1 /* 2 * ARM mach-virt emulation 3 * 4 * Copyright (c) 2013 Linaro Limited 5 * 6 * This program is free software; you can redistribute it and/or modify it 7 * under the terms and conditions of the GNU General Public License, 8 * version 2 or later, as published by the Free Software Foundation. 9 * 10 * This program is distributed in the hope it will be useful, but WITHOUT 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 13 * more details. 14 * 15 * You should have received a copy of the GNU General Public License along with 16 * this program. If not, see <http://www.gnu.org/licenses/>. 17 * 18 * Emulate a virtual board which works by passing Linux all the information 19 * it needs about what devices are present via the device tree. 20 * There are some restrictions about what we can do here: 21 * + we can only present devices whose Linux drivers will work based 22 * purely on the device tree with no platform data at all 23 * + we want to present a very stripped-down minimalist platform, 24 * both because this reduces the security attack surface from the guest 25 * and also because it reduces our exposure to being broken when 26 * the kernel updates its device tree bindings and requires further 27 * information in a device binding that we aren't providing. 28 * This is essentially the same approach kvmtool uses. 29 */ 30 31 #include "qemu/osdep.h" 32 #include "qemu/datadir.h" 33 #include "qemu/units.h" 34 #include "qemu/option.h" 35 #include "monitor/qdev.h" 36 #include "hw/sysbus.h" 37 #include "hw/arm/boot.h" 38 #include "hw/arm/primecell.h" 39 #include "hw/arm/virt.h" 40 #include "hw/block/flash.h" 41 #include "hw/vfio/vfio-calxeda-xgmac.h" 42 #include "hw/vfio/vfio-amd-xgbe.h" 43 #include "hw/display/ramfb.h" 44 #include "net/net.h" 45 #include "system/device_tree.h" 46 #include "system/numa.h" 47 #include "system/runstate.h" 48 #include "system/tpm.h" 49 #include "system/tcg.h" 50 #include "system/kvm.h" 51 #include "system/hvf.h" 52 #include "system/qtest.h" 53 #include "hw/loader.h" 54 #include "qapi/error.h" 55 #include "qemu/bitops.h" 56 #include "qemu/cutils.h" 57 #include "qemu/error-report.h" 58 #include "qemu/module.h" 59 #include "hw/pci-host/gpex.h" 60 #include "hw/virtio/virtio-pci.h" 61 #include "hw/core/sysbus-fdt.h" 62 #include "hw/platform-bus.h" 63 #include "hw/qdev-properties.h" 64 #include "hw/arm/fdt.h" 65 #include "hw/intc/arm_gic.h" 66 #include "hw/intc/arm_gicv3_common.h" 67 #include "hw/intc/arm_gicv3_its_common.h" 68 #include "hw/irq.h" 69 #include "kvm_arm.h" 70 #include "hvf_arm.h" 71 #include "hw/firmware/smbios.h" 72 #include "qapi/visitor.h" 73 #include "qapi/qapi-visit-common.h" 74 #include "qobject/qlist.h" 75 #include "standard-headers/linux/input.h" 76 #include "hw/arm/smmuv3.h" 77 #include "hw/acpi/acpi.h" 78 #include "target/arm/cpu-qom.h" 79 #include "target/arm/internals.h" 80 #include "target/arm/multiprocessing.h" 81 #include "target/arm/gtimer.h" 82 #include "hw/mem/pc-dimm.h" 83 #include "hw/mem/nvdimm.h" 84 #include "hw/acpi/generic_event_device.h" 85 #include "hw/uefi/var-service-api.h" 86 #include "hw/virtio/virtio-md-pci.h" 87 #include "hw/virtio/virtio-iommu.h" 88 #include "hw/char/pl011.h" 89 #include "qemu/guest-random.h" 90 91 static GlobalProperty arm_virt_compat[] = { 92 { TYPE_VIRTIO_IOMMU_PCI, "aw-bits", "48" }, 93 }; 94 static const size_t arm_virt_compat_len = G_N_ELEMENTS(arm_virt_compat); 95 96 /* 97 * This cannot be called from the virt_machine_class_init() because 98 * TYPE_VIRT_MACHINE is abstract and mc->compat_props g_ptr_array_new() 99 * only is called on virt non abstract class init. 100 */ 101 static void arm_virt_compat_set(MachineClass *mc) 102 { 103 compat_props_add(mc->compat_props, arm_virt_compat, 104 arm_virt_compat_len); 105 } 106 107 #define DEFINE_VIRT_MACHINE_IMPL(latest, ...) \ 108 static void MACHINE_VER_SYM(class_init, virt, __VA_ARGS__)( \ 109 ObjectClass *oc, \ 110 void *data) \ 111 { \ 112 MachineClass *mc = MACHINE_CLASS(oc); \ 113 arm_virt_compat_set(mc); \ 114 MACHINE_VER_SYM(options, virt, __VA_ARGS__)(mc); \ 115 mc->desc = "QEMU " MACHINE_VER_STR(__VA_ARGS__) " ARM Virtual Machine"; \ 116 MACHINE_VER_DEPRECATION(__VA_ARGS__); \ 117 if (latest) { \ 118 mc->alias = "virt"; \ 119 } \ 120 } \ 121 static const TypeInfo MACHINE_VER_SYM(info, virt, __VA_ARGS__) = \ 122 { \ 123 .name = MACHINE_VER_TYPE_NAME("virt", __VA_ARGS__), \ 124 .parent = TYPE_VIRT_MACHINE, \ 125 .class_init = MACHINE_VER_SYM(class_init, virt, __VA_ARGS__), \ 126 }; \ 127 static void MACHINE_VER_SYM(register, virt, __VA_ARGS__)(void) \ 128 { \ 129 MACHINE_VER_DELETION(__VA_ARGS__); \ 130 type_register_static(&MACHINE_VER_SYM(info, virt, __VA_ARGS__)); \ 131 } \ 132 type_init(MACHINE_VER_SYM(register, virt, __VA_ARGS__)); 133 134 #define DEFINE_VIRT_MACHINE_AS_LATEST(major, minor) \ 135 DEFINE_VIRT_MACHINE_IMPL(true, major, minor) 136 #define DEFINE_VIRT_MACHINE(major, minor) \ 137 DEFINE_VIRT_MACHINE_IMPL(false, major, minor) 138 139 140 /* Number of external interrupt lines to configure the GIC with */ 141 #define NUM_IRQS 256 142 143 #define PLATFORM_BUS_NUM_IRQS 64 144 145 /* Legacy RAM limit in GB (< version 4.0) */ 146 #define LEGACY_RAMLIMIT_GB 255 147 #define LEGACY_RAMLIMIT_BYTES (LEGACY_RAMLIMIT_GB * GiB) 148 149 /* Addresses and sizes of our components. 150 * 0..128MB is space for a flash device so we can run bootrom code such as UEFI. 151 * 128MB..256MB is used for miscellaneous device I/O. 152 * 256MB..1GB is reserved for possible future PCI support (ie where the 153 * PCI memory window will go if we add a PCI host controller). 154 * 1GB and up is RAM (which may happily spill over into the 155 * high memory region beyond 4GB). 156 * This represents a compromise between how much RAM can be given to 157 * a 32 bit VM and leaving space for expansion and in particular for PCI. 158 * Note that devices should generally be placed at multiples of 0x10000, 159 * to accommodate guests using 64K pages. 160 */ 161 static const MemMapEntry base_memmap[] = { 162 /* Space up to 0x8000000 is reserved for a boot ROM */ 163 [VIRT_FLASH] = { 0, 0x08000000 }, 164 [VIRT_CPUPERIPHS] = { 0x08000000, 0x00020000 }, 165 /* GIC distributor and CPU interfaces sit inside the CPU peripheral space */ 166 [VIRT_GIC_DIST] = { 0x08000000, 0x00010000 }, 167 [VIRT_GIC_CPU] = { 0x08010000, 0x00010000 }, 168 [VIRT_GIC_V2M] = { 0x08020000, 0x00001000 }, 169 [VIRT_GIC_HYP] = { 0x08030000, 0x00010000 }, 170 [VIRT_GIC_VCPU] = { 0x08040000, 0x00010000 }, 171 /* The space in between here is reserved for GICv3 CPU/vCPU/HYP */ 172 [VIRT_GIC_ITS] = { 0x08080000, 0x00020000 }, 173 /* This redistributor space allows up to 2*64kB*123 CPUs */ 174 [VIRT_GIC_REDIST] = { 0x080A0000, 0x00F60000 }, 175 [VIRT_UART0] = { 0x09000000, 0x00001000 }, 176 [VIRT_RTC] = { 0x09010000, 0x00001000 }, 177 [VIRT_FW_CFG] = { 0x09020000, 0x00000018 }, 178 [VIRT_GPIO] = { 0x09030000, 0x00001000 }, 179 [VIRT_UART1] = { 0x09040000, 0x00001000 }, 180 [VIRT_SMMU] = { 0x09050000, 0x00020000 }, 181 [VIRT_PCDIMM_ACPI] = { 0x09070000, MEMORY_HOTPLUG_IO_LEN }, 182 [VIRT_ACPI_GED] = { 0x09080000, ACPI_GED_EVT_SEL_LEN }, 183 [VIRT_NVDIMM_ACPI] = { 0x09090000, NVDIMM_ACPI_IO_LEN}, 184 [VIRT_PVTIME] = { 0x090a0000, 0x00010000 }, 185 [VIRT_SECURE_GPIO] = { 0x090b0000, 0x00001000 }, 186 [VIRT_MMIO] = { 0x0a000000, 0x00000200 }, 187 /* ...repeating for a total of NUM_VIRTIO_TRANSPORTS, each of that size */ 188 [VIRT_PLATFORM_BUS] = { 0x0c000000, 0x02000000 }, 189 [VIRT_SECURE_MEM] = { 0x0e000000, 0x01000000 }, 190 [VIRT_PCIE_MMIO] = { 0x10000000, 0x2eff0000 }, 191 [VIRT_PCIE_PIO] = { 0x3eff0000, 0x00010000 }, 192 [VIRT_PCIE_ECAM] = { 0x3f000000, 0x01000000 }, 193 /* Actual RAM size depends on initial RAM and device memory settings */ 194 [VIRT_MEM] = { GiB, LEGACY_RAMLIMIT_BYTES }, 195 }; 196 197 /* Update the docs for highmem-mmio-size when changing this default */ 198 #define DEFAULT_HIGH_PCIE_MMIO_SIZE_GB 512 199 #define DEFAULT_HIGH_PCIE_MMIO_SIZE (DEFAULT_HIGH_PCIE_MMIO_SIZE_GB * GiB) 200 201 /* 202 * Highmem IO Regions: This memory map is floating, located after the RAM. 203 * Each MemMapEntry base (GPA) will be dynamically computed, depending on the 204 * top of the RAM, so that its base get the same alignment as the size, 205 * ie. a 512GiB entry will be aligned on a 512GiB boundary. If there is 206 * less than 256GiB of RAM, the floating area starts at the 256GiB mark. 207 * Note the extended_memmap is sized so that it eventually also includes the 208 * base_memmap entries (VIRT_HIGH_GIC_REDIST2 index is greater than the last 209 * index of base_memmap). 210 * 211 * The memory map for these Highmem IO Regions can be in legacy or compact 212 * layout, depending on 'compact-highmem' property. With legacy layout, the 213 * PA space for one specific region is always reserved, even if the region 214 * has been disabled or doesn't fit into the PA space. However, the PA space 215 * for the region won't be reserved in these circumstances with compact layout. 216 * 217 * Note that the highmem-mmio-size property will update the high PCIE MMIO size 218 * field in this array. 219 */ 220 static MemMapEntry extended_memmap[] = { 221 /* Additional 64 MB redist region (can contain up to 512 redistributors) */ 222 [VIRT_HIGH_GIC_REDIST2] = { 0x0, 64 * MiB }, 223 [VIRT_HIGH_PCIE_ECAM] = { 0x0, 256 * MiB }, 224 /* Second PCIe window */ 225 [VIRT_HIGH_PCIE_MMIO] = { 0x0, DEFAULT_HIGH_PCIE_MMIO_SIZE }, 226 }; 227 228 static const int a15irqmap[] = { 229 [VIRT_UART0] = 1, 230 [VIRT_RTC] = 2, 231 [VIRT_PCIE] = 3, /* ... to 6 */ 232 [VIRT_GPIO] = 7, 233 [VIRT_UART1] = 8, 234 [VIRT_ACPI_GED] = 9, 235 [VIRT_MMIO] = 16, /* ...to 16 + NUM_VIRTIO_TRANSPORTS - 1 */ 236 [VIRT_GIC_V2M] = 48, /* ...to 48 + NUM_GICV2M_SPIS - 1 */ 237 [VIRT_SMMU] = 74, /* ...to 74 + NUM_SMMU_IRQS - 1 */ 238 [VIRT_PLATFORM_BUS] = 112, /* ...to 112 + PLATFORM_BUS_NUM_IRQS -1 */ 239 }; 240 241 static void create_randomness(MachineState *ms, const char *node) 242 { 243 struct { 244 uint64_t kaslr; 245 uint8_t rng[32]; 246 } seed; 247 248 if (qemu_guest_getrandom(&seed, sizeof(seed), NULL)) { 249 return; 250 } 251 qemu_fdt_setprop_u64(ms->fdt, node, "kaslr-seed", seed.kaslr); 252 qemu_fdt_setprop(ms->fdt, node, "rng-seed", seed.rng, sizeof(seed.rng)); 253 } 254 255 /* 256 * The CPU object always exposes the NS EL2 virt timer IRQ line, 257 * but we don't want to advertise it to the guest in the dtb or ACPI 258 * table unless it's really going to do something. 259 */ 260 static bool ns_el2_virt_timer_present(void) 261 { 262 ARMCPU *cpu = ARM_CPU(qemu_get_cpu(0)); 263 CPUARMState *env = &cpu->env; 264 265 return arm_feature(env, ARM_FEATURE_AARCH64) && 266 arm_feature(env, ARM_FEATURE_EL2) && cpu_isar_feature(aa64_vh, cpu); 267 } 268 269 static void create_fdt(VirtMachineState *vms) 270 { 271 MachineState *ms = MACHINE(vms); 272 int nb_numa_nodes = ms->numa_state->num_nodes; 273 void *fdt = create_device_tree(&vms->fdt_size); 274 275 if (!fdt) { 276 error_report("create_device_tree() failed"); 277 exit(1); 278 } 279 280 ms->fdt = fdt; 281 282 /* Header */ 283 qemu_fdt_setprop_string(fdt, "/", "compatible", "linux,dummy-virt"); 284 qemu_fdt_setprop_cell(fdt, "/", "#address-cells", 0x2); 285 qemu_fdt_setprop_cell(fdt, "/", "#size-cells", 0x2); 286 qemu_fdt_setprop_string(fdt, "/", "model", "linux,dummy-virt"); 287 288 /* 289 * For QEMU, all DMA is coherent. Advertising this in the root node 290 * has two benefits: 291 * 292 * - It avoids potential bugs where we forget to mark a DMA 293 * capable device as being dma-coherent 294 * - It avoids spurious warnings from the Linux kernel about 295 * devices which can't do DMA at all 296 */ 297 qemu_fdt_setprop(fdt, "/", "dma-coherent", NULL, 0); 298 299 /* /chosen must exist for load_dtb to fill in necessary properties later */ 300 qemu_fdt_add_subnode(fdt, "/chosen"); 301 if (vms->dtb_randomness) { 302 create_randomness(ms, "/chosen"); 303 } 304 305 if (vms->secure) { 306 qemu_fdt_add_subnode(fdt, "/secure-chosen"); 307 if (vms->dtb_randomness) { 308 create_randomness(ms, "/secure-chosen"); 309 } 310 } 311 312 qemu_fdt_add_subnode(fdt, "/aliases"); 313 314 /* Clock node, for the benefit of the UART. The kernel device tree 315 * binding documentation claims the PL011 node clock properties are 316 * optional but in practice if you omit them the kernel refuses to 317 * probe for the device. 318 */ 319 vms->clock_phandle = qemu_fdt_alloc_phandle(fdt); 320 qemu_fdt_add_subnode(fdt, "/apb-pclk"); 321 qemu_fdt_setprop_string(fdt, "/apb-pclk", "compatible", "fixed-clock"); 322 qemu_fdt_setprop_cell(fdt, "/apb-pclk", "#clock-cells", 0x0); 323 qemu_fdt_setprop_cell(fdt, "/apb-pclk", "clock-frequency", 24000000); 324 qemu_fdt_setprop_string(fdt, "/apb-pclk", "clock-output-names", 325 "clk24mhz"); 326 qemu_fdt_setprop_cell(fdt, "/apb-pclk", "phandle", vms->clock_phandle); 327 328 if (nb_numa_nodes > 0 && ms->numa_state->have_numa_distance) { 329 int size = nb_numa_nodes * nb_numa_nodes * 3 * sizeof(uint32_t); 330 uint32_t *matrix = g_malloc0(size); 331 int idx, i, j; 332 333 for (i = 0; i < nb_numa_nodes; i++) { 334 for (j = 0; j < nb_numa_nodes; j++) { 335 idx = (i * nb_numa_nodes + j) * 3; 336 matrix[idx + 0] = cpu_to_be32(i); 337 matrix[idx + 1] = cpu_to_be32(j); 338 matrix[idx + 2] = 339 cpu_to_be32(ms->numa_state->nodes[i].distance[j]); 340 } 341 } 342 343 qemu_fdt_add_subnode(fdt, "/distance-map"); 344 qemu_fdt_setprop_string(fdt, "/distance-map", "compatible", 345 "numa-distance-map-v1"); 346 qemu_fdt_setprop(fdt, "/distance-map", "distance-matrix", 347 matrix, size); 348 g_free(matrix); 349 } 350 } 351 352 static void fdt_add_timer_nodes(const VirtMachineState *vms) 353 { 354 /* On real hardware these interrupts are level-triggered. 355 * On KVM they were edge-triggered before host kernel version 4.4, 356 * and level-triggered afterwards. 357 * On emulated QEMU they are level-triggered. 358 * 359 * Getting the DTB info about them wrong is awkward for some 360 * guest kernels: 361 * pre-4.8 ignore the DT and leave the interrupt configured 362 * with whatever the GIC reset value (or the bootloader) left it at 363 * 4.8 before rc6 honour the incorrect data by programming it back 364 * into the GIC, causing problems 365 * 4.8rc6 and later ignore the DT and always write "level triggered" 366 * into the GIC 367 * 368 * For backwards-compatibility, virt-2.8 and earlier will continue 369 * to say these are edge-triggered, but later machines will report 370 * the correct information. 371 */ 372 ARMCPU *armcpu; 373 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms); 374 uint32_t irqflags = GIC_FDT_IRQ_FLAGS_LEVEL_HI; 375 MachineState *ms = MACHINE(vms); 376 377 if (vmc->claim_edge_triggered_timers) { 378 irqflags = GIC_FDT_IRQ_FLAGS_EDGE_LO_HI; 379 } 380 381 if (vms->gic_version == VIRT_GIC_VERSION_2) { 382 irqflags = deposit32(irqflags, GIC_FDT_IRQ_PPI_CPU_START, 383 GIC_FDT_IRQ_PPI_CPU_WIDTH, 384 (1 << MACHINE(vms)->smp.cpus) - 1); 385 } 386 387 qemu_fdt_add_subnode(ms->fdt, "/timer"); 388 389 armcpu = ARM_CPU(qemu_get_cpu(0)); 390 if (arm_feature(&armcpu->env, ARM_FEATURE_V8)) { 391 const char compat[] = "arm,armv8-timer\0arm,armv7-timer"; 392 qemu_fdt_setprop(ms->fdt, "/timer", "compatible", 393 compat, sizeof(compat)); 394 } else { 395 qemu_fdt_setprop_string(ms->fdt, "/timer", "compatible", 396 "arm,armv7-timer"); 397 } 398 qemu_fdt_setprop(ms->fdt, "/timer", "always-on", NULL, 0); 399 if (vms->ns_el2_virt_timer_irq) { 400 qemu_fdt_setprop_cells(ms->fdt, "/timer", "interrupts", 401 GIC_FDT_IRQ_TYPE_PPI, 402 INTID_TO_PPI(ARCH_TIMER_S_EL1_IRQ), irqflags, 403 GIC_FDT_IRQ_TYPE_PPI, 404 INTID_TO_PPI(ARCH_TIMER_NS_EL1_IRQ), irqflags, 405 GIC_FDT_IRQ_TYPE_PPI, 406 INTID_TO_PPI(ARCH_TIMER_VIRT_IRQ), irqflags, 407 GIC_FDT_IRQ_TYPE_PPI, 408 INTID_TO_PPI(ARCH_TIMER_NS_EL2_IRQ), irqflags, 409 GIC_FDT_IRQ_TYPE_PPI, 410 INTID_TO_PPI(ARCH_TIMER_NS_EL2_VIRT_IRQ), irqflags); 411 } else { 412 qemu_fdt_setprop_cells(ms->fdt, "/timer", "interrupts", 413 GIC_FDT_IRQ_TYPE_PPI, 414 INTID_TO_PPI(ARCH_TIMER_S_EL1_IRQ), irqflags, 415 GIC_FDT_IRQ_TYPE_PPI, 416 INTID_TO_PPI(ARCH_TIMER_NS_EL1_IRQ), irqflags, 417 GIC_FDT_IRQ_TYPE_PPI, 418 INTID_TO_PPI(ARCH_TIMER_VIRT_IRQ), irqflags, 419 GIC_FDT_IRQ_TYPE_PPI, 420 INTID_TO_PPI(ARCH_TIMER_NS_EL2_IRQ), irqflags); 421 } 422 } 423 424 static void fdt_add_cpu_nodes(const VirtMachineState *vms) 425 { 426 int cpu; 427 int addr_cells = 1; 428 const MachineState *ms = MACHINE(vms); 429 const VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms); 430 int smp_cpus = ms->smp.cpus; 431 432 /* 433 * See Linux Documentation/devicetree/bindings/arm/cpus.yaml 434 * On ARM v8 64-bit systems value should be set to 2, 435 * that corresponds to the MPIDR_EL1 register size. 436 * If MPIDR_EL1[63:32] value is equal to 0 on all CPUs 437 * in the system, #address-cells can be set to 1, since 438 * MPIDR_EL1[63:32] bits are not used for CPUs 439 * identification. 440 * 441 * Here we actually don't know whether our system is 32- or 64-bit one. 442 * The simplest way to go is to examine affinity IDs of all our CPUs. If 443 * at least one of them has Aff3 populated, we set #address-cells to 2. 444 */ 445 for (cpu = 0; cpu < smp_cpus; cpu++) { 446 ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu)); 447 448 if (arm_cpu_mp_affinity(armcpu) & ARM_AFF3_MASK) { 449 addr_cells = 2; 450 break; 451 } 452 } 453 454 qemu_fdt_add_subnode(ms->fdt, "/cpus"); 455 qemu_fdt_setprop_cell(ms->fdt, "/cpus", "#address-cells", addr_cells); 456 qemu_fdt_setprop_cell(ms->fdt, "/cpus", "#size-cells", 0x0); 457 458 for (cpu = smp_cpus - 1; cpu >= 0; cpu--) { 459 char *nodename = g_strdup_printf("/cpus/cpu@%d", cpu); 460 ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu)); 461 CPUState *cs = CPU(armcpu); 462 463 qemu_fdt_add_subnode(ms->fdt, nodename); 464 qemu_fdt_setprop_string(ms->fdt, nodename, "device_type", "cpu"); 465 qemu_fdt_setprop_string(ms->fdt, nodename, "compatible", 466 armcpu->dtb_compatible); 467 468 if (vms->psci_conduit != QEMU_PSCI_CONDUIT_DISABLED && smp_cpus > 1) { 469 qemu_fdt_setprop_string(ms->fdt, nodename, 470 "enable-method", "psci"); 471 } 472 473 if (addr_cells == 2) { 474 qemu_fdt_setprop_u64(ms->fdt, nodename, "reg", 475 arm_cpu_mp_affinity(armcpu)); 476 } else { 477 qemu_fdt_setprop_cell(ms->fdt, nodename, "reg", 478 arm_cpu_mp_affinity(armcpu)); 479 } 480 481 if (ms->possible_cpus->cpus[cs->cpu_index].props.has_node_id) { 482 qemu_fdt_setprop_cell(ms->fdt, nodename, "numa-node-id", 483 ms->possible_cpus->cpus[cs->cpu_index].props.node_id); 484 } 485 486 if (!vmc->no_cpu_topology) { 487 qemu_fdt_setprop_cell(ms->fdt, nodename, "phandle", 488 qemu_fdt_alloc_phandle(ms->fdt)); 489 } 490 491 g_free(nodename); 492 } 493 494 if (!vmc->no_cpu_topology) { 495 /* 496 * Add vCPU topology description through fdt node cpu-map. 497 * 498 * See Linux Documentation/devicetree/bindings/cpu/cpu-topology.txt 499 * In a SMP system, the hierarchy of CPUs can be defined through 500 * four entities that are used to describe the layout of CPUs in 501 * the system: socket/cluster/core/thread. 502 * 503 * A socket node represents the boundary of system physical package 504 * and its child nodes must be one or more cluster nodes. A system 505 * can contain several layers of clustering within a single physical 506 * package and cluster nodes can be contained in parent cluster nodes. 507 * 508 * Note: currently we only support one layer of clustering within 509 * each physical package. 510 */ 511 qemu_fdt_add_subnode(ms->fdt, "/cpus/cpu-map"); 512 513 for (cpu = smp_cpus - 1; cpu >= 0; cpu--) { 514 char *cpu_path = g_strdup_printf("/cpus/cpu@%d", cpu); 515 char *map_path; 516 517 if (ms->smp.threads > 1) { 518 map_path = g_strdup_printf( 519 "/cpus/cpu-map/socket%d/cluster%d/core%d/thread%d", 520 cpu / (ms->smp.clusters * ms->smp.cores * ms->smp.threads), 521 (cpu / (ms->smp.cores * ms->smp.threads)) % ms->smp.clusters, 522 (cpu / ms->smp.threads) % ms->smp.cores, 523 cpu % ms->smp.threads); 524 } else { 525 map_path = g_strdup_printf( 526 "/cpus/cpu-map/socket%d/cluster%d/core%d", 527 cpu / (ms->smp.clusters * ms->smp.cores), 528 (cpu / ms->smp.cores) % ms->smp.clusters, 529 cpu % ms->smp.cores); 530 } 531 qemu_fdt_add_path(ms->fdt, map_path); 532 qemu_fdt_setprop_phandle(ms->fdt, map_path, "cpu", cpu_path); 533 534 g_free(map_path); 535 g_free(cpu_path); 536 } 537 } 538 } 539 540 static void fdt_add_its_gic_node(VirtMachineState *vms) 541 { 542 char *nodename; 543 MachineState *ms = MACHINE(vms); 544 545 vms->msi_phandle = qemu_fdt_alloc_phandle(ms->fdt); 546 nodename = g_strdup_printf("/intc/its@%" PRIx64, 547 vms->memmap[VIRT_GIC_ITS].base); 548 qemu_fdt_add_subnode(ms->fdt, nodename); 549 qemu_fdt_setprop_string(ms->fdt, nodename, "compatible", 550 "arm,gic-v3-its"); 551 qemu_fdt_setprop(ms->fdt, nodename, "msi-controller", NULL, 0); 552 qemu_fdt_setprop_cell(ms->fdt, nodename, "#msi-cells", 1); 553 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg", 554 2, vms->memmap[VIRT_GIC_ITS].base, 555 2, vms->memmap[VIRT_GIC_ITS].size); 556 qemu_fdt_setprop_cell(ms->fdt, nodename, "phandle", vms->msi_phandle); 557 g_free(nodename); 558 } 559 560 static void fdt_add_v2m_gic_node(VirtMachineState *vms) 561 { 562 MachineState *ms = MACHINE(vms); 563 char *nodename; 564 565 nodename = g_strdup_printf("/intc/v2m@%" PRIx64, 566 vms->memmap[VIRT_GIC_V2M].base); 567 vms->msi_phandle = qemu_fdt_alloc_phandle(ms->fdt); 568 qemu_fdt_add_subnode(ms->fdt, nodename); 569 qemu_fdt_setprop_string(ms->fdt, nodename, "compatible", 570 "arm,gic-v2m-frame"); 571 qemu_fdt_setprop(ms->fdt, nodename, "msi-controller", NULL, 0); 572 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg", 573 2, vms->memmap[VIRT_GIC_V2M].base, 574 2, vms->memmap[VIRT_GIC_V2M].size); 575 qemu_fdt_setprop_cell(ms->fdt, nodename, "phandle", vms->msi_phandle); 576 g_free(nodename); 577 } 578 579 static void fdt_add_gic_node(VirtMachineState *vms) 580 { 581 MachineState *ms = MACHINE(vms); 582 char *nodename; 583 584 vms->gic_phandle = qemu_fdt_alloc_phandle(ms->fdt); 585 qemu_fdt_setprop_cell(ms->fdt, "/", "interrupt-parent", vms->gic_phandle); 586 587 nodename = g_strdup_printf("/intc@%" PRIx64, 588 vms->memmap[VIRT_GIC_DIST].base); 589 qemu_fdt_add_subnode(ms->fdt, nodename); 590 qemu_fdt_setprop_cell(ms->fdt, nodename, "#interrupt-cells", 3); 591 qemu_fdt_setprop(ms->fdt, nodename, "interrupt-controller", NULL, 0); 592 qemu_fdt_setprop_cell(ms->fdt, nodename, "#address-cells", 0x2); 593 qemu_fdt_setprop_cell(ms->fdt, nodename, "#size-cells", 0x2); 594 qemu_fdt_setprop(ms->fdt, nodename, "ranges", NULL, 0); 595 if (vms->gic_version != VIRT_GIC_VERSION_2) { 596 int nb_redist_regions = virt_gicv3_redist_region_count(vms); 597 598 qemu_fdt_setprop_string(ms->fdt, nodename, "compatible", 599 "arm,gic-v3"); 600 601 qemu_fdt_setprop_cell(ms->fdt, nodename, 602 "#redistributor-regions", nb_redist_regions); 603 604 if (nb_redist_regions == 1) { 605 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg", 606 2, vms->memmap[VIRT_GIC_DIST].base, 607 2, vms->memmap[VIRT_GIC_DIST].size, 608 2, vms->memmap[VIRT_GIC_REDIST].base, 609 2, vms->memmap[VIRT_GIC_REDIST].size); 610 } else { 611 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg", 612 2, vms->memmap[VIRT_GIC_DIST].base, 613 2, vms->memmap[VIRT_GIC_DIST].size, 614 2, vms->memmap[VIRT_GIC_REDIST].base, 615 2, vms->memmap[VIRT_GIC_REDIST].size, 616 2, vms->memmap[VIRT_HIGH_GIC_REDIST2].base, 617 2, vms->memmap[VIRT_HIGH_GIC_REDIST2].size); 618 } 619 620 if (vms->virt) { 621 qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupts", 622 GIC_FDT_IRQ_TYPE_PPI, 623 INTID_TO_PPI(ARCH_GIC_MAINT_IRQ), 624 GIC_FDT_IRQ_FLAGS_LEVEL_HI); 625 } 626 } else { 627 /* 'cortex-a15-gic' means 'GIC v2' */ 628 qemu_fdt_setprop_string(ms->fdt, nodename, "compatible", 629 "arm,cortex-a15-gic"); 630 if (!vms->virt) { 631 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg", 632 2, vms->memmap[VIRT_GIC_DIST].base, 633 2, vms->memmap[VIRT_GIC_DIST].size, 634 2, vms->memmap[VIRT_GIC_CPU].base, 635 2, vms->memmap[VIRT_GIC_CPU].size); 636 } else { 637 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg", 638 2, vms->memmap[VIRT_GIC_DIST].base, 639 2, vms->memmap[VIRT_GIC_DIST].size, 640 2, vms->memmap[VIRT_GIC_CPU].base, 641 2, vms->memmap[VIRT_GIC_CPU].size, 642 2, vms->memmap[VIRT_GIC_HYP].base, 643 2, vms->memmap[VIRT_GIC_HYP].size, 644 2, vms->memmap[VIRT_GIC_VCPU].base, 645 2, vms->memmap[VIRT_GIC_VCPU].size); 646 qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupts", 647 GIC_FDT_IRQ_TYPE_PPI, 648 INTID_TO_PPI(ARCH_GIC_MAINT_IRQ), 649 GIC_FDT_IRQ_FLAGS_LEVEL_HI); 650 } 651 } 652 653 qemu_fdt_setprop_cell(ms->fdt, nodename, "phandle", vms->gic_phandle); 654 g_free(nodename); 655 } 656 657 static void fdt_add_pmu_nodes(const VirtMachineState *vms) 658 { 659 ARMCPU *armcpu = ARM_CPU(first_cpu); 660 uint32_t irqflags = GIC_FDT_IRQ_FLAGS_LEVEL_HI; 661 MachineState *ms = MACHINE(vms); 662 663 if (!arm_feature(&armcpu->env, ARM_FEATURE_PMU)) { 664 assert(!object_property_get_bool(OBJECT(armcpu), "pmu", NULL)); 665 return; 666 } 667 668 if (vms->gic_version == VIRT_GIC_VERSION_2) { 669 irqflags = deposit32(irqflags, GIC_FDT_IRQ_PPI_CPU_START, 670 GIC_FDT_IRQ_PPI_CPU_WIDTH, 671 (1 << MACHINE(vms)->smp.cpus) - 1); 672 } 673 674 qemu_fdt_add_subnode(ms->fdt, "/pmu"); 675 if (arm_feature(&armcpu->env, ARM_FEATURE_V8)) { 676 const char compat[] = "arm,armv8-pmuv3"; 677 qemu_fdt_setprop(ms->fdt, "/pmu", "compatible", 678 compat, sizeof(compat)); 679 qemu_fdt_setprop_cells(ms->fdt, "/pmu", "interrupts", 680 GIC_FDT_IRQ_TYPE_PPI, 681 INTID_TO_PPI(VIRTUAL_PMU_IRQ), irqflags); 682 } 683 } 684 685 static inline DeviceState *create_acpi_ged(VirtMachineState *vms) 686 { 687 DeviceState *dev; 688 MachineState *ms = MACHINE(vms); 689 int irq = vms->irqmap[VIRT_ACPI_GED]; 690 uint32_t event = ACPI_GED_PWR_DOWN_EVT; 691 692 if (ms->ram_slots) { 693 event |= ACPI_GED_MEM_HOTPLUG_EVT; 694 } 695 696 if (ms->nvdimms_state->is_enabled) { 697 event |= ACPI_GED_NVDIMM_HOTPLUG_EVT; 698 } 699 700 dev = qdev_new(TYPE_ACPI_GED); 701 qdev_prop_set_uint32(dev, "ged-event", event); 702 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal); 703 704 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vms->memmap[VIRT_ACPI_GED].base); 705 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 1, vms->memmap[VIRT_PCDIMM_ACPI].base); 706 sysbus_connect_irq(SYS_BUS_DEVICE(dev), 0, qdev_get_gpio_in(vms->gic, irq)); 707 708 return dev; 709 } 710 711 static void create_its(VirtMachineState *vms) 712 { 713 const char *itsclass = its_class_name(); 714 DeviceState *dev; 715 716 if (!strcmp(itsclass, "arm-gicv3-its")) { 717 if (!vms->tcg_its) { 718 itsclass = NULL; 719 } 720 } 721 722 if (!itsclass) { 723 /* Do nothing if not supported */ 724 return; 725 } 726 727 dev = qdev_new(itsclass); 728 729 object_property_set_link(OBJECT(dev), "parent-gicv3", OBJECT(vms->gic), 730 &error_abort); 731 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal); 732 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vms->memmap[VIRT_GIC_ITS].base); 733 734 fdt_add_its_gic_node(vms); 735 vms->msi_controller = VIRT_MSI_CTRL_ITS; 736 } 737 738 static void create_v2m(VirtMachineState *vms) 739 { 740 int i; 741 int irq = vms->irqmap[VIRT_GIC_V2M]; 742 DeviceState *dev; 743 744 dev = qdev_new("arm-gicv2m"); 745 qdev_prop_set_uint32(dev, "base-spi", irq); 746 qdev_prop_set_uint32(dev, "num-spi", NUM_GICV2M_SPIS); 747 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal); 748 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vms->memmap[VIRT_GIC_V2M].base); 749 750 for (i = 0; i < NUM_GICV2M_SPIS; i++) { 751 sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, 752 qdev_get_gpio_in(vms->gic, irq + i)); 753 } 754 755 fdt_add_v2m_gic_node(vms); 756 vms->msi_controller = VIRT_MSI_CTRL_GICV2M; 757 } 758 759 /* 760 * If the CPU has FEAT_NMI, then turn on the NMI support in the GICv3 too. 761 * It's permitted to have a configuration with NMI in the CPU (and thus the 762 * GICv3 CPU interface) but not in the distributor/redistributors, but it's 763 * not very useful. 764 */ 765 static bool gicv3_nmi_present(VirtMachineState *vms) 766 { 767 ARMCPU *cpu = ARM_CPU(qemu_get_cpu(0)); 768 769 return tcg_enabled() && cpu_isar_feature(aa64_nmi, cpu) && 770 (vms->gic_version != VIRT_GIC_VERSION_2); 771 } 772 773 static void create_gic(VirtMachineState *vms, MemoryRegion *mem) 774 { 775 MachineState *ms = MACHINE(vms); 776 /* We create a standalone GIC */ 777 SysBusDevice *gicbusdev; 778 const char *gictype; 779 int i; 780 unsigned int smp_cpus = ms->smp.cpus; 781 uint32_t nb_redist_regions = 0; 782 int revision; 783 784 if (vms->gic_version == VIRT_GIC_VERSION_2) { 785 gictype = gic_class_name(); 786 } else { 787 gictype = gicv3_class_name(); 788 } 789 790 switch (vms->gic_version) { 791 case VIRT_GIC_VERSION_2: 792 revision = 2; 793 break; 794 case VIRT_GIC_VERSION_3: 795 revision = 3; 796 break; 797 case VIRT_GIC_VERSION_4: 798 revision = 4; 799 break; 800 default: 801 g_assert_not_reached(); 802 } 803 vms->gic = qdev_new(gictype); 804 qdev_prop_set_uint32(vms->gic, "revision", revision); 805 qdev_prop_set_uint32(vms->gic, "num-cpu", smp_cpus); 806 /* Note that the num-irq property counts both internal and external 807 * interrupts; there are always 32 of the former (mandated by GIC spec). 808 */ 809 qdev_prop_set_uint32(vms->gic, "num-irq", NUM_IRQS + 32); 810 if (!kvm_irqchip_in_kernel()) { 811 qdev_prop_set_bit(vms->gic, "has-security-extensions", vms->secure); 812 } 813 814 if (vms->gic_version != VIRT_GIC_VERSION_2) { 815 QList *redist_region_count; 816 uint32_t redist0_capacity = virt_redist_capacity(vms, VIRT_GIC_REDIST); 817 uint32_t redist0_count = MIN(smp_cpus, redist0_capacity); 818 819 nb_redist_regions = virt_gicv3_redist_region_count(vms); 820 821 redist_region_count = qlist_new(); 822 qlist_append_int(redist_region_count, redist0_count); 823 if (nb_redist_regions == 2) { 824 uint32_t redist1_capacity = 825 virt_redist_capacity(vms, VIRT_HIGH_GIC_REDIST2); 826 827 qlist_append_int(redist_region_count, 828 MIN(smp_cpus - redist0_count, redist1_capacity)); 829 } 830 qdev_prop_set_array(vms->gic, "redist-region-count", 831 redist_region_count); 832 833 if (!kvm_irqchip_in_kernel()) { 834 if (vms->tcg_its) { 835 object_property_set_link(OBJECT(vms->gic), "sysmem", 836 OBJECT(mem), &error_fatal); 837 qdev_prop_set_bit(vms->gic, "has-lpi", true); 838 } 839 } 840 } else { 841 if (!kvm_irqchip_in_kernel()) { 842 qdev_prop_set_bit(vms->gic, "has-virtualization-extensions", 843 vms->virt); 844 } 845 } 846 847 if (gicv3_nmi_present(vms)) { 848 qdev_prop_set_bit(vms->gic, "has-nmi", true); 849 } 850 851 gicbusdev = SYS_BUS_DEVICE(vms->gic); 852 sysbus_realize_and_unref(gicbusdev, &error_fatal); 853 sysbus_mmio_map(gicbusdev, 0, vms->memmap[VIRT_GIC_DIST].base); 854 if (vms->gic_version != VIRT_GIC_VERSION_2) { 855 sysbus_mmio_map(gicbusdev, 1, vms->memmap[VIRT_GIC_REDIST].base); 856 if (nb_redist_regions == 2) { 857 sysbus_mmio_map(gicbusdev, 2, 858 vms->memmap[VIRT_HIGH_GIC_REDIST2].base); 859 } 860 } else { 861 sysbus_mmio_map(gicbusdev, 1, vms->memmap[VIRT_GIC_CPU].base); 862 if (vms->virt) { 863 sysbus_mmio_map(gicbusdev, 2, vms->memmap[VIRT_GIC_HYP].base); 864 sysbus_mmio_map(gicbusdev, 3, vms->memmap[VIRT_GIC_VCPU].base); 865 } 866 } 867 868 /* Wire the outputs from each CPU's generic timer and the GICv3 869 * maintenance interrupt signal to the appropriate GIC PPI inputs, 870 * and the GIC's IRQ/FIQ/VIRQ/VFIQ/NMI/VINMI interrupt outputs to the 871 * CPU's inputs. 872 */ 873 for (i = 0; i < smp_cpus; i++) { 874 DeviceState *cpudev = DEVICE(qemu_get_cpu(i)); 875 int intidbase = NUM_IRQS + i * GIC_INTERNAL; 876 /* Mapping from the output timer irq lines from the CPU to the 877 * GIC PPI inputs we use for the virt board. 878 */ 879 const int timer_irq[] = { 880 [GTIMER_PHYS] = ARCH_TIMER_NS_EL1_IRQ, 881 [GTIMER_VIRT] = ARCH_TIMER_VIRT_IRQ, 882 [GTIMER_HYP] = ARCH_TIMER_NS_EL2_IRQ, 883 [GTIMER_SEC] = ARCH_TIMER_S_EL1_IRQ, 884 [GTIMER_HYPVIRT] = ARCH_TIMER_NS_EL2_VIRT_IRQ, 885 }; 886 887 for (unsigned irq = 0; irq < ARRAY_SIZE(timer_irq); irq++) { 888 qdev_connect_gpio_out(cpudev, irq, 889 qdev_get_gpio_in(vms->gic, 890 intidbase + timer_irq[irq])); 891 } 892 893 if (vms->gic_version != VIRT_GIC_VERSION_2) { 894 qemu_irq irq = qdev_get_gpio_in(vms->gic, 895 intidbase + ARCH_GIC_MAINT_IRQ); 896 qdev_connect_gpio_out_named(cpudev, "gicv3-maintenance-interrupt", 897 0, irq); 898 } else if (vms->virt) { 899 qemu_irq irq = qdev_get_gpio_in(vms->gic, 900 intidbase + ARCH_GIC_MAINT_IRQ); 901 sysbus_connect_irq(gicbusdev, i + 4 * smp_cpus, irq); 902 } 903 904 qdev_connect_gpio_out_named(cpudev, "pmu-interrupt", 0, 905 qdev_get_gpio_in(vms->gic, intidbase 906 + VIRTUAL_PMU_IRQ)); 907 908 sysbus_connect_irq(gicbusdev, i, qdev_get_gpio_in(cpudev, ARM_CPU_IRQ)); 909 sysbus_connect_irq(gicbusdev, i + smp_cpus, 910 qdev_get_gpio_in(cpudev, ARM_CPU_FIQ)); 911 sysbus_connect_irq(gicbusdev, i + 2 * smp_cpus, 912 qdev_get_gpio_in(cpudev, ARM_CPU_VIRQ)); 913 sysbus_connect_irq(gicbusdev, i + 3 * smp_cpus, 914 qdev_get_gpio_in(cpudev, ARM_CPU_VFIQ)); 915 916 if (vms->gic_version != VIRT_GIC_VERSION_2) { 917 sysbus_connect_irq(gicbusdev, i + 4 * smp_cpus, 918 qdev_get_gpio_in(cpudev, ARM_CPU_NMI)); 919 sysbus_connect_irq(gicbusdev, i + 5 * smp_cpus, 920 qdev_get_gpio_in(cpudev, ARM_CPU_VINMI)); 921 } 922 } 923 924 fdt_add_gic_node(vms); 925 926 if (vms->gic_version != VIRT_GIC_VERSION_2 && vms->its) { 927 create_its(vms); 928 } else if (vms->gic_version == VIRT_GIC_VERSION_2) { 929 create_v2m(vms); 930 } 931 } 932 933 static void create_uart(const VirtMachineState *vms, int uart, 934 MemoryRegion *mem, Chardev *chr, bool secure) 935 { 936 char *nodename; 937 hwaddr base = vms->memmap[uart].base; 938 hwaddr size = vms->memmap[uart].size; 939 int irq = vms->irqmap[uart]; 940 const char compat[] = "arm,pl011\0arm,primecell"; 941 const char clocknames[] = "uartclk\0apb_pclk"; 942 DeviceState *dev = qdev_new(TYPE_PL011); 943 SysBusDevice *s = SYS_BUS_DEVICE(dev); 944 MachineState *ms = MACHINE(vms); 945 946 qdev_prop_set_chr(dev, "chardev", chr); 947 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal); 948 memory_region_add_subregion(mem, base, 949 sysbus_mmio_get_region(s, 0)); 950 sysbus_connect_irq(s, 0, qdev_get_gpio_in(vms->gic, irq)); 951 952 nodename = g_strdup_printf("/pl011@%" PRIx64, base); 953 qemu_fdt_add_subnode(ms->fdt, nodename); 954 /* Note that we can't use setprop_string because of the embedded NUL */ 955 qemu_fdt_setprop(ms->fdt, nodename, "compatible", 956 compat, sizeof(compat)); 957 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg", 958 2, base, 2, size); 959 qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupts", 960 GIC_FDT_IRQ_TYPE_SPI, irq, 961 GIC_FDT_IRQ_FLAGS_LEVEL_HI); 962 qemu_fdt_setprop_cells(ms->fdt, nodename, "clocks", 963 vms->clock_phandle, vms->clock_phandle); 964 qemu_fdt_setprop(ms->fdt, nodename, "clock-names", 965 clocknames, sizeof(clocknames)); 966 967 if (uart == VIRT_UART0) { 968 qemu_fdt_setprop_string(ms->fdt, "/chosen", "stdout-path", nodename); 969 qemu_fdt_setprop_string(ms->fdt, "/aliases", "serial0", nodename); 970 } else { 971 qemu_fdt_setprop_string(ms->fdt, "/aliases", "serial1", nodename); 972 } 973 if (secure) { 974 /* Mark as not usable by the normal world */ 975 qemu_fdt_setprop_string(ms->fdt, nodename, "status", "disabled"); 976 qemu_fdt_setprop_string(ms->fdt, nodename, "secure-status", "okay"); 977 978 qemu_fdt_setprop_string(ms->fdt, "/secure-chosen", "stdout-path", 979 nodename); 980 } 981 982 g_free(nodename); 983 } 984 985 static void create_rtc(const VirtMachineState *vms) 986 { 987 char *nodename; 988 hwaddr base = vms->memmap[VIRT_RTC].base; 989 hwaddr size = vms->memmap[VIRT_RTC].size; 990 int irq = vms->irqmap[VIRT_RTC]; 991 const char compat[] = "arm,pl031\0arm,primecell"; 992 MachineState *ms = MACHINE(vms); 993 994 sysbus_create_simple("pl031", base, qdev_get_gpio_in(vms->gic, irq)); 995 996 nodename = g_strdup_printf("/pl031@%" PRIx64, base); 997 qemu_fdt_add_subnode(ms->fdt, nodename); 998 qemu_fdt_setprop(ms->fdt, nodename, "compatible", compat, sizeof(compat)); 999 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg", 1000 2, base, 2, size); 1001 qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupts", 1002 GIC_FDT_IRQ_TYPE_SPI, irq, 1003 GIC_FDT_IRQ_FLAGS_LEVEL_HI); 1004 qemu_fdt_setprop_cell(ms->fdt, nodename, "clocks", vms->clock_phandle); 1005 qemu_fdt_setprop_string(ms->fdt, nodename, "clock-names", "apb_pclk"); 1006 g_free(nodename); 1007 } 1008 1009 static DeviceState *gpio_key_dev; 1010 static void virt_powerdown_req(Notifier *n, void *opaque) 1011 { 1012 VirtMachineState *s = container_of(n, VirtMachineState, powerdown_notifier); 1013 1014 if (s->acpi_dev) { 1015 acpi_send_event(s->acpi_dev, ACPI_POWER_DOWN_STATUS); 1016 } else { 1017 /* use gpio Pin for power button event */ 1018 qemu_set_irq(qdev_get_gpio_in(gpio_key_dev, 0), 1); 1019 } 1020 } 1021 1022 static void create_gpio_keys(char *fdt, DeviceState *pl061_dev, 1023 uint32_t phandle) 1024 { 1025 gpio_key_dev = sysbus_create_simple("gpio-key", -1, 1026 qdev_get_gpio_in(pl061_dev, 1027 GPIO_PIN_POWER_BUTTON)); 1028 1029 qemu_fdt_add_subnode(fdt, "/gpio-keys"); 1030 qemu_fdt_setprop_string(fdt, "/gpio-keys", "compatible", "gpio-keys"); 1031 1032 qemu_fdt_add_subnode(fdt, "/gpio-keys/poweroff"); 1033 qemu_fdt_setprop_string(fdt, "/gpio-keys/poweroff", 1034 "label", "GPIO Key Poweroff"); 1035 qemu_fdt_setprop_cell(fdt, "/gpio-keys/poweroff", "linux,code", 1036 KEY_POWER); 1037 qemu_fdt_setprop_cells(fdt, "/gpio-keys/poweroff", 1038 "gpios", phandle, GPIO_PIN_POWER_BUTTON, 0); 1039 } 1040 1041 #define SECURE_GPIO_POWEROFF 0 1042 #define SECURE_GPIO_RESET 1 1043 1044 static void create_secure_gpio_pwr(char *fdt, DeviceState *pl061_dev, 1045 uint32_t phandle) 1046 { 1047 DeviceState *gpio_pwr_dev; 1048 1049 /* gpio-pwr */ 1050 gpio_pwr_dev = sysbus_create_simple("gpio-pwr", -1, NULL); 1051 1052 /* connect secure pl061 to gpio-pwr */ 1053 qdev_connect_gpio_out(pl061_dev, SECURE_GPIO_RESET, 1054 qdev_get_gpio_in_named(gpio_pwr_dev, "reset", 0)); 1055 qdev_connect_gpio_out(pl061_dev, SECURE_GPIO_POWEROFF, 1056 qdev_get_gpio_in_named(gpio_pwr_dev, "shutdown", 0)); 1057 1058 qemu_fdt_add_subnode(fdt, "/gpio-poweroff"); 1059 qemu_fdt_setprop_string(fdt, "/gpio-poweroff", "compatible", 1060 "gpio-poweroff"); 1061 qemu_fdt_setprop_cells(fdt, "/gpio-poweroff", 1062 "gpios", phandle, SECURE_GPIO_POWEROFF, 0); 1063 qemu_fdt_setprop_string(fdt, "/gpio-poweroff", "status", "disabled"); 1064 qemu_fdt_setprop_string(fdt, "/gpio-poweroff", "secure-status", 1065 "okay"); 1066 1067 qemu_fdt_add_subnode(fdt, "/gpio-restart"); 1068 qemu_fdt_setprop_string(fdt, "/gpio-restart", "compatible", 1069 "gpio-restart"); 1070 qemu_fdt_setprop_cells(fdt, "/gpio-restart", 1071 "gpios", phandle, SECURE_GPIO_RESET, 0); 1072 qemu_fdt_setprop_string(fdt, "/gpio-restart", "status", "disabled"); 1073 qemu_fdt_setprop_string(fdt, "/gpio-restart", "secure-status", 1074 "okay"); 1075 } 1076 1077 static void create_gpio_devices(const VirtMachineState *vms, int gpio, 1078 MemoryRegion *mem) 1079 { 1080 char *nodename; 1081 DeviceState *pl061_dev; 1082 hwaddr base = vms->memmap[gpio].base; 1083 hwaddr size = vms->memmap[gpio].size; 1084 int irq = vms->irqmap[gpio]; 1085 const char compat[] = "arm,pl061\0arm,primecell"; 1086 SysBusDevice *s; 1087 MachineState *ms = MACHINE(vms); 1088 1089 pl061_dev = qdev_new("pl061"); 1090 /* Pull lines down to 0 if not driven by the PL061 */ 1091 qdev_prop_set_uint32(pl061_dev, "pullups", 0); 1092 qdev_prop_set_uint32(pl061_dev, "pulldowns", 0xff); 1093 s = SYS_BUS_DEVICE(pl061_dev); 1094 sysbus_realize_and_unref(s, &error_fatal); 1095 memory_region_add_subregion(mem, base, sysbus_mmio_get_region(s, 0)); 1096 sysbus_connect_irq(s, 0, qdev_get_gpio_in(vms->gic, irq)); 1097 1098 uint32_t phandle = qemu_fdt_alloc_phandle(ms->fdt); 1099 nodename = g_strdup_printf("/pl061@%" PRIx64, base); 1100 qemu_fdt_add_subnode(ms->fdt, nodename); 1101 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg", 1102 2, base, 2, size); 1103 qemu_fdt_setprop(ms->fdt, nodename, "compatible", compat, sizeof(compat)); 1104 qemu_fdt_setprop_cell(ms->fdt, nodename, "#gpio-cells", 2); 1105 qemu_fdt_setprop(ms->fdt, nodename, "gpio-controller", NULL, 0); 1106 qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupts", 1107 GIC_FDT_IRQ_TYPE_SPI, irq, 1108 GIC_FDT_IRQ_FLAGS_LEVEL_HI); 1109 qemu_fdt_setprop_cell(ms->fdt, nodename, "clocks", vms->clock_phandle); 1110 qemu_fdt_setprop_string(ms->fdt, nodename, "clock-names", "apb_pclk"); 1111 qemu_fdt_setprop_cell(ms->fdt, nodename, "phandle", phandle); 1112 1113 if (gpio != VIRT_GPIO) { 1114 /* Mark as not usable by the normal world */ 1115 qemu_fdt_setprop_string(ms->fdt, nodename, "status", "disabled"); 1116 qemu_fdt_setprop_string(ms->fdt, nodename, "secure-status", "okay"); 1117 } 1118 g_free(nodename); 1119 1120 /* Child gpio devices */ 1121 if (gpio == VIRT_GPIO) { 1122 create_gpio_keys(ms->fdt, pl061_dev, phandle); 1123 } else { 1124 create_secure_gpio_pwr(ms->fdt, pl061_dev, phandle); 1125 } 1126 } 1127 1128 static void create_virtio_devices(const VirtMachineState *vms) 1129 { 1130 int i; 1131 hwaddr size = vms->memmap[VIRT_MMIO].size; 1132 MachineState *ms = MACHINE(vms); 1133 1134 /* We create the transports in forwards order. Since qbus_realize() 1135 * prepends (not appends) new child buses, the incrementing loop below will 1136 * create a list of virtio-mmio buses with decreasing base addresses. 1137 * 1138 * When a -device option is processed from the command line, 1139 * qbus_find_recursive() picks the next free virtio-mmio bus in forwards 1140 * order. The upshot is that -device options in increasing command line 1141 * order are mapped to virtio-mmio buses with decreasing base addresses. 1142 * 1143 * When this code was originally written, that arrangement ensured that the 1144 * guest Linux kernel would give the lowest "name" (/dev/vda, eth0, etc) to 1145 * the first -device on the command line. (The end-to-end order is a 1146 * function of this loop, qbus_realize(), qbus_find_recursive(), and the 1147 * guest kernel's name-to-address assignment strategy.) 1148 * 1149 * Meanwhile, the kernel's traversal seems to have been reversed; see eg. 1150 * the message, if not necessarily the code, of commit 70161ff336. 1151 * Therefore the loop now establishes the inverse of the original intent. 1152 * 1153 * Unfortunately, we can't counteract the kernel change by reversing the 1154 * loop; it would break existing command lines. 1155 * 1156 * In any case, the kernel makes no guarantee about the stability of 1157 * enumeration order of virtio devices (as demonstrated by it changing 1158 * between kernel versions). For reliable and stable identification 1159 * of disks users must use UUIDs or similar mechanisms. 1160 */ 1161 for (i = 0; i < NUM_VIRTIO_TRANSPORTS; i++) { 1162 int irq = vms->irqmap[VIRT_MMIO] + i; 1163 hwaddr base = vms->memmap[VIRT_MMIO].base + i * size; 1164 1165 sysbus_create_simple("virtio-mmio", base, 1166 qdev_get_gpio_in(vms->gic, irq)); 1167 } 1168 1169 /* We add dtb nodes in reverse order so that they appear in the finished 1170 * device tree lowest address first. 1171 * 1172 * Note that this mapping is independent of the loop above. The previous 1173 * loop influences virtio device to virtio transport assignment, whereas 1174 * this loop controls how virtio transports are laid out in the dtb. 1175 */ 1176 for (i = NUM_VIRTIO_TRANSPORTS - 1; i >= 0; i--) { 1177 char *nodename; 1178 int irq = vms->irqmap[VIRT_MMIO] + i; 1179 hwaddr base = vms->memmap[VIRT_MMIO].base + i * size; 1180 1181 nodename = g_strdup_printf("/virtio_mmio@%" PRIx64, base); 1182 qemu_fdt_add_subnode(ms->fdt, nodename); 1183 qemu_fdt_setprop_string(ms->fdt, nodename, 1184 "compatible", "virtio,mmio"); 1185 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg", 1186 2, base, 2, size); 1187 qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupts", 1188 GIC_FDT_IRQ_TYPE_SPI, irq, 1189 GIC_FDT_IRQ_FLAGS_EDGE_LO_HI); 1190 qemu_fdt_setprop(ms->fdt, nodename, "dma-coherent", NULL, 0); 1191 g_free(nodename); 1192 } 1193 } 1194 1195 #define VIRT_FLASH_SECTOR_SIZE (256 * KiB) 1196 1197 static PFlashCFI01 *virt_flash_create1(VirtMachineState *vms, 1198 const char *name, 1199 const char *alias_prop_name) 1200 { 1201 /* 1202 * Create a single flash device. We use the same parameters as 1203 * the flash devices on the Versatile Express board. 1204 */ 1205 DeviceState *dev = qdev_new(TYPE_PFLASH_CFI01); 1206 1207 qdev_prop_set_uint64(dev, "sector-length", VIRT_FLASH_SECTOR_SIZE); 1208 qdev_prop_set_uint8(dev, "width", 4); 1209 qdev_prop_set_uint8(dev, "device-width", 2); 1210 qdev_prop_set_bit(dev, "big-endian", false); 1211 qdev_prop_set_uint16(dev, "id0", 0x89); 1212 qdev_prop_set_uint16(dev, "id1", 0x18); 1213 qdev_prop_set_uint16(dev, "id2", 0x00); 1214 qdev_prop_set_uint16(dev, "id3", 0x00); 1215 qdev_prop_set_string(dev, "name", name); 1216 object_property_add_child(OBJECT(vms), name, OBJECT(dev)); 1217 object_property_add_alias(OBJECT(vms), alias_prop_name, 1218 OBJECT(dev), "drive"); 1219 return PFLASH_CFI01(dev); 1220 } 1221 1222 static void virt_flash_create(VirtMachineState *vms) 1223 { 1224 vms->flash[0] = virt_flash_create1(vms, "virt.flash0", "pflash0"); 1225 vms->flash[1] = virt_flash_create1(vms, "virt.flash1", "pflash1"); 1226 } 1227 1228 static void virt_flash_map1(PFlashCFI01 *flash, 1229 hwaddr base, hwaddr size, 1230 MemoryRegion *sysmem) 1231 { 1232 DeviceState *dev = DEVICE(flash); 1233 1234 assert(QEMU_IS_ALIGNED(size, VIRT_FLASH_SECTOR_SIZE)); 1235 assert(size / VIRT_FLASH_SECTOR_SIZE <= UINT32_MAX); 1236 qdev_prop_set_uint32(dev, "num-blocks", size / VIRT_FLASH_SECTOR_SIZE); 1237 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal); 1238 1239 memory_region_add_subregion(sysmem, base, 1240 sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 1241 0)); 1242 } 1243 1244 static void virt_flash_map(VirtMachineState *vms, 1245 MemoryRegion *sysmem, 1246 MemoryRegion *secure_sysmem) 1247 { 1248 /* 1249 * Map two flash devices to fill the VIRT_FLASH space in the memmap. 1250 * sysmem is the system memory space. secure_sysmem is the secure view 1251 * of the system, and the first flash device should be made visible only 1252 * there. The second flash device is visible to both secure and nonsecure. 1253 * If sysmem == secure_sysmem this means there is no separate Secure 1254 * address space and both flash devices are generally visible. 1255 */ 1256 hwaddr flashsize = vms->memmap[VIRT_FLASH].size / 2; 1257 hwaddr flashbase = vms->memmap[VIRT_FLASH].base; 1258 1259 virt_flash_map1(vms->flash[0], flashbase, flashsize, 1260 secure_sysmem); 1261 virt_flash_map1(vms->flash[1], flashbase + flashsize, flashsize, 1262 sysmem); 1263 } 1264 1265 static void virt_flash_fdt(VirtMachineState *vms, 1266 MemoryRegion *sysmem, 1267 MemoryRegion *secure_sysmem) 1268 { 1269 hwaddr flashsize = vms->memmap[VIRT_FLASH].size / 2; 1270 hwaddr flashbase = vms->memmap[VIRT_FLASH].base; 1271 MachineState *ms = MACHINE(vms); 1272 char *nodename; 1273 1274 if (sysmem == secure_sysmem) { 1275 /* Report both flash devices as a single node in the DT */ 1276 nodename = g_strdup_printf("/flash@%" PRIx64, flashbase); 1277 qemu_fdt_add_subnode(ms->fdt, nodename); 1278 qemu_fdt_setprop_string(ms->fdt, nodename, "compatible", "cfi-flash"); 1279 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg", 1280 2, flashbase, 2, flashsize, 1281 2, flashbase + flashsize, 2, flashsize); 1282 qemu_fdt_setprop_cell(ms->fdt, nodename, "bank-width", 4); 1283 g_free(nodename); 1284 } else { 1285 /* 1286 * Report the devices as separate nodes so we can mark one as 1287 * only visible to the secure world. 1288 */ 1289 nodename = g_strdup_printf("/secflash@%" PRIx64, flashbase); 1290 qemu_fdt_add_subnode(ms->fdt, nodename); 1291 qemu_fdt_setprop_string(ms->fdt, nodename, "compatible", "cfi-flash"); 1292 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg", 1293 2, flashbase, 2, flashsize); 1294 qemu_fdt_setprop_cell(ms->fdt, nodename, "bank-width", 4); 1295 qemu_fdt_setprop_string(ms->fdt, nodename, "status", "disabled"); 1296 qemu_fdt_setprop_string(ms->fdt, nodename, "secure-status", "okay"); 1297 g_free(nodename); 1298 1299 nodename = g_strdup_printf("/flash@%" PRIx64, flashbase + flashsize); 1300 qemu_fdt_add_subnode(ms->fdt, nodename); 1301 qemu_fdt_setprop_string(ms->fdt, nodename, "compatible", "cfi-flash"); 1302 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg", 1303 2, flashbase + flashsize, 2, flashsize); 1304 qemu_fdt_setprop_cell(ms->fdt, nodename, "bank-width", 4); 1305 g_free(nodename); 1306 } 1307 } 1308 1309 static bool virt_firmware_init(VirtMachineState *vms, 1310 MemoryRegion *sysmem, 1311 MemoryRegion *secure_sysmem) 1312 { 1313 int i; 1314 const char *bios_name; 1315 BlockBackend *pflash_blk0; 1316 1317 /* Map legacy -drive if=pflash to machine properties */ 1318 for (i = 0; i < ARRAY_SIZE(vms->flash); i++) { 1319 pflash_cfi01_legacy_drive(vms->flash[i], 1320 drive_get(IF_PFLASH, 0, i)); 1321 } 1322 1323 virt_flash_map(vms, sysmem, secure_sysmem); 1324 1325 pflash_blk0 = pflash_cfi01_get_blk(vms->flash[0]); 1326 1327 bios_name = MACHINE(vms)->firmware; 1328 if (bios_name) { 1329 char *fname; 1330 MemoryRegion *mr; 1331 int image_size; 1332 1333 if (pflash_blk0) { 1334 error_report("The contents of the first flash device may be " 1335 "specified with -bios or with -drive if=pflash... " 1336 "but you cannot use both options at once"); 1337 exit(1); 1338 } 1339 1340 /* Fall back to -bios */ 1341 1342 fname = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name); 1343 if (!fname) { 1344 error_report("Could not find ROM image '%s'", bios_name); 1345 exit(1); 1346 } 1347 mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(vms->flash[0]), 0); 1348 image_size = load_image_mr(fname, mr); 1349 g_free(fname); 1350 if (image_size < 0) { 1351 error_report("Could not load ROM image '%s'", bios_name); 1352 exit(1); 1353 } 1354 } 1355 1356 return pflash_blk0 || bios_name; 1357 } 1358 1359 static FWCfgState *create_fw_cfg(const VirtMachineState *vms, AddressSpace *as) 1360 { 1361 MachineState *ms = MACHINE(vms); 1362 hwaddr base = vms->memmap[VIRT_FW_CFG].base; 1363 hwaddr size = vms->memmap[VIRT_FW_CFG].size; 1364 FWCfgState *fw_cfg; 1365 char *nodename; 1366 1367 fw_cfg = fw_cfg_init_mem_wide(base + 8, base, 8, base + 16, as); 1368 fw_cfg_add_i16(fw_cfg, FW_CFG_NB_CPUS, (uint16_t)ms->smp.cpus); 1369 1370 nodename = g_strdup_printf("/fw-cfg@%" PRIx64, base); 1371 qemu_fdt_add_subnode(ms->fdt, nodename); 1372 qemu_fdt_setprop_string(ms->fdt, nodename, 1373 "compatible", "qemu,fw-cfg-mmio"); 1374 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg", 1375 2, base, 2, size); 1376 qemu_fdt_setprop(ms->fdt, nodename, "dma-coherent", NULL, 0); 1377 g_free(nodename); 1378 return fw_cfg; 1379 } 1380 1381 static void create_pcie_irq_map(const MachineState *ms, 1382 uint32_t gic_phandle, 1383 int first_irq, const char *nodename) 1384 { 1385 int devfn, pin; 1386 uint32_t full_irq_map[4 * 4 * 10] = { 0 }; 1387 uint32_t *irq_map = full_irq_map; 1388 1389 for (devfn = 0; devfn <= 0x18; devfn += 0x8) { 1390 for (pin = 0; pin < 4; pin++) { 1391 int irq_type = GIC_FDT_IRQ_TYPE_SPI; 1392 int irq_nr = first_irq + ((pin + PCI_SLOT(devfn)) % PCI_NUM_PINS); 1393 int irq_level = GIC_FDT_IRQ_FLAGS_LEVEL_HI; 1394 int i; 1395 1396 uint32_t map[] = { 1397 devfn << 8, 0, 0, /* devfn */ 1398 pin + 1, /* PCI pin */ 1399 gic_phandle, 0, 0, irq_type, irq_nr, irq_level }; /* GIC irq */ 1400 1401 /* Convert map to big endian */ 1402 for (i = 0; i < 10; i++) { 1403 irq_map[i] = cpu_to_be32(map[i]); 1404 } 1405 irq_map += 10; 1406 } 1407 } 1408 1409 qemu_fdt_setprop(ms->fdt, nodename, "interrupt-map", 1410 full_irq_map, sizeof(full_irq_map)); 1411 1412 qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupt-map-mask", 1413 cpu_to_be16(PCI_DEVFN(3, 0)), /* Slot 3 */ 1414 0, 0, 1415 0x7 /* PCI irq */); 1416 } 1417 1418 static void create_smmu(const VirtMachineState *vms, 1419 PCIBus *bus) 1420 { 1421 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms); 1422 char *node; 1423 const char compat[] = "arm,smmu-v3"; 1424 int irq = vms->irqmap[VIRT_SMMU]; 1425 int i; 1426 hwaddr base = vms->memmap[VIRT_SMMU].base; 1427 hwaddr size = vms->memmap[VIRT_SMMU].size; 1428 const char irq_names[] = "eventq\0priq\0cmdq-sync\0gerror"; 1429 DeviceState *dev; 1430 MachineState *ms = MACHINE(vms); 1431 1432 if (vms->iommu != VIRT_IOMMU_SMMUV3 || !vms->iommu_phandle) { 1433 return; 1434 } 1435 1436 dev = qdev_new(TYPE_ARM_SMMUV3); 1437 1438 if (!vmc->no_nested_smmu) { 1439 object_property_set_str(OBJECT(dev), "stage", "nested", &error_fatal); 1440 } 1441 object_property_set_link(OBJECT(dev), "primary-bus", OBJECT(bus), 1442 &error_abort); 1443 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal); 1444 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, base); 1445 for (i = 0; i < NUM_SMMU_IRQS; i++) { 1446 sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, 1447 qdev_get_gpio_in(vms->gic, irq + i)); 1448 } 1449 1450 node = g_strdup_printf("/smmuv3@%" PRIx64, base); 1451 qemu_fdt_add_subnode(ms->fdt, node); 1452 qemu_fdt_setprop(ms->fdt, node, "compatible", compat, sizeof(compat)); 1453 qemu_fdt_setprop_sized_cells(ms->fdt, node, "reg", 2, base, 2, size); 1454 1455 qemu_fdt_setprop_cells(ms->fdt, node, "interrupts", 1456 GIC_FDT_IRQ_TYPE_SPI, irq , GIC_FDT_IRQ_FLAGS_EDGE_LO_HI, 1457 GIC_FDT_IRQ_TYPE_SPI, irq + 1, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI, 1458 GIC_FDT_IRQ_TYPE_SPI, irq + 2, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI, 1459 GIC_FDT_IRQ_TYPE_SPI, irq + 3, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI); 1460 1461 qemu_fdt_setprop(ms->fdt, node, "interrupt-names", irq_names, 1462 sizeof(irq_names)); 1463 1464 qemu_fdt_setprop(ms->fdt, node, "dma-coherent", NULL, 0); 1465 1466 qemu_fdt_setprop_cell(ms->fdt, node, "#iommu-cells", 1); 1467 1468 qemu_fdt_setprop_cell(ms->fdt, node, "phandle", vms->iommu_phandle); 1469 g_free(node); 1470 } 1471 1472 static void create_virtio_iommu_dt_bindings(VirtMachineState *vms) 1473 { 1474 const char compat[] = "virtio,pci-iommu\0pci1af4,1057"; 1475 uint16_t bdf = vms->virtio_iommu_bdf; 1476 MachineState *ms = MACHINE(vms); 1477 char *node; 1478 1479 vms->iommu_phandle = qemu_fdt_alloc_phandle(ms->fdt); 1480 1481 node = g_strdup_printf("%s/virtio_iommu@%x,%x", vms->pciehb_nodename, 1482 PCI_SLOT(bdf), PCI_FUNC(bdf)); 1483 qemu_fdt_add_subnode(ms->fdt, node); 1484 qemu_fdt_setprop(ms->fdt, node, "compatible", compat, sizeof(compat)); 1485 qemu_fdt_setprop_sized_cells(ms->fdt, node, "reg", 1486 1, bdf << 8, 1, 0, 1, 0, 1487 1, 0, 1, 0); 1488 1489 qemu_fdt_setprop_cell(ms->fdt, node, "#iommu-cells", 1); 1490 qemu_fdt_setprop_cell(ms->fdt, node, "phandle", vms->iommu_phandle); 1491 g_free(node); 1492 1493 qemu_fdt_setprop_cells(ms->fdt, vms->pciehb_nodename, "iommu-map", 1494 0x0, vms->iommu_phandle, 0x0, bdf, 1495 bdf + 1, vms->iommu_phandle, bdf + 1, 0xffff - bdf); 1496 } 1497 1498 static void create_pcie(VirtMachineState *vms) 1499 { 1500 hwaddr base_mmio = vms->memmap[VIRT_PCIE_MMIO].base; 1501 hwaddr size_mmio = vms->memmap[VIRT_PCIE_MMIO].size; 1502 hwaddr base_mmio_high = vms->memmap[VIRT_HIGH_PCIE_MMIO].base; 1503 hwaddr size_mmio_high = vms->memmap[VIRT_HIGH_PCIE_MMIO].size; 1504 hwaddr base_pio = vms->memmap[VIRT_PCIE_PIO].base; 1505 hwaddr size_pio = vms->memmap[VIRT_PCIE_PIO].size; 1506 hwaddr base_ecam, size_ecam; 1507 hwaddr base = base_mmio; 1508 int nr_pcie_buses; 1509 int irq = vms->irqmap[VIRT_PCIE]; 1510 MemoryRegion *mmio_alias; 1511 MemoryRegion *mmio_reg; 1512 MemoryRegion *ecam_alias; 1513 MemoryRegion *ecam_reg; 1514 DeviceState *dev; 1515 char *nodename; 1516 int i, ecam_id; 1517 PCIHostState *pci; 1518 MachineState *ms = MACHINE(vms); 1519 MachineClass *mc = MACHINE_GET_CLASS(ms); 1520 1521 dev = qdev_new(TYPE_GPEX_HOST); 1522 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal); 1523 1524 ecam_id = VIRT_ECAM_ID(vms->highmem_ecam); 1525 base_ecam = vms->memmap[ecam_id].base; 1526 size_ecam = vms->memmap[ecam_id].size; 1527 nr_pcie_buses = size_ecam / PCIE_MMCFG_SIZE_MIN; 1528 /* Map only the first size_ecam bytes of ECAM space */ 1529 ecam_alias = g_new0(MemoryRegion, 1); 1530 ecam_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 0); 1531 memory_region_init_alias(ecam_alias, OBJECT(dev), "pcie-ecam", 1532 ecam_reg, 0, size_ecam); 1533 memory_region_add_subregion(get_system_memory(), base_ecam, ecam_alias); 1534 1535 /* Map the MMIO window into system address space so as to expose 1536 * the section of PCI MMIO space which starts at the same base address 1537 * (ie 1:1 mapping for that part of PCI MMIO space visible through 1538 * the window). 1539 */ 1540 mmio_alias = g_new0(MemoryRegion, 1); 1541 mmio_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 1); 1542 memory_region_init_alias(mmio_alias, OBJECT(dev), "pcie-mmio", 1543 mmio_reg, base_mmio, size_mmio); 1544 memory_region_add_subregion(get_system_memory(), base_mmio, mmio_alias); 1545 1546 if (vms->highmem_mmio) { 1547 /* Map high MMIO space */ 1548 MemoryRegion *high_mmio_alias = g_new0(MemoryRegion, 1); 1549 1550 memory_region_init_alias(high_mmio_alias, OBJECT(dev), "pcie-mmio-high", 1551 mmio_reg, base_mmio_high, size_mmio_high); 1552 memory_region_add_subregion(get_system_memory(), base_mmio_high, 1553 high_mmio_alias); 1554 } 1555 1556 /* Map IO port space */ 1557 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 2, base_pio); 1558 1559 for (i = 0; i < PCI_NUM_PINS; i++) { 1560 sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, 1561 qdev_get_gpio_in(vms->gic, irq + i)); 1562 gpex_set_irq_num(GPEX_HOST(dev), i, irq + i); 1563 } 1564 1565 pci = PCI_HOST_BRIDGE(dev); 1566 pci->bypass_iommu = vms->default_bus_bypass_iommu; 1567 vms->bus = pci->bus; 1568 if (vms->bus) { 1569 pci_init_nic_devices(pci->bus, mc->default_nic); 1570 } 1571 1572 nodename = vms->pciehb_nodename = g_strdup_printf("/pcie@%" PRIx64, base); 1573 qemu_fdt_add_subnode(ms->fdt, nodename); 1574 qemu_fdt_setprop_string(ms->fdt, nodename, 1575 "compatible", "pci-host-ecam-generic"); 1576 qemu_fdt_setprop_string(ms->fdt, nodename, "device_type", "pci"); 1577 qemu_fdt_setprop_cell(ms->fdt, nodename, "#address-cells", 3); 1578 qemu_fdt_setprop_cell(ms->fdt, nodename, "#size-cells", 2); 1579 qemu_fdt_setprop_cell(ms->fdt, nodename, "linux,pci-domain", 0); 1580 qemu_fdt_setprop_cells(ms->fdt, nodename, "bus-range", 0, 1581 nr_pcie_buses - 1); 1582 qemu_fdt_setprop(ms->fdt, nodename, "dma-coherent", NULL, 0); 1583 1584 if (vms->msi_phandle) { 1585 qemu_fdt_setprop_cells(ms->fdt, nodename, "msi-map", 1586 0, vms->msi_phandle, 0, 0x10000); 1587 } 1588 1589 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg", 1590 2, base_ecam, 2, size_ecam); 1591 1592 if (vms->highmem_mmio) { 1593 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "ranges", 1594 1, FDT_PCI_RANGE_IOPORT, 2, 0, 1595 2, base_pio, 2, size_pio, 1596 1, FDT_PCI_RANGE_MMIO, 2, base_mmio, 1597 2, base_mmio, 2, size_mmio, 1598 1, FDT_PCI_RANGE_MMIO_64BIT, 1599 2, base_mmio_high, 1600 2, base_mmio_high, 2, size_mmio_high); 1601 } else { 1602 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "ranges", 1603 1, FDT_PCI_RANGE_IOPORT, 2, 0, 1604 2, base_pio, 2, size_pio, 1605 1, FDT_PCI_RANGE_MMIO, 2, base_mmio, 1606 2, base_mmio, 2, size_mmio); 1607 } 1608 1609 qemu_fdt_setprop_cell(ms->fdt, nodename, "#interrupt-cells", 1); 1610 create_pcie_irq_map(ms, vms->gic_phandle, irq, nodename); 1611 1612 if (vms->iommu) { 1613 vms->iommu_phandle = qemu_fdt_alloc_phandle(ms->fdt); 1614 1615 switch (vms->iommu) { 1616 case VIRT_IOMMU_SMMUV3: 1617 create_smmu(vms, vms->bus); 1618 qemu_fdt_setprop_cells(ms->fdt, nodename, "iommu-map", 1619 0x0, vms->iommu_phandle, 0x0, 0x10000); 1620 break; 1621 default: 1622 g_assert_not_reached(); 1623 } 1624 } 1625 } 1626 1627 static void create_platform_bus(VirtMachineState *vms) 1628 { 1629 DeviceState *dev; 1630 SysBusDevice *s; 1631 int i; 1632 MemoryRegion *sysmem = get_system_memory(); 1633 1634 dev = qdev_new(TYPE_PLATFORM_BUS_DEVICE); 1635 dev->id = g_strdup(TYPE_PLATFORM_BUS_DEVICE); 1636 qdev_prop_set_uint32(dev, "num_irqs", PLATFORM_BUS_NUM_IRQS); 1637 qdev_prop_set_uint32(dev, "mmio_size", vms->memmap[VIRT_PLATFORM_BUS].size); 1638 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal); 1639 vms->platform_bus_dev = dev; 1640 1641 s = SYS_BUS_DEVICE(dev); 1642 for (i = 0; i < PLATFORM_BUS_NUM_IRQS; i++) { 1643 int irq = vms->irqmap[VIRT_PLATFORM_BUS] + i; 1644 sysbus_connect_irq(s, i, qdev_get_gpio_in(vms->gic, irq)); 1645 } 1646 1647 memory_region_add_subregion(sysmem, 1648 vms->memmap[VIRT_PLATFORM_BUS].base, 1649 sysbus_mmio_get_region(s, 0)); 1650 } 1651 1652 static void create_tag_ram(MemoryRegion *tag_sysmem, 1653 hwaddr base, hwaddr size, 1654 const char *name) 1655 { 1656 MemoryRegion *tagram = g_new(MemoryRegion, 1); 1657 1658 memory_region_init_ram(tagram, NULL, name, size / 32, &error_fatal); 1659 memory_region_add_subregion(tag_sysmem, base / 32, tagram); 1660 } 1661 1662 static void create_secure_ram(VirtMachineState *vms, 1663 MemoryRegion *secure_sysmem, 1664 MemoryRegion *secure_tag_sysmem) 1665 { 1666 MemoryRegion *secram = g_new(MemoryRegion, 1); 1667 char *nodename; 1668 hwaddr base = vms->memmap[VIRT_SECURE_MEM].base; 1669 hwaddr size = vms->memmap[VIRT_SECURE_MEM].size; 1670 MachineState *ms = MACHINE(vms); 1671 1672 memory_region_init_ram(secram, NULL, "virt.secure-ram", size, 1673 &error_fatal); 1674 memory_region_add_subregion(secure_sysmem, base, secram); 1675 1676 nodename = g_strdup_printf("/secram@%" PRIx64, base); 1677 qemu_fdt_add_subnode(ms->fdt, nodename); 1678 qemu_fdt_setprop_string(ms->fdt, nodename, "device_type", "memory"); 1679 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg", 2, base, 2, size); 1680 qemu_fdt_setprop_string(ms->fdt, nodename, "status", "disabled"); 1681 qemu_fdt_setprop_string(ms->fdt, nodename, "secure-status", "okay"); 1682 1683 if (secure_tag_sysmem) { 1684 create_tag_ram(secure_tag_sysmem, base, size, "mach-virt.secure-tag"); 1685 } 1686 1687 g_free(nodename); 1688 } 1689 1690 static void *machvirt_dtb(const struct arm_boot_info *binfo, int *fdt_size) 1691 { 1692 const VirtMachineState *board = container_of(binfo, VirtMachineState, 1693 bootinfo); 1694 MachineState *ms = MACHINE(board); 1695 1696 1697 *fdt_size = board->fdt_size; 1698 return ms->fdt; 1699 } 1700 1701 static void virt_build_smbios(VirtMachineState *vms) 1702 { 1703 MachineClass *mc = MACHINE_GET_CLASS(vms); 1704 MachineState *ms = MACHINE(vms); 1705 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms); 1706 uint8_t *smbios_tables, *smbios_anchor; 1707 size_t smbios_tables_len, smbios_anchor_len; 1708 struct smbios_phys_mem_area mem_array; 1709 const char *product = "QEMU Virtual Machine"; 1710 1711 if (kvm_enabled()) { 1712 product = "KVM Virtual Machine"; 1713 } 1714 1715 smbios_set_defaults("QEMU", product, 1716 vmc->smbios_old_sys_ver ? "1.0" : mc->name); 1717 1718 /* build the array of physical mem area from base_memmap */ 1719 mem_array.address = vms->memmap[VIRT_MEM].base; 1720 mem_array.length = ms->ram_size; 1721 1722 smbios_get_tables(ms, SMBIOS_ENTRY_POINT_TYPE_64, &mem_array, 1, 1723 &smbios_tables, &smbios_tables_len, 1724 &smbios_anchor, &smbios_anchor_len, 1725 &error_fatal); 1726 1727 if (smbios_anchor) { 1728 fw_cfg_add_file(vms->fw_cfg, "etc/smbios/smbios-tables", 1729 smbios_tables, smbios_tables_len); 1730 fw_cfg_add_file(vms->fw_cfg, "etc/smbios/smbios-anchor", 1731 smbios_anchor, smbios_anchor_len); 1732 } 1733 } 1734 1735 static 1736 void virt_machine_done(Notifier *notifier, void *data) 1737 { 1738 VirtMachineState *vms = container_of(notifier, VirtMachineState, 1739 machine_done); 1740 MachineState *ms = MACHINE(vms); 1741 ARMCPU *cpu = ARM_CPU(first_cpu); 1742 struct arm_boot_info *info = &vms->bootinfo; 1743 AddressSpace *as = arm_boot_address_space(cpu, info); 1744 1745 /* 1746 * If the user provided a dtb, we assume the dynamic sysbus nodes 1747 * already are integrated there. This corresponds to a use case where 1748 * the dynamic sysbus nodes are complex and their generation is not yet 1749 * supported. In that case the user can take charge of the guest dt 1750 * while qemu takes charge of the qom stuff. 1751 */ 1752 if (info->dtb_filename == NULL) { 1753 platform_bus_add_all_fdt_nodes(ms->fdt, "/intc", 1754 vms->memmap[VIRT_PLATFORM_BUS].base, 1755 vms->memmap[VIRT_PLATFORM_BUS].size, 1756 vms->irqmap[VIRT_PLATFORM_BUS]); 1757 } 1758 if (arm_load_dtb(info->dtb_start, info, info->dtb_limit, as, ms, cpu) < 0) { 1759 exit(1); 1760 } 1761 1762 pci_bus_add_fw_cfg_extra_pci_roots(vms->fw_cfg, vms->bus, 1763 &error_abort); 1764 1765 virt_acpi_setup(vms); 1766 virt_build_smbios(vms); 1767 } 1768 1769 static uint64_t virt_cpu_mp_affinity(VirtMachineState *vms, int idx) 1770 { 1771 uint8_t clustersz = ARM_DEFAULT_CPUS_PER_CLUSTER; 1772 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms); 1773 1774 if (!vmc->disallow_affinity_adjustment) { 1775 /* Adjust MPIDR like 64-bit KVM hosts, which incorporate the 1776 * GIC's target-list limitations. 32-bit KVM hosts currently 1777 * always create clusters of 4 CPUs, but that is expected to 1778 * change when they gain support for gicv3. When KVM is enabled 1779 * it will override the changes we make here, therefore our 1780 * purposes are to make TCG consistent (with 64-bit KVM hosts) 1781 * and to improve SGI efficiency. 1782 */ 1783 if (vms->gic_version == VIRT_GIC_VERSION_2) { 1784 clustersz = GIC_TARGETLIST_BITS; 1785 } else { 1786 clustersz = GICV3_TARGETLIST_BITS; 1787 } 1788 } 1789 return arm_build_mp_affinity(idx, clustersz); 1790 } 1791 1792 static inline bool *virt_get_high_memmap_enabled(VirtMachineState *vms, 1793 int index) 1794 { 1795 bool *enabled_array[] = { 1796 &vms->highmem_redists, 1797 &vms->highmem_ecam, 1798 &vms->highmem_mmio, 1799 }; 1800 1801 assert(ARRAY_SIZE(extended_memmap) - VIRT_LOWMEMMAP_LAST == 1802 ARRAY_SIZE(enabled_array)); 1803 assert(index - VIRT_LOWMEMMAP_LAST < ARRAY_SIZE(enabled_array)); 1804 1805 return enabled_array[index - VIRT_LOWMEMMAP_LAST]; 1806 } 1807 1808 static void virt_set_high_memmap(VirtMachineState *vms, 1809 hwaddr base, int pa_bits) 1810 { 1811 hwaddr region_base, region_size; 1812 bool *region_enabled, fits; 1813 int i; 1814 1815 for (i = VIRT_LOWMEMMAP_LAST; i < ARRAY_SIZE(extended_memmap); i++) { 1816 region_enabled = virt_get_high_memmap_enabled(vms, i); 1817 region_base = ROUND_UP(base, extended_memmap[i].size); 1818 region_size = extended_memmap[i].size; 1819 1820 vms->memmap[i].base = region_base; 1821 vms->memmap[i].size = region_size; 1822 1823 /* 1824 * Check each device to see if it fits in the PA space, 1825 * moving highest_gpa as we go. For compatibility, move 1826 * highest_gpa for disabled fitting devices as well, if 1827 * the compact layout has been disabled. 1828 * 1829 * For each device that doesn't fit, disable it. 1830 */ 1831 fits = (region_base + region_size) <= BIT_ULL(pa_bits); 1832 *region_enabled &= fits; 1833 if (vms->highmem_compact && !*region_enabled) { 1834 continue; 1835 } 1836 1837 base = region_base + region_size; 1838 if (fits) { 1839 vms->highest_gpa = base - 1; 1840 } 1841 } 1842 } 1843 1844 static void virt_set_memmap(VirtMachineState *vms, int pa_bits) 1845 { 1846 MachineState *ms = MACHINE(vms); 1847 hwaddr base, device_memory_base, device_memory_size, memtop; 1848 int i; 1849 1850 vms->memmap = extended_memmap; 1851 1852 for (i = 0; i < ARRAY_SIZE(base_memmap); i++) { 1853 vms->memmap[i] = base_memmap[i]; 1854 } 1855 1856 if (ms->ram_slots > ACPI_MAX_RAM_SLOTS) { 1857 error_report("unsupported number of memory slots: %"PRIu64, 1858 ms->ram_slots); 1859 exit(EXIT_FAILURE); 1860 } 1861 1862 /* 1863 * !highmem is exactly the same as limiting the PA space to 32bit, 1864 * irrespective of the underlying capabilities of the HW. 1865 */ 1866 if (!vms->highmem) { 1867 pa_bits = 32; 1868 } 1869 1870 /* 1871 * We compute the base of the high IO region depending on the 1872 * amount of initial and device memory. The device memory start/size 1873 * is aligned on 1GiB. We never put the high IO region below 256GiB 1874 * so that if maxram_size is < 255GiB we keep the legacy memory map. 1875 * The device region size assumes 1GiB page max alignment per slot. 1876 */ 1877 device_memory_base = 1878 ROUND_UP(vms->memmap[VIRT_MEM].base + ms->ram_size, GiB); 1879 device_memory_size = ms->maxram_size - ms->ram_size + ms->ram_slots * GiB; 1880 1881 /* Base address of the high IO region */ 1882 memtop = base = device_memory_base + ROUND_UP(device_memory_size, GiB); 1883 if (memtop > BIT_ULL(pa_bits)) { 1884 error_report("Addressing limited to %d bits, but memory exceeds it by %llu bytes", 1885 pa_bits, memtop - BIT_ULL(pa_bits)); 1886 exit(EXIT_FAILURE); 1887 } 1888 if (base < device_memory_base) { 1889 error_report("maxmem/slots too huge"); 1890 exit(EXIT_FAILURE); 1891 } 1892 if (base < vms->memmap[VIRT_MEM].base + LEGACY_RAMLIMIT_BYTES) { 1893 base = vms->memmap[VIRT_MEM].base + LEGACY_RAMLIMIT_BYTES; 1894 } 1895 1896 /* We know for sure that at least the memory fits in the PA space */ 1897 vms->highest_gpa = memtop - 1; 1898 1899 virt_set_high_memmap(vms, base, pa_bits); 1900 1901 if (device_memory_size > 0) { 1902 machine_memory_devices_init(ms, device_memory_base, device_memory_size); 1903 } 1904 } 1905 1906 static VirtGICType finalize_gic_version_do(const char *accel_name, 1907 VirtGICType gic_version, 1908 int gics_supported, 1909 unsigned int max_cpus) 1910 { 1911 /* Convert host/max/nosel to GIC version number */ 1912 switch (gic_version) { 1913 case VIRT_GIC_VERSION_HOST: 1914 if (!kvm_enabled()) { 1915 error_report("gic-version=host requires KVM"); 1916 exit(1); 1917 } 1918 1919 /* For KVM, gic-version=host means gic-version=max */ 1920 return finalize_gic_version_do(accel_name, VIRT_GIC_VERSION_MAX, 1921 gics_supported, max_cpus); 1922 case VIRT_GIC_VERSION_MAX: 1923 if (gics_supported & VIRT_GIC_VERSION_4_MASK) { 1924 gic_version = VIRT_GIC_VERSION_4; 1925 } else if (gics_supported & VIRT_GIC_VERSION_3_MASK) { 1926 gic_version = VIRT_GIC_VERSION_3; 1927 } else { 1928 gic_version = VIRT_GIC_VERSION_2; 1929 } 1930 break; 1931 case VIRT_GIC_VERSION_NOSEL: 1932 if ((gics_supported & VIRT_GIC_VERSION_2_MASK) && 1933 max_cpus <= GIC_NCPU) { 1934 gic_version = VIRT_GIC_VERSION_2; 1935 } else if (gics_supported & VIRT_GIC_VERSION_3_MASK) { 1936 /* 1937 * in case the host does not support v2 emulation or 1938 * the end-user requested more than 8 VCPUs we now default 1939 * to v3. In any case defaulting to v2 would be broken. 1940 */ 1941 gic_version = VIRT_GIC_VERSION_3; 1942 } else if (max_cpus > GIC_NCPU) { 1943 error_report("%s only supports GICv2 emulation but more than 8 " 1944 "vcpus are requested", accel_name); 1945 exit(1); 1946 } 1947 break; 1948 case VIRT_GIC_VERSION_2: 1949 case VIRT_GIC_VERSION_3: 1950 case VIRT_GIC_VERSION_4: 1951 break; 1952 } 1953 1954 /* Check chosen version is effectively supported */ 1955 switch (gic_version) { 1956 case VIRT_GIC_VERSION_2: 1957 if (!(gics_supported & VIRT_GIC_VERSION_2_MASK)) { 1958 error_report("%s does not support GICv2 emulation", accel_name); 1959 exit(1); 1960 } 1961 break; 1962 case VIRT_GIC_VERSION_3: 1963 if (!(gics_supported & VIRT_GIC_VERSION_3_MASK)) { 1964 error_report("%s does not support GICv3 emulation", accel_name); 1965 exit(1); 1966 } 1967 break; 1968 case VIRT_GIC_VERSION_4: 1969 if (!(gics_supported & VIRT_GIC_VERSION_4_MASK)) { 1970 error_report("%s does not support GICv4 emulation, is virtualization=on?", 1971 accel_name); 1972 exit(1); 1973 } 1974 break; 1975 default: 1976 error_report("logic error in finalize_gic_version"); 1977 exit(1); 1978 break; 1979 } 1980 1981 return gic_version; 1982 } 1983 1984 /* 1985 * finalize_gic_version - Determines the final gic_version 1986 * according to the gic-version property 1987 * 1988 * Default GIC type is v2 1989 */ 1990 static void finalize_gic_version(VirtMachineState *vms) 1991 { 1992 const char *accel_name = current_accel_name(); 1993 unsigned int max_cpus = MACHINE(vms)->smp.max_cpus; 1994 int gics_supported = 0; 1995 1996 /* Determine which GIC versions the current environment supports */ 1997 if (kvm_enabled() && kvm_irqchip_in_kernel()) { 1998 int probe_bitmap = kvm_arm_vgic_probe(); 1999 2000 if (!probe_bitmap) { 2001 error_report("Unable to determine GIC version supported by host"); 2002 exit(1); 2003 } 2004 2005 if (probe_bitmap & KVM_ARM_VGIC_V2) { 2006 gics_supported |= VIRT_GIC_VERSION_2_MASK; 2007 } 2008 if (probe_bitmap & KVM_ARM_VGIC_V3) { 2009 gics_supported |= VIRT_GIC_VERSION_3_MASK; 2010 } 2011 } else if (kvm_enabled() && !kvm_irqchip_in_kernel()) { 2012 /* KVM w/o kernel irqchip can only deal with GICv2 */ 2013 gics_supported |= VIRT_GIC_VERSION_2_MASK; 2014 accel_name = "KVM with kernel-irqchip=off"; 2015 } else if (tcg_enabled() || hvf_enabled() || qtest_enabled()) { 2016 gics_supported |= VIRT_GIC_VERSION_2_MASK; 2017 if (module_object_class_by_name("arm-gicv3")) { 2018 gics_supported |= VIRT_GIC_VERSION_3_MASK; 2019 if (vms->virt) { 2020 /* GICv4 only makes sense if CPU has EL2 */ 2021 gics_supported |= VIRT_GIC_VERSION_4_MASK; 2022 } 2023 } 2024 } else { 2025 error_report("Unsupported accelerator, can not determine GIC support"); 2026 exit(1); 2027 } 2028 2029 /* 2030 * Then convert helpers like host/max to concrete GIC versions and ensure 2031 * the desired version is supported 2032 */ 2033 vms->gic_version = finalize_gic_version_do(accel_name, vms->gic_version, 2034 gics_supported, max_cpus); 2035 } 2036 2037 /* 2038 * virt_cpu_post_init() must be called after the CPUs have 2039 * been realized and the GIC has been created. 2040 */ 2041 static void virt_cpu_post_init(VirtMachineState *vms, MemoryRegion *sysmem) 2042 { 2043 int max_cpus = MACHINE(vms)->smp.max_cpus; 2044 bool aarch64, pmu, steal_time; 2045 CPUState *cpu; 2046 2047 aarch64 = object_property_get_bool(OBJECT(first_cpu), "aarch64", NULL); 2048 pmu = object_property_get_bool(OBJECT(first_cpu), "pmu", NULL); 2049 steal_time = object_property_get_bool(OBJECT(first_cpu), 2050 "kvm-steal-time", NULL); 2051 2052 if (kvm_enabled()) { 2053 hwaddr pvtime_reg_base = vms->memmap[VIRT_PVTIME].base; 2054 hwaddr pvtime_reg_size = vms->memmap[VIRT_PVTIME].size; 2055 2056 if (steal_time) { 2057 MemoryRegion *pvtime = g_new(MemoryRegion, 1); 2058 hwaddr pvtime_size = max_cpus * PVTIME_SIZE_PER_CPU; 2059 2060 /* The memory region size must be a multiple of host page size. */ 2061 pvtime_size = REAL_HOST_PAGE_ALIGN(pvtime_size); 2062 2063 if (pvtime_size > pvtime_reg_size) { 2064 error_report("pvtime requires a %" HWADDR_PRId 2065 " byte memory region for %d CPUs," 2066 " but only %" HWADDR_PRId " has been reserved", 2067 pvtime_size, max_cpus, pvtime_reg_size); 2068 exit(1); 2069 } 2070 2071 memory_region_init_ram(pvtime, NULL, "pvtime", pvtime_size, NULL); 2072 memory_region_add_subregion(sysmem, pvtime_reg_base, pvtime); 2073 } 2074 2075 CPU_FOREACH(cpu) { 2076 if (pmu) { 2077 assert(arm_feature(&ARM_CPU(cpu)->env, ARM_FEATURE_PMU)); 2078 if (kvm_irqchip_in_kernel()) { 2079 kvm_arm_pmu_set_irq(ARM_CPU(cpu), VIRTUAL_PMU_IRQ); 2080 } 2081 kvm_arm_pmu_init(ARM_CPU(cpu)); 2082 } 2083 if (steal_time) { 2084 kvm_arm_pvtime_init(ARM_CPU(cpu), pvtime_reg_base 2085 + cpu->cpu_index 2086 * PVTIME_SIZE_PER_CPU); 2087 } 2088 } 2089 } else { 2090 if (aarch64 && vms->highmem) { 2091 int requested_pa_size = 64 - clz64(vms->highest_gpa); 2092 int pamax = arm_pamax(ARM_CPU(first_cpu)); 2093 2094 if (pamax < requested_pa_size) { 2095 error_report("VCPU supports less PA bits (%d) than " 2096 "requested by the memory map (%d)", 2097 pamax, requested_pa_size); 2098 exit(1); 2099 } 2100 } 2101 } 2102 } 2103 2104 static void machvirt_init(MachineState *machine) 2105 { 2106 VirtMachineState *vms = VIRT_MACHINE(machine); 2107 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(machine); 2108 MachineClass *mc = MACHINE_GET_CLASS(machine); 2109 const CPUArchIdList *possible_cpus; 2110 MemoryRegion *sysmem = get_system_memory(); 2111 MemoryRegion *secure_sysmem = NULL; 2112 MemoryRegion *tag_sysmem = NULL; 2113 MemoryRegion *secure_tag_sysmem = NULL; 2114 int n, virt_max_cpus; 2115 bool firmware_loaded; 2116 bool aarch64 = true; 2117 bool has_ged = !vmc->no_ged; 2118 unsigned int smp_cpus = machine->smp.cpus; 2119 unsigned int max_cpus = machine->smp.max_cpus; 2120 2121 possible_cpus = mc->possible_cpu_arch_ids(machine); 2122 2123 /* 2124 * In accelerated mode, the memory map is computed earlier in kvm_type() 2125 * for Linux, or hvf_get_physical_address_range() for macOS to create a 2126 * VM with the right number of IPA bits. 2127 */ 2128 if (!vms->memmap) { 2129 Object *cpuobj; 2130 ARMCPU *armcpu; 2131 int pa_bits; 2132 2133 /* 2134 * Instantiate a temporary CPU object to find out about what 2135 * we are about to deal with. Once this is done, get rid of 2136 * the object. 2137 */ 2138 cpuobj = object_new(possible_cpus->cpus[0].type); 2139 armcpu = ARM_CPU(cpuobj); 2140 2141 pa_bits = arm_pamax(armcpu); 2142 2143 object_unref(cpuobj); 2144 2145 virt_set_memmap(vms, pa_bits); 2146 } 2147 2148 /* We can probe only here because during property set 2149 * KVM is not available yet 2150 */ 2151 finalize_gic_version(vms); 2152 2153 if (vms->secure) { 2154 /* 2155 * The Secure view of the world is the same as the NonSecure, 2156 * but with a few extra devices. Create it as a container region 2157 * containing the system memory at low priority; any secure-only 2158 * devices go in at higher priority and take precedence. 2159 */ 2160 secure_sysmem = g_new(MemoryRegion, 1); 2161 memory_region_init(secure_sysmem, OBJECT(machine), "secure-memory", 2162 UINT64_MAX); 2163 memory_region_add_subregion_overlap(secure_sysmem, 0, sysmem, -1); 2164 } 2165 2166 firmware_loaded = virt_firmware_init(vms, sysmem, 2167 secure_sysmem ?: sysmem); 2168 2169 /* If we have an EL3 boot ROM then the assumption is that it will 2170 * implement PSCI itself, so disable QEMU's internal implementation 2171 * so it doesn't get in the way. Instead of starting secondary 2172 * CPUs in PSCI powerdown state we will start them all running and 2173 * let the boot ROM sort them out. 2174 * The usual case is that we do use QEMU's PSCI implementation; 2175 * if the guest has EL2 then we will use SMC as the conduit, 2176 * and otherwise we will use HVC (for backwards compatibility and 2177 * because if we're using KVM then we must use HVC). 2178 */ 2179 if (vms->secure && firmware_loaded) { 2180 vms->psci_conduit = QEMU_PSCI_CONDUIT_DISABLED; 2181 } else if (vms->virt) { 2182 vms->psci_conduit = QEMU_PSCI_CONDUIT_SMC; 2183 } else { 2184 vms->psci_conduit = QEMU_PSCI_CONDUIT_HVC; 2185 } 2186 2187 /* 2188 * The maximum number of CPUs depends on the GIC version, or on how 2189 * many redistributors we can fit into the memory map (which in turn 2190 * depends on whether this is a GICv3 or v4). 2191 */ 2192 if (vms->gic_version == VIRT_GIC_VERSION_2) { 2193 virt_max_cpus = GIC_NCPU; 2194 } else { 2195 virt_max_cpus = virt_redist_capacity(vms, VIRT_GIC_REDIST); 2196 if (vms->highmem_redists) { 2197 virt_max_cpus += virt_redist_capacity(vms, VIRT_HIGH_GIC_REDIST2); 2198 } 2199 } 2200 2201 if (max_cpus > virt_max_cpus) { 2202 error_report("Number of SMP CPUs requested (%d) exceeds max CPUs " 2203 "supported by machine 'mach-virt' (%d)", 2204 max_cpus, virt_max_cpus); 2205 if (vms->gic_version != VIRT_GIC_VERSION_2 && !vms->highmem_redists) { 2206 error_printf("Try 'highmem-redists=on' for more CPUs\n"); 2207 } 2208 2209 exit(1); 2210 } 2211 2212 if (vms->secure && (kvm_enabled() || hvf_enabled())) { 2213 error_report("mach-virt: %s does not support providing " 2214 "Security extensions (TrustZone) to the guest CPU", 2215 current_accel_name()); 2216 exit(1); 2217 } 2218 2219 if (vms->virt && (kvm_enabled() || hvf_enabled())) { 2220 error_report("mach-virt: %s does not support providing " 2221 "Virtualization extensions to the guest CPU", 2222 current_accel_name()); 2223 exit(1); 2224 } 2225 2226 if (vms->mte && hvf_enabled()) { 2227 error_report("mach-virt: %s does not support providing " 2228 "MTE to the guest CPU", 2229 current_accel_name()); 2230 exit(1); 2231 } 2232 2233 create_fdt(vms); 2234 2235 assert(possible_cpus->len == max_cpus); 2236 for (n = 0; n < possible_cpus->len; n++) { 2237 Object *cpuobj; 2238 CPUState *cs; 2239 2240 if (n >= smp_cpus) { 2241 break; 2242 } 2243 2244 cpuobj = object_new(possible_cpus->cpus[n].type); 2245 object_property_set_int(cpuobj, "mp-affinity", 2246 possible_cpus->cpus[n].arch_id, NULL); 2247 2248 cs = CPU(cpuobj); 2249 cs->cpu_index = n; 2250 2251 numa_cpu_pre_plug(&possible_cpus->cpus[cs->cpu_index], DEVICE(cpuobj), 2252 &error_fatal); 2253 2254 aarch64 &= object_property_get_bool(cpuobj, "aarch64", NULL); 2255 2256 if (!vms->secure) { 2257 object_property_set_bool(cpuobj, "has_el3", false, NULL); 2258 } 2259 2260 if (!vms->virt && object_property_find(cpuobj, "has_el2")) { 2261 object_property_set_bool(cpuobj, "has_el2", false, NULL); 2262 } 2263 2264 if (vmc->kvm_no_adjvtime && 2265 object_property_find(cpuobj, "kvm-no-adjvtime")) { 2266 object_property_set_bool(cpuobj, "kvm-no-adjvtime", true, NULL); 2267 } 2268 2269 if (vmc->no_kvm_steal_time && 2270 object_property_find(cpuobj, "kvm-steal-time")) { 2271 object_property_set_bool(cpuobj, "kvm-steal-time", false, NULL); 2272 } 2273 2274 if (vmc->no_pmu && object_property_find(cpuobj, "pmu")) { 2275 object_property_set_bool(cpuobj, "pmu", false, NULL); 2276 } 2277 2278 if (vmc->no_tcg_lpa2 && object_property_find(cpuobj, "lpa2")) { 2279 object_property_set_bool(cpuobj, "lpa2", false, NULL); 2280 } 2281 2282 if (object_property_find(cpuobj, "reset-cbar")) { 2283 object_property_set_int(cpuobj, "reset-cbar", 2284 vms->memmap[VIRT_CPUPERIPHS].base, 2285 &error_abort); 2286 } 2287 2288 object_property_set_link(cpuobj, "memory", OBJECT(sysmem), 2289 &error_abort); 2290 if (vms->secure) { 2291 object_property_set_link(cpuobj, "secure-memory", 2292 OBJECT(secure_sysmem), &error_abort); 2293 } 2294 2295 if (vms->mte) { 2296 if (tcg_enabled()) { 2297 /* Create the memory region only once, but link to all cpus. */ 2298 if (!tag_sysmem) { 2299 /* 2300 * The property exists only if MemTag is supported. 2301 * If it is, we must allocate the ram to back that up. 2302 */ 2303 if (!object_property_find(cpuobj, "tag-memory")) { 2304 error_report("MTE requested, but not supported " 2305 "by the guest CPU"); 2306 exit(1); 2307 } 2308 2309 tag_sysmem = g_new(MemoryRegion, 1); 2310 memory_region_init(tag_sysmem, OBJECT(machine), 2311 "tag-memory", UINT64_MAX / 32); 2312 2313 if (vms->secure) { 2314 secure_tag_sysmem = g_new(MemoryRegion, 1); 2315 memory_region_init(secure_tag_sysmem, OBJECT(machine), 2316 "secure-tag-memory", 2317 UINT64_MAX / 32); 2318 2319 /* As with ram, secure-tag takes precedence over tag. */ 2320 memory_region_add_subregion_overlap(secure_tag_sysmem, 2321 0, tag_sysmem, -1); 2322 } 2323 } 2324 2325 object_property_set_link(cpuobj, "tag-memory", 2326 OBJECT(tag_sysmem), &error_abort); 2327 if (vms->secure) { 2328 object_property_set_link(cpuobj, "secure-tag-memory", 2329 OBJECT(secure_tag_sysmem), 2330 &error_abort); 2331 } 2332 } else if (kvm_enabled()) { 2333 if (!kvm_arm_mte_supported()) { 2334 error_report("MTE requested, but not supported by KVM"); 2335 exit(1); 2336 } 2337 kvm_arm_enable_mte(cpuobj, &error_abort); 2338 } else { 2339 error_report("MTE requested, but not supported "); 2340 exit(1); 2341 } 2342 } 2343 2344 qdev_realize(DEVICE(cpuobj), NULL, &error_fatal); 2345 object_unref(cpuobj); 2346 } 2347 2348 /* Now we've created the CPUs we can see if they have the hypvirt timer */ 2349 vms->ns_el2_virt_timer_irq = ns_el2_virt_timer_present() && 2350 !vmc->no_ns_el2_virt_timer_irq; 2351 2352 fdt_add_timer_nodes(vms); 2353 fdt_add_cpu_nodes(vms); 2354 2355 memory_region_add_subregion(sysmem, vms->memmap[VIRT_MEM].base, 2356 machine->ram); 2357 2358 virt_flash_fdt(vms, sysmem, secure_sysmem ?: sysmem); 2359 2360 create_gic(vms, sysmem); 2361 2362 virt_cpu_post_init(vms, sysmem); 2363 2364 fdt_add_pmu_nodes(vms); 2365 2366 /* 2367 * The first UART always exists. If the security extensions are 2368 * enabled, the second UART also always exists. Otherwise, it only exists 2369 * if a backend is configured explicitly via '-serial <backend>'. 2370 * This avoids potentially breaking existing user setups that expect 2371 * only one NonSecure UART to be present (for instance, older EDK2 2372 * binaries). 2373 * 2374 * The nodes end up in the DTB in reverse order of creation, so we must 2375 * create UART0 last to ensure it appears as the first node in the DTB, 2376 * for compatibility with guest software that just iterates through the 2377 * DTB to find the first UART, as older versions of EDK2 do. 2378 * DTB readers that follow the spec, as Linux does, should honour the 2379 * aliases node information and /chosen/stdout-path regardless of 2380 * the order that nodes appear in the DTB. 2381 * 2382 * For similar back-compatibility reasons, if UART1 is the secure UART 2383 * we create it second (and so it appears first in the DTB), because 2384 * that's what QEMU has always done. 2385 */ 2386 if (!vms->secure) { 2387 Chardev *serial1 = serial_hd(1); 2388 2389 if (serial1) { 2390 vms->second_ns_uart_present = true; 2391 create_uart(vms, VIRT_UART1, sysmem, serial1, false); 2392 } 2393 } 2394 create_uart(vms, VIRT_UART0, sysmem, serial_hd(0), false); 2395 if (vms->secure) { 2396 create_uart(vms, VIRT_UART1, secure_sysmem, serial_hd(1), true); 2397 } 2398 2399 if (vms->secure) { 2400 create_secure_ram(vms, secure_sysmem, secure_tag_sysmem); 2401 } 2402 2403 if (tag_sysmem) { 2404 create_tag_ram(tag_sysmem, vms->memmap[VIRT_MEM].base, 2405 machine->ram_size, "mach-virt.tag"); 2406 } 2407 2408 vms->highmem_ecam &= (!firmware_loaded || aarch64); 2409 2410 create_rtc(vms); 2411 2412 create_pcie(vms); 2413 2414 if (has_ged && aarch64 && firmware_loaded && virt_is_acpi_enabled(vms)) { 2415 vms->acpi_dev = create_acpi_ged(vms); 2416 } else { 2417 create_gpio_devices(vms, VIRT_GPIO, sysmem); 2418 } 2419 2420 if (vms->secure && !vmc->no_secure_gpio) { 2421 create_gpio_devices(vms, VIRT_SECURE_GPIO, secure_sysmem); 2422 } 2423 2424 /* connect powerdown request */ 2425 vms->powerdown_notifier.notify = virt_powerdown_req; 2426 qemu_register_powerdown_notifier(&vms->powerdown_notifier); 2427 2428 /* Create mmio transports, so the user can create virtio backends 2429 * (which will be automatically plugged in to the transports). If 2430 * no backend is created the transport will just sit harmlessly idle. 2431 */ 2432 create_virtio_devices(vms); 2433 2434 vms->fw_cfg = create_fw_cfg(vms, &address_space_memory); 2435 rom_set_fw(vms->fw_cfg); 2436 2437 create_platform_bus(vms); 2438 2439 if (machine->nvdimms_state->is_enabled) { 2440 const struct AcpiGenericAddress arm_virt_nvdimm_acpi_dsmio = { 2441 .space_id = AML_AS_SYSTEM_MEMORY, 2442 .address = vms->memmap[VIRT_NVDIMM_ACPI].base, 2443 .bit_width = NVDIMM_ACPI_IO_LEN << 3 2444 }; 2445 2446 nvdimm_init_acpi_state(machine->nvdimms_state, sysmem, 2447 arm_virt_nvdimm_acpi_dsmio, 2448 vms->fw_cfg, OBJECT(vms)); 2449 } 2450 2451 vms->bootinfo.ram_size = machine->ram_size; 2452 vms->bootinfo.board_id = -1; 2453 vms->bootinfo.loader_start = vms->memmap[VIRT_MEM].base; 2454 vms->bootinfo.get_dtb = machvirt_dtb; 2455 vms->bootinfo.skip_dtb_autoload = true; 2456 vms->bootinfo.firmware_loaded = firmware_loaded; 2457 vms->bootinfo.psci_conduit = vms->psci_conduit; 2458 arm_load_kernel(ARM_CPU(first_cpu), machine, &vms->bootinfo); 2459 2460 vms->machine_done.notify = virt_machine_done; 2461 qemu_add_machine_init_done_notifier(&vms->machine_done); 2462 } 2463 2464 static bool virt_get_secure(Object *obj, Error **errp) 2465 { 2466 VirtMachineState *vms = VIRT_MACHINE(obj); 2467 2468 return vms->secure; 2469 } 2470 2471 static void virt_set_secure(Object *obj, bool value, Error **errp) 2472 { 2473 VirtMachineState *vms = VIRT_MACHINE(obj); 2474 2475 vms->secure = value; 2476 } 2477 2478 static bool virt_get_virt(Object *obj, Error **errp) 2479 { 2480 VirtMachineState *vms = VIRT_MACHINE(obj); 2481 2482 return vms->virt; 2483 } 2484 2485 static void virt_set_virt(Object *obj, bool value, Error **errp) 2486 { 2487 VirtMachineState *vms = VIRT_MACHINE(obj); 2488 2489 vms->virt = value; 2490 } 2491 2492 static bool virt_get_highmem(Object *obj, Error **errp) 2493 { 2494 VirtMachineState *vms = VIRT_MACHINE(obj); 2495 2496 return vms->highmem; 2497 } 2498 2499 static void virt_set_highmem(Object *obj, bool value, Error **errp) 2500 { 2501 VirtMachineState *vms = VIRT_MACHINE(obj); 2502 2503 vms->highmem = value; 2504 } 2505 2506 static bool virt_get_compact_highmem(Object *obj, Error **errp) 2507 { 2508 VirtMachineState *vms = VIRT_MACHINE(obj); 2509 2510 return vms->highmem_compact; 2511 } 2512 2513 static void virt_set_compact_highmem(Object *obj, bool value, Error **errp) 2514 { 2515 VirtMachineState *vms = VIRT_MACHINE(obj); 2516 2517 vms->highmem_compact = value; 2518 } 2519 2520 static bool virt_get_highmem_redists(Object *obj, Error **errp) 2521 { 2522 VirtMachineState *vms = VIRT_MACHINE(obj); 2523 2524 return vms->highmem_redists; 2525 } 2526 2527 static void virt_set_highmem_redists(Object *obj, bool value, Error **errp) 2528 { 2529 VirtMachineState *vms = VIRT_MACHINE(obj); 2530 2531 vms->highmem_redists = value; 2532 } 2533 2534 static bool virt_get_highmem_ecam(Object *obj, Error **errp) 2535 { 2536 VirtMachineState *vms = VIRT_MACHINE(obj); 2537 2538 return vms->highmem_ecam; 2539 } 2540 2541 static void virt_set_highmem_ecam(Object *obj, bool value, Error **errp) 2542 { 2543 VirtMachineState *vms = VIRT_MACHINE(obj); 2544 2545 vms->highmem_ecam = value; 2546 } 2547 2548 static bool virt_get_highmem_mmio(Object *obj, Error **errp) 2549 { 2550 VirtMachineState *vms = VIRT_MACHINE(obj); 2551 2552 return vms->highmem_mmio; 2553 } 2554 2555 static void virt_set_highmem_mmio(Object *obj, bool value, Error **errp) 2556 { 2557 VirtMachineState *vms = VIRT_MACHINE(obj); 2558 2559 vms->highmem_mmio = value; 2560 } 2561 2562 static void virt_get_highmem_mmio_size(Object *obj, Visitor *v, 2563 const char *name, void *opaque, 2564 Error **errp) 2565 { 2566 uint64_t size = extended_memmap[VIRT_HIGH_PCIE_MMIO].size; 2567 2568 visit_type_size(v, name, &size, errp); 2569 } 2570 2571 static void virt_set_highmem_mmio_size(Object *obj, Visitor *v, 2572 const char *name, void *opaque, 2573 Error **errp) 2574 { 2575 uint64_t size; 2576 2577 if (!visit_type_size(v, name, &size, errp)) { 2578 return; 2579 } 2580 2581 if (!is_power_of_2(size)) { 2582 error_setg(errp, "highmem-mmio-size is not a power of 2"); 2583 return; 2584 } 2585 2586 if (size < DEFAULT_HIGH_PCIE_MMIO_SIZE) { 2587 char *sz = size_to_str(DEFAULT_HIGH_PCIE_MMIO_SIZE); 2588 error_setg(errp, "highmem-mmio-size cannot be set to a lower value " 2589 "than the default (%s)", sz); 2590 g_free(sz); 2591 return; 2592 } 2593 2594 extended_memmap[VIRT_HIGH_PCIE_MMIO].size = size; 2595 } 2596 2597 static bool virt_get_its(Object *obj, Error **errp) 2598 { 2599 VirtMachineState *vms = VIRT_MACHINE(obj); 2600 2601 return vms->its; 2602 } 2603 2604 static void virt_set_its(Object *obj, bool value, Error **errp) 2605 { 2606 VirtMachineState *vms = VIRT_MACHINE(obj); 2607 2608 vms->its = value; 2609 } 2610 2611 static bool virt_get_dtb_randomness(Object *obj, Error **errp) 2612 { 2613 VirtMachineState *vms = VIRT_MACHINE(obj); 2614 2615 return vms->dtb_randomness; 2616 } 2617 2618 static void virt_set_dtb_randomness(Object *obj, bool value, Error **errp) 2619 { 2620 VirtMachineState *vms = VIRT_MACHINE(obj); 2621 2622 vms->dtb_randomness = value; 2623 } 2624 2625 static char *virt_get_oem_id(Object *obj, Error **errp) 2626 { 2627 VirtMachineState *vms = VIRT_MACHINE(obj); 2628 2629 return g_strdup(vms->oem_id); 2630 } 2631 2632 static void virt_set_oem_id(Object *obj, const char *value, Error **errp) 2633 { 2634 VirtMachineState *vms = VIRT_MACHINE(obj); 2635 size_t len = strlen(value); 2636 2637 if (len > 6) { 2638 error_setg(errp, 2639 "User specified oem-id value is bigger than 6 bytes in size"); 2640 return; 2641 } 2642 2643 strncpy(vms->oem_id, value, 6); 2644 } 2645 2646 static char *virt_get_oem_table_id(Object *obj, Error **errp) 2647 { 2648 VirtMachineState *vms = VIRT_MACHINE(obj); 2649 2650 return g_strdup(vms->oem_table_id); 2651 } 2652 2653 static void virt_set_oem_table_id(Object *obj, const char *value, 2654 Error **errp) 2655 { 2656 VirtMachineState *vms = VIRT_MACHINE(obj); 2657 size_t len = strlen(value); 2658 2659 if (len > 8) { 2660 error_setg(errp, 2661 "User specified oem-table-id value is bigger than 8 bytes in size"); 2662 return; 2663 } 2664 strncpy(vms->oem_table_id, value, 8); 2665 } 2666 2667 2668 bool virt_is_acpi_enabled(VirtMachineState *vms) 2669 { 2670 if (vms->acpi == ON_OFF_AUTO_OFF) { 2671 return false; 2672 } 2673 return true; 2674 } 2675 2676 static void virt_get_acpi(Object *obj, Visitor *v, const char *name, 2677 void *opaque, Error **errp) 2678 { 2679 VirtMachineState *vms = VIRT_MACHINE(obj); 2680 OnOffAuto acpi = vms->acpi; 2681 2682 visit_type_OnOffAuto(v, name, &acpi, errp); 2683 } 2684 2685 static void virt_set_acpi(Object *obj, Visitor *v, const char *name, 2686 void *opaque, Error **errp) 2687 { 2688 VirtMachineState *vms = VIRT_MACHINE(obj); 2689 2690 visit_type_OnOffAuto(v, name, &vms->acpi, errp); 2691 } 2692 2693 static bool virt_get_ras(Object *obj, Error **errp) 2694 { 2695 VirtMachineState *vms = VIRT_MACHINE(obj); 2696 2697 return vms->ras; 2698 } 2699 2700 static void virt_set_ras(Object *obj, bool value, Error **errp) 2701 { 2702 VirtMachineState *vms = VIRT_MACHINE(obj); 2703 2704 vms->ras = value; 2705 } 2706 2707 static bool virt_get_mte(Object *obj, Error **errp) 2708 { 2709 VirtMachineState *vms = VIRT_MACHINE(obj); 2710 2711 return vms->mte; 2712 } 2713 2714 static void virt_set_mte(Object *obj, bool value, Error **errp) 2715 { 2716 VirtMachineState *vms = VIRT_MACHINE(obj); 2717 2718 vms->mte = value; 2719 } 2720 2721 static char *virt_get_gic_version(Object *obj, Error **errp) 2722 { 2723 VirtMachineState *vms = VIRT_MACHINE(obj); 2724 const char *val; 2725 2726 switch (vms->gic_version) { 2727 case VIRT_GIC_VERSION_4: 2728 val = "4"; 2729 break; 2730 case VIRT_GIC_VERSION_3: 2731 val = "3"; 2732 break; 2733 default: 2734 val = "2"; 2735 break; 2736 } 2737 return g_strdup(val); 2738 } 2739 2740 static void virt_set_gic_version(Object *obj, const char *value, Error **errp) 2741 { 2742 VirtMachineState *vms = VIRT_MACHINE(obj); 2743 2744 if (!strcmp(value, "4")) { 2745 vms->gic_version = VIRT_GIC_VERSION_4; 2746 } else if (!strcmp(value, "3")) { 2747 vms->gic_version = VIRT_GIC_VERSION_3; 2748 } else if (!strcmp(value, "2")) { 2749 vms->gic_version = VIRT_GIC_VERSION_2; 2750 } else if (!strcmp(value, "host")) { 2751 vms->gic_version = VIRT_GIC_VERSION_HOST; /* Will probe later */ 2752 } else if (!strcmp(value, "max")) { 2753 vms->gic_version = VIRT_GIC_VERSION_MAX; /* Will probe later */ 2754 } else { 2755 error_setg(errp, "Invalid gic-version value"); 2756 error_append_hint(errp, "Valid values are 3, 2, host, max.\n"); 2757 } 2758 } 2759 2760 static char *virt_get_iommu(Object *obj, Error **errp) 2761 { 2762 VirtMachineState *vms = VIRT_MACHINE(obj); 2763 2764 switch (vms->iommu) { 2765 case VIRT_IOMMU_NONE: 2766 return g_strdup("none"); 2767 case VIRT_IOMMU_SMMUV3: 2768 return g_strdup("smmuv3"); 2769 default: 2770 g_assert_not_reached(); 2771 } 2772 } 2773 2774 static void virt_set_iommu(Object *obj, const char *value, Error **errp) 2775 { 2776 VirtMachineState *vms = VIRT_MACHINE(obj); 2777 2778 if (!strcmp(value, "smmuv3")) { 2779 vms->iommu = VIRT_IOMMU_SMMUV3; 2780 } else if (!strcmp(value, "none")) { 2781 vms->iommu = VIRT_IOMMU_NONE; 2782 } else { 2783 error_setg(errp, "Invalid iommu value"); 2784 error_append_hint(errp, "Valid values are none, smmuv3.\n"); 2785 } 2786 } 2787 2788 static bool virt_get_default_bus_bypass_iommu(Object *obj, Error **errp) 2789 { 2790 VirtMachineState *vms = VIRT_MACHINE(obj); 2791 2792 return vms->default_bus_bypass_iommu; 2793 } 2794 2795 static void virt_set_default_bus_bypass_iommu(Object *obj, bool value, 2796 Error **errp) 2797 { 2798 VirtMachineState *vms = VIRT_MACHINE(obj); 2799 2800 vms->default_bus_bypass_iommu = value; 2801 } 2802 2803 static CpuInstanceProperties 2804 virt_cpu_index_to_props(MachineState *ms, unsigned cpu_index) 2805 { 2806 MachineClass *mc = MACHINE_GET_CLASS(ms); 2807 const CPUArchIdList *possible_cpus = mc->possible_cpu_arch_ids(ms); 2808 2809 assert(cpu_index < possible_cpus->len); 2810 return possible_cpus->cpus[cpu_index].props; 2811 } 2812 2813 static int64_t virt_get_default_cpu_node_id(const MachineState *ms, int idx) 2814 { 2815 int64_t socket_id = ms->possible_cpus->cpus[idx].props.socket_id; 2816 2817 return socket_id % ms->numa_state->num_nodes; 2818 } 2819 2820 static const CPUArchIdList *virt_possible_cpu_arch_ids(MachineState *ms) 2821 { 2822 int n; 2823 unsigned int max_cpus = ms->smp.max_cpus; 2824 VirtMachineState *vms = VIRT_MACHINE(ms); 2825 MachineClass *mc = MACHINE_GET_CLASS(vms); 2826 2827 if (ms->possible_cpus) { 2828 assert(ms->possible_cpus->len == max_cpus); 2829 return ms->possible_cpus; 2830 } 2831 2832 ms->possible_cpus = g_malloc0(sizeof(CPUArchIdList) + 2833 sizeof(CPUArchId) * max_cpus); 2834 ms->possible_cpus->len = max_cpus; 2835 for (n = 0; n < ms->possible_cpus->len; n++) { 2836 ms->possible_cpus->cpus[n].type = ms->cpu_type; 2837 ms->possible_cpus->cpus[n].arch_id = 2838 virt_cpu_mp_affinity(vms, n); 2839 2840 assert(!mc->smp_props.dies_supported); 2841 ms->possible_cpus->cpus[n].props.has_socket_id = true; 2842 ms->possible_cpus->cpus[n].props.socket_id = 2843 n / (ms->smp.clusters * ms->smp.cores * ms->smp.threads); 2844 ms->possible_cpus->cpus[n].props.has_cluster_id = true; 2845 ms->possible_cpus->cpus[n].props.cluster_id = 2846 (n / (ms->smp.cores * ms->smp.threads)) % ms->smp.clusters; 2847 ms->possible_cpus->cpus[n].props.has_core_id = true; 2848 ms->possible_cpus->cpus[n].props.core_id = 2849 (n / ms->smp.threads) % ms->smp.cores; 2850 ms->possible_cpus->cpus[n].props.has_thread_id = true; 2851 ms->possible_cpus->cpus[n].props.thread_id = 2852 n % ms->smp.threads; 2853 } 2854 return ms->possible_cpus; 2855 } 2856 2857 static void virt_memory_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev, 2858 Error **errp) 2859 { 2860 VirtMachineState *vms = VIRT_MACHINE(hotplug_dev); 2861 const MachineState *ms = MACHINE(hotplug_dev); 2862 const bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM); 2863 2864 if (!vms->acpi_dev) { 2865 error_setg(errp, 2866 "memory hotplug is not enabled: missing acpi-ged device"); 2867 return; 2868 } 2869 2870 if (vms->mte) { 2871 error_setg(errp, "memory hotplug is not enabled: MTE is enabled"); 2872 return; 2873 } 2874 2875 if (is_nvdimm && !ms->nvdimms_state->is_enabled) { 2876 error_setg(errp, "nvdimm is not enabled: add 'nvdimm=on' to '-M'"); 2877 return; 2878 } 2879 2880 pc_dimm_pre_plug(PC_DIMM(dev), MACHINE(hotplug_dev), errp); 2881 } 2882 2883 static void virt_memory_plug(HotplugHandler *hotplug_dev, 2884 DeviceState *dev, Error **errp) 2885 { 2886 VirtMachineState *vms = VIRT_MACHINE(hotplug_dev); 2887 MachineState *ms = MACHINE(hotplug_dev); 2888 bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM); 2889 2890 pc_dimm_plug(PC_DIMM(dev), MACHINE(vms)); 2891 2892 if (is_nvdimm) { 2893 nvdimm_plug(ms->nvdimms_state); 2894 } 2895 2896 hotplug_handler_plug(HOTPLUG_HANDLER(vms->acpi_dev), 2897 dev, &error_abort); 2898 } 2899 2900 static void virt_machine_device_pre_plug_cb(HotplugHandler *hotplug_dev, 2901 DeviceState *dev, Error **errp) 2902 { 2903 VirtMachineState *vms = VIRT_MACHINE(hotplug_dev); 2904 2905 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { 2906 virt_memory_pre_plug(hotplug_dev, dev, errp); 2907 } else if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_MD_PCI)) { 2908 virtio_md_pci_pre_plug(VIRTIO_MD_PCI(dev), MACHINE(hotplug_dev), errp); 2909 } else if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_IOMMU_PCI)) { 2910 hwaddr db_start = 0, db_end = 0; 2911 QList *reserved_regions; 2912 char *resv_prop_str; 2913 2914 if (vms->iommu != VIRT_IOMMU_NONE) { 2915 error_setg(errp, "virt machine does not support multiple IOMMUs"); 2916 return; 2917 } 2918 2919 switch (vms->msi_controller) { 2920 case VIRT_MSI_CTRL_NONE: 2921 return; 2922 case VIRT_MSI_CTRL_ITS: 2923 /* GITS_TRANSLATER page */ 2924 db_start = base_memmap[VIRT_GIC_ITS].base + 0x10000; 2925 db_end = base_memmap[VIRT_GIC_ITS].base + 2926 base_memmap[VIRT_GIC_ITS].size - 1; 2927 break; 2928 case VIRT_MSI_CTRL_GICV2M: 2929 /* MSI_SETSPI_NS page */ 2930 db_start = base_memmap[VIRT_GIC_V2M].base; 2931 db_end = db_start + base_memmap[VIRT_GIC_V2M].size - 1; 2932 break; 2933 } 2934 resv_prop_str = g_strdup_printf("0x%"PRIx64":0x%"PRIx64":%u", 2935 db_start, db_end, 2936 VIRTIO_IOMMU_RESV_MEM_T_MSI); 2937 2938 reserved_regions = qlist_new(); 2939 qlist_append_str(reserved_regions, resv_prop_str); 2940 qdev_prop_set_array(dev, "reserved-regions", reserved_regions); 2941 g_free(resv_prop_str); 2942 } 2943 } 2944 2945 static void virt_machine_device_plug_cb(HotplugHandler *hotplug_dev, 2946 DeviceState *dev, Error **errp) 2947 { 2948 VirtMachineState *vms = VIRT_MACHINE(hotplug_dev); 2949 2950 if (vms->platform_bus_dev) { 2951 MachineClass *mc = MACHINE_GET_CLASS(vms); 2952 2953 if (device_is_dynamic_sysbus(mc, dev)) { 2954 platform_bus_link_device(PLATFORM_BUS_DEVICE(vms->platform_bus_dev), 2955 SYS_BUS_DEVICE(dev)); 2956 } 2957 } 2958 2959 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { 2960 virt_memory_plug(hotplug_dev, dev, errp); 2961 } else if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_MD_PCI)) { 2962 virtio_md_pci_plug(VIRTIO_MD_PCI(dev), MACHINE(hotplug_dev), errp); 2963 } 2964 2965 if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_IOMMU_PCI)) { 2966 PCIDevice *pdev = PCI_DEVICE(dev); 2967 2968 vms->iommu = VIRT_IOMMU_VIRTIO; 2969 vms->virtio_iommu_bdf = pci_get_bdf(pdev); 2970 create_virtio_iommu_dt_bindings(vms); 2971 } 2972 } 2973 2974 static void virt_dimm_unplug_request(HotplugHandler *hotplug_dev, 2975 DeviceState *dev, Error **errp) 2976 { 2977 VirtMachineState *vms = VIRT_MACHINE(hotplug_dev); 2978 2979 if (!vms->acpi_dev) { 2980 error_setg(errp, 2981 "memory hotplug is not enabled: missing acpi-ged device"); 2982 return; 2983 } 2984 2985 if (object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM)) { 2986 error_setg(errp, "nvdimm device hot unplug is not supported yet."); 2987 return; 2988 } 2989 2990 hotplug_handler_unplug_request(HOTPLUG_HANDLER(vms->acpi_dev), dev, 2991 errp); 2992 } 2993 2994 static void virt_dimm_unplug(HotplugHandler *hotplug_dev, 2995 DeviceState *dev, Error **errp) 2996 { 2997 VirtMachineState *vms = VIRT_MACHINE(hotplug_dev); 2998 Error *local_err = NULL; 2999 3000 hotplug_handler_unplug(HOTPLUG_HANDLER(vms->acpi_dev), dev, &local_err); 3001 if (local_err) { 3002 goto out; 3003 } 3004 3005 pc_dimm_unplug(PC_DIMM(dev), MACHINE(vms)); 3006 qdev_unrealize(dev); 3007 3008 out: 3009 error_propagate(errp, local_err); 3010 } 3011 3012 static void virt_machine_device_unplug_request_cb(HotplugHandler *hotplug_dev, 3013 DeviceState *dev, Error **errp) 3014 { 3015 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { 3016 virt_dimm_unplug_request(hotplug_dev, dev, errp); 3017 } else if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_MD_PCI)) { 3018 virtio_md_pci_unplug_request(VIRTIO_MD_PCI(dev), MACHINE(hotplug_dev), 3019 errp); 3020 } else { 3021 error_setg(errp, "device unplug request for unsupported device" 3022 " type: %s", object_get_typename(OBJECT(dev))); 3023 } 3024 } 3025 3026 static void virt_machine_device_unplug_cb(HotplugHandler *hotplug_dev, 3027 DeviceState *dev, Error **errp) 3028 { 3029 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { 3030 virt_dimm_unplug(hotplug_dev, dev, errp); 3031 } else if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_MD_PCI)) { 3032 virtio_md_pci_unplug(VIRTIO_MD_PCI(dev), MACHINE(hotplug_dev), errp); 3033 } else { 3034 error_setg(errp, "virt: device unplug for unsupported device" 3035 " type: %s", object_get_typename(OBJECT(dev))); 3036 } 3037 } 3038 3039 static HotplugHandler *virt_machine_get_hotplug_handler(MachineState *machine, 3040 DeviceState *dev) 3041 { 3042 MachineClass *mc = MACHINE_GET_CLASS(machine); 3043 3044 if (device_is_dynamic_sysbus(mc, dev) || 3045 object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) || 3046 object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_MD_PCI) || 3047 object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_IOMMU_PCI)) { 3048 return HOTPLUG_HANDLER(machine); 3049 } 3050 return NULL; 3051 } 3052 3053 /* 3054 * for arm64 kvm_type [7-0] encodes the requested number of bits 3055 * in the IPA address space 3056 */ 3057 static int virt_kvm_type(MachineState *ms, const char *type_str) 3058 { 3059 VirtMachineState *vms = VIRT_MACHINE(ms); 3060 int max_vm_pa_size, requested_pa_size; 3061 bool fixed_ipa; 3062 3063 max_vm_pa_size = kvm_arm_get_max_vm_ipa_size(ms, &fixed_ipa); 3064 3065 /* we freeze the memory map to compute the highest gpa */ 3066 virt_set_memmap(vms, max_vm_pa_size); 3067 3068 requested_pa_size = 64 - clz64(vms->highest_gpa); 3069 3070 /* 3071 * KVM requires the IPA size to be at least 32 bits. 3072 */ 3073 if (requested_pa_size < 32) { 3074 requested_pa_size = 32; 3075 } 3076 3077 if (requested_pa_size > max_vm_pa_size) { 3078 error_report("-m and ,maxmem option values " 3079 "require an IPA range (%d bits) larger than " 3080 "the one supported by the host (%d bits)", 3081 requested_pa_size, max_vm_pa_size); 3082 return -1; 3083 } 3084 /* 3085 * We return the requested PA log size, unless KVM only supports 3086 * the implicit legacy 40b IPA setting, in which case the kvm_type 3087 * must be 0. 3088 */ 3089 return fixed_ipa ? 0 : requested_pa_size; 3090 } 3091 3092 static int virt_hvf_get_physical_address_range(MachineState *ms) 3093 { 3094 VirtMachineState *vms = VIRT_MACHINE(ms); 3095 3096 int default_ipa_size = hvf_arm_get_default_ipa_bit_size(); 3097 int max_ipa_size = hvf_arm_get_max_ipa_bit_size(); 3098 3099 /* We freeze the memory map to compute the highest gpa */ 3100 virt_set_memmap(vms, max_ipa_size); 3101 3102 int requested_ipa_size = 64 - clz64(vms->highest_gpa); 3103 3104 /* 3105 * If we're <= the default IPA size just use the default. 3106 * If we're above the default but below the maximum, round up to 3107 * the maximum. hvf_arm_get_max_ipa_bit_size() conveniently only 3108 * returns values that are valid ARM PARange values. 3109 */ 3110 if (requested_ipa_size <= default_ipa_size) { 3111 requested_ipa_size = default_ipa_size; 3112 } else if (requested_ipa_size <= max_ipa_size) { 3113 requested_ipa_size = max_ipa_size; 3114 } else { 3115 error_report("-m and ,maxmem option values " 3116 "require an IPA range (%d bits) larger than " 3117 "the one supported by the host (%d bits)", 3118 requested_ipa_size, max_ipa_size); 3119 return -1; 3120 } 3121 3122 return requested_ipa_size; 3123 } 3124 3125 static void virt_machine_class_init(ObjectClass *oc, void *data) 3126 { 3127 MachineClass *mc = MACHINE_CLASS(oc); 3128 HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc); 3129 static const char * const valid_cpu_types[] = { 3130 #ifdef CONFIG_TCG 3131 ARM_CPU_TYPE_NAME("cortex-a7"), 3132 ARM_CPU_TYPE_NAME("cortex-a15"), 3133 #ifdef TARGET_AARCH64 3134 ARM_CPU_TYPE_NAME("cortex-a35"), 3135 ARM_CPU_TYPE_NAME("cortex-a55"), 3136 ARM_CPU_TYPE_NAME("cortex-a72"), 3137 ARM_CPU_TYPE_NAME("cortex-a76"), 3138 ARM_CPU_TYPE_NAME("cortex-a710"), 3139 ARM_CPU_TYPE_NAME("a64fx"), 3140 ARM_CPU_TYPE_NAME("neoverse-n1"), 3141 ARM_CPU_TYPE_NAME("neoverse-v1"), 3142 ARM_CPU_TYPE_NAME("neoverse-n2"), 3143 #endif /* TARGET_AARCH64 */ 3144 #endif /* CONFIG_TCG */ 3145 #ifdef TARGET_AARCH64 3146 ARM_CPU_TYPE_NAME("cortex-a53"), 3147 ARM_CPU_TYPE_NAME("cortex-a57"), 3148 #if defined(CONFIG_KVM) || defined(CONFIG_HVF) 3149 ARM_CPU_TYPE_NAME("host"), 3150 #endif /* CONFIG_KVM || CONFIG_HVF */ 3151 #endif /* TARGET_AARCH64 */ 3152 ARM_CPU_TYPE_NAME("max"), 3153 NULL 3154 }; 3155 3156 mc->init = machvirt_init; 3157 /* Start with max_cpus set to 512, which is the maximum supported by KVM. 3158 * The value may be reduced later when we have more information about the 3159 * configuration of the particular instance. 3160 */ 3161 mc->max_cpus = 512; 3162 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_VFIO_CALXEDA_XGMAC); 3163 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_VFIO_AMD_XGBE); 3164 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_RAMFB_DEVICE); 3165 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_VFIO_PLATFORM); 3166 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_UEFI_VARS_SYSBUS); 3167 #ifdef CONFIG_TPM 3168 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_TPM_TIS_SYSBUS); 3169 #endif 3170 mc->block_default_type = IF_VIRTIO; 3171 mc->no_cdrom = 1; 3172 mc->pci_allow_0_address = true; 3173 /* We know we will never create a pre-ARMv7 CPU which needs 1K pages */ 3174 mc->minimum_page_bits = 12; 3175 mc->possible_cpu_arch_ids = virt_possible_cpu_arch_ids; 3176 mc->cpu_index_to_instance_props = virt_cpu_index_to_props; 3177 #ifdef CONFIG_TCG 3178 mc->default_cpu_type = ARM_CPU_TYPE_NAME("cortex-a15"); 3179 #else 3180 mc->default_cpu_type = ARM_CPU_TYPE_NAME("max"); 3181 #endif 3182 mc->valid_cpu_types = valid_cpu_types; 3183 mc->get_default_cpu_node_id = virt_get_default_cpu_node_id; 3184 mc->kvm_type = virt_kvm_type; 3185 mc->hvf_get_physical_address_range = virt_hvf_get_physical_address_range; 3186 assert(!mc->get_hotplug_handler); 3187 mc->get_hotplug_handler = virt_machine_get_hotplug_handler; 3188 hc->pre_plug = virt_machine_device_pre_plug_cb; 3189 hc->plug = virt_machine_device_plug_cb; 3190 hc->unplug_request = virt_machine_device_unplug_request_cb; 3191 hc->unplug = virt_machine_device_unplug_cb; 3192 mc->nvdimm_supported = true; 3193 mc->smp_props.clusters_supported = true; 3194 mc->auto_enable_numa_with_memhp = true; 3195 mc->auto_enable_numa_with_memdev = true; 3196 /* platform instead of architectural choice */ 3197 mc->cpu_cluster_has_numa_boundary = true; 3198 mc->default_ram_id = "mach-virt.ram"; 3199 mc->default_nic = "virtio-net-pci"; 3200 3201 object_class_property_add(oc, "acpi", "OnOffAuto", 3202 virt_get_acpi, virt_set_acpi, 3203 NULL, NULL); 3204 object_class_property_set_description(oc, "acpi", 3205 "Enable ACPI"); 3206 object_class_property_add_bool(oc, "secure", virt_get_secure, 3207 virt_set_secure); 3208 object_class_property_set_description(oc, "secure", 3209 "Set on/off to enable/disable the ARM " 3210 "Security Extensions (TrustZone)"); 3211 3212 object_class_property_add_bool(oc, "virtualization", virt_get_virt, 3213 virt_set_virt); 3214 object_class_property_set_description(oc, "virtualization", 3215 "Set on/off to enable/disable emulating a " 3216 "guest CPU which implements the ARM " 3217 "Virtualization Extensions"); 3218 3219 object_class_property_add_bool(oc, "highmem", virt_get_highmem, 3220 virt_set_highmem); 3221 object_class_property_set_description(oc, "highmem", 3222 "Set on/off to enable/disable using " 3223 "physical address space above 32 bits"); 3224 3225 object_class_property_add_bool(oc, "compact-highmem", 3226 virt_get_compact_highmem, 3227 virt_set_compact_highmem); 3228 object_class_property_set_description(oc, "compact-highmem", 3229 "Set on/off to enable/disable compact " 3230 "layout for high memory regions"); 3231 3232 object_class_property_add_bool(oc, "highmem-redists", 3233 virt_get_highmem_redists, 3234 virt_set_highmem_redists); 3235 object_class_property_set_description(oc, "highmem-redists", 3236 "Set on/off to enable/disable high " 3237 "memory region for GICv3 or GICv4 " 3238 "redistributor"); 3239 3240 object_class_property_add_bool(oc, "highmem-ecam", 3241 virt_get_highmem_ecam, 3242 virt_set_highmem_ecam); 3243 object_class_property_set_description(oc, "highmem-ecam", 3244 "Set on/off to enable/disable high " 3245 "memory region for PCI ECAM"); 3246 3247 object_class_property_add_bool(oc, "highmem-mmio", 3248 virt_get_highmem_mmio, 3249 virt_set_highmem_mmio); 3250 object_class_property_set_description(oc, "highmem-mmio", 3251 "Set on/off to enable/disable high " 3252 "memory region for PCI MMIO"); 3253 3254 object_class_property_add(oc, "highmem-mmio-size", "size", 3255 virt_get_highmem_mmio_size, 3256 virt_set_highmem_mmio_size, 3257 NULL, NULL); 3258 object_class_property_set_description(oc, "highmem-mmio-size", 3259 "Set the high memory region size " 3260 "for PCI MMIO"); 3261 3262 object_class_property_add_str(oc, "gic-version", virt_get_gic_version, 3263 virt_set_gic_version); 3264 object_class_property_set_description(oc, "gic-version", 3265 "Set GIC version. " 3266 "Valid values are 2, 3, 4, host and max"); 3267 3268 object_class_property_add_str(oc, "iommu", virt_get_iommu, virt_set_iommu); 3269 object_class_property_set_description(oc, "iommu", 3270 "Set the IOMMU type. " 3271 "Valid values are none and smmuv3"); 3272 3273 object_class_property_add_bool(oc, "default-bus-bypass-iommu", 3274 virt_get_default_bus_bypass_iommu, 3275 virt_set_default_bus_bypass_iommu); 3276 object_class_property_set_description(oc, "default-bus-bypass-iommu", 3277 "Set on/off to enable/disable " 3278 "bypass_iommu for default root bus"); 3279 3280 object_class_property_add_bool(oc, "ras", virt_get_ras, 3281 virt_set_ras); 3282 object_class_property_set_description(oc, "ras", 3283 "Set on/off to enable/disable reporting host memory errors " 3284 "to a KVM guest using ACPI and guest external abort exceptions"); 3285 3286 object_class_property_add_bool(oc, "mte", virt_get_mte, virt_set_mte); 3287 object_class_property_set_description(oc, "mte", 3288 "Set on/off to enable/disable emulating a " 3289 "guest CPU which implements the ARM " 3290 "Memory Tagging Extension"); 3291 3292 object_class_property_add_bool(oc, "its", virt_get_its, 3293 virt_set_its); 3294 object_class_property_set_description(oc, "its", 3295 "Set on/off to enable/disable " 3296 "ITS instantiation"); 3297 3298 object_class_property_add_bool(oc, "dtb-randomness", 3299 virt_get_dtb_randomness, 3300 virt_set_dtb_randomness); 3301 object_class_property_set_description(oc, "dtb-randomness", 3302 "Set off to disable passing random or " 3303 "non-deterministic dtb nodes to guest"); 3304 3305 object_class_property_add_bool(oc, "dtb-kaslr-seed", 3306 virt_get_dtb_randomness, 3307 virt_set_dtb_randomness); 3308 object_class_property_set_description(oc, "dtb-kaslr-seed", 3309 "Deprecated synonym of dtb-randomness"); 3310 3311 object_class_property_add_str(oc, "x-oem-id", 3312 virt_get_oem_id, 3313 virt_set_oem_id); 3314 object_class_property_set_description(oc, "x-oem-id", 3315 "Override the default value of field OEMID " 3316 "in ACPI table header." 3317 "The string may be up to 6 bytes in size"); 3318 3319 3320 object_class_property_add_str(oc, "x-oem-table-id", 3321 virt_get_oem_table_id, 3322 virt_set_oem_table_id); 3323 object_class_property_set_description(oc, "x-oem-table-id", 3324 "Override the default value of field OEM Table ID " 3325 "in ACPI table header." 3326 "The string may be up to 8 bytes in size"); 3327 3328 } 3329 3330 static void virt_instance_init(Object *obj) 3331 { 3332 VirtMachineState *vms = VIRT_MACHINE(obj); 3333 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms); 3334 3335 /* EL3 is disabled by default on virt: this makes us consistent 3336 * between KVM and TCG for this board, and it also allows us to 3337 * boot UEFI blobs which assume no TrustZone support. 3338 */ 3339 vms->secure = false; 3340 3341 /* EL2 is also disabled by default, for similar reasons */ 3342 vms->virt = false; 3343 3344 /* High memory is enabled by default */ 3345 vms->highmem = true; 3346 vms->highmem_compact = !vmc->no_highmem_compact; 3347 vms->gic_version = VIRT_GIC_VERSION_NOSEL; 3348 3349 vms->highmem_ecam = !vmc->no_highmem_ecam; 3350 vms->highmem_mmio = true; 3351 vms->highmem_redists = true; 3352 3353 if (vmc->no_its) { 3354 vms->its = false; 3355 } else { 3356 /* Default allows ITS instantiation */ 3357 vms->its = true; 3358 3359 if (vmc->no_tcg_its) { 3360 vms->tcg_its = false; 3361 } else { 3362 vms->tcg_its = true; 3363 } 3364 } 3365 3366 /* Default disallows iommu instantiation */ 3367 vms->iommu = VIRT_IOMMU_NONE; 3368 3369 /* The default root bus is attached to iommu by default */ 3370 vms->default_bus_bypass_iommu = false; 3371 3372 /* Default disallows RAS instantiation */ 3373 vms->ras = false; 3374 3375 /* MTE is disabled by default. */ 3376 vms->mte = false; 3377 3378 /* Supply kaslr-seed and rng-seed by default */ 3379 vms->dtb_randomness = true; 3380 3381 vms->irqmap = a15irqmap; 3382 3383 virt_flash_create(vms); 3384 3385 vms->oem_id = g_strndup(ACPI_BUILD_APPNAME6, 6); 3386 vms->oem_table_id = g_strndup(ACPI_BUILD_APPNAME8, 8); 3387 } 3388 3389 static const TypeInfo virt_machine_info = { 3390 .name = TYPE_VIRT_MACHINE, 3391 .parent = TYPE_MACHINE, 3392 .abstract = true, 3393 .instance_size = sizeof(VirtMachineState), 3394 .class_size = sizeof(VirtMachineClass), 3395 .class_init = virt_machine_class_init, 3396 .instance_init = virt_instance_init, 3397 .interfaces = (InterfaceInfo[]) { 3398 { TYPE_HOTPLUG_HANDLER }, 3399 { } 3400 }, 3401 }; 3402 3403 static void machvirt_machine_init(void) 3404 { 3405 type_register_static(&virt_machine_info); 3406 } 3407 type_init(machvirt_machine_init); 3408 3409 static void virt_machine_10_0_options(MachineClass *mc) 3410 { 3411 } 3412 DEFINE_VIRT_MACHINE_AS_LATEST(10, 0) 3413 3414 static void virt_machine_9_2_options(MachineClass *mc) 3415 { 3416 virt_machine_10_0_options(mc); 3417 compat_props_add(mc->compat_props, hw_compat_9_2, hw_compat_9_2_len); 3418 } 3419 DEFINE_VIRT_MACHINE(9, 2) 3420 3421 static void virt_machine_9_1_options(MachineClass *mc) 3422 { 3423 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc)); 3424 3425 virt_machine_9_2_options(mc); 3426 compat_props_add(mc->compat_props, hw_compat_9_1, hw_compat_9_1_len); 3427 /* 9.1 and earlier have only a stage-1 SMMU, not a nested s1+2 one */ 3428 vmc->no_nested_smmu = true; 3429 } 3430 DEFINE_VIRT_MACHINE(9, 1) 3431 3432 static void virt_machine_9_0_options(MachineClass *mc) 3433 { 3434 virt_machine_9_1_options(mc); 3435 mc->smbios_memory_device_size = 16 * GiB; 3436 compat_props_add(mc->compat_props, hw_compat_9_0, hw_compat_9_0_len); 3437 } 3438 DEFINE_VIRT_MACHINE(9, 0) 3439 3440 static void virt_machine_8_2_options(MachineClass *mc) 3441 { 3442 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc)); 3443 3444 virt_machine_9_0_options(mc); 3445 compat_props_add(mc->compat_props, hw_compat_8_2, hw_compat_8_2_len); 3446 /* 3447 * Don't expose NS_EL2_VIRT timer IRQ in DTB on ACPI on 8.2 and 3448 * earlier machines. (Exposing it tickles a bug in older EDK2 3449 * guest BIOS binaries.) 3450 */ 3451 vmc->no_ns_el2_virt_timer_irq = true; 3452 } 3453 DEFINE_VIRT_MACHINE(8, 2) 3454 3455 static void virt_machine_8_1_options(MachineClass *mc) 3456 { 3457 virt_machine_8_2_options(mc); 3458 compat_props_add(mc->compat_props, hw_compat_8_1, hw_compat_8_1_len); 3459 } 3460 DEFINE_VIRT_MACHINE(8, 1) 3461 3462 static void virt_machine_8_0_options(MachineClass *mc) 3463 { 3464 virt_machine_8_1_options(mc); 3465 compat_props_add(mc->compat_props, hw_compat_8_0, hw_compat_8_0_len); 3466 } 3467 DEFINE_VIRT_MACHINE(8, 0) 3468 3469 static void virt_machine_7_2_options(MachineClass *mc) 3470 { 3471 virt_machine_8_0_options(mc); 3472 compat_props_add(mc->compat_props, hw_compat_7_2, hw_compat_7_2_len); 3473 } 3474 DEFINE_VIRT_MACHINE(7, 2) 3475 3476 static void virt_machine_7_1_options(MachineClass *mc) 3477 { 3478 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc)); 3479 3480 virt_machine_7_2_options(mc); 3481 compat_props_add(mc->compat_props, hw_compat_7_1, hw_compat_7_1_len); 3482 /* Compact layout for high memory regions was introduced with 7.2 */ 3483 vmc->no_highmem_compact = true; 3484 } 3485 DEFINE_VIRT_MACHINE(7, 1) 3486 3487 static void virt_machine_7_0_options(MachineClass *mc) 3488 { 3489 virt_machine_7_1_options(mc); 3490 compat_props_add(mc->compat_props, hw_compat_7_0, hw_compat_7_0_len); 3491 } 3492 DEFINE_VIRT_MACHINE(7, 0) 3493 3494 static void virt_machine_6_2_options(MachineClass *mc) 3495 { 3496 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc)); 3497 3498 virt_machine_7_0_options(mc); 3499 compat_props_add(mc->compat_props, hw_compat_6_2, hw_compat_6_2_len); 3500 vmc->no_tcg_lpa2 = true; 3501 } 3502 DEFINE_VIRT_MACHINE(6, 2) 3503 3504 static void virt_machine_6_1_options(MachineClass *mc) 3505 { 3506 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc)); 3507 3508 virt_machine_6_2_options(mc); 3509 compat_props_add(mc->compat_props, hw_compat_6_1, hw_compat_6_1_len); 3510 mc->smp_props.prefer_sockets = true; 3511 vmc->no_cpu_topology = true; 3512 3513 /* qemu ITS was introduced with 6.2 */ 3514 vmc->no_tcg_its = true; 3515 } 3516 DEFINE_VIRT_MACHINE(6, 1) 3517 3518 static void virt_machine_6_0_options(MachineClass *mc) 3519 { 3520 virt_machine_6_1_options(mc); 3521 compat_props_add(mc->compat_props, hw_compat_6_0, hw_compat_6_0_len); 3522 } 3523 DEFINE_VIRT_MACHINE(6, 0) 3524 3525 static void virt_machine_5_2_options(MachineClass *mc) 3526 { 3527 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc)); 3528 3529 virt_machine_6_0_options(mc); 3530 compat_props_add(mc->compat_props, hw_compat_5_2, hw_compat_5_2_len); 3531 vmc->no_secure_gpio = true; 3532 } 3533 DEFINE_VIRT_MACHINE(5, 2) 3534 3535 static void virt_machine_5_1_options(MachineClass *mc) 3536 { 3537 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc)); 3538 3539 virt_machine_5_2_options(mc); 3540 compat_props_add(mc->compat_props, hw_compat_5_1, hw_compat_5_1_len); 3541 vmc->no_kvm_steal_time = true; 3542 } 3543 DEFINE_VIRT_MACHINE(5, 1) 3544 3545 static void virt_machine_5_0_options(MachineClass *mc) 3546 { 3547 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc)); 3548 3549 virt_machine_5_1_options(mc); 3550 compat_props_add(mc->compat_props, hw_compat_5_0, hw_compat_5_0_len); 3551 mc->numa_mem_supported = true; 3552 vmc->acpi_expose_flash = true; 3553 mc->auto_enable_numa_with_memdev = false; 3554 } 3555 DEFINE_VIRT_MACHINE(5, 0) 3556 3557 static void virt_machine_4_2_options(MachineClass *mc) 3558 { 3559 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc)); 3560 3561 virt_machine_5_0_options(mc); 3562 compat_props_add(mc->compat_props, hw_compat_4_2, hw_compat_4_2_len); 3563 vmc->kvm_no_adjvtime = true; 3564 } 3565 DEFINE_VIRT_MACHINE(4, 2) 3566 3567 static void virt_machine_4_1_options(MachineClass *mc) 3568 { 3569 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc)); 3570 3571 virt_machine_4_2_options(mc); 3572 compat_props_add(mc->compat_props, hw_compat_4_1, hw_compat_4_1_len); 3573 vmc->no_ged = true; 3574 mc->auto_enable_numa_with_memhp = false; 3575 } 3576 DEFINE_VIRT_MACHINE(4, 1) 3577 3578 static void virt_machine_4_0_options(MachineClass *mc) 3579 { 3580 virt_machine_4_1_options(mc); 3581 compat_props_add(mc->compat_props, hw_compat_4_0, hw_compat_4_0_len); 3582 } 3583 DEFINE_VIRT_MACHINE(4, 0) 3584 3585 static void virt_machine_3_1_options(MachineClass *mc) 3586 { 3587 virt_machine_4_0_options(mc); 3588 compat_props_add(mc->compat_props, hw_compat_3_1, hw_compat_3_1_len); 3589 } 3590 DEFINE_VIRT_MACHINE(3, 1) 3591 3592 static void virt_machine_3_0_options(MachineClass *mc) 3593 { 3594 virt_machine_3_1_options(mc); 3595 compat_props_add(mc->compat_props, hw_compat_3_0, hw_compat_3_0_len); 3596 } 3597 DEFINE_VIRT_MACHINE(3, 0) 3598 3599 static void virt_machine_2_12_options(MachineClass *mc) 3600 { 3601 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc)); 3602 3603 virt_machine_3_0_options(mc); 3604 compat_props_add(mc->compat_props, hw_compat_2_12, hw_compat_2_12_len); 3605 vmc->no_highmem_ecam = true; 3606 mc->max_cpus = 255; 3607 } 3608 DEFINE_VIRT_MACHINE(2, 12) 3609 3610 static void virt_machine_2_11_options(MachineClass *mc) 3611 { 3612 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc)); 3613 3614 virt_machine_2_12_options(mc); 3615 compat_props_add(mc->compat_props, hw_compat_2_11, hw_compat_2_11_len); 3616 vmc->smbios_old_sys_ver = true; 3617 } 3618 DEFINE_VIRT_MACHINE(2, 11) 3619 3620 static void virt_machine_2_10_options(MachineClass *mc) 3621 { 3622 virt_machine_2_11_options(mc); 3623 compat_props_add(mc->compat_props, hw_compat_2_10, hw_compat_2_10_len); 3624 /* before 2.11 we never faulted accesses to bad addresses */ 3625 mc->ignore_memory_transaction_failures = true; 3626 } 3627 DEFINE_VIRT_MACHINE(2, 10) 3628 3629 static void virt_machine_2_9_options(MachineClass *mc) 3630 { 3631 virt_machine_2_10_options(mc); 3632 compat_props_add(mc->compat_props, hw_compat_2_9, hw_compat_2_9_len); 3633 } 3634 DEFINE_VIRT_MACHINE(2, 9) 3635 3636 static void virt_machine_2_8_options(MachineClass *mc) 3637 { 3638 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc)); 3639 3640 virt_machine_2_9_options(mc); 3641 compat_props_add(mc->compat_props, hw_compat_2_8, hw_compat_2_8_len); 3642 /* For 2.8 and earlier we falsely claimed in the DT that 3643 * our timers were edge-triggered, not level-triggered. 3644 */ 3645 vmc->claim_edge_triggered_timers = true; 3646 } 3647 DEFINE_VIRT_MACHINE(2, 8) 3648 3649 static void virt_machine_2_7_options(MachineClass *mc) 3650 { 3651 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc)); 3652 3653 virt_machine_2_8_options(mc); 3654 compat_props_add(mc->compat_props, hw_compat_2_7, hw_compat_2_7_len); 3655 /* ITS was introduced with 2.8 */ 3656 vmc->no_its = true; 3657 /* Stick with 1K pages for migration compatibility */ 3658 mc->minimum_page_bits = 0; 3659 } 3660 DEFINE_VIRT_MACHINE(2, 7) 3661 3662 static void virt_machine_2_6_options(MachineClass *mc) 3663 { 3664 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc)); 3665 3666 virt_machine_2_7_options(mc); 3667 compat_props_add(mc->compat_props, hw_compat_2_6, hw_compat_2_6_len); 3668 vmc->disallow_affinity_adjustment = true; 3669 /* Disable PMU for 2.6 as PMU support was first introduced in 2.7 */ 3670 vmc->no_pmu = true; 3671 } 3672 DEFINE_VIRT_MACHINE(2, 6) 3673