugHandler *hotplug_dev,
3015                                           DeviceState *dev, Error **errp)
3016 {
3017     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
3018         virt_dimm_unplug_request(hotplug_dev, dev, errp);
3019     } else if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_MD_PCI)) {
3020         virtio_md_pci_unplug_request(VIRTIO_MD_PCI(dev), MACHINE(hotplug_dev),
3021                                      errp);
3022     } else {
3023         error_setg(errp, "device unplug request for unsupported device"
3024                    " type: %s", object_get_typename(OBJECT(dev)));
3025     }
3026 }
3027 
3028 static void virt_machine_device_unplug_cb(HotplugHandler *hotplug_dev,
3029                                           DeviceState *dev, Error **errp)
3030 {
3031     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
3032         virt_dimm_unplug(hotplug_dev, dev, errp);
3033     } else if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_MD_PCI)) {
3034         virtio_md_pci_unplug(VIRTIO_MD_PCI(dev), MACHINE(hotplug_dev), errp);
3035     } else {
3036         error_setg(errp, "virt: device unplug for unsupported device"
3037                    " type: %s", object_get_typename(OBJECT(dev)));
3038     }
3039 }
3040 
3041 static HotplugHandler *virt_machine_get_hotplug_handler(MachineState *machine,
3042                                                         DeviceState *dev)
3043 {
3044     MachineClass *mc = MACHINE_GET_CLASS(machine);
3045 
3046     if (device_is_dynamic_sysbus(mc, dev) ||
3047         object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) ||
3048         object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_MD_PCI) ||
3049         object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_IOMMU_PCI)) {
3050         return HOTPLUG_HANDLER(machine);
3051     }
3052     return NULL;
3053 }
3054 
3055 /*
3056  * for arm64 kvm_type [7-0] encodes the requested number of bits
3057  * in the IPA address space
3058  */
3059 static int virt_kvm_type(MachineState *ms, const char *type_str)
3060 {
3061     VirtMachineState *vms = VIRT_MACHINE(ms);
3062     int max_vm_pa_size, requested_pa_size;
3063     bool fixed_ipa;
3064 
3065     max_vm_pa_size = kvm_arm_get_max_vm_ipa_size(ms, &fixed_ipa);
3066 
3067     /* we freeze the memory map to compute the highest gpa */
3068     virt_set_memmap(vms, max_vm_pa_size);
3069 
3070     requested_pa_size = 64 - clz64(vms->highest_gpa);
3071 
3072     /*
3073      * KVM requires the IPA size to be at least 32 bits.
3074      */
3075     if (requested_pa_size < 32) {
3076         requested_pa_size = 32;
3077     }
3078 
3079     if (requested_pa_size > max_vm_pa_size) {
3080         error_report("-m and ,maxmem option values "
3081                      "require an IPA range (%d bits) larger than "
3082                      "the one supported by the host (%d bits)",
3083                      requested_pa_size, max_vm_pa_size);
3084         return -1;
3085     }
3086     /*
3087      * We return the requested PA log size, unless KVM only supports
3088      * the implicit legacy 40b IPA setting, in which case the kvm_type
3089      * must be 0.
3090      */
3091     return fixed_ipa ? 0 : requested_pa_size;
3092 }
3093 
3094 static int virt_hvf_get_physical_address_range(MachineState *ms)
3095 {
3096     VirtMachineState *vms = VIRT_MACHINE(ms);
3097 
3098     int default_ipa_size = hvf_arm_get_default_ipa_bit_size();
3099     int max_ipa_size = hvf_arm_get_max_ipa_bit_size();
3100 
3101     /* We freeze the memory map to compute the highest gpa */
3102     virt_set_memmap(vms, max_ipa_size);
3103 
3104     int requested_ipa_size = 64 - clz64(vms->highest_gpa);
3105 
3106     /*
3107      * If we're <= the default IPA size just use the default.
3108      * If we're above the default but below the maximum, round up to
3109      * the maximum. hvf_arm_get_max_ipa_bit_size() conveniently only
3110      * returns values that are valid ARM PARange values.
3111      */
3112     if (requested_ipa_size <= default_ipa_size) {
3113         requested_ipa_size = default_ipa_size;
3114     } else if (requested_ipa_size <= max_ipa_size) {
3115         requested_ipa_size = max_ipa_size;
3116     } else {
3117         error_report("-m and ,maxmem option values "
3118                      "require an IPA range (%d bits) larger than "
3119                      "the one supported by the host (%d bits)",
3120                      requested_ipa_size, max_ipa_size);
3121         return -1;
3122     }
3123 
3124     return requested_ipa_size;
3125 }
3126 
3127 static void virt_machine_class_init(ObjectClass *oc, void *data)
3128 {
3129     MachineClass *mc = MACHINE_CLASS(oc);
3130     HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc);
3131     static const char * const valid_cpu_types[] = {
3132 #ifdef CONFIG_TCG
3133         ARM_CPU_TYPE_NAME("cortex-a7"),
3134         ARM_CPU_TYPE_NAME("cortex-a15"),
3135 #ifdef TARGET_AARCH64
3136         ARM_CPU_TYPE_NAME("cortex-a35"),
3137         ARM_CPU_TYPE_NAME("cortex-a55"),
3138         ARM_CPU_TYPE_NAME("cortex-a72"),
3139         ARM_CPU_TYPE_NAME("cortex-a76"),
3140         ARM_CPU_TYPE_NAME("cortex-a710"),
3141         ARM_CPU_TYPE_NAME("a64fx"),
3142         ARM_CPU_TYPE_NAME("neoverse-n1"),
3143         ARM_CPU_TYPE_NAME("neoverse-v1"),
3144         ARM_CPU_TYPE_NAME("neoverse-n2"),
3145 #endif /* TARGET_AARCH64 */
3146 #endif /* CONFIG_TCG */
3147 #ifdef TARGET_AARCH64
3148         ARM_CPU_TYPE_NAME("cortex-a53"),
3149         ARM_CPU_TYPE_NAME("cortex-a57"),
3150 #if defined(CONFIG_KVM) || defined(CONFIG_HVF)
3151         ARM_CPU_TYPE_NAME("host"),
3152 #endif /* CONFIG_KVM || CONFIG_HVF */
3153 #endif /* TARGET_AARCH64 */
3154         ARM_CPU_TYPE_NAME("max"),
3155         NULL
3156     };
3157 
3158     mc->init = machvirt_init;
3159     /* Start with max_cpus set to 512, which is the maximum supported by KVM.
3160      * The value may be reduced later when we have more information about the
3161      * configuration of the particular instance.
3162      */
3163     mc->max_cpus = 512;
3164     machine_class_allow_dynamic_sysbus_dev(mc, TYPE_VFIO_CALXEDA_XGMAC);
3165     machine_class_allow_dynamic_sysbus_dev(mc, TYPE_VFIO_AMD_XGBE);
3166     machine_class_allow_dynamic_sysbus_dev(mc, TYPE_RAMFB_DEVICE);
3167     machine_class_allow_dynamic_sysbus_dev(mc, TYPE_VFIO_PLATFORM);
3168     machine_class_allow_dynamic_sysbus_dev(mc, TYPE_UEFI_VARS_SYSBUS);
3169 #ifdef CONFIG_TPM
3170     machine_class_allow_dynamic_sysbus_dev(mc, TYPE_TPM_TIS_SYSBUS);
3171 #endif
3172     mc->block_default_type = IF_VIRTIO;
3173     mc->no_cdrom = 1;
3174     mc->pci_allow_0_address = true;
3175     /* We know we will never create a pre-ARMv7 CPU which needs 1K pages */
3176     mc->minimum_page_bits = 12;
3177     mc->possible_cpu_arch_ids = virt_possible_cpu_arch_ids;
3178     mc->cpu_index_to_instance_props = virt_cpu_index_to_props;
3179 #ifdef CONFIG_TCG
3180     mc->default_cpu_type = ARM_CPU_TYPE_NAME("cortex-a15");
3181 #else
3182     mc->default_cpu_type = ARM_CPU_TYPE_NAME("max");
3183 #endif
3184     mc->valid_cpu_types = valid_cpu_types;
3185     mc->get_default_cpu_node_id = virt_get_default_cpu_node_id;
3186     mc->kvm_type = virt_kvm_type;
3187     mc->hvf_get_physical_address_range = virt_hvf_get_physical_address_range;
3188     assert(!mc->get_hotplug_handler);
3189     mc->get_hotplug_handler = virt_machine_get_hotplug_handler;
3190     hc->pre_plug = virt_machine_device_pre_plug_cb;
3191     hc->plug = virt_machine_device_plug_cb;
3192     hc->unplug_request = virt_machine_device_unplug_request_cb;
3193     hc->unplug = virt_machine_device_unplug_cb;
3194     mc->nvdimm_supported = true;
3195     mc->smp_props.clusters_supported = true;
3196     mc->auto_enable_numa_with_memhp = true;
3197     mc->auto_enable_numa_with_memdev = true;
3198     /* platform instead of architectural choice */
3199     mc->cpu_cluster_has_numa_boundary = true;
3200     mc->default_ram_id = "mach-virt.ram";
3201     mc->default_nic = "virtio-net-pci";
3202 
3203     object_class_property_add(oc, "acpi", "OnOffAuto",
3204         virt_get_acpi, virt_set_acpi,
3205         NULL, NULL);
3206     object_class_property_set_description(oc, "acpi",
3207         "Enable ACPI");
3208     object_class_property_add_bool(oc, "secure", virt_get_secure,
3209                                    virt_set_secure);
3210     object_class_property_set_description(oc, "secure",
3211                                                 "Set on/off to enable/disable the ARM "
3212                                                 "Security Extensions (TrustZone)");
3213 
3214     object_class_property_add_bool(oc, "virtualization", virt_get_virt,
3215                                    virt_set_virt);
3216     object_class_property_set_description(oc, "virtualization",
3217                                           "Set on/off to enable/disable emulating a "
3218                                           "guest CPU which implements the ARM "
3219                                           "Virtualization Extensions");
3220 
3221     object_class_property_add_bool(oc, "highmem", virt_get_highmem,
3222                                    virt_set_highmem);
3223     object_class_property_set_description(oc, "highmem",
3224                                           "Set on/off to enable/disable using "
3225                                           "physical address space above 32 bits");
3226 
3227     object_class_property_add_bool(oc, "compact-highmem",
3228                                    virt_get_compact_highmem,
3229                                    virt_set_compact_highmem);
3230     object_class_property_set_description(oc, "compact-highmem",
3231                                           "Set on/off to enable/disable compact "
3232                                           "layout for high memory regions");
3233 
3234     object_class_property_add_bool(oc, "highmem-redists",
3235                                    virt_get_highmem_redists,
3236                                    virt_set_highmem_redists);
3237     object_class_property_set_description(oc, "highmem-redists",
3238                                           "Set on/off to enable/disable high "
3239                                           "memory region for GICv3 or GICv4 "
3240                                           "redistributor");
3241 
3242     object_class_property_add_bool(oc, "highmem-ecam",
3243                                    virt_get_highmem_ecam,
3244                                    virt_set_highmem_ecam);
3245     object_class_property_set_description(oc, "highmem-ecam",
3246                                           "Set on/off to enable/disable high "
3247                                           "memory region for PCI ECAM");
3248 
3249     object_class_property_add_bool(oc, "highmem-mmio",
3250                                    virt_get_highmem_mmio,
3251                                    virt_set_highmem_mmio);
3252     object_class_property_set_description(oc, "highmem-mmio",
3253                                           "Set on/off to enable/disable high "
3254                                           "memory region for PCI MMIO");
3255 
3256     object_class_property_add(oc, "highmem-mmio-size", "size",
3257                                    virt_get_highmem_mmio_size,
3258                                    virt_set_highmem_mmio_size,
3259                                    NULL, NULL);
3260     object_class_property_set_description(oc, "highmem-mmio-size",
3261                                           "Set the high memory region size "
3262                                           "for PCI MMIO");
3263 
3264     object_class_property_add_str(oc, "gic-version", virt_get_gic_version,
3265                                   virt_set_gic_version);
3266     object_class_property_set_description(oc, "gic-version",
3267                                           "Set GIC version. "
3268                                           "Valid values are 2, 3, 4, host and max");
3269 
3270     object_class_property_add_str(oc, "iommu", virt_get_iommu, virt_set_iommu);
3271     object_class_property_set_description(oc, "iommu",
3272                                           "Set the IOMMU type. "
3273                                           "Valid values are none and smmuv3");
3274 
3275     object_class_property_add_bool(oc, "default-bus-bypass-iommu",
3276                                    virt_get_default_bus_bypass_iommu,
3277                                    virt_set_default_bus_bypass_iommu);
3278     object_class_property_set_description(oc, "default-bus-bypass-iommu",
3279                                           "Set on/off to enable/disable "
3280                                           "bypass_iommu for default root bus");
3281 
3282     object_class_property_add_bool(oc, "ras", virt_get_ras,
3283                                    virt_set_ras);
3284     object_class_property_set_description(oc, "ras",
3285                                           "Set on/off to enable/disable reporting host memory errors "
3286                                           "to a KVM guest using ACPI and guest external abort exceptions");
3287 
3288     object_class_property_add_bool(oc, "mte", virt_get_mte, virt_set_mte);
3289     object_class_property_set_description(oc, "mte",
3290                                           "Set on/off to enable/disable emulating a "
3291                                           "guest CPU which implements the ARM "
3292                                           "Memory Tagging Extension");
3293 
3294     object_class_property_add_bool(oc, "its", virt_get_its,
3295                                    virt_set_its);
3296     object_class_property_set_description(oc, "its",
3297                                           "Set on/off to enable/disable "
3298                                           "ITS instantiation");
3299 
3300     object_class_property_add_bool(oc, "dtb-randomness",
3301                                    virt_get_dtb_randomness,
3302                                    virt_set_dtb_randomness);
3303     object_class_property_set_description(oc, "dtb-randomness",
3304                                           "Set off to disable passing random or "
3305                                           "non-deterministic dtb nodes to guest");
3306 
3307     object_class_property_add_bool(oc, "dtb-kaslr-seed",
3308                                    virt_get_dtb_randomness,
3309                                    virt_set_dtb_randomness);
3310     object_class_property_set_description(oc, "dtb-kaslr-seed",
3311                                           "Deprecated synonym of dtb-randomness");
3312 
3313     object_class_property_add_str(oc, "x-oem-id",
3314                                   virt_get_oem_id,
3315                                   virt_set_oem_id);
3316     object_class_property_set_description(oc, "x-oem-id",
3317                                           "Override the default value of field OEMID "
3318                                           "in ACPI table header."
3319                                           "The string may be up to 6 bytes in size");
3320 
3321 
3322     object_class_property_add_str(oc, "x-oem-table-id",
3323                                   virt_get_oem_table_id,
3324                                   virt_set_oem_table_id);
3325     object_class_property_set_description(oc, "x-oem-table-id",
3326                                           "Override the default value of field OEM Table ID "
3327                                           "in ACPI table header."
3328                                           "The string may be up to 8 bytes in size");
3329 
3330 }
3331 
3332 static void virt_instance_init(Object *obj)
3333 {
3334     VirtMachineState *vms = VIRT_MACHINE(obj);
3335     VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
3336 
3337     /* EL3 is disabled by default on virt: this makes us consistent
3338      * between KVM and TCG for this board, and it also allows us to
3339      * boot UEFI blobs which assume no TrustZone support.
3340      */
3341     vms->secure = false;
3342 
3343     /* EL2 is also disabled by default, for similar reasons */
3344     vms->virt = false;
3345 
3346     /* High memory is enabled by default */
3347     vms->highmem = true;
3348     vms->highmem_compact = !vmc->no_highmem_compact;
3349     vms->gic_version = VIRT_GIC_VERSION_NOSEL;
3350 
3351     vms->highmem_ecam = !vmc->no_highmem_ecam;
3352     vms->highmem_mmio = true;
3353     vms->highmem_redists = true;
3354 
3355     if (vmc->no_its) {
3356         vms->its = false;
3357     } else {
3358         /* Default allows ITS instantiation */
3359         vms->its = true;
3360 
3361         if (vmc->no_tcg_its) {
3362             vms->tcg_its = false;
3363         } else {
3364             vms->tcg_its = true;
3365         }
3366     }
3367 
3368     /* Default disallows iommu instantiation */
3369     vms->iommu = VIRT_IOMMU_NONE;
3370 
3371     /* The default root bus is attached to iommu by default */
3372     vms->default_bus_bypass_iommu = false;
3373 
3374     /* Default disallows RAS instantiation */
3375     vms->ras = false;
3376 
3377     /* MTE is disabled by default.  */
3378     vms->mte = false;
3379 
3380     /* Supply kaslr-seed and rng-seed by default */
3381     vms->dtb_randomness = true;
3382 
3383     vms->irqmap = a15irqmap;
3384 
3385     virt_flash_create(vms);
3386 
3387     vms->oem_id = g_strndup(ACPI_BUILD_APPNAME6, 6);
3388     vms->oem_table_id = g_strndup(ACPI_BUILD_APPNAME8, 8);
3389 }
3390 
3391 static const TypeInfo virt_machine_info = {
3392     .name          = TYPE_VIRT_MACHINE,
3393     .parent        = TYPE_MACHINE,
3394     .abstract      = true,
3395     .instance_size = sizeof(VirtMachineState),
3396     .class_size    = sizeof(VirtMachineClass),
3397     .class_init    = virt_machine_class_init,
3398     .instance_init = virt_instance_init,
3399     .interfaces = (InterfaceInfo[]) {
3400          { TYPE_HOTPLUG_HANDLER },
3401          { }
3402     },
3403 };
3404 
3405 static void machvirt_machine_init(void)
3406 {
3407     type_register_static(&virt_machine_info);
3408 }
3409 type_init(machvirt_machine_init);
3410 
3411 static void virt_machine_10_0_options(MachineClass *mc)
3412 {
3413 }
3414 DEFINE_VIRT_MACHINE_AS_LATEST(10, 0)
3415 
3416 static void virt_machine_9_2_options(MachineClass *mc)
3417 {
3418     virt_machine_10_0_options(mc);
3419     compat_props_add(mc->compat_props, hw_compat_9_2, hw_compat_9_2_len);
3420 }
3421 DEFINE_VIRT_MACHINE(9, 2)
3422 
3423 static void virt_machine_9_1_options(MachineClass *mc)
3424 {
3425     VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
3426 
3427     virt_machine_9_2_options(mc);
3428     compat_props_add(mc->compat_props, hw_compat_9_1, hw_compat_9_1_len);
3429     /* 9.1 and earlier have only a stage-1 SMMU, not a nested s1+2 one */
3430     vmc->no_nested_smmu = true;
3431 }
3432 DEFINE_VIRT_MACHINE(9, 1)
3433 
3434 static void virt_machine_9_0_options(MachineClass *mc)
3435 {
3436     virt_machine_9_1_options(mc);
3437     mc->smbios_memory_device_size = 16 * GiB;
3438     compat_props_add(mc->compat_props, hw_compat_9_0, hw_compat_9_0_len);
3439 }
3440 DEFINE_VIRT_MACHINE(9, 0)
3441 
3442 static void virt_machine_8_2_options(MachineClass *mc)
3443 {
3444     VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
3445 
3446     virt_machine_9_0_options(mc);
3447     compat_props_add(mc->compat_props, hw_compat_8_2, hw_compat_8_2_len);
3448     /*
3449      * Don't expose NS_EL2_VIRT timer IRQ in DTB on ACPI on 8.2 and
3450      * earlier machines. (Exposing it tickles a bug in older EDK2
3451      * guest BIOS binaries.)
3452      */
3453     vmc->no_ns_el2_virt_timer_irq = true;
3454 }
3455 DEFINE_VIRT_MACHINE(8, 2)
3456 
3457 static void virt_machine_8_1_options(MachineClass *mc)
3458 {
3459     virt_machine_8_2_options(mc);
3460     compat_props_add(mc->compat_props, hw_compat_8_1, hw_compat_8_1_len);
3461 }
3462 DEFINE_VIRT_MACHINE(8, 1)
3463 
3464 static void virt_machine_8_0_options(MachineClass *mc)
3465 {
3466     virt_machine_8_1_options(mc);
3467     compat_props_add(mc->compat_props, hw_compat_8_0, hw_compat_8_0_len);
3468 }
3469 DEFINE_VIRT_MACHINE(8, 0)
3470 
3471 static void virt_machine_7_2_options(MachineClass *mc)
3472 {
3473     virt_machine_8_0_options(mc);
3474     compat_props_add(mc->compat_props, hw_compat_7_2, hw_compat_7_2_len);
3475 }
3476 DEFINE_VIRT_MACHINE(7, 2)
3477 
3478 static void virt_machine_7_1_options(MachineClass *mc)
3479 {
3480     VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
3481 
3482     virt_machine_7_2_options(mc);
3483     compat_props_add(mc->compat_props, hw_compat_7_1, hw_compat_7_1_len);
3484     /* Compact layout for high memory regions was introduced with 7.2 */
3485     vmc->no_highmem_compact = true;
3486 }
3487 DEFINE_VIRT_MACHINE(7, 1)
3488 
3489 static void virt_machine_7_0_options(MachineClass *mc)
3490 {
3491     virt_machine_7_1_options(mc);
3492     compat_props_add(mc->compat_props, hw_compat_7_0, hw_compat_7_0_len);
3493 }
3494 DEFINE_VIRT_MACHINE(7, 0)
3495 
3496 static void virt_machine_6_2_options(MachineClass *mc)
3497 {
3498     VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
3499 
3500     virt_machine_7_0_options(mc);
3501     compat_props_add(mc->compat_props, hw_compat_6_2, hw_compat_6_2_len);
3502     vmc->no_tcg_lpa2 = true;
3503 }
3504 DEFINE_VIRT_MACHINE(6, 2)
3505 
3506 static void virt_machine_6_1_options(MachineClass *mc)
3507 {
3508     VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
3509 
3510     virt_machine_6_2_options(mc);
3511     compat_props_add(mc->compat_props, hw_compat_6_1, hw_compat_6_1_len);
3512     mc->smp_props.prefer_sockets = true;
3513     vmc->no_cpu_topology = true;
3514 
3515     /* qemu ITS was introduced with 6.2 */
3516     vmc->no_tcg_its = true;
3517 }
3518 DEFINE_VIRT_MACHINE(6, 1)
3519 
3520 static void virt_machine_6_0_options(MachineClass *mc)
3521 {
3522     virt_machine_6_1_options(mc);
3523     compat_props_add(mc->compat_props, hw_compat_6_0, hw_compat_6_0_len);
3524 }
3525 DEFINE_VIRT_MACHINE(6, 0)
3526 
3527 static void virt_machine_5_2_options(MachineClass *mc)
3528 {
3529     VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
3530 
3531     virt_machine_6_0_options(mc);
3532     compat_props_add(mc->compat_props, hw_compat_5_2, hw_compat_5_2_len);
3533     vmc->no_secure_gpio = true;
3534 }
3535 DEFINE_VIRT_MACHINE(5, 2)
3536 
3537 static void virt_machine_5_1_options(MachineClass *mc)
3538 {
3539     VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
3540 
3541     virt_machine_5_2_options(mc);
3542     compat_props_add(mc->compat_props, hw_compat_5_1, hw_compat_5_1_len);
3543     vmc->no_kvm_steal_time = true;
3544 }
3545 DEFINE_VIRT_MACHINE(5, 1)
3546 
3547 static void virt_machine_5_0_options(MachineClass *mc)
3548 {
3549     VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
3550 
3551     virt_machine_5_1_options(mc);
3552     compat_props_add(mc->compat_props, hw_compat_5_0, hw_compat_5_0_len);
3553     mc->numa_mem_supported = true;
3554     vmc->acpi_expose_flash = true;
3555     mc->auto_enable_numa_with_memdev = false;
3556 }
3557 DEFINE_VIRT_MACHINE(5, 0)
3558 
3559 static void virt_machine_4_2_options(MachineClass *mc)
3560 {
3561     VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
3562 
3563     virt_machine_5_0_options(mc);
3564     compat_props_add(mc->compat_props, hw_compat_4_2, hw_compat_4_2_len);
3565     vmc->kvm_no_adjvtime = true;
3566 }
3567 DEFINE_VIRT_MACHINE(4, 2)
3568 
3569 static void virt_machine_4_1_options(MachineClass *mc)
3570 {
3571     VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
3572 
3573     virt_machine_4_2_options(mc);
3574     compat_props_add(mc->compat_props, hw_compat_4_1, hw_compat_4_1_len);
3575     vmc->no_ged = true;
3576     mc->auto_enable_numa_with_memhp = false;
3577 }
3578 DEFINE_VIRT_MACHINE(4, 1)
3579 
3580 static void virt_machine_4_0_options(MachineClass *mc)
3581 {
3582     virt_machine_4_1_options(mc);
3583     compat_props_add(mc->compat_props, hw_compat_4_0, hw_compat_4_0_len);
3584 }
3585 DEFINE_VIRT_MACHINE(4, 0)
3586 
3587 static void virt_machine_3_1_options(MachineClass *mc)
3588 {
3589     virt_machine_4_0_options(mc);
3590     compat_props_add(mc->compat_props, hw_compat_3_1, hw_compat_3_1_len);
3591 }
3592 DEFINE_VIRT_MACHINE(3, 1)
3593 
3594 static void virt_machine_3_0_options(MachineClass *mc)
3595 {
3596     virt_machine_3_1_options(mc);
3597     compat_props_add(mc->compat_props, hw_compat_3_0, hw_compat_3_0_len);
3598 }
3599 DEFINE_VIRT_MACHINE(3, 0)
3600 
3601 static void virt_machine_2_12_options(MachineClass *mc)
3602 {
3603     VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
3604 
3605     virt_machine_3_0_options(mc);
3606     compat_props_add(mc->compat_props, hw_compat_2_12, hw_compat_2_12_len);
3607     vmc->no_highmem_ecam = true;
3608     mc->max_cpus = 255;
3609 }
3610 DEFINE_VIRT_MACHINE(2, 12)
3611 
3612 static void virt_machine_2_11_options(MachineClass *mc)
3613 {
3614     VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
3615 
3616     virt_machine_2_12_options(mc);
3617     compat_props_add(mc->compat_props, hw_compat_2_11, hw_compat_2_11_len);
3618     vmc->smbios_old_sys_ver = true;
3619 }
3620 DEFINE_VIRT_MACHINE(2, 11)
3621 
3622 static void virt_machine_2_10_options(MachineClass *mc)
3623 {
3624     virt_machine_2_11_options(mc);
3625     compat_props_add(mc->compat_props, hw_compat_2_10, hw_compat_2_10_len);
3626     /* before 2.11 we never faulted accesses to bad addresses */
3627     mc->ignore_memory_transaction_failures = true;
3628 }
3629 DEFINE_VIRT_MACHINE(2, 10)
3630 
3631 static void virt_machine_2_9_options(MachineClass *mc)
3632 {
3633     virt_machine_2_10_options(mc);
3634     compat_props_add(mc->compat_props, hw_compat_2_9, hw_compat_2_9_len);
3635 }
3636 DEFINE_VIRT_MACHINE(2, 9)
3637 
3638 static void virt_machine_2_8_options(MachineClass *mc)
3639 {
3640     VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
3641 
3642     virt_machine_2_9_options(mc);
3643     compat_props_add(mc->compat_props, hw_compat_2_8, hw_compat_2_8_len);
3644     /* For 2.8 and earlier we falsely claimed in the DT that
3645      * our timers were edge-triggered, not level-triggered.
3646      */
3647     vmc->claim_edge_triggered_timers = true;
3648 }
3649 DEFINE_VIRT_MACHINE(2, 8)
3650 
3651 static void virt_machine_2_7_options(MachineClass *mc)
3652 {
3653     VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
3654 
3655     virt_machine_2_8_options(mc);
3656     compat_props_add(mc->compat_props, hw_compat_2_7, hw_compat_2_7_len);
3657     /* ITS was introduced with 2.8 */
3658     vmc->no_its = true;
3659     /* Stick with 1K pages for migration compatibility */
3660     mc->minimum_page_bits = 0;
3661 }
3662 DEFINE_VIRT_MACHINE(2, 7)
3663 
3664 static void virt_machine_2_6_options(MachineClass *mc)
3665 {
3666     VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
3667 
3668     virt_machine_2_7_options(mc);
3669     compat_props_add(mc->compat_props, hw_compat_2_6, hw_compat_2_6_len);
3670     vmc->disallow_affinity_adjustment = true;
3671     /* Disable PMU for 2.6 as PMU support was first introduced in 2.7 */
3672     vmc->no_pmu = true;
3673 }
3674 DEFINE_VIRT_MACHINE(2, 6)
3675