xref: /qemu/hw/arm/virt.c (revision 09a36158c283f7448d1b00fdbb6634f05d27f922)
1  /*
2   * ARM mach-virt emulation
3   *
4   * Copyright (c) 2013 Linaro Limited
5   *
6   * This program is free software; you can redistribute it and/or modify it
7   * under the terms and conditions of the GNU General Public License,
8   * version 2 or later, as published by the Free Software Foundation.
9   *
10   * This program is distributed in the hope it will be useful, but WITHOUT
11   * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   * more details.
14   *
15   * You should have received a copy of the GNU General Public License along with
16   * this program.  If not, see <http://www.gnu.org/licenses/>.
17   *
18   * Emulate a virtual board which works by passing Linux all the information
19   * it needs about what devices are present via the device tree.
20   * There are some restrictions about what we can do here:
21   *  + we can only present devices whose Linux drivers will work based
22   *    purely on the device tree with no platform data at all
23   *  + we want to present a very stripped-down minimalist platform,
24   *    both because this reduces the security attack surface from the guest
25   *    and also because it reduces our exposure to being broken when
26   *    the kernel updates its device tree bindings and requires further
27   *    information in a device binding that we aren't providing.
28   * This is essentially the same approach kvmtool uses.
29   */
30  
31  #include "qemu/osdep.h"
32  #include "qemu/datadir.h"
33  #include "qemu/units.h"
34  #include "qemu/option.h"
35  #include "monitor/qdev.h"
36  #include "hw/sysbus.h"
37  #include "hw/arm/boot.h"
38  #include "hw/arm/primecell.h"
39  #include "hw/arm/virt.h"
40  #include "hw/block/flash.h"
41  #include "hw/vfio/vfio-calxeda-xgmac.h"
42  #include "hw/vfio/vfio-amd-xgbe.h"
43  #include "hw/display/ramfb.h"
44  #include "net/net.h"
45  #include "sysemu/device_tree.h"
46  #include "sysemu/numa.h"
47  #include "sysemu/runstate.h"
48  #include "sysemu/tpm.h"
49  #include "sysemu/tcg.h"
50  #include "sysemu/kvm.h"
51  #include "sysemu/hvf.h"
52  #include "sysemu/qtest.h"
53  #include "hw/loader.h"
54  #include "qapi/error.h"
55  #include "qemu/bitops.h"
56  #include "qemu/error-report.h"
57  #include "qemu/module.h"
58  #include "hw/pci-host/gpex.h"
59  #include "hw/virtio/virtio-pci.h"
60  #include "hw/core/sysbus-fdt.h"
61  #include "hw/platform-bus.h"
62  #include "hw/qdev-properties.h"
63  #include "hw/arm/fdt.h"
64  #include "hw/intc/arm_gic.h"
65  #include "hw/intc/arm_gicv3_common.h"
66  #include "hw/intc/arm_gicv3_its_common.h"
67  #include "hw/irq.h"
68  #include "kvm_arm.h"
69  #include "hw/firmware/smbios.h"
70  #include "qapi/visitor.h"
71  #include "qapi/qapi-visit-common.h"
72  #include "qapi/qmp/qlist.h"
73  #include "standard-headers/linux/input.h"
74  #include "hw/arm/smmuv3.h"
75  #include "hw/acpi/acpi.h"
76  #include "target/arm/internals.h"
77  #include "hw/mem/pc-dimm.h"
78  #include "hw/mem/nvdimm.h"
79  #include "hw/acpi/generic_event_device.h"
80  #include "hw/virtio/virtio-md-pci.h"
81  #include "hw/virtio/virtio-iommu.h"
82  #include "hw/char/pl011.h"
83  #include "qemu/guest-random.h"
84  
85  #define DEFINE_VIRT_MACHINE_LATEST(major, minor, latest) \
86      static void virt_##major##_##minor##_class_init(ObjectClass *oc, \
87                                                      void *data) \
88      { \
89          MachineClass *mc = MACHINE_CLASS(oc); \
90          virt_machine_##major##_##minor##_options(mc); \
91          mc->desc = "QEMU " # major "." # minor " ARM Virtual Machine"; \
92          if (latest) { \
93              mc->alias = "virt"; \
94          } \
95      } \
96      static const TypeInfo machvirt_##major##_##minor##_info = { \
97          .name = MACHINE_TYPE_NAME("virt-" # major "." # minor), \
98          .parent = TYPE_VIRT_MACHINE, \
99          .class_init = virt_##major##_##minor##_class_init, \
100      }; \
101      static void machvirt_machine_##major##_##minor##_init(void) \
102      { \
103          type_register_static(&machvirt_##major##_##minor##_info); \
104      } \
105      type_init(machvirt_machine_##major##_##minor##_init);
106  
107  #define DEFINE_VIRT_MACHINE_AS_LATEST(major, minor) \
108      DEFINE_VIRT_MACHINE_LATEST(major, minor, true)
109  #define DEFINE_VIRT_MACHINE(major, minor) \
110      DEFINE_VIRT_MACHINE_LATEST(major, minor, false)
111  
112  
113  /* Number of external interrupt lines to configure the GIC with */
114  #define NUM_IRQS 256
115  
116  #define PLATFORM_BUS_NUM_IRQS 64
117  
118  /* Legacy RAM limit in GB (< version 4.0) */
119  #define LEGACY_RAMLIMIT_GB 255
120  #define LEGACY_RAMLIMIT_BYTES (LEGACY_RAMLIMIT_GB * GiB)
121  
122  /* Addresses and sizes of our components.
123   * 0..128MB is space for a flash device so we can run bootrom code such as UEFI.
124   * 128MB..256MB is used for miscellaneous device I/O.
125   * 256MB..1GB is reserved for possible future PCI support (ie where the
126   * PCI memory window will go if we add a PCI host controller).
127   * 1GB and up is RAM (which may happily spill over into the
128   * high memory region beyond 4GB).
129   * This represents a compromise between how much RAM can be given to
130   * a 32 bit VM and leaving space for expansion and in particular for PCI.
131   * Note that devices should generally be placed at multiples of 0x10000,
132   * to accommodate guests using 64K pages.
133   */
134  static const MemMapEntry base_memmap[] = {
135      /* Space up to 0x8000000 is reserved for a boot ROM */
136      [VIRT_FLASH] =              {          0, 0x08000000 },
137      [VIRT_CPUPERIPHS] =         { 0x08000000, 0x00020000 },
138      /* GIC distributor and CPU interfaces sit inside the CPU peripheral space */
139      [VIRT_GIC_DIST] =           { 0x08000000, 0x00010000 },
140      [VIRT_GIC_CPU] =            { 0x08010000, 0x00010000 },
141      [VIRT_GIC_V2M] =            { 0x08020000, 0x00001000 },
142      [VIRT_GIC_HYP] =            { 0x08030000, 0x00010000 },
143      [VIRT_GIC_VCPU] =           { 0x08040000, 0x00010000 },
144      /* The space in between here is reserved for GICv3 CPU/vCPU/HYP */
145      [VIRT_GIC_ITS] =            { 0x08080000, 0x00020000 },
146      /* This redistributor space allows up to 2*64kB*123 CPUs */
147      [VIRT_GIC_REDIST] =         { 0x080A0000, 0x00F60000 },
148      [VIRT_UART] =               { 0x09000000, 0x00001000 },
149      [VIRT_RTC] =                { 0x09010000, 0x00001000 },
150      [VIRT_FW_CFG] =             { 0x09020000, 0x00000018 },
151      [VIRT_GPIO] =               { 0x09030000, 0x00001000 },
152      [VIRT_SECURE_UART] =        { 0x09040000, 0x00001000 },
153      [VIRT_SMMU] =               { 0x09050000, 0x00020000 },
154      [VIRT_PCDIMM_ACPI] =        { 0x09070000, MEMORY_HOTPLUG_IO_LEN },
155      [VIRT_ACPI_GED] =           { 0x09080000, ACPI_GED_EVT_SEL_LEN },
156      [VIRT_NVDIMM_ACPI] =        { 0x09090000, NVDIMM_ACPI_IO_LEN},
157      [VIRT_PVTIME] =             { 0x090a0000, 0x00010000 },
158      [VIRT_SECURE_GPIO] =        { 0x090b0000, 0x00001000 },
159      [VIRT_MMIO] =               { 0x0a000000, 0x00000200 },
160      /* ...repeating for a total of NUM_VIRTIO_TRANSPORTS, each of that size */
161      [VIRT_PLATFORM_BUS] =       { 0x0c000000, 0x02000000 },
162      [VIRT_SECURE_MEM] =         { 0x0e000000, 0x01000000 },
163      [VIRT_PCIE_MMIO] =          { 0x10000000, 0x2eff0000 },
164      [VIRT_PCIE_PIO] =           { 0x3eff0000, 0x00010000 },
165      [VIRT_PCIE_ECAM] =          { 0x3f000000, 0x01000000 },
166      /* Actual RAM size depends on initial RAM and device memory settings */
167      [VIRT_MEM] =                { GiB, LEGACY_RAMLIMIT_BYTES },
168  };
169  
170  /*
171   * Highmem IO Regions: This memory map is floating, located after the RAM.
172   * Each MemMapEntry base (GPA) will be dynamically computed, depending on the
173   * top of the RAM, so that its base get the same alignment as the size,
174   * ie. a 512GiB entry will be aligned on a 512GiB boundary. If there is
175   * less than 256GiB of RAM, the floating area starts at the 256GiB mark.
176   * Note the extended_memmap is sized so that it eventually also includes the
177   * base_memmap entries (VIRT_HIGH_GIC_REDIST2 index is greater than the last
178   * index of base_memmap).
179   *
180   * The memory map for these Highmem IO Regions can be in legacy or compact
181   * layout, depending on 'compact-highmem' property. With legacy layout, the
182   * PA space for one specific region is always reserved, even if the region
183   * has been disabled or doesn't fit into the PA space. However, the PA space
184   * for the region won't be reserved in these circumstances with compact layout.
185   */
186  static MemMapEntry extended_memmap[] = {
187      /* Additional 64 MB redist region (can contain up to 512 redistributors) */
188      [VIRT_HIGH_GIC_REDIST2] =   { 0x0, 64 * MiB },
189      [VIRT_HIGH_PCIE_ECAM] =     { 0x0, 256 * MiB },
190      /* Second PCIe window */
191      [VIRT_HIGH_PCIE_MMIO] =     { 0x0, 512 * GiB },
192  };
193  
194  static const int a15irqmap[] = {
195      [VIRT_UART] = 1,
196      [VIRT_RTC] = 2,
197      [VIRT_PCIE] = 3, /* ... to 6 */
198      [VIRT_GPIO] = 7,
199      [VIRT_SECURE_UART] = 8,
200      [VIRT_ACPI_GED] = 9,
201      [VIRT_MMIO] = 16, /* ...to 16 + NUM_VIRTIO_TRANSPORTS - 1 */
202      [VIRT_GIC_V2M] = 48, /* ...to 48 + NUM_GICV2M_SPIS - 1 */
203      [VIRT_SMMU] = 74,    /* ...to 74 + NUM_SMMU_IRQS - 1 */
204      [VIRT_PLATFORM_BUS] = 112, /* ...to 112 + PLATFORM_BUS_NUM_IRQS -1 */
205  };
206  
207  static void create_randomness(MachineState *ms, const char *node)
208  {
209      struct {
210          uint64_t kaslr;
211          uint8_t rng[32];
212      } seed;
213  
214      if (qemu_guest_getrandom(&seed, sizeof(seed), NULL)) {
215          return;
216      }
217      qemu_fdt_setprop_u64(ms->fdt, node, "kaslr-seed", seed.kaslr);
218      qemu_fdt_setprop(ms->fdt, node, "rng-seed", seed.rng, sizeof(seed.rng));
219  }
220  
221  static void create_fdt(VirtMachineState *vms)
222  {
223      MachineState *ms = MACHINE(vms);
224      int nb_numa_nodes = ms->numa_state->num_nodes;
225      void *fdt = create_device_tree(&vms->fdt_size);
226  
227      if (!fdt) {
228          error_report("create_device_tree() failed");
229          exit(1);
230      }
231  
232      ms->fdt = fdt;
233  
234      /* Header */
235      qemu_fdt_setprop_string(fdt, "/", "compatible", "linux,dummy-virt");
236      qemu_fdt_setprop_cell(fdt, "/", "#address-cells", 0x2);
237      qemu_fdt_setprop_cell(fdt, "/", "#size-cells", 0x2);
238      qemu_fdt_setprop_string(fdt, "/", "model", "linux,dummy-virt");
239  
240      /* /chosen must exist for load_dtb to fill in necessary properties later */
241      qemu_fdt_add_subnode(fdt, "/chosen");
242      if (vms->dtb_randomness) {
243          create_randomness(ms, "/chosen");
244      }
245  
246      if (vms->secure) {
247          qemu_fdt_add_subnode(fdt, "/secure-chosen");
248          if (vms->dtb_randomness) {
249              create_randomness(ms, "/secure-chosen");
250          }
251      }
252  
253      /* Clock node, for the benefit of the UART. The kernel device tree
254       * binding documentation claims the PL011 node clock properties are
255       * optional but in practice if you omit them the kernel refuses to
256       * probe for the device.
257       */
258      vms->clock_phandle = qemu_fdt_alloc_phandle(fdt);
259      qemu_fdt_add_subnode(fdt, "/apb-pclk");
260      qemu_fdt_setprop_string(fdt, "/apb-pclk", "compatible", "fixed-clock");
261      qemu_fdt_setprop_cell(fdt, "/apb-pclk", "#clock-cells", 0x0);
262      qemu_fdt_setprop_cell(fdt, "/apb-pclk", "clock-frequency", 24000000);
263      qemu_fdt_setprop_string(fdt, "/apb-pclk", "clock-output-names",
264                                  "clk24mhz");
265      qemu_fdt_setprop_cell(fdt, "/apb-pclk", "phandle", vms->clock_phandle);
266  
267      if (nb_numa_nodes > 0 && ms->numa_state->have_numa_distance) {
268          int size = nb_numa_nodes * nb_numa_nodes * 3 * sizeof(uint32_t);
269          uint32_t *matrix = g_malloc0(size);
270          int idx, i, j;
271  
272          for (i = 0; i < nb_numa_nodes; i++) {
273              for (j = 0; j < nb_numa_nodes; j++) {
274                  idx = (i * nb_numa_nodes + j) * 3;
275                  matrix[idx + 0] = cpu_to_be32(i);
276                  matrix[idx + 1] = cpu_to_be32(j);
277                  matrix[idx + 2] =
278                      cpu_to_be32(ms->numa_state->nodes[i].distance[j]);
279              }
280          }
281  
282          qemu_fdt_add_subnode(fdt, "/distance-map");
283          qemu_fdt_setprop_string(fdt, "/distance-map", "compatible",
284                                  "numa-distance-map-v1");
285          qemu_fdt_setprop(fdt, "/distance-map", "distance-matrix",
286                           matrix, size);
287          g_free(matrix);
288      }
289  }
290  
291  static void fdt_add_timer_nodes(const VirtMachineState *vms)
292  {
293      /* On real hardware these interrupts are level-triggered.
294       * On KVM they were edge-triggered before host kernel version 4.4,
295       * and level-triggered afterwards.
296       * On emulated QEMU they are level-triggered.
297       *
298       * Getting the DTB info about them wrong is awkward for some
299       * guest kernels:
300       *  pre-4.8 ignore the DT and leave the interrupt configured
301       *   with whatever the GIC reset value (or the bootloader) left it at
302       *  4.8 before rc6 honour the incorrect data by programming it back
303       *   into the GIC, causing problems
304       *  4.8rc6 and later ignore the DT and always write "level triggered"
305       *   into the GIC
306       *
307       * For backwards-compatibility, virt-2.8 and earlier will continue
308       * to say these are edge-triggered, but later machines will report
309       * the correct information.
310       */
311      ARMCPU *armcpu;
312      VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
313      uint32_t irqflags = GIC_FDT_IRQ_FLAGS_LEVEL_HI;
314      MachineState *ms = MACHINE(vms);
315  
316      if (vmc->claim_edge_triggered_timers) {
317          irqflags = GIC_FDT_IRQ_FLAGS_EDGE_LO_HI;
318      }
319  
320      if (vms->gic_version == VIRT_GIC_VERSION_2) {
321          irqflags = deposit32(irqflags, GIC_FDT_IRQ_PPI_CPU_START,
322                               GIC_FDT_IRQ_PPI_CPU_WIDTH,
323                               (1 << MACHINE(vms)->smp.cpus) - 1);
324      }
325  
326      qemu_fdt_add_subnode(ms->fdt, "/timer");
327  
328      armcpu = ARM_CPU(qemu_get_cpu(0));
329      if (arm_feature(&armcpu->env, ARM_FEATURE_V8)) {
330          const char compat[] = "arm,armv8-timer\0arm,armv7-timer";
331          qemu_fdt_setprop(ms->fdt, "/timer", "compatible",
332                           compat, sizeof(compat));
333      } else {
334          qemu_fdt_setprop_string(ms->fdt, "/timer", "compatible",
335                                  "arm,armv7-timer");
336      }
337      qemu_fdt_setprop(ms->fdt, "/timer", "always-on", NULL, 0);
338      qemu_fdt_setprop_cells(ms->fdt, "/timer", "interrupts",
339                             GIC_FDT_IRQ_TYPE_PPI,
340                             INTID_TO_PPI(ARCH_TIMER_S_EL1_IRQ), irqflags,
341                             GIC_FDT_IRQ_TYPE_PPI,
342                             INTID_TO_PPI(ARCH_TIMER_NS_EL1_IRQ), irqflags,
343                             GIC_FDT_IRQ_TYPE_PPI,
344                             INTID_TO_PPI(ARCH_TIMER_VIRT_IRQ), irqflags,
345                             GIC_FDT_IRQ_TYPE_PPI,
346                             INTID_TO_PPI(ARCH_TIMER_NS_EL2_IRQ), irqflags);
347  }
348  
349  static void fdt_add_cpu_nodes(const VirtMachineState *vms)
350  {
351      int cpu;
352      int addr_cells = 1;
353      const MachineState *ms = MACHINE(vms);
354      const VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
355      int smp_cpus = ms->smp.cpus;
356  
357      /*
358       * See Linux Documentation/devicetree/bindings/arm/cpus.yaml
359       * On ARM v8 64-bit systems value should be set to 2,
360       * that corresponds to the MPIDR_EL1 register size.
361       * If MPIDR_EL1[63:32] value is equal to 0 on all CPUs
362       * in the system, #address-cells can be set to 1, since
363       * MPIDR_EL1[63:32] bits are not used for CPUs
364       * identification.
365       *
366       * Here we actually don't know whether our system is 32- or 64-bit one.
367       * The simplest way to go is to examine affinity IDs of all our CPUs. If
368       * at least one of them has Aff3 populated, we set #address-cells to 2.
369       */
370      for (cpu = 0; cpu < smp_cpus; cpu++) {
371          ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu));
372  
373          if (armcpu->mp_affinity & ARM_AFF3_MASK) {
374              addr_cells = 2;
375              break;
376          }
377      }
378  
379      qemu_fdt_add_subnode(ms->fdt, "/cpus");
380      qemu_fdt_setprop_cell(ms->fdt, "/cpus", "#address-cells", addr_cells);
381      qemu_fdt_setprop_cell(ms->fdt, "/cpus", "#size-cells", 0x0);
382  
383      for (cpu = smp_cpus - 1; cpu >= 0; cpu--) {
384          char *nodename = g_strdup_printf("/cpus/cpu@%d", cpu);
385          ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu));
386          CPUState *cs = CPU(armcpu);
387  
388          qemu_fdt_add_subnode(ms->fdt, nodename);
389          qemu_fdt_setprop_string(ms->fdt, nodename, "device_type", "cpu");
390          qemu_fdt_setprop_string(ms->fdt, nodename, "compatible",
391                                      armcpu->dtb_compatible);
392  
393          if (vms->psci_conduit != QEMU_PSCI_CONDUIT_DISABLED && smp_cpus > 1) {
394              qemu_fdt_setprop_string(ms->fdt, nodename,
395                                          "enable-method", "psci");
396          }
397  
398          if (addr_cells == 2) {
399              qemu_fdt_setprop_u64(ms->fdt, nodename, "reg",
400                                   armcpu->mp_affinity);
401          } else {
402              qemu_fdt_setprop_cell(ms->fdt, nodename, "reg",
403                                    armcpu->mp_affinity);
404          }
405  
406          if (ms->possible_cpus->cpus[cs->cpu_index].props.has_node_id) {
407              qemu_fdt_setprop_cell(ms->fdt, nodename, "numa-node-id",
408                  ms->possible_cpus->cpus[cs->cpu_index].props.node_id);
409          }
410  
411          if (!vmc->no_cpu_topology) {
412              qemu_fdt_setprop_cell(ms->fdt, nodename, "phandle",
413                                    qemu_fdt_alloc_phandle(ms->fdt));
414          }
415  
416          g_free(nodename);
417      }
418  
419      if (!vmc->no_cpu_topology) {
420          /*
421           * Add vCPU topology description through fdt node cpu-map.
422           *
423           * See Linux Documentation/devicetree/bindings/cpu/cpu-topology.txt
424           * In a SMP system, the hierarchy of CPUs can be defined through
425           * four entities that are used to describe the layout of CPUs in
426           * the system: socket/cluster/core/thread.
427           *
428           * A socket node represents the boundary of system physical package
429           * and its child nodes must be one or more cluster nodes. A system
430           * can contain several layers of clustering within a single physical
431           * package and cluster nodes can be contained in parent cluster nodes.
432           *
433           * Note: currently we only support one layer of clustering within
434           * each physical package.
435           */
436          qemu_fdt_add_subnode(ms->fdt, "/cpus/cpu-map");
437  
438          for (cpu = smp_cpus - 1; cpu >= 0; cpu--) {
439              char *cpu_path = g_strdup_printf("/cpus/cpu@%d", cpu);
440              char *map_path;
441  
442              if (ms->smp.threads > 1) {
443                  map_path = g_strdup_printf(
444                      "/cpus/cpu-map/socket%d/cluster%d/core%d/thread%d",
445                      cpu / (ms->smp.clusters * ms->smp.cores * ms->smp.threads),
446                      (cpu / (ms->smp.cores * ms->smp.threads)) % ms->smp.clusters,
447                      (cpu / ms->smp.threads) % ms->smp.cores,
448                      cpu % ms->smp.threads);
449              } else {
450                  map_path = g_strdup_printf(
451                      "/cpus/cpu-map/socket%d/cluster%d/core%d",
452                      cpu / (ms->smp.clusters * ms->smp.cores),
453                      (cpu / ms->smp.cores) % ms->smp.clusters,
454                      cpu % ms->smp.cores);
455              }
456              qemu_fdt_add_path(ms->fdt, map_path);
457              qemu_fdt_setprop_phandle(ms->fdt, map_path, "cpu", cpu_path);
458  
459              g_free(map_path);
460              g_free(cpu_path);
461          }
462      }
463  }
464  
465  static void fdt_add_its_gic_node(VirtMachineState *vms)
466  {
467      char *nodename;
468      MachineState *ms = MACHINE(vms);
469  
470      vms->msi_phandle = qemu_fdt_alloc_phandle(ms->fdt);
471      nodename = g_strdup_printf("/intc/its@%" PRIx64,
472                                 vms->memmap[VIRT_GIC_ITS].base);
473      qemu_fdt_add_subnode(ms->fdt, nodename);
474      qemu_fdt_setprop_string(ms->fdt, nodename, "compatible",
475                              "arm,gic-v3-its");
476      qemu_fdt_setprop(ms->fdt, nodename, "msi-controller", NULL, 0);
477      qemu_fdt_setprop_cell(ms->fdt, nodename, "#msi-cells", 1);
478      qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
479                                   2, vms->memmap[VIRT_GIC_ITS].base,
480                                   2, vms->memmap[VIRT_GIC_ITS].size);
481      qemu_fdt_setprop_cell(ms->fdt, nodename, "phandle", vms->msi_phandle);
482      g_free(nodename);
483  }
484  
485  static void fdt_add_v2m_gic_node(VirtMachineState *vms)
486  {
487      MachineState *ms = MACHINE(vms);
488      char *nodename;
489  
490      nodename = g_strdup_printf("/intc/v2m@%" PRIx64,
491                                 vms->memmap[VIRT_GIC_V2M].base);
492      vms->msi_phandle = qemu_fdt_alloc_phandle(ms->fdt);
493      qemu_fdt_add_subnode(ms->fdt, nodename);
494      qemu_fdt_setprop_string(ms->fdt, nodename, "compatible",
495                              "arm,gic-v2m-frame");
496      qemu_fdt_setprop(ms->fdt, nodename, "msi-controller", NULL, 0);
497      qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
498                                   2, vms->memmap[VIRT_GIC_V2M].base,
499                                   2, vms->memmap[VIRT_GIC_V2M].size);
500      qemu_fdt_setprop_cell(ms->fdt, nodename, "phandle", vms->msi_phandle);
501      g_free(nodename);
502  }
503  
504  static void fdt_add_gic_node(VirtMachineState *vms)
505  {
506      MachineState *ms = MACHINE(vms);
507      char *nodename;
508  
509      vms->gic_phandle = qemu_fdt_alloc_phandle(ms->fdt);
510      qemu_fdt_setprop_cell(ms->fdt, "/", "interrupt-parent", vms->gic_phandle);
511  
512      nodename = g_strdup_printf("/intc@%" PRIx64,
513                                 vms->memmap[VIRT_GIC_DIST].base);
514      qemu_fdt_add_subnode(ms->fdt, nodename);
515      qemu_fdt_setprop_cell(ms->fdt, nodename, "#interrupt-cells", 3);
516      qemu_fdt_setprop(ms->fdt, nodename, "interrupt-controller", NULL, 0);
517      qemu_fdt_setprop_cell(ms->fdt, nodename, "#address-cells", 0x2);
518      qemu_fdt_setprop_cell(ms->fdt, nodename, "#size-cells", 0x2);
519      qemu_fdt_setprop(ms->fdt, nodename, "ranges", NULL, 0);
520      if (vms->gic_version != VIRT_GIC_VERSION_2) {
521          int nb_redist_regions = virt_gicv3_redist_region_count(vms);
522  
523          qemu_fdt_setprop_string(ms->fdt, nodename, "compatible",
524                                  "arm,gic-v3");
525  
526          qemu_fdt_setprop_cell(ms->fdt, nodename,
527                                "#redistributor-regions", nb_redist_regions);
528  
529          if (nb_redist_regions == 1) {
530              qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
531                                           2, vms->memmap[VIRT_GIC_DIST].base,
532                                           2, vms->memmap[VIRT_GIC_DIST].size,
533                                           2, vms->memmap[VIRT_GIC_REDIST].base,
534                                           2, vms->memmap[VIRT_GIC_REDIST].size);
535          } else {
536              qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
537                                   2, vms->memmap[VIRT_GIC_DIST].base,
538                                   2, vms->memmap[VIRT_GIC_DIST].size,
539                                   2, vms->memmap[VIRT_GIC_REDIST].base,
540                                   2, vms->memmap[VIRT_GIC_REDIST].size,
541                                   2, vms->memmap[VIRT_HIGH_GIC_REDIST2].base,
542                                   2, vms->memmap[VIRT_HIGH_GIC_REDIST2].size);
543          }
544  
545          if (vms->virt) {
546              qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupts",
547                                     GIC_FDT_IRQ_TYPE_PPI,
548                                     INTID_TO_PPI(ARCH_GIC_MAINT_IRQ),
549                                     GIC_FDT_IRQ_FLAGS_LEVEL_HI);
550          }
551      } else {
552          /* 'cortex-a15-gic' means 'GIC v2' */
553          qemu_fdt_setprop_string(ms->fdt, nodename, "compatible",
554                                  "arm,cortex-a15-gic");
555          if (!vms->virt) {
556              qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
557                                           2, vms->memmap[VIRT_GIC_DIST].base,
558                                           2, vms->memmap[VIRT_GIC_DIST].size,
559                                           2, vms->memmap[VIRT_GIC_CPU].base,
560                                           2, vms->memmap[VIRT_GIC_CPU].size);
561          } else {
562              qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
563                                           2, vms->memmap[VIRT_GIC_DIST].base,
564                                           2, vms->memmap[VIRT_GIC_DIST].size,
565                                           2, vms->memmap[VIRT_GIC_CPU].base,
566                                           2, vms->memmap[VIRT_GIC_CPU].size,
567                                           2, vms->memmap[VIRT_GIC_HYP].base,
568                                           2, vms->memmap[VIRT_GIC_HYP].size,
569                                           2, vms->memmap[VIRT_GIC_VCPU].base,
570                                           2, vms->memmap[VIRT_GIC_VCPU].size);
571              qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupts",
572                                     GIC_FDT_IRQ_TYPE_PPI,
573                                     INTID_TO_PPI(ARCH_GIC_MAINT_IRQ),
574                                     GIC_FDT_IRQ_FLAGS_LEVEL_HI);
575          }
576      }
577  
578      qemu_fdt_setprop_cell(ms->fdt, nodename, "phandle", vms->gic_phandle);
579      g_free(nodename);
580  }
581  
582  static void fdt_add_pmu_nodes(const VirtMachineState *vms)
583  {
584      ARMCPU *armcpu = ARM_CPU(first_cpu);
585      uint32_t irqflags = GIC_FDT_IRQ_FLAGS_LEVEL_HI;
586      MachineState *ms = MACHINE(vms);
587  
588      if (!arm_feature(&armcpu->env, ARM_FEATURE_PMU)) {
589          assert(!object_property_get_bool(OBJECT(armcpu), "pmu", NULL));
590          return;
591      }
592  
593      if (vms->gic_version == VIRT_GIC_VERSION_2) {
594          irqflags = deposit32(irqflags, GIC_FDT_IRQ_PPI_CPU_START,
595                               GIC_FDT_IRQ_PPI_CPU_WIDTH,
596                               (1 << MACHINE(vms)->smp.cpus) - 1);
597      }
598  
599      qemu_fdt_add_subnode(ms->fdt, "/pmu");
600      if (arm_feature(&armcpu->env, ARM_FEATURE_V8)) {
601          const char compat[] = "arm,armv8-pmuv3";
602          qemu_fdt_setprop(ms->fdt, "/pmu", "compatible",
603                           compat, sizeof(compat));
604          qemu_fdt_setprop_cells(ms->fdt, "/pmu", "interrupts",
605                                 GIC_FDT_IRQ_TYPE_PPI,
606                                 INTID_TO_PPI(VIRTUAL_PMU_IRQ), irqflags);
607      }
608  }
609  
610  static inline DeviceState *create_acpi_ged(VirtMachineState *vms)
611  {
612      DeviceState *dev;
613      MachineState *ms = MACHINE(vms);
614      int irq = vms->irqmap[VIRT_ACPI_GED];
615      uint32_t event = ACPI_GED_PWR_DOWN_EVT;
616  
617      if (ms->ram_slots) {
618          event |= ACPI_GED_MEM_HOTPLUG_EVT;
619      }
620  
621      if (ms->nvdimms_state->is_enabled) {
622          event |= ACPI_GED_NVDIMM_HOTPLUG_EVT;
623      }
624  
625      dev = qdev_new(TYPE_ACPI_GED);
626      qdev_prop_set_uint32(dev, "ged-event", event);
627      sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
628  
629      sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vms->memmap[VIRT_ACPI_GED].base);
630      sysbus_mmio_map(SYS_BUS_DEVICE(dev), 1, vms->memmap[VIRT_PCDIMM_ACPI].base);
631      sysbus_connect_irq(SYS_BUS_DEVICE(dev), 0, qdev_get_gpio_in(vms->gic, irq));
632  
633      return dev;
634  }
635  
636  static void create_its(VirtMachineState *vms)
637  {
638      const char *itsclass = its_class_name();
639      DeviceState *dev;
640  
641      if (!strcmp(itsclass, "arm-gicv3-its")) {
642          if (!vms->tcg_its) {
643              itsclass = NULL;
644          }
645      }
646  
647      if (!itsclass) {
648          /* Do nothing if not supported */
649          return;
650      }
651  
652      dev = qdev_new(itsclass);
653  
654      object_property_set_link(OBJECT(dev), "parent-gicv3", OBJECT(vms->gic),
655                               &error_abort);
656      sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
657      sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vms->memmap[VIRT_GIC_ITS].base);
658  
659      fdt_add_its_gic_node(vms);
660      vms->msi_controller = VIRT_MSI_CTRL_ITS;
661  }
662  
663  static void create_v2m(VirtMachineState *vms)
664  {
665      int i;
666      int irq = vms->irqmap[VIRT_GIC_V2M];
667      DeviceState *dev;
668  
669      dev = qdev_new("arm-gicv2m");
670      qdev_prop_set_uint32(dev, "base-spi", irq);
671      qdev_prop_set_uint32(dev, "num-spi", NUM_GICV2M_SPIS);
672      sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
673      sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vms->memmap[VIRT_GIC_V2M].base);
674  
675      for (i = 0; i < NUM_GICV2M_SPIS; i++) {
676          sysbus_connect_irq(SYS_BUS_DEVICE(dev), i,
677                             qdev_get_gpio_in(vms->gic, irq + i));
678      }
679  
680      fdt_add_v2m_gic_node(vms);
681      vms->msi_controller = VIRT_MSI_CTRL_GICV2M;
682  }
683  
684  static void create_gic(VirtMachineState *vms, MemoryRegion *mem)
685  {
686      MachineState *ms = MACHINE(vms);
687      /* We create a standalone GIC */
688      SysBusDevice *gicbusdev;
689      const char *gictype;
690      int i;
691      unsigned int smp_cpus = ms->smp.cpus;
692      uint32_t nb_redist_regions = 0;
693      int revision;
694  
695      if (vms->gic_version == VIRT_GIC_VERSION_2) {
696          gictype = gic_class_name();
697      } else {
698          gictype = gicv3_class_name();
699      }
700  
701      switch (vms->gic_version) {
702      case VIRT_GIC_VERSION_2:
703          revision = 2;
704          break;
705      case VIRT_GIC_VERSION_3:
706          revision = 3;
707          break;
708      case VIRT_GIC_VERSION_4:
709          revision = 4;
710          break;
711      default:
712          g_assert_not_reached();
713      }
714      vms->gic = qdev_new(gictype);
715      qdev_prop_set_uint32(vms->gic, "revision", revision);
716      qdev_prop_set_uint32(vms->gic, "num-cpu", smp_cpus);
717      /* Note that the num-irq property counts both internal and external
718       * interrupts; there are always 32 of the former (mandated by GIC spec).
719       */
720      qdev_prop_set_uint32(vms->gic, "num-irq", NUM_IRQS + 32);
721      if (!kvm_irqchip_in_kernel()) {
722          qdev_prop_set_bit(vms->gic, "has-security-extensions", vms->secure);
723      }
724  
725      if (vms->gic_version != VIRT_GIC_VERSION_2) {
726          QList *redist_region_count;
727          uint32_t redist0_capacity = virt_redist_capacity(vms, VIRT_GIC_REDIST);
728          uint32_t redist0_count = MIN(smp_cpus, redist0_capacity);
729  
730          nb_redist_regions = virt_gicv3_redist_region_count(vms);
731  
732          redist_region_count = qlist_new();
733          qlist_append_int(redist_region_count, redist0_count);
734          if (nb_redist_regions == 2) {
735              uint32_t redist1_capacity =
736                  virt_redist_capacity(vms, VIRT_HIGH_GIC_REDIST2);
737  
738              qlist_append_int(redist_region_count,
739                  MIN(smp_cpus - redist0_count, redist1_capacity));
740          }
741          qdev_prop_set_array(vms->gic, "redist-region-count",
742                              redist_region_count);
743  
744          if (!kvm_irqchip_in_kernel()) {
745              if (vms->tcg_its) {
746                  object_property_set_link(OBJECT(vms->gic), "sysmem",
747                                           OBJECT(mem), &error_fatal);
748                  qdev_prop_set_bit(vms->gic, "has-lpi", true);
749              }
750          }
751      } else {
752          if (!kvm_irqchip_in_kernel()) {
753              qdev_prop_set_bit(vms->gic, "has-virtualization-extensions",
754                                vms->virt);
755          }
756      }
757      gicbusdev = SYS_BUS_DEVICE(vms->gic);
758      sysbus_realize_and_unref(gicbusdev, &error_fatal);
759      sysbus_mmio_map(gicbusdev, 0, vms->memmap[VIRT_GIC_DIST].base);
760      if (vms->gic_version != VIRT_GIC_VERSION_2) {
761          sysbus_mmio_map(gicbusdev, 1, vms->memmap[VIRT_GIC_REDIST].base);
762          if (nb_redist_regions == 2) {
763              sysbus_mmio_map(gicbusdev, 2,
764                              vms->memmap[VIRT_HIGH_GIC_REDIST2].base);
765          }
766      } else {
767          sysbus_mmio_map(gicbusdev, 1, vms->memmap[VIRT_GIC_CPU].base);
768          if (vms->virt) {
769              sysbus_mmio_map(gicbusdev, 2, vms->memmap[VIRT_GIC_HYP].base);
770              sysbus_mmio_map(gicbusdev, 3, vms->memmap[VIRT_GIC_VCPU].base);
771          }
772      }
773  
774      /* Wire the outputs from each CPU's generic timer and the GICv3
775       * maintenance interrupt signal to the appropriate GIC PPI inputs,
776       * and the GIC's IRQ/FIQ/VIRQ/VFIQ interrupt outputs to the CPU's inputs.
777       */
778      for (i = 0; i < smp_cpus; i++) {
779          DeviceState *cpudev = DEVICE(qemu_get_cpu(i));
780          int intidbase = NUM_IRQS + i * GIC_INTERNAL;
781          /* Mapping from the output timer irq lines from the CPU to the
782           * GIC PPI inputs we use for the virt board.
783           */
784          const int timer_irq[] = {
785              [GTIMER_PHYS] = ARCH_TIMER_NS_EL1_IRQ,
786              [GTIMER_VIRT] = ARCH_TIMER_VIRT_IRQ,
787              [GTIMER_HYP]  = ARCH_TIMER_NS_EL2_IRQ,
788              [GTIMER_SEC]  = ARCH_TIMER_S_EL1_IRQ,
789          };
790  
791          for (unsigned irq = 0; irq < ARRAY_SIZE(timer_irq); irq++) {
792              qdev_connect_gpio_out(cpudev, irq,
793                                    qdev_get_gpio_in(vms->gic,
794                                                     intidbase + timer_irq[irq]));
795          }
796  
797          if (vms->gic_version != VIRT_GIC_VERSION_2) {
798              qemu_irq irq = qdev_get_gpio_in(vms->gic,
799                                              intidbase + ARCH_GIC_MAINT_IRQ);
800              qdev_connect_gpio_out_named(cpudev, "gicv3-maintenance-interrupt",
801                                          0, irq);
802          } else if (vms->virt) {
803              qemu_irq irq = qdev_get_gpio_in(vms->gic,
804                                              intidbase + ARCH_GIC_MAINT_IRQ);
805              sysbus_connect_irq(gicbusdev, i + 4 * smp_cpus, irq);
806          }
807  
808          qdev_connect_gpio_out_named(cpudev, "pmu-interrupt", 0,
809                                      qdev_get_gpio_in(vms->gic, intidbase
810                                                       + VIRTUAL_PMU_IRQ));
811  
812          sysbus_connect_irq(gicbusdev, i, qdev_get_gpio_in(cpudev, ARM_CPU_IRQ));
813          sysbus_connect_irq(gicbusdev, i + smp_cpus,
814                             qdev_get_gpio_in(cpudev, ARM_CPU_FIQ));
815          sysbus_connect_irq(gicbusdev, i + 2 * smp_cpus,
816                             qdev_get_gpio_in(cpudev, ARM_CPU_VIRQ));
817          sysbus_connect_irq(gicbusdev, i + 3 * smp_cpus,
818                             qdev_get_gpio_in(cpudev, ARM_CPU_VFIQ));
819      }
820  
821      fdt_add_gic_node(vms);
822  
823      if (vms->gic_version != VIRT_GIC_VERSION_2 && vms->its) {
824          create_its(vms);
825      } else if (vms->gic_version == VIRT_GIC_VERSION_2) {
826          create_v2m(vms);
827      }
828  }
829  
830  static void create_uart(const VirtMachineState *vms, int uart,
831                          MemoryRegion *mem, Chardev *chr)
832  {
833      char *nodename;
834      hwaddr base = vms->memmap[uart].base;
835      hwaddr size = vms->memmap[uart].size;
836      int irq = vms->irqmap[uart];
837      const char compat[] = "arm,pl011\0arm,primecell";
838      const char clocknames[] = "uartclk\0apb_pclk";
839      DeviceState *dev = qdev_new(TYPE_PL011);
840      SysBusDevice *s = SYS_BUS_DEVICE(dev);
841      MachineState *ms = MACHINE(vms);
842  
843      qdev_prop_set_chr(dev, "chardev", chr);
844      sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
845      memory_region_add_subregion(mem, base,
846                                  sysbus_mmio_get_region(s, 0));
847      sysbus_connect_irq(s, 0, qdev_get_gpio_in(vms->gic, irq));
848  
849      nodename = g_strdup_printf("/pl011@%" PRIx64, base);
850      qemu_fdt_add_subnode(ms->fdt, nodename);
851      /* Note that we can't use setprop_string because of the embedded NUL */
852      qemu_fdt_setprop(ms->fdt, nodename, "compatible",
853                           compat, sizeof(compat));
854      qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
855                                       2, base, 2, size);
856      qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupts",
857                                 GIC_FDT_IRQ_TYPE_SPI, irq,
858                                 GIC_FDT_IRQ_FLAGS_LEVEL_HI);
859      qemu_fdt_setprop_cells(ms->fdt, nodename, "clocks",
860                                 vms->clock_phandle, vms->clock_phandle);
861      qemu_fdt_setprop(ms->fdt, nodename, "clock-names",
862                           clocknames, sizeof(clocknames));
863  
864      if (uart == VIRT_UART) {
865          qemu_fdt_setprop_string(ms->fdt, "/chosen", "stdout-path", nodename);
866      } else {
867          /* Mark as not usable by the normal world */
868          qemu_fdt_setprop_string(ms->fdt, nodename, "status", "disabled");
869          qemu_fdt_setprop_string(ms->fdt, nodename, "secure-status", "okay");
870  
871          qemu_fdt_setprop_string(ms->fdt, "/secure-chosen", "stdout-path",
872                                  nodename);
873      }
874  
875      g_free(nodename);
876  }
877  
878  static void create_rtc(const VirtMachineState *vms)
879  {
880      char *nodename;
881      hwaddr base = vms->memmap[VIRT_RTC].base;
882      hwaddr size = vms->memmap[VIRT_RTC].size;
883      int irq = vms->irqmap[VIRT_RTC];
884      const char compat[] = "arm,pl031\0arm,primecell";
885      MachineState *ms = MACHINE(vms);
886  
887      sysbus_create_simple("pl031", base, qdev_get_gpio_in(vms->gic, irq));
888  
889      nodename = g_strdup_printf("/pl031@%" PRIx64, base);
890      qemu_fdt_add_subnode(ms->fdt, nodename);
891      qemu_fdt_setprop(ms->fdt, nodename, "compatible", compat, sizeof(compat));
892      qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
893                                   2, base, 2, size);
894      qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupts",
895                             GIC_FDT_IRQ_TYPE_SPI, irq,
896                             GIC_FDT_IRQ_FLAGS_LEVEL_HI);
897      qemu_fdt_setprop_cell(ms->fdt, nodename, "clocks", vms->clock_phandle);
898      qemu_fdt_setprop_string(ms->fdt, nodename, "clock-names", "apb_pclk");
899      g_free(nodename);
900  }
901  
902  static DeviceState *gpio_key_dev;
903  static void virt_powerdown_req(Notifier *n, void *opaque)
904  {
905      VirtMachineState *s = container_of(n, VirtMachineState, powerdown_notifier);
906  
907      if (s->acpi_dev) {
908          acpi_send_event(s->acpi_dev, ACPI_POWER_DOWN_STATUS);
909      } else {
910          /* use gpio Pin 3 for power button event */
911          qemu_set_irq(qdev_get_gpio_in(gpio_key_dev, 0), 1);
912      }
913  }
914  
915  static void create_gpio_keys(char *fdt, DeviceState *pl061_dev,
916                               uint32_t phandle)
917  {
918      gpio_key_dev = sysbus_create_simple("gpio-key", -1,
919                                          qdev_get_gpio_in(pl061_dev, 3));
920  
921      qemu_fdt_add_subnode(fdt, "/gpio-keys");
922      qemu_fdt_setprop_string(fdt, "/gpio-keys", "compatible", "gpio-keys");
923  
924      qemu_fdt_add_subnode(fdt, "/gpio-keys/poweroff");
925      qemu_fdt_setprop_string(fdt, "/gpio-keys/poweroff",
926                              "label", "GPIO Key Poweroff");
927      qemu_fdt_setprop_cell(fdt, "/gpio-keys/poweroff", "linux,code",
928                            KEY_POWER);
929      qemu_fdt_setprop_cells(fdt, "/gpio-keys/poweroff",
930                             "gpios", phandle, 3, 0);
931  }
932  
933  #define SECURE_GPIO_POWEROFF 0
934  #define SECURE_GPIO_RESET    1
935  
936  static void create_secure_gpio_pwr(char *fdt, DeviceState *pl061_dev,
937                                     uint32_t phandle)
938  {
939      DeviceState *gpio_pwr_dev;
940  
941      /* gpio-pwr */
942      gpio_pwr_dev = sysbus_create_simple("gpio-pwr", -1, NULL);
943  
944      /* connect secure pl061 to gpio-pwr */
945      qdev_connect_gpio_out(pl061_dev, SECURE_GPIO_RESET,
946                            qdev_get_gpio_in_named(gpio_pwr_dev, "reset", 0));
947      qdev_connect_gpio_out(pl061_dev, SECURE_GPIO_POWEROFF,
948                            qdev_get_gpio_in_named(gpio_pwr_dev, "shutdown", 0));
949  
950      qemu_fdt_add_subnode(fdt, "/gpio-poweroff");
951      qemu_fdt_setprop_string(fdt, "/gpio-poweroff", "compatible",
952                              "gpio-poweroff");
953      qemu_fdt_setprop_cells(fdt, "/gpio-poweroff",
954                             "gpios", phandle, SECURE_GPIO_POWEROFF, 0);
955      qemu_fdt_setprop_string(fdt, "/gpio-poweroff", "status", "disabled");
956      qemu_fdt_setprop_string(fdt, "/gpio-poweroff", "secure-status",
957                              "okay");
958  
959      qemu_fdt_add_subnode(fdt, "/gpio-restart");
960      qemu_fdt_setprop_string(fdt, "/gpio-restart", "compatible",
961                              "gpio-restart");
962      qemu_fdt_setprop_cells(fdt, "/gpio-restart",
963                             "gpios", phandle, SECURE_GPIO_RESET, 0);
964      qemu_fdt_setprop_string(fdt, "/gpio-restart", "status", "disabled");
965      qemu_fdt_setprop_string(fdt, "/gpio-restart", "secure-status",
966                              "okay");
967  }
968  
969  static void create_gpio_devices(const VirtMachineState *vms, int gpio,
970                                  MemoryRegion *mem)
971  {
972      char *nodename;
973      DeviceState *pl061_dev;
974      hwaddr base = vms->memmap[gpio].base;
975      hwaddr size = vms->memmap[gpio].size;
976      int irq = vms->irqmap[gpio];
977      const char compat[] = "arm,pl061\0arm,primecell";
978      SysBusDevice *s;
979      MachineState *ms = MACHINE(vms);
980  
981      pl061_dev = qdev_new("pl061");
982      /* Pull lines down to 0 if not driven by the PL061 */
983      qdev_prop_set_uint32(pl061_dev, "pullups", 0);
984      qdev_prop_set_uint32(pl061_dev, "pulldowns", 0xff);
985      s = SYS_BUS_DEVICE(pl061_dev);
986      sysbus_realize_and_unref(s, &error_fatal);
987      memory_region_add_subregion(mem, base, sysbus_mmio_get_region(s, 0));
988      sysbus_connect_irq(s, 0, qdev_get_gpio_in(vms->gic, irq));
989  
990      uint32_t phandle = qemu_fdt_alloc_phandle(ms->fdt);
991      nodename = g_strdup_printf("/pl061@%" PRIx64, base);
992      qemu_fdt_add_subnode(ms->fdt, nodename);
993      qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
994                                   2, base, 2, size);
995      qemu_fdt_setprop(ms->fdt, nodename, "compatible", compat, sizeof(compat));
996      qemu_fdt_setprop_cell(ms->fdt, nodename, "#gpio-cells", 2);
997      qemu_fdt_setprop(ms->fdt, nodename, "gpio-controller", NULL, 0);
998      qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupts",
999                             GIC_FDT_IRQ_TYPE_SPI, irq,
1000                             GIC_FDT_IRQ_FLAGS_LEVEL_HI);
1001      qemu_fdt_setprop_cell(ms->fdt, nodename, "clocks", vms->clock_phandle);
1002      qemu_fdt_setprop_string(ms->fdt, nodename, "clock-names", "apb_pclk");
1003      qemu_fdt_setprop_cell(ms->fdt, nodename, "phandle", phandle);
1004  
1005      if (gpio != VIRT_GPIO) {
1006          /* Mark as not usable by the normal world */
1007          qemu_fdt_setprop_string(ms->fdt, nodename, "status", "disabled");
1008          qemu_fdt_setprop_string(ms->fdt, nodename, "secure-status", "okay");
1009      }
1010      g_free(nodename);
1011  
1012      /* Child gpio devices */
1013      if (gpio == VIRT_GPIO) {
1014          create_gpio_keys(ms->fdt, pl061_dev, phandle);
1015      } else {
1016          create_secure_gpio_pwr(ms->fdt, pl061_dev, phandle);
1017      }
1018  }
1019  
1020  static void create_virtio_devices(const VirtMachineState *vms)
1021  {
1022      int i;
1023      hwaddr size = vms->memmap[VIRT_MMIO].size;
1024      MachineState *ms = MACHINE(vms);
1025  
1026      /* We create the transports in forwards order. Since qbus_realize()
1027       * prepends (not appends) new child buses, the incrementing loop below will
1028       * create a list of virtio-mmio buses with decreasing base addresses.
1029       *
1030       * When a -device option is processed from the command line,
1031       * qbus_find_recursive() picks the next free virtio-mmio bus in forwards
1032       * order. The upshot is that -device options in increasing command line
1033       * order are mapped to virtio-mmio buses with decreasing base addresses.
1034       *
1035       * When this code was originally written, that arrangement ensured that the
1036       * guest Linux kernel would give the lowest "name" (/dev/vda, eth0, etc) to
1037       * the first -device on the command line. (The end-to-end order is a
1038       * function of this loop, qbus_realize(), qbus_find_recursive(), and the
1039       * guest kernel's name-to-address assignment strategy.)
1040       *
1041       * Meanwhile, the kernel's traversal seems to have been reversed; see eg.
1042       * the message, if not necessarily the code, of commit 70161ff336.
1043       * Therefore the loop now establishes the inverse of the original intent.
1044       *
1045       * Unfortunately, we can't counteract the kernel change by reversing the
1046       * loop; it would break existing command lines.
1047       *
1048       * In any case, the kernel makes no guarantee about the stability of
1049       * enumeration order of virtio devices (as demonstrated by it changing
1050       * between kernel versions). For reliable and stable identification
1051       * of disks users must use UUIDs or similar mechanisms.
1052       */
1053      for (i = 0; i < NUM_VIRTIO_TRANSPORTS; i++) {
1054          int irq = vms->irqmap[VIRT_MMIO] + i;
1055          hwaddr base = vms->memmap[VIRT_MMIO].base + i * size;
1056  
1057          sysbus_create_simple("virtio-mmio", base,
1058                               qdev_get_gpio_in(vms->gic, irq));
1059      }
1060  
1061      /* We add dtb nodes in reverse order so that they appear in the finished
1062       * device tree lowest address first.
1063       *
1064       * Note that this mapping is independent of the loop above. The previous
1065       * loop influences virtio device to virtio transport assignment, whereas
1066       * this loop controls how virtio transports are laid out in the dtb.
1067       */
1068      for (i = NUM_VIRTIO_TRANSPORTS - 1; i >= 0; i--) {
1069          char *nodename;
1070          int irq = vms->irqmap[VIRT_MMIO] + i;
1071          hwaddr base = vms->memmap[VIRT_MMIO].base + i * size;
1072  
1073          nodename = g_strdup_printf("/virtio_mmio@%" PRIx64, base);
1074          qemu_fdt_add_subnode(ms->fdt, nodename);
1075          qemu_fdt_setprop_string(ms->fdt, nodename,
1076                                  "compatible", "virtio,mmio");
1077          qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
1078                                       2, base, 2, size);
1079          qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupts",
1080                                 GIC_FDT_IRQ_TYPE_SPI, irq,
1081                                 GIC_FDT_IRQ_FLAGS_EDGE_LO_HI);
1082          qemu_fdt_setprop(ms->fdt, nodename, "dma-coherent", NULL, 0);
1083          g_free(nodename);
1084      }
1085  }
1086  
1087  #define VIRT_FLASH_SECTOR_SIZE (256 * KiB)
1088  
1089  static PFlashCFI01 *virt_flash_create1(VirtMachineState *vms,
1090                                          const char *name,
1091                                          const char *alias_prop_name)
1092  {
1093      /*
1094       * Create a single flash device.  We use the same parameters as
1095       * the flash devices on the Versatile Express board.
1096       */
1097      DeviceState *dev = qdev_new(TYPE_PFLASH_CFI01);
1098  
1099      qdev_prop_set_uint64(dev, "sector-length", VIRT_FLASH_SECTOR_SIZE);
1100      qdev_prop_set_uint8(dev, "width", 4);
1101      qdev_prop_set_uint8(dev, "device-width", 2);
1102      qdev_prop_set_bit(dev, "big-endian", false);
1103      qdev_prop_set_uint16(dev, "id0", 0x89);
1104      qdev_prop_set_uint16(dev, "id1", 0x18);
1105      qdev_prop_set_uint16(dev, "id2", 0x00);
1106      qdev_prop_set_uint16(dev, "id3", 0x00);
1107      qdev_prop_set_string(dev, "name", name);
1108      object_property_add_child(OBJECT(vms), name, OBJECT(dev));
1109      object_property_add_alias(OBJECT(vms), alias_prop_name,
1110                                OBJECT(dev), "drive");
1111      return PFLASH_CFI01(dev);
1112  }
1113  
1114  static void virt_flash_create(VirtMachineState *vms)
1115  {
1116      vms->flash[0] = virt_flash_create1(vms, "virt.flash0", "pflash0");
1117      vms->flash[1] = virt_flash_create1(vms, "virt.flash1", "pflash1");
1118  }
1119  
1120  static void virt_flash_map1(PFlashCFI01 *flash,
1121                              hwaddr base, hwaddr size,
1122                              MemoryRegion *sysmem)
1123  {
1124      DeviceState *dev = DEVICE(flash);
1125  
1126      assert(QEMU_IS_ALIGNED(size, VIRT_FLASH_SECTOR_SIZE));
1127      assert(size / VIRT_FLASH_SECTOR_SIZE <= UINT32_MAX);
1128      qdev_prop_set_uint32(dev, "num-blocks", size / VIRT_FLASH_SECTOR_SIZE);
1129      sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
1130  
1131      memory_region_add_subregion(sysmem, base,
1132                                  sysbus_mmio_get_region(SYS_BUS_DEVICE(dev),
1133                                                         0));
1134  }
1135  
1136  static void virt_flash_map(VirtMachineState *vms,
1137                             MemoryRegion *sysmem,
1138                             MemoryRegion *secure_sysmem)
1139  {
1140      /*
1141       * Map two flash devices to fill the VIRT_FLASH space in the memmap.
1142       * sysmem is the system memory space. secure_sysmem is the secure view
1143       * of the system, and the first flash device should be made visible only
1144       * there. The second flash device is visible to both secure and nonsecure.
1145       * If sysmem == secure_sysmem this means there is no separate Secure
1146       * address space and both flash devices are generally visible.
1147       */
1148      hwaddr flashsize = vms->memmap[VIRT_FLASH].size / 2;
1149      hwaddr flashbase = vms->memmap[VIRT_FLASH].base;
1150  
1151      virt_flash_map1(vms->flash[0], flashbase, flashsize,
1152                      secure_sysmem);
1153      virt_flash_map1(vms->flash[1], flashbase + flashsize, flashsize,
1154                      sysmem);
1155  }
1156  
1157  static void virt_flash_fdt(VirtMachineState *vms,
1158                             MemoryRegion *sysmem,
1159                             MemoryRegion *secure_sysmem)
1160  {
1161      hwaddr flashsize = vms->memmap[VIRT_FLASH].size / 2;
1162      hwaddr flashbase = vms->memmap[VIRT_FLASH].base;
1163      MachineState *ms = MACHINE(vms);
1164      char *nodename;
1165  
1166      if (sysmem == secure_sysmem) {
1167          /* Report both flash devices as a single node in the DT */
1168          nodename = g_strdup_printf("/flash@%" PRIx64, flashbase);
1169          qemu_fdt_add_subnode(ms->fdt, nodename);
1170          qemu_fdt_setprop_string(ms->fdt, nodename, "compatible", "cfi-flash");
1171          qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
1172                                       2, flashbase, 2, flashsize,
1173                                       2, flashbase + flashsize, 2, flashsize);
1174          qemu_fdt_setprop_cell(ms->fdt, nodename, "bank-width", 4);
1175          g_free(nodename);
1176      } else {
1177          /*
1178           * Report the devices as separate nodes so we can mark one as
1179           * only visible to the secure world.
1180           */
1181          nodename = g_strdup_printf("/secflash@%" PRIx64, flashbase);
1182          qemu_fdt_add_subnode(ms->fdt, nodename);
1183          qemu_fdt_setprop_string(ms->fdt, nodename, "compatible", "cfi-flash");
1184          qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
1185                                       2, flashbase, 2, flashsize);
1186          qemu_fdt_setprop_cell(ms->fdt, nodename, "bank-width", 4);
1187          qemu_fdt_setprop_string(ms->fdt, nodename, "status", "disabled");
1188          qemu_fdt_setprop_string(ms->fdt, nodename, "secure-status", "okay");
1189          g_free(nodename);
1190  
1191          nodename = g_strdup_printf("/flash@%" PRIx64, flashbase + flashsize);
1192          qemu_fdt_add_subnode(ms->fdt, nodename);
1193          qemu_fdt_setprop_string(ms->fdt, nodename, "compatible", "cfi-flash");
1194          qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
1195                                       2, flashbase + flashsize, 2, flashsize);
1196          qemu_fdt_setprop_cell(ms->fdt, nodename, "bank-width", 4);
1197          g_free(nodename);
1198      }
1199  }
1200  
1201  static bool virt_firmware_init(VirtMachineState *vms,
1202                                 MemoryRegion *sysmem,
1203                                 MemoryRegion *secure_sysmem)
1204  {
1205      int i;
1206      const char *bios_name;
1207      BlockBackend *pflash_blk0;
1208  
1209      /* Map legacy -drive if=pflash to machine properties */
1210      for (i = 0; i < ARRAY_SIZE(vms->flash); i++) {
1211          pflash_cfi01_legacy_drive(vms->flash[i],
1212                                    drive_get(IF_PFLASH, 0, i));
1213      }
1214  
1215      virt_flash_map(vms, sysmem, secure_sysmem);
1216  
1217      pflash_blk0 = pflash_cfi01_get_blk(vms->flash[0]);
1218  
1219      bios_name = MACHINE(vms)->firmware;
1220      if (bios_name) {
1221          char *fname;
1222          MemoryRegion *mr;
1223          int image_size;
1224  
1225          if (pflash_blk0) {
1226              error_report("The contents of the first flash device may be "
1227                           "specified with -bios or with -drive if=pflash... "
1228                           "but you cannot use both options at once");
1229              exit(1);
1230          }
1231  
1232          /* Fall back to -bios */
1233  
1234          fname = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
1235          if (!fname) {
1236              error_report("Could not find ROM image '%s'", bios_name);
1237              exit(1);
1238          }
1239          mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(vms->flash[0]), 0);
1240          image_size = load_image_mr(fname, mr);
1241          g_free(fname);
1242          if (image_size < 0) {
1243              error_report("Could not load ROM image '%s'", bios_name);
1244              exit(1);
1245          }
1246      }
1247  
1248      return pflash_blk0 || bios_name;
1249  }
1250  
1251  static FWCfgState *create_fw_cfg(const VirtMachineState *vms, AddressSpace *as)
1252  {
1253      MachineState *ms = MACHINE(vms);
1254      hwaddr base = vms->memmap[VIRT_FW_CFG].base;
1255      hwaddr size = vms->memmap[VIRT_FW_CFG].size;
1256      FWCfgState *fw_cfg;
1257      char *nodename;
1258  
1259      fw_cfg = fw_cfg_init_mem_wide(base + 8, base, 8, base + 16, as);
1260      fw_cfg_add_i16(fw_cfg, FW_CFG_NB_CPUS, (uint16_t)ms->smp.cpus);
1261  
1262      nodename = g_strdup_printf("/fw-cfg@%" PRIx64, base);
1263      qemu_fdt_add_subnode(ms->fdt, nodename);
1264      qemu_fdt_setprop_string(ms->fdt, nodename,
1265                              "compatible", "qemu,fw-cfg-mmio");
1266      qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
1267                                   2, base, 2, size);
1268      qemu_fdt_setprop(ms->fdt, nodename, "dma-coherent", NULL, 0);
1269      g_free(nodename);
1270      return fw_cfg;
1271  }
1272  
1273  static void create_pcie_irq_map(const MachineState *ms,
1274                                  uint32_t gic_phandle,
1275                                  int first_irq, const char *nodename)
1276  {
1277      int devfn, pin;
1278      uint32_t full_irq_map[4 * 4 * 10] = { 0 };
1279      uint32_t *irq_map = full_irq_map;
1280  
1281      for (devfn = 0; devfn <= 0x18; devfn += 0x8) {
1282          for (pin = 0; pin < 4; pin++) {
1283              int irq_type = GIC_FDT_IRQ_TYPE_SPI;
1284              int irq_nr = first_irq + ((pin + PCI_SLOT(devfn)) % PCI_NUM_PINS);
1285              int irq_level = GIC_FDT_IRQ_FLAGS_LEVEL_HI;
1286              int i;
1287  
1288              uint32_t map[] = {
1289                  devfn << 8, 0, 0,                           /* devfn */
1290                  pin + 1,                                    /* PCI pin */
1291                  gic_phandle, 0, 0, irq_type, irq_nr, irq_level }; /* GIC irq */
1292  
1293              /* Convert map to big endian */
1294              for (i = 0; i < 10; i++) {
1295                  irq_map[i] = cpu_to_be32(map[i]);
1296              }
1297              irq_map += 10;
1298          }
1299      }
1300  
1301      qemu_fdt_setprop(ms->fdt, nodename, "interrupt-map",
1302                       full_irq_map, sizeof(full_irq_map));
1303  
1304      qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupt-map-mask",
1305                             cpu_to_be16(PCI_DEVFN(3, 0)), /* Slot 3 */
1306                             0, 0,
1307                             0x7           /* PCI irq */);
1308  }
1309  
1310  static void create_smmu(const VirtMachineState *vms,
1311                          PCIBus *bus)
1312  {
1313      char *node;
1314      const char compat[] = "arm,smmu-v3";
1315      int irq =  vms->irqmap[VIRT_SMMU];
1316      int i;
1317      hwaddr base = vms->memmap[VIRT_SMMU].base;
1318      hwaddr size = vms->memmap[VIRT_SMMU].size;
1319      const char irq_names[] = "eventq\0priq\0cmdq-sync\0gerror";
1320      DeviceState *dev;
1321      MachineState *ms = MACHINE(vms);
1322  
1323      if (vms->iommu != VIRT_IOMMU_SMMUV3 || !vms->iommu_phandle) {
1324          return;
1325      }
1326  
1327      dev = qdev_new(TYPE_ARM_SMMUV3);
1328  
1329      object_property_set_link(OBJECT(dev), "primary-bus", OBJECT(bus),
1330                               &error_abort);
1331      sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
1332      sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, base);
1333      for (i = 0; i < NUM_SMMU_IRQS; i++) {
1334          sysbus_connect_irq(SYS_BUS_DEVICE(dev), i,
1335                             qdev_get_gpio_in(vms->gic, irq + i));
1336      }
1337  
1338      node = g_strdup_printf("/smmuv3@%" PRIx64, base);
1339      qemu_fdt_add_subnode(ms->fdt, node);
1340      qemu_fdt_setprop(ms->fdt, node, "compatible", compat, sizeof(compat));
1341      qemu_fdt_setprop_sized_cells(ms->fdt, node, "reg", 2, base, 2, size);
1342  
1343      qemu_fdt_setprop_cells(ms->fdt, node, "interrupts",
1344              GIC_FDT_IRQ_TYPE_SPI, irq    , GIC_FDT_IRQ_FLAGS_EDGE_LO_HI,
1345              GIC_FDT_IRQ_TYPE_SPI, irq + 1, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI,
1346              GIC_FDT_IRQ_TYPE_SPI, irq + 2, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI,
1347              GIC_FDT_IRQ_TYPE_SPI, irq + 3, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI);
1348  
1349      qemu_fdt_setprop(ms->fdt, node, "interrupt-names", irq_names,
1350                       sizeof(irq_names));
1351  
1352      qemu_fdt_setprop(ms->fdt, node, "dma-coherent", NULL, 0);
1353  
1354      qemu_fdt_setprop_cell(ms->fdt, node, "#iommu-cells", 1);
1355  
1356      qemu_fdt_setprop_cell(ms->fdt, node, "phandle", vms->iommu_phandle);
1357      g_free(node);
1358  }
1359  
1360  static void create_virtio_iommu_dt_bindings(VirtMachineState *vms)
1361  {
1362      const char compat[] = "virtio,pci-iommu\0pci1af4,1057";
1363      uint16_t bdf = vms->virtio_iommu_bdf;
1364      MachineState *ms = MACHINE(vms);
1365      char *node;
1366  
1367      vms->iommu_phandle = qemu_fdt_alloc_phandle(ms->fdt);
1368  
1369      node = g_strdup_printf("%s/virtio_iommu@%x,%x", vms->pciehb_nodename,
1370                             PCI_SLOT(bdf), PCI_FUNC(bdf));
1371      qemu_fdt_add_subnode(ms->fdt, node);
1372      qemu_fdt_setprop(ms->fdt, node, "compatible", compat, sizeof(compat));
1373      qemu_fdt_setprop_sized_cells(ms->fdt, node, "reg",
1374                                   1, bdf << 8, 1, 0, 1, 0,
1375                                   1, 0, 1, 0);
1376  
1377      qemu_fdt_setprop_cell(ms->fdt, node, "#iommu-cells", 1);
1378      qemu_fdt_setprop_cell(ms->fdt, node, "phandle", vms->iommu_phandle);
1379      g_free(node);
1380  
1381      qemu_fdt_setprop_cells(ms->fdt, vms->pciehb_nodename, "iommu-map",
1382                             0x0, vms->iommu_phandle, 0x0, bdf,
1383                             bdf + 1, vms->iommu_phandle, bdf + 1, 0xffff - bdf);
1384  }
1385  
1386  static void create_pcie(VirtMachineState *vms)
1387  {
1388      hwaddr base_mmio = vms->memmap[VIRT_PCIE_MMIO].base;
1389      hwaddr size_mmio = vms->memmap[VIRT_PCIE_MMIO].size;
1390      hwaddr base_mmio_high = vms->memmap[VIRT_HIGH_PCIE_MMIO].base;
1391      hwaddr size_mmio_high = vms->memmap[VIRT_HIGH_PCIE_MMIO].size;
1392      hwaddr base_pio = vms->memmap[VIRT_PCIE_PIO].base;
1393      hwaddr size_pio = vms->memmap[VIRT_PCIE_PIO].size;
1394      hwaddr base_ecam, size_ecam;
1395      hwaddr base = base_mmio;
1396      int nr_pcie_buses;
1397      int irq = vms->irqmap[VIRT_PCIE];
1398      MemoryRegion *mmio_alias;
1399      MemoryRegion *mmio_reg;
1400      MemoryRegion *ecam_alias;
1401      MemoryRegion *ecam_reg;
1402      DeviceState *dev;
1403      char *nodename;
1404      int i, ecam_id;
1405      PCIHostState *pci;
1406      MachineState *ms = MACHINE(vms);
1407      MachineClass *mc = MACHINE_GET_CLASS(ms);
1408  
1409      dev = qdev_new(TYPE_GPEX_HOST);
1410      sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
1411  
1412      ecam_id = VIRT_ECAM_ID(vms->highmem_ecam);
1413      base_ecam = vms->memmap[ecam_id].base;
1414      size_ecam = vms->memmap[ecam_id].size;
1415      nr_pcie_buses = size_ecam / PCIE_MMCFG_SIZE_MIN;
1416      /* Map only the first size_ecam bytes of ECAM space */
1417      ecam_alias = g_new0(MemoryRegion, 1);
1418      ecam_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 0);
1419      memory_region_init_alias(ecam_alias, OBJECT(dev), "pcie-ecam",
1420                               ecam_reg, 0, size_ecam);
1421      memory_region_add_subregion(get_system_memory(), base_ecam, ecam_alias);
1422  
1423      /* Map the MMIO window into system address space so as to expose
1424       * the section of PCI MMIO space which starts at the same base address
1425       * (ie 1:1 mapping for that part of PCI MMIO space visible through
1426       * the window).
1427       */
1428      mmio_alias = g_new0(MemoryRegion, 1);
1429      mmio_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 1);
1430      memory_region_init_alias(mmio_alias, OBJECT(dev), "pcie-mmio",
1431                               mmio_reg, base_mmio, size_mmio);
1432      memory_region_add_subregion(get_system_memory(), base_mmio, mmio_alias);
1433  
1434      if (vms->highmem_mmio) {
1435          /* Map high MMIO space */
1436          MemoryRegion *high_mmio_alias = g_new0(MemoryRegion, 1);
1437  
1438          memory_region_init_alias(high_mmio_alias, OBJECT(dev), "pcie-mmio-high",
1439                                   mmio_reg, base_mmio_high, size_mmio_high);
1440          memory_region_add_subregion(get_system_memory(), base_mmio_high,
1441                                      high_mmio_alias);
1442      }
1443  
1444      /* Map IO port space */
1445      sysbus_mmio_map(SYS_BUS_DEVICE(dev), 2, base_pio);
1446  
1447      for (i = 0; i < GPEX_NUM_IRQS; i++) {
1448          sysbus_connect_irq(SYS_BUS_DEVICE(dev), i,
1449                             qdev_get_gpio_in(vms->gic, irq + i));
1450          gpex_set_irq_num(GPEX_HOST(dev), i, irq + i);
1451      }
1452  
1453      pci = PCI_HOST_BRIDGE(dev);
1454      pci->bypass_iommu = vms->default_bus_bypass_iommu;
1455      vms->bus = pci->bus;
1456      if (vms->bus) {
1457          for (i = 0; i < nb_nics; i++) {
1458              pci_nic_init_nofail(&nd_table[i], pci->bus, mc->default_nic, NULL);
1459          }
1460      }
1461  
1462      nodename = vms->pciehb_nodename = g_strdup_printf("/pcie@%" PRIx64, base);
1463      qemu_fdt_add_subnode(ms->fdt, nodename);
1464      qemu_fdt_setprop_string(ms->fdt, nodename,
1465                              "compatible", "pci-host-ecam-generic");
1466      qemu_fdt_setprop_string(ms->fdt, nodename, "device_type", "pci");
1467      qemu_fdt_setprop_cell(ms->fdt, nodename, "#address-cells", 3);
1468      qemu_fdt_setprop_cell(ms->fdt, nodename, "#size-cells", 2);
1469      qemu_fdt_setprop_cell(ms->fdt, nodename, "linux,pci-domain", 0);
1470      qemu_fdt_setprop_cells(ms->fdt, nodename, "bus-range", 0,
1471                             nr_pcie_buses - 1);
1472      qemu_fdt_setprop(ms->fdt, nodename, "dma-coherent", NULL, 0);
1473  
1474      if (vms->msi_phandle) {
1475          qemu_fdt_setprop_cells(ms->fdt, nodename, "msi-map",
1476                                 0, vms->msi_phandle, 0, 0x10000);
1477      }
1478  
1479      qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
1480                                   2, base_ecam, 2, size_ecam);
1481  
1482      if (vms->highmem_mmio) {
1483          qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "ranges",
1484                                       1, FDT_PCI_RANGE_IOPORT, 2, 0,
1485                                       2, base_pio, 2, size_pio,
1486                                       1, FDT_PCI_RANGE_MMIO, 2, base_mmio,
1487                                       2, base_mmio, 2, size_mmio,
1488                                       1, FDT_PCI_RANGE_MMIO_64BIT,
1489                                       2, base_mmio_high,
1490                                       2, base_mmio_high, 2, size_mmio_high);
1491      } else {
1492          qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "ranges",
1493                                       1, FDT_PCI_RANGE_IOPORT, 2, 0,
1494                                       2, base_pio, 2, size_pio,
1495                                       1, FDT_PCI_RANGE_MMIO, 2, base_mmio,
1496                                       2, base_mmio, 2, size_mmio);
1497      }
1498  
1499      qemu_fdt_setprop_cell(ms->fdt, nodename, "#interrupt-cells", 1);
1500      create_pcie_irq_map(ms, vms->gic_phandle, irq, nodename);
1501  
1502      if (vms->iommu) {
1503          vms->iommu_phandle = qemu_fdt_alloc_phandle(ms->fdt);
1504  
1505          switch (vms->iommu) {
1506          case VIRT_IOMMU_SMMUV3:
1507              create_smmu(vms, vms->bus);
1508              qemu_fdt_setprop_cells(ms->fdt, nodename, "iommu-map",
1509                                     0x0, vms->iommu_phandle, 0x0, 0x10000);
1510              break;
1511          default:
1512              g_assert_not_reached();
1513          }
1514      }
1515  }
1516  
1517  static void create_platform_bus(VirtMachineState *vms)
1518  {
1519      DeviceState *dev;
1520      SysBusDevice *s;
1521      int i;
1522      MemoryRegion *sysmem = get_system_memory();
1523  
1524      dev = qdev_new(TYPE_PLATFORM_BUS_DEVICE);
1525      dev->id = g_strdup(TYPE_PLATFORM_BUS_DEVICE);
1526      qdev_prop_set_uint32(dev, "num_irqs", PLATFORM_BUS_NUM_IRQS);
1527      qdev_prop_set_uint32(dev, "mmio_size", vms->memmap[VIRT_PLATFORM_BUS].size);
1528      sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
1529      vms->platform_bus_dev = dev;
1530  
1531      s = SYS_BUS_DEVICE(dev);
1532      for (i = 0; i < PLATFORM_BUS_NUM_IRQS; i++) {
1533          int irq = vms->irqmap[VIRT_PLATFORM_BUS] + i;
1534          sysbus_connect_irq(s, i, qdev_get_gpio_in(vms->gic, irq));
1535      }
1536  
1537      memory_region_add_subregion(sysmem,
1538                                  vms->memmap[VIRT_PLATFORM_BUS].base,
1539                                  sysbus_mmio_get_region(s, 0));
1540  }
1541  
1542  static void create_tag_ram(MemoryRegion *tag_sysmem,
1543                             hwaddr base, hwaddr size,
1544                             const char *name)
1545  {
1546      MemoryRegion *tagram = g_new(MemoryRegion, 1);
1547  
1548      memory_region_init_ram(tagram, NULL, name, size / 32, &error_fatal);
1549      memory_region_add_subregion(tag_sysmem, base / 32, tagram);
1550  }
1551  
1552  static void create_secure_ram(VirtMachineState *vms,
1553                                MemoryRegion *secure_sysmem,
1554                                MemoryRegion *secure_tag_sysmem)
1555  {
1556      MemoryRegion *secram = g_new(MemoryRegion, 1);
1557      char *nodename;
1558      hwaddr base = vms->memmap[VIRT_SECURE_MEM].base;
1559      hwaddr size = vms->memmap[VIRT_SECURE_MEM].size;
1560      MachineState *ms = MACHINE(vms);
1561  
1562      memory_region_init_ram(secram, NULL, "virt.secure-ram", size,
1563                             &error_fatal);
1564      memory_region_add_subregion(secure_sysmem, base, secram);
1565  
1566      nodename = g_strdup_printf("/secram@%" PRIx64, base);
1567      qemu_fdt_add_subnode(ms->fdt, nodename);
1568      qemu_fdt_setprop_string(ms->fdt, nodename, "device_type", "memory");
1569      qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg", 2, base, 2, size);
1570      qemu_fdt_setprop_string(ms->fdt, nodename, "status", "disabled");
1571      qemu_fdt_setprop_string(ms->fdt, nodename, "secure-status", "okay");
1572  
1573      if (secure_tag_sysmem) {
1574          create_tag_ram(secure_tag_sysmem, base, size, "mach-virt.secure-tag");
1575      }
1576  
1577      g_free(nodename);
1578  }
1579  
1580  static void *machvirt_dtb(const struct arm_boot_info *binfo, int *fdt_size)
1581  {
1582      const VirtMachineState *board = container_of(binfo, VirtMachineState,
1583                                                   bootinfo);
1584      MachineState *ms = MACHINE(board);
1585  
1586  
1587      *fdt_size = board->fdt_size;
1588      return ms->fdt;
1589  }
1590  
1591  static void virt_build_smbios(VirtMachineState *vms)
1592  {
1593      MachineClass *mc = MACHINE_GET_CLASS(vms);
1594      MachineState *ms = MACHINE(vms);
1595      VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
1596      uint8_t *smbios_tables, *smbios_anchor;
1597      size_t smbios_tables_len, smbios_anchor_len;
1598      struct smbios_phys_mem_area mem_array;
1599      const char *product = "QEMU Virtual Machine";
1600  
1601      if (kvm_enabled()) {
1602          product = "KVM Virtual Machine";
1603      }
1604  
1605      smbios_set_defaults("QEMU", product,
1606                          vmc->smbios_old_sys_ver ? "1.0" : mc->name, false,
1607                          true, SMBIOS_ENTRY_POINT_TYPE_64);
1608  
1609      /* build the array of physical mem area from base_memmap */
1610      mem_array.address = vms->memmap[VIRT_MEM].base;
1611      mem_array.length = ms->ram_size;
1612  
1613      smbios_get_tables(ms, &mem_array, 1,
1614                        &smbios_tables, &smbios_tables_len,
1615                        &smbios_anchor, &smbios_anchor_len,
1616                        &error_fatal);
1617  
1618      if (smbios_anchor) {
1619          fw_cfg_add_file(vms->fw_cfg, "etc/smbios/smbios-tables",
1620                          smbios_tables, smbios_tables_len);
1621          fw_cfg_add_file(vms->fw_cfg, "etc/smbios/smbios-anchor",
1622                          smbios_anchor, smbios_anchor_len);
1623      }
1624  }
1625  
1626  static
1627  void virt_machine_done(Notifier *notifier, void *data)
1628  {
1629      VirtMachineState *vms = container_of(notifier, VirtMachineState,
1630                                           machine_done);
1631      MachineState *ms = MACHINE(vms);
1632      ARMCPU *cpu = ARM_CPU(first_cpu);
1633      struct arm_boot_info *info = &vms->bootinfo;
1634      AddressSpace *as = arm_boot_address_space(cpu, info);
1635  
1636      /*
1637       * If the user provided a dtb, we assume the dynamic sysbus nodes
1638       * already are integrated there. This corresponds to a use case where
1639       * the dynamic sysbus nodes are complex and their generation is not yet
1640       * supported. In that case the user can take charge of the guest dt
1641       * while qemu takes charge of the qom stuff.
1642       */
1643      if (info->dtb_filename == NULL) {
1644          platform_bus_add_all_fdt_nodes(ms->fdt, "/intc",
1645                                         vms->memmap[VIRT_PLATFORM_BUS].base,
1646                                         vms->memmap[VIRT_PLATFORM_BUS].size,
1647                                         vms->irqmap[VIRT_PLATFORM_BUS]);
1648      }
1649      if (arm_load_dtb(info->dtb_start, info, info->dtb_limit, as, ms) < 0) {
1650          exit(1);
1651      }
1652  
1653      fw_cfg_add_extra_pci_roots(vms->bus, vms->fw_cfg);
1654  
1655      virt_acpi_setup(vms);
1656      virt_build_smbios(vms);
1657  }
1658  
1659  static uint64_t virt_cpu_mp_affinity(VirtMachineState *vms, int idx)
1660  {
1661      uint8_t clustersz = ARM_DEFAULT_CPUS_PER_CLUSTER;
1662      VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
1663  
1664      if (!vmc->disallow_affinity_adjustment) {
1665          /* Adjust MPIDR like 64-bit KVM hosts, which incorporate the
1666           * GIC's target-list limitations. 32-bit KVM hosts currently
1667           * always create clusters of 4 CPUs, but that is expected to
1668           * change when they gain support for gicv3. When KVM is enabled
1669           * it will override the changes we make here, therefore our
1670           * purposes are to make TCG consistent (with 64-bit KVM hosts)
1671           * and to improve SGI efficiency.
1672           */
1673          if (vms->gic_version == VIRT_GIC_VERSION_2) {
1674              clustersz = GIC_TARGETLIST_BITS;
1675          } else {
1676              clustersz = GICV3_TARGETLIST_BITS;
1677          }
1678      }
1679      return arm_cpu_mp_affinity(idx, clustersz);
1680  }
1681  
1682  static inline bool *virt_get_high_memmap_enabled(VirtMachineState *vms,
1683                                                   int index)
1684  {
1685      bool *enabled_array[] = {
1686          &vms->highmem_redists,
1687          &vms->highmem_ecam,
1688          &vms->highmem_mmio,
1689      };
1690  
1691      assert(ARRAY_SIZE(extended_memmap) - VIRT_LOWMEMMAP_LAST ==
1692             ARRAY_SIZE(enabled_array));
1693      assert(index - VIRT_LOWMEMMAP_LAST < ARRAY_SIZE(enabled_array));
1694  
1695      return enabled_array[index - VIRT_LOWMEMMAP_LAST];
1696  }
1697  
1698  static void virt_set_high_memmap(VirtMachineState *vms,
1699                                   hwaddr base, int pa_bits)
1700  {
1701      hwaddr region_base, region_size;
1702      bool *region_enabled, fits;
1703      int i;
1704  
1705      for (i = VIRT_LOWMEMMAP_LAST; i < ARRAY_SIZE(extended_memmap); i++) {
1706          region_enabled = virt_get_high_memmap_enabled(vms, i);
1707          region_base = ROUND_UP(base, extended_memmap[i].size);
1708          region_size = extended_memmap[i].size;
1709  
1710          vms->memmap[i].base = region_base;
1711          vms->memmap[i].size = region_size;
1712  
1713          /*
1714           * Check each device to see if it fits in the PA space,
1715           * moving highest_gpa as we go. For compatibility, move
1716           * highest_gpa for disabled fitting devices as well, if
1717           * the compact layout has been disabled.
1718           *
1719           * For each device that doesn't fit, disable it.
1720           */
1721          fits = (region_base + region_size) <= BIT_ULL(pa_bits);
1722          *region_enabled &= fits;
1723          if (vms->highmem_compact && !*region_enabled) {
1724              continue;
1725          }
1726  
1727          base = region_base + region_size;
1728          if (fits) {
1729              vms->highest_gpa = base - 1;
1730          }
1731      }
1732  }
1733  
1734  static void virt_set_memmap(VirtMachineState *vms, int pa_bits)
1735  {
1736      MachineState *ms = MACHINE(vms);
1737      hwaddr base, device_memory_base, device_memory_size, memtop;
1738      int i;
1739  
1740      vms->memmap = extended_memmap;
1741  
1742      for (i = 0; i < ARRAY_SIZE(base_memmap); i++) {
1743          vms->memmap[i] = base_memmap[i];
1744      }
1745  
1746      if (ms->ram_slots > ACPI_MAX_RAM_SLOTS) {
1747          error_report("unsupported number of memory slots: %"PRIu64,
1748                       ms->ram_slots);
1749          exit(EXIT_FAILURE);
1750      }
1751  
1752      /*
1753       * !highmem is exactly the same as limiting the PA space to 32bit,
1754       * irrespective of the underlying capabilities of the HW.
1755       */
1756      if (!vms->highmem) {
1757          pa_bits = 32;
1758      }
1759  
1760      /*
1761       * We compute the base of the high IO region depending on the
1762       * amount of initial and device memory. The device memory start/size
1763       * is aligned on 1GiB. We never put the high IO region below 256GiB
1764       * so that if maxram_size is < 255GiB we keep the legacy memory map.
1765       * The device region size assumes 1GiB page max alignment per slot.
1766       */
1767      device_memory_base =
1768          ROUND_UP(vms->memmap[VIRT_MEM].base + ms->ram_size, GiB);
1769      device_memory_size = ms->maxram_size - ms->ram_size + ms->ram_slots * GiB;
1770  
1771      /* Base address of the high IO region */
1772      memtop = base = device_memory_base + ROUND_UP(device_memory_size, GiB);
1773      if (memtop > BIT_ULL(pa_bits)) {
1774  	    error_report("Addressing limited to %d bits, but memory exceeds it by %llu bytes\n",
1775  			 pa_bits, memtop - BIT_ULL(pa_bits));
1776          exit(EXIT_FAILURE);
1777      }
1778      if (base < device_memory_base) {
1779          error_report("maxmem/slots too huge");
1780          exit(EXIT_FAILURE);
1781      }
1782      if (base < vms->memmap[VIRT_MEM].base + LEGACY_RAMLIMIT_BYTES) {
1783          base = vms->memmap[VIRT_MEM].base + LEGACY_RAMLIMIT_BYTES;
1784      }
1785  
1786      /* We know for sure that at least the memory fits in the PA space */
1787      vms->highest_gpa = memtop - 1;
1788  
1789      virt_set_high_memmap(vms, base, pa_bits);
1790  
1791      if (device_memory_size > 0) {
1792          machine_memory_devices_init(ms, device_memory_base, device_memory_size);
1793      }
1794  }
1795  
1796  static VirtGICType finalize_gic_version_do(const char *accel_name,
1797                                             VirtGICType gic_version,
1798                                             int gics_supported,
1799                                             unsigned int max_cpus)
1800  {
1801      /* Convert host/max/nosel to GIC version number */
1802      switch (gic_version) {
1803      case VIRT_GIC_VERSION_HOST:
1804          if (!kvm_enabled()) {
1805              error_report("gic-version=host requires KVM");
1806              exit(1);
1807          }
1808  
1809          /* For KVM, gic-version=host means gic-version=max */
1810          return finalize_gic_version_do(accel_name, VIRT_GIC_VERSION_MAX,
1811                                         gics_supported, max_cpus);
1812      case VIRT_GIC_VERSION_MAX:
1813          if (gics_supported & VIRT_GIC_VERSION_4_MASK) {
1814              gic_version = VIRT_GIC_VERSION_4;
1815          } else if (gics_supported & VIRT_GIC_VERSION_3_MASK) {
1816              gic_version = VIRT_GIC_VERSION_3;
1817          } else {
1818              gic_version = VIRT_GIC_VERSION_2;
1819          }
1820          break;
1821      case VIRT_GIC_VERSION_NOSEL:
1822          if ((gics_supported & VIRT_GIC_VERSION_2_MASK) &&
1823              max_cpus <= GIC_NCPU) {
1824              gic_version = VIRT_GIC_VERSION_2;
1825          } else if (gics_supported & VIRT_GIC_VERSION_3_MASK) {
1826              /*
1827               * in case the host does not support v2 emulation or
1828               * the end-user requested more than 8 VCPUs we now default
1829               * to v3. In any case defaulting to v2 would be broken.
1830               */
1831              gic_version = VIRT_GIC_VERSION_3;
1832          } else if (max_cpus > GIC_NCPU) {
1833              error_report("%s only supports GICv2 emulation but more than 8 "
1834                           "vcpus are requested", accel_name);
1835              exit(1);
1836          }
1837          break;
1838      case VIRT_GIC_VERSION_2:
1839      case VIRT_GIC_VERSION_3:
1840      case VIRT_GIC_VERSION_4:
1841          break;
1842      }
1843  
1844      /* Check chosen version is effectively supported */
1845      switch (gic_version) {
1846      case VIRT_GIC_VERSION_2:
1847          if (!(gics_supported & VIRT_GIC_VERSION_2_MASK)) {
1848              error_report("%s does not support GICv2 emulation", accel_name);
1849              exit(1);
1850          }
1851          break;
1852      case VIRT_GIC_VERSION_3:
1853          if (!(gics_supported & VIRT_GIC_VERSION_3_MASK)) {
1854              error_report("%s does not support GICv3 emulation", accel_name);
1855              exit(1);
1856          }
1857          break;
1858      case VIRT_GIC_VERSION_4:
1859          if (!(gics_supported & VIRT_GIC_VERSION_4_MASK)) {
1860              error_report("%s does not support GICv4 emulation, is virtualization=on?",
1861                           accel_name);
1862              exit(1);
1863          }
1864          break;
1865      default:
1866          error_report("logic error in finalize_gic_version");
1867          exit(1);
1868          break;
1869      }
1870  
1871      return gic_version;
1872  }
1873  
1874  /*
1875   * finalize_gic_version - Determines the final gic_version
1876   * according to the gic-version property
1877   *
1878   * Default GIC type is v2
1879   */
1880  static void finalize_gic_version(VirtMachineState *vms)
1881  {
1882      const char *accel_name = current_accel_name();
1883      unsigned int max_cpus = MACHINE(vms)->smp.max_cpus;
1884      int gics_supported = 0;
1885  
1886      /* Determine which GIC versions the current environment supports */
1887      if (kvm_enabled() && kvm_irqchip_in_kernel()) {
1888          int probe_bitmap = kvm_arm_vgic_probe();
1889  
1890          if (!probe_bitmap) {
1891              error_report("Unable to determine GIC version supported by host");
1892              exit(1);
1893          }
1894  
1895          if (probe_bitmap & KVM_ARM_VGIC_V2) {
1896              gics_supported |= VIRT_GIC_VERSION_2_MASK;
1897          }
1898          if (probe_bitmap & KVM_ARM_VGIC_V3) {
1899              gics_supported |= VIRT_GIC_VERSION_3_MASK;
1900          }
1901      } else if (kvm_enabled() && !kvm_irqchip_in_kernel()) {
1902          /* KVM w/o kernel irqchip can only deal with GICv2 */
1903          gics_supported |= VIRT_GIC_VERSION_2_MASK;
1904          accel_name = "KVM with kernel-irqchip=off";
1905      } else if (tcg_enabled() || hvf_enabled() || qtest_enabled())  {
1906          gics_supported |= VIRT_GIC_VERSION_2_MASK;
1907          if (module_object_class_by_name("arm-gicv3")) {
1908              gics_supported |= VIRT_GIC_VERSION_3_MASK;
1909              if (vms->virt) {
1910                  /* GICv4 only makes sense if CPU has EL2 */
1911                  gics_supported |= VIRT_GIC_VERSION_4_MASK;
1912              }
1913          }
1914      } else {
1915          error_report("Unsupported accelerator, can not determine GIC support");
1916          exit(1);
1917      }
1918  
1919      /*
1920       * Then convert helpers like host/max to concrete GIC versions and ensure
1921       * the desired version is supported
1922       */
1923      vms->gic_version = finalize_gic_version_do(accel_name, vms->gic_version,
1924                                                 gics_supported, max_cpus);
1925  }
1926  
1927  /*
1928   * virt_cpu_post_init() must be called after the CPUs have
1929   * been realized and the GIC has been created.
1930   */
1931  static void virt_cpu_post_init(VirtMachineState *vms, MemoryRegion *sysmem)
1932  {
1933      int max_cpus = MACHINE(vms)->smp.max_cpus;
1934      bool aarch64, pmu, steal_time;
1935      CPUState *cpu;
1936  
1937      aarch64 = object_property_get_bool(OBJECT(first_cpu), "aarch64", NULL);
1938      pmu = object_property_get_bool(OBJECT(first_cpu), "pmu", NULL);
1939      steal_time = object_property_get_bool(OBJECT(first_cpu),
1940                                            "kvm-steal-time", NULL);
1941  
1942      if (kvm_enabled()) {
1943          hwaddr pvtime_reg_base = vms->memmap[VIRT_PVTIME].base;
1944          hwaddr pvtime_reg_size = vms->memmap[VIRT_PVTIME].size;
1945  
1946          if (steal_time) {
1947              MemoryRegion *pvtime = g_new(MemoryRegion, 1);
1948              hwaddr pvtime_size = max_cpus * PVTIME_SIZE_PER_CPU;
1949  
1950              /* The memory region size must be a multiple of host page size. */
1951              pvtime_size = REAL_HOST_PAGE_ALIGN(pvtime_size);
1952  
1953              if (pvtime_size > pvtime_reg_size) {
1954                  error_report("pvtime requires a %" HWADDR_PRId
1955                               " byte memory region for %d CPUs,"
1956                               " but only %" HWADDR_PRId " has been reserved",
1957                               pvtime_size, max_cpus, pvtime_reg_size);
1958                  exit(1);
1959              }
1960  
1961              memory_region_init_ram(pvtime, NULL, "pvtime", pvtime_size, NULL);
1962              memory_region_add_subregion(sysmem, pvtime_reg_base, pvtime);
1963          }
1964  
1965          CPU_FOREACH(cpu) {
1966              if (pmu) {
1967                  assert(arm_feature(&ARM_CPU(cpu)->env, ARM_FEATURE_PMU));
1968                  if (kvm_irqchip_in_kernel()) {
1969                      kvm_arm_pmu_set_irq(ARM_CPU(cpu), VIRTUAL_PMU_IRQ);
1970                  }
1971                  kvm_arm_pmu_init(ARM_CPU(cpu));
1972              }
1973              if (steal_time) {
1974                  kvm_arm_pvtime_init(ARM_CPU(cpu), pvtime_reg_base
1975                                                    + cpu->cpu_index
1976                                                      * PVTIME_SIZE_PER_CPU);
1977              }
1978          }
1979      } else {
1980          if (aarch64 && vms->highmem) {
1981              int requested_pa_size = 64 - clz64(vms->highest_gpa);
1982              int pamax = arm_pamax(ARM_CPU(first_cpu));
1983  
1984              if (pamax < requested_pa_size) {
1985                  error_report("VCPU supports less PA bits (%d) than "
1986                               "requested by the memory map (%d)",
1987                               pamax, requested_pa_size);
1988                  exit(1);
1989              }
1990          }
1991      }
1992  }
1993  
1994  static void machvirt_init(MachineState *machine)
1995  {
1996      VirtMachineState *vms = VIRT_MACHINE(machine);
1997      VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(machine);
1998      MachineClass *mc = MACHINE_GET_CLASS(machine);
1999      const CPUArchIdList *possible_cpus;
2000      MemoryRegion *sysmem = get_system_memory();
2001      MemoryRegion *secure_sysmem = NULL;
2002      MemoryRegion *tag_sysmem = NULL;
2003      MemoryRegion *secure_tag_sysmem = NULL;
2004      int n, virt_max_cpus;
2005      bool firmware_loaded;
2006      bool aarch64 = true;
2007      bool has_ged = !vmc->no_ged;
2008      unsigned int smp_cpus = machine->smp.cpus;
2009      unsigned int max_cpus = machine->smp.max_cpus;
2010  
2011      possible_cpus = mc->possible_cpu_arch_ids(machine);
2012  
2013      /*
2014       * In accelerated mode, the memory map is computed earlier in kvm_type()
2015       * to create a VM with the right number of IPA bits.
2016       */
2017      if (!vms->memmap) {
2018          Object *cpuobj;
2019          ARMCPU *armcpu;
2020          int pa_bits;
2021  
2022          /*
2023           * Instantiate a temporary CPU object to find out about what
2024           * we are about to deal with. Once this is done, get rid of
2025           * the object.
2026           */
2027          cpuobj = object_new(possible_cpus->cpus[0].type);
2028          armcpu = ARM_CPU(cpuobj);
2029  
2030          pa_bits = arm_pamax(armcpu);
2031  
2032          object_unref(cpuobj);
2033  
2034          virt_set_memmap(vms, pa_bits);
2035      }
2036  
2037      /* We can probe only here because during property set
2038       * KVM is not available yet
2039       */
2040      finalize_gic_version(vms);
2041  
2042      if (vms->secure) {
2043          /*
2044           * The Secure view of the world is the same as the NonSecure,
2045           * but with a few extra devices. Create it as a container region
2046           * containing the system memory at low priority; any secure-only
2047           * devices go in at higher priority and take precedence.
2048           */
2049          secure_sysmem = g_new(MemoryRegion, 1);
2050          memory_region_init(secure_sysmem, OBJECT(machine), "secure-memory",
2051                             UINT64_MAX);
2052          memory_region_add_subregion_overlap(secure_sysmem, 0, sysmem, -1);
2053      }
2054  
2055      firmware_loaded = virt_firmware_init(vms, sysmem,
2056                                           secure_sysmem ?: sysmem);
2057  
2058      /* If we have an EL3 boot ROM then the assumption is that it will
2059       * implement PSCI itself, so disable QEMU's internal implementation
2060       * so it doesn't get in the way. Instead of starting secondary
2061       * CPUs in PSCI powerdown state we will start them all running and
2062       * let the boot ROM sort them out.
2063       * The usual case is that we do use QEMU's PSCI implementation;
2064       * if the guest has EL2 then we will use SMC as the conduit,
2065       * and otherwise we will use HVC (for backwards compatibility and
2066       * because if we're using KVM then we must use HVC).
2067       */
2068      if (vms->secure && firmware_loaded) {
2069          vms->psci_conduit = QEMU_PSCI_CONDUIT_DISABLED;
2070      } else if (vms->virt) {
2071          vms->psci_conduit = QEMU_PSCI_CONDUIT_SMC;
2072      } else {
2073          vms->psci_conduit = QEMU_PSCI_CONDUIT_HVC;
2074      }
2075  
2076      /*
2077       * The maximum number of CPUs depends on the GIC version, or on how
2078       * many redistributors we can fit into the memory map (which in turn
2079       * depends on whether this is a GICv3 or v4).
2080       */
2081      if (vms->gic_version == VIRT_GIC_VERSION_2) {
2082          virt_max_cpus = GIC_NCPU;
2083      } else {
2084          virt_max_cpus = virt_redist_capacity(vms, VIRT_GIC_REDIST);
2085          if (vms->highmem_redists) {
2086              virt_max_cpus += virt_redist_capacity(vms, VIRT_HIGH_GIC_REDIST2);
2087          }
2088      }
2089  
2090      if (max_cpus > virt_max_cpus) {
2091          error_report("Number of SMP CPUs requested (%d) exceeds max CPUs "
2092                       "supported by machine 'mach-virt' (%d)",
2093                       max_cpus, virt_max_cpus);
2094          if (vms->gic_version != VIRT_GIC_VERSION_2 && !vms->highmem_redists) {
2095              error_printf("Try 'highmem-redists=on' for more CPUs\n");
2096          }
2097  
2098          exit(1);
2099      }
2100  
2101      if (vms->secure && (kvm_enabled() || hvf_enabled())) {
2102          error_report("mach-virt: %s does not support providing "
2103                       "Security extensions (TrustZone) to the guest CPU",
2104                       current_accel_name());
2105          exit(1);
2106      }
2107  
2108      if (vms->virt && (kvm_enabled() || hvf_enabled())) {
2109          error_report("mach-virt: %s does not support providing "
2110                       "Virtualization extensions to the guest CPU",
2111                       current_accel_name());
2112          exit(1);
2113      }
2114  
2115      if (vms->mte && (kvm_enabled() || hvf_enabled())) {
2116          error_report("mach-virt: %s does not support providing "
2117                       "MTE to the guest CPU",
2118                       current_accel_name());
2119          exit(1);
2120      }
2121  
2122      create_fdt(vms);
2123  
2124      assert(possible_cpus->len == max_cpus);
2125      for (n = 0; n < possible_cpus->len; n++) {
2126          Object *cpuobj;
2127          CPUState *cs;
2128  
2129          if (n >= smp_cpus) {
2130              break;
2131          }
2132  
2133          cpuobj = object_new(possible_cpus->cpus[n].type);
2134          object_property_set_int(cpuobj, "mp-affinity",
2135                                  possible_cpus->cpus[n].arch_id, NULL);
2136  
2137          cs = CPU(cpuobj);
2138          cs->cpu_index = n;
2139  
2140          numa_cpu_pre_plug(&possible_cpus->cpus[cs->cpu_index], DEVICE(cpuobj),
2141                            &error_fatal);
2142  
2143          aarch64 &= object_property_get_bool(cpuobj, "aarch64", NULL);
2144  
2145          if (!vms->secure) {
2146              object_property_set_bool(cpuobj, "has_el3", false, NULL);
2147          }
2148  
2149          if (!vms->virt && object_property_find(cpuobj, "has_el2")) {
2150              object_property_set_bool(cpuobj, "has_el2", false, NULL);
2151          }
2152  
2153          if (vmc->kvm_no_adjvtime &&
2154              object_property_find(cpuobj, "kvm-no-adjvtime")) {
2155              object_property_set_bool(cpuobj, "kvm-no-adjvtime", true, NULL);
2156          }
2157  
2158          if (vmc->no_kvm_steal_time &&
2159              object_property_find(cpuobj, "kvm-steal-time")) {
2160              object_property_set_bool(cpuobj, "kvm-steal-time", false, NULL);
2161          }
2162  
2163          if (vmc->no_pmu && object_property_find(cpuobj, "pmu")) {
2164              object_property_set_bool(cpuobj, "pmu", false, NULL);
2165          }
2166  
2167          if (vmc->no_tcg_lpa2 && object_property_find(cpuobj, "lpa2")) {
2168              object_property_set_bool(cpuobj, "lpa2", false, NULL);
2169          }
2170  
2171          if (object_property_find(cpuobj, "reset-cbar")) {
2172              object_property_set_int(cpuobj, "reset-cbar",
2173                                      vms->memmap[VIRT_CPUPERIPHS].base,
2174                                      &error_abort);
2175          }
2176  
2177          object_property_set_link(cpuobj, "memory", OBJECT(sysmem),
2178                                   &error_abort);
2179          if (vms->secure) {
2180              object_property_set_link(cpuobj, "secure-memory",
2181                                       OBJECT(secure_sysmem), &error_abort);
2182          }
2183  
2184          if (vms->mte) {
2185              /* Create the memory region only once, but link to all cpus. */
2186              if (!tag_sysmem) {
2187                  /*
2188                   * The property exists only if MemTag is supported.
2189                   * If it is, we must allocate the ram to back that up.
2190                   */
2191                  if (!object_property_find(cpuobj, "tag-memory")) {
2192                      error_report("MTE requested, but not supported "
2193                                   "by the guest CPU");
2194                      exit(1);
2195                  }
2196  
2197                  tag_sysmem = g_new(MemoryRegion, 1);
2198                  memory_region_init(tag_sysmem, OBJECT(machine),
2199                                     "tag-memory", UINT64_MAX / 32);
2200  
2201                  if (vms->secure) {
2202                      secure_tag_sysmem = g_new(MemoryRegion, 1);
2203                      memory_region_init(secure_tag_sysmem, OBJECT(machine),
2204                                         "secure-tag-memory", UINT64_MAX / 32);
2205  
2206                      /* As with ram, secure-tag takes precedence over tag.  */
2207                      memory_region_add_subregion_overlap(secure_tag_sysmem, 0,
2208                                                          tag_sysmem, -1);
2209                  }
2210              }
2211  
2212              object_property_set_link(cpuobj, "tag-memory", OBJECT(tag_sysmem),
2213                                       &error_abort);
2214              if (vms->secure) {
2215                  object_property_set_link(cpuobj, "secure-tag-memory",
2216                                           OBJECT(secure_tag_sysmem),
2217                                           &error_abort);
2218              }
2219          }
2220  
2221          qdev_realize(DEVICE(cpuobj), NULL, &error_fatal);
2222          object_unref(cpuobj);
2223      }
2224      fdt_add_timer_nodes(vms);
2225      fdt_add_cpu_nodes(vms);
2226  
2227      memory_region_add_subregion(sysmem, vms->memmap[VIRT_MEM].base,
2228                                  machine->ram);
2229  
2230      virt_flash_fdt(vms, sysmem, secure_sysmem ?: sysmem);
2231  
2232      create_gic(vms, sysmem);
2233  
2234      virt_cpu_post_init(vms, sysmem);
2235  
2236      fdt_add_pmu_nodes(vms);
2237  
2238      create_uart(vms, VIRT_UART, sysmem, serial_hd(0));
2239  
2240      if (vms->secure) {
2241          create_secure_ram(vms, secure_sysmem, secure_tag_sysmem);
2242          create_uart(vms, VIRT_SECURE_UART, secure_sysmem, serial_hd(1));
2243      }
2244  
2245      if (tag_sysmem) {
2246          create_tag_ram(tag_sysmem, vms->memmap[VIRT_MEM].base,
2247                         machine->ram_size, "mach-virt.tag");
2248      }
2249  
2250      vms->highmem_ecam &= (!firmware_loaded || aarch64);
2251  
2252      create_rtc(vms);
2253  
2254      create_pcie(vms);
2255  
2256      if (has_ged && aarch64 && firmware_loaded && virt_is_acpi_enabled(vms)) {
2257          vms->acpi_dev = create_acpi_ged(vms);
2258      } else {
2259          create_gpio_devices(vms, VIRT_GPIO, sysmem);
2260      }
2261  
2262      if (vms->secure && !vmc->no_secure_gpio) {
2263          create_gpio_devices(vms, VIRT_SECURE_GPIO, secure_sysmem);
2264      }
2265  
2266       /* connect powerdown request */
2267       vms->powerdown_notifier.notify = virt_powerdown_req;
2268       qemu_register_powerdown_notifier(&vms->powerdown_notifier);
2269  
2270      /* Create mmio transports, so the user can create virtio backends
2271       * (which will be automatically plugged in to the transports). If
2272       * no backend is created the transport will just sit harmlessly idle.
2273       */
2274      create_virtio_devices(vms);
2275  
2276      vms->fw_cfg = create_fw_cfg(vms, &address_space_memory);
2277      rom_set_fw(vms->fw_cfg);
2278  
2279      create_platform_bus(vms);
2280  
2281      if (machine->nvdimms_state->is_enabled) {
2282          const struct AcpiGenericAddress arm_virt_nvdimm_acpi_dsmio = {
2283              .space_id = AML_AS_SYSTEM_MEMORY,
2284              .address = vms->memmap[VIRT_NVDIMM_ACPI].base,
2285              .bit_width = NVDIMM_ACPI_IO_LEN << 3
2286          };
2287  
2288          nvdimm_init_acpi_state(machine->nvdimms_state, sysmem,
2289                                 arm_virt_nvdimm_acpi_dsmio,
2290                                 vms->fw_cfg, OBJECT(vms));
2291      }
2292  
2293      vms->bootinfo.ram_size = machine->ram_size;
2294      vms->bootinfo.board_id = -1;
2295      vms->bootinfo.loader_start = vms->memmap[VIRT_MEM].base;
2296      vms->bootinfo.get_dtb = machvirt_dtb;
2297      vms->bootinfo.skip_dtb_autoload = true;
2298      vms->bootinfo.firmware_loaded = firmware_loaded;
2299      vms->bootinfo.psci_conduit = vms->psci_conduit;
2300      arm_load_kernel(ARM_CPU(first_cpu), machine, &vms->bootinfo);
2301  
2302      vms->machine_done.notify = virt_machine_done;
2303      qemu_add_machine_init_done_notifier(&vms->machine_done);
2304  }
2305  
2306  static bool virt_get_secure(Object *obj, Error **errp)
2307  {
2308      VirtMachineState *vms = VIRT_MACHINE(obj);
2309  
2310      return vms->secure;
2311  }
2312  
2313  static void virt_set_secure(Object *obj, bool value, Error **errp)
2314  {
2315      VirtMachineState *vms = VIRT_MACHINE(obj);
2316  
2317      vms->secure = value;
2318  }
2319  
2320  static bool virt_get_virt(Object *obj, Error **errp)
2321  {
2322      VirtMachineState *vms = VIRT_MACHINE(obj);
2323  
2324      return vms->virt;
2325  }
2326  
2327  static void virt_set_virt(Object *obj, bool value, Error **errp)
2328  {
2329      VirtMachineState *vms = VIRT_MACHINE(obj);
2330  
2331      vms->virt = value;
2332  }
2333  
2334  static bool virt_get_highmem(Object *obj, Error **errp)
2335  {
2336      VirtMachineState *vms = VIRT_MACHINE(obj);
2337  
2338      return vms->highmem;
2339  }
2340  
2341  static void virt_set_highmem(Object *obj, bool value, Error **errp)
2342  {
2343      VirtMachineState *vms = VIRT_MACHINE(obj);
2344  
2345      vms->highmem = value;
2346  }
2347  
2348  static bool virt_get_compact_highmem(Object *obj, Error **errp)
2349  {
2350      VirtMachineState *vms = VIRT_MACHINE(obj);
2351  
2352      return vms->highmem_compact;
2353  }
2354  
2355  static void virt_set_compact_highmem(Object *obj, bool value, Error **errp)
2356  {
2357      VirtMachineState *vms = VIRT_MACHINE(obj);
2358  
2359      vms->highmem_compact = value;
2360  }
2361  
2362  static bool virt_get_highmem_redists(Object *obj, Error **errp)
2363  {
2364      VirtMachineState *vms = VIRT_MACHINE(obj);
2365  
2366      return vms->highmem_redists;
2367  }
2368  
2369  static void virt_set_highmem_redists(Object *obj, bool value, Error **errp)
2370  {
2371      VirtMachineState *vms = VIRT_MACHINE(obj);
2372  
2373      vms->highmem_redists = value;
2374  }
2375  
2376  static bool virt_get_highmem_ecam(Object *obj, Error **errp)
2377  {
2378      VirtMachineState *vms = VIRT_MACHINE(obj);
2379  
2380      return vms->highmem_ecam;
2381  }
2382  
2383  static void virt_set_highmem_ecam(Object *obj, bool value, Error **errp)
2384  {
2385      VirtMachineState *vms = VIRT_MACHINE(obj);
2386  
2387      vms->highmem_ecam = value;
2388  }
2389  
2390  static bool virt_get_highmem_mmio(Object *obj, Error **errp)
2391  {
2392      VirtMachineState *vms = VIRT_MACHINE(obj);
2393  
2394      return vms->highmem_mmio;
2395  }
2396  
2397  static void virt_set_highmem_mmio(Object *obj, bool value, Error **errp)
2398  {
2399      VirtMachineState *vms = VIRT_MACHINE(obj);
2400  
2401      vms->highmem_mmio = value;
2402  }
2403  
2404  
2405  static bool virt_get_its(Object *obj, Error **errp)
2406  {
2407      VirtMachineState *vms = VIRT_MACHINE(obj);
2408  
2409      return vms->its;
2410  }
2411  
2412  static void virt_set_its(Object *obj, bool value, Error **errp)
2413  {
2414      VirtMachineState *vms = VIRT_MACHINE(obj);
2415  
2416      vms->its = value;
2417  }
2418  
2419  static bool virt_get_dtb_randomness(Object *obj, Error **errp)
2420  {
2421      VirtMachineState *vms = VIRT_MACHINE(obj);
2422  
2423      return vms->dtb_randomness;
2424  }
2425  
2426  static void virt_set_dtb_randomness(Object *obj, bool value, Error **errp)
2427  {
2428      VirtMachineState *vms = VIRT_MACHINE(obj);
2429  
2430      vms->dtb_randomness = value;
2431  }
2432  
2433  static char *virt_get_oem_id(Object *obj, Error **errp)
2434  {
2435      VirtMachineState *vms = VIRT_MACHINE(obj);
2436  
2437      return g_strdup(vms->oem_id);
2438  }
2439  
2440  static void virt_set_oem_id(Object *obj, const char *value, Error **errp)
2441  {
2442      VirtMachineState *vms = VIRT_MACHINE(obj);
2443      size_t len = strlen(value);
2444  
2445      if (len > 6) {
2446          error_setg(errp,
2447                     "User specified oem-id value is bigger than 6 bytes in size");
2448          return;
2449      }
2450  
2451      strncpy(vms->oem_id, value, 6);
2452  }
2453  
2454  static char *virt_get_oem_table_id(Object *obj, Error **errp)
2455  {
2456      VirtMachineState *vms = VIRT_MACHINE(obj);
2457  
2458      return g_strdup(vms->oem_table_id);
2459  }
2460  
2461  static void virt_set_oem_table_id(Object *obj, const char *value,
2462                                    Error **errp)
2463  {
2464      VirtMachineState *vms = VIRT_MACHINE(obj);
2465      size_t len = strlen(value);
2466  
2467      if (len > 8) {
2468          error_setg(errp,
2469                     "User specified oem-table-id value is bigger than 8 bytes in size");
2470          return;
2471      }
2472      strncpy(vms->oem_table_id, value, 8);
2473  }
2474  
2475  
2476  bool virt_is_acpi_enabled(VirtMachineState *vms)
2477  {
2478      if (vms->acpi == ON_OFF_AUTO_OFF) {
2479          return false;
2480      }
2481      return true;
2482  }
2483  
2484  static void virt_get_acpi(Object *obj, Visitor *v, const char *name,
2485                            void *opaque, Error **errp)
2486  {
2487      VirtMachineState *vms = VIRT_MACHINE(obj);
2488      OnOffAuto acpi = vms->acpi;
2489  
2490      visit_type_OnOffAuto(v, name, &acpi, errp);
2491  }
2492  
2493  static void virt_set_acpi(Object *obj, Visitor *v, const char *name,
2494                            void *opaque, Error **errp)
2495  {
2496      VirtMachineState *vms = VIRT_MACHINE(obj);
2497  
2498      visit_type_OnOffAuto(v, name, &vms->acpi, errp);
2499  }
2500  
2501  static bool virt_get_ras(Object *obj, Error **errp)
2502  {
2503      VirtMachineState *vms = VIRT_MACHINE(obj);
2504  
2505      return vms->ras;
2506  }
2507  
2508  static void virt_set_ras(Object *obj, bool value, Error **errp)
2509  {
2510      VirtMachineState *vms = VIRT_MACHINE(obj);
2511  
2512      vms->ras = value;
2513  }
2514  
2515  static bool virt_get_mte(Object *obj, Error **errp)
2516  {
2517      VirtMachineState *vms = VIRT_MACHINE(obj);
2518  
2519      return vms->mte;
2520  }
2521  
2522  static void virt_set_mte(Object *obj, bool value, Error **errp)
2523  {
2524      VirtMachineState *vms = VIRT_MACHINE(obj);
2525  
2526      vms->mte = value;
2527  }
2528  
2529  static char *virt_get_gic_version(Object *obj, Error **errp)
2530  {
2531      VirtMachineState *vms = VIRT_MACHINE(obj);
2532      const char *val;
2533  
2534      switch (vms->gic_version) {
2535      case VIRT_GIC_VERSION_4:
2536          val = "4";
2537          break;
2538      case VIRT_GIC_VERSION_3:
2539          val = "3";
2540          break;
2541      default:
2542          val = "2";
2543          break;
2544      }
2545      return g_strdup(val);
2546  }
2547  
2548  static void virt_set_gic_version(Object *obj, const char *value, Error **errp)
2549  {
2550      VirtMachineState *vms = VIRT_MACHINE(obj);
2551  
2552      if (!strcmp(value, "4")) {
2553          vms->gic_version = VIRT_GIC_VERSION_4;
2554      } else if (!strcmp(value, "3")) {
2555          vms->gic_version = VIRT_GIC_VERSION_3;
2556      } else if (!strcmp(value, "2")) {
2557          vms->gic_version = VIRT_GIC_VERSION_2;
2558      } else if (!strcmp(value, "host")) {
2559          vms->gic_version = VIRT_GIC_VERSION_HOST; /* Will probe later */
2560      } else if (!strcmp(value, "max")) {
2561          vms->gic_version = VIRT_GIC_VERSION_MAX; /* Will probe later */
2562      } else {
2563          error_setg(errp, "Invalid gic-version value");
2564          error_append_hint(errp, "Valid values are 3, 2, host, max.\n");
2565      }
2566  }
2567  
2568  static char *virt_get_iommu(Object *obj, Error **errp)
2569  {
2570      VirtMachineState *vms = VIRT_MACHINE(obj);
2571  
2572      switch (vms->iommu) {
2573      case VIRT_IOMMU_NONE:
2574          return g_strdup("none");
2575      case VIRT_IOMMU_SMMUV3:
2576          return g_strdup("smmuv3");
2577      default:
2578          g_assert_not_reached();
2579      }
2580  }
2581  
2582  static void virt_set_iommu(Object *obj, const char *value, Error **errp)
2583  {
2584      VirtMachineState *vms = VIRT_MACHINE(obj);
2585  
2586      if (!strcmp(value, "smmuv3")) {
2587          vms->iommu = VIRT_IOMMU_SMMUV3;
2588      } else if (!strcmp(value, "none")) {
2589          vms->iommu = VIRT_IOMMU_NONE;
2590      } else {
2591          error_setg(errp, "Invalid iommu value");
2592          error_append_hint(errp, "Valid values are none, smmuv3.\n");
2593      }
2594  }
2595  
2596  static bool virt_get_default_bus_bypass_iommu(Object *obj, Error **errp)
2597  {
2598      VirtMachineState *vms = VIRT_MACHINE(obj);
2599  
2600      return vms->default_bus_bypass_iommu;
2601  }
2602  
2603  static void virt_set_default_bus_bypass_iommu(Object *obj, bool value,
2604                                                Error **errp)
2605  {
2606      VirtMachineState *vms = VIRT_MACHINE(obj);
2607  
2608      vms->default_bus_bypass_iommu = value;
2609  }
2610  
2611  static CpuInstanceProperties
2612  virt_cpu_index_to_props(MachineState *ms, unsigned cpu_index)
2613  {
2614      MachineClass *mc = MACHINE_GET_CLASS(ms);
2615      const CPUArchIdList *possible_cpus = mc->possible_cpu_arch_ids(ms);
2616  
2617      assert(cpu_index < possible_cpus->len);
2618      return possible_cpus->cpus[cpu_index].props;
2619  }
2620  
2621  static int64_t virt_get_default_cpu_node_id(const MachineState *ms, int idx)
2622  {
2623      int64_t socket_id = ms->possible_cpus->cpus[idx].props.socket_id;
2624  
2625      return socket_id % ms->numa_state->num_nodes;
2626  }
2627  
2628  static const CPUArchIdList *virt_possible_cpu_arch_ids(MachineState *ms)
2629  {
2630      int n;
2631      unsigned int max_cpus = ms->smp.max_cpus;
2632      VirtMachineState *vms = VIRT_MACHINE(ms);
2633      MachineClass *mc = MACHINE_GET_CLASS(vms);
2634  
2635      if (ms->possible_cpus) {
2636          assert(ms->possible_cpus->len == max_cpus);
2637          return ms->possible_cpus;
2638      }
2639  
2640      ms->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
2641                                    sizeof(CPUArchId) * max_cpus);
2642      ms->possible_cpus->len = max_cpus;
2643      for (n = 0; n < ms->possible_cpus->len; n++) {
2644          ms->possible_cpus->cpus[n].type = ms->cpu_type;
2645          ms->possible_cpus->cpus[n].arch_id =
2646              virt_cpu_mp_affinity(vms, n);
2647  
2648          assert(!mc->smp_props.dies_supported);
2649          ms->possible_cpus->cpus[n].props.has_socket_id = true;
2650          ms->possible_cpus->cpus[n].props.socket_id =
2651              n / (ms->smp.clusters * ms->smp.cores * ms->smp.threads);
2652          ms->possible_cpus->cpus[n].props.has_cluster_id = true;
2653          ms->possible_cpus->cpus[n].props.cluster_id =
2654              (n / (ms->smp.cores * ms->smp.threads)) % ms->smp.clusters;
2655          ms->possible_cpus->cpus[n].props.has_core_id = true;
2656          ms->possible_cpus->cpus[n].props.core_id =
2657              (n / ms->smp.threads) % ms->smp.cores;
2658          ms->possible_cpus->cpus[n].props.has_thread_id = true;
2659          ms->possible_cpus->cpus[n].props.thread_id =
2660              n % ms->smp.threads;
2661      }
2662      return ms->possible_cpus;
2663  }
2664  
2665  static void virt_memory_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
2666                                   Error **errp)
2667  {
2668      VirtMachineState *vms = VIRT_MACHINE(hotplug_dev);
2669      const MachineState *ms = MACHINE(hotplug_dev);
2670      const bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM);
2671  
2672      if (!vms->acpi_dev) {
2673          error_setg(errp,
2674                     "memory hotplug is not enabled: missing acpi-ged device");
2675          return;
2676      }
2677  
2678      if (vms->mte) {
2679          error_setg(errp, "memory hotplug is not enabled: MTE is enabled");
2680          return;
2681      }
2682  
2683      if (is_nvdimm && !ms->nvdimms_state->is_enabled) {
2684          error_setg(errp, "nvdimm is not enabled: add 'nvdimm=on' to '-M'");
2685          return;
2686      }
2687  
2688      pc_dimm_pre_plug(PC_DIMM(dev), MACHINE(hotplug_dev), NULL, errp);
2689  }
2690  
2691  static void virt_memory_plug(HotplugHandler *hotplug_dev,
2692                               DeviceState *dev, Error **errp)
2693  {
2694      VirtMachineState *vms = VIRT_MACHINE(hotplug_dev);
2695      MachineState *ms = MACHINE(hotplug_dev);
2696      bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM);
2697  
2698      pc_dimm_plug(PC_DIMM(dev), MACHINE(vms));
2699  
2700      if (is_nvdimm) {
2701          nvdimm_plug(ms->nvdimms_state);
2702      }
2703  
2704      hotplug_handler_plug(HOTPLUG_HANDLER(vms->acpi_dev),
2705                           dev, &error_abort);
2706  }
2707  
2708  static void virt_machine_device_pre_plug_cb(HotplugHandler *hotplug_dev,
2709                                              DeviceState *dev, Error **errp)
2710  {
2711      VirtMachineState *vms = VIRT_MACHINE(hotplug_dev);
2712  
2713      if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2714          virt_memory_pre_plug(hotplug_dev, dev, errp);
2715      } else if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_MD_PCI)) {
2716          virtio_md_pci_pre_plug(VIRTIO_MD_PCI(dev), MACHINE(hotplug_dev), errp);
2717      } else if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_IOMMU_PCI)) {
2718          hwaddr db_start = 0, db_end = 0;
2719          QList *reserved_regions;
2720          char *resv_prop_str;
2721  
2722          if (vms->iommu != VIRT_IOMMU_NONE) {
2723              error_setg(errp, "virt machine does not support multiple IOMMUs");
2724              return;
2725          }
2726  
2727          switch (vms->msi_controller) {
2728          case VIRT_MSI_CTRL_NONE:
2729              return;
2730          case VIRT_MSI_CTRL_ITS:
2731              /* GITS_TRANSLATER page */
2732              db_start = base_memmap[VIRT_GIC_ITS].base + 0x10000;
2733              db_end = base_memmap[VIRT_GIC_ITS].base +
2734                       base_memmap[VIRT_GIC_ITS].size - 1;
2735              break;
2736          case VIRT_MSI_CTRL_GICV2M:
2737              /* MSI_SETSPI_NS page */
2738              db_start = base_memmap[VIRT_GIC_V2M].base;
2739              db_end = db_start + base_memmap[VIRT_GIC_V2M].size - 1;
2740              break;
2741          }
2742          resv_prop_str = g_strdup_printf("0x%"PRIx64":0x%"PRIx64":%u",
2743                                          db_start, db_end,
2744                                          VIRTIO_IOMMU_RESV_MEM_T_MSI);
2745  
2746          reserved_regions = qlist_new();
2747          qlist_append_str(reserved_regions, resv_prop_str);
2748          qdev_prop_set_array(dev, "reserved-regions", reserved_regions);
2749          g_free(resv_prop_str);
2750      }
2751  }
2752  
2753  static void virt_machine_device_plug_cb(HotplugHandler *hotplug_dev,
2754                                          DeviceState *dev, Error **errp)
2755  {
2756      VirtMachineState *vms = VIRT_MACHINE(hotplug_dev);
2757  
2758      if (vms->platform_bus_dev) {
2759          MachineClass *mc = MACHINE_GET_CLASS(vms);
2760  
2761          if (device_is_dynamic_sysbus(mc, dev)) {
2762              platform_bus_link_device(PLATFORM_BUS_DEVICE(vms->platform_bus_dev),
2763                                       SYS_BUS_DEVICE(dev));
2764          }
2765      }
2766  
2767      if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2768          virt_memory_plug(hotplug_dev, dev, errp);
2769      } else if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_MD_PCI)) {
2770          virtio_md_pci_plug(VIRTIO_MD_PCI(dev), MACHINE(hotplug_dev), errp);
2771      }
2772  
2773      if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_IOMMU_PCI)) {
2774          PCIDevice *pdev = PCI_DEVICE(dev);
2775  
2776          vms->iommu = VIRT_IOMMU_VIRTIO;
2777          vms->virtio_iommu_bdf = pci_get_bdf(pdev);
2778          create_virtio_iommu_dt_bindings(vms);
2779      }
2780  }
2781  
2782  static void virt_dimm_unplug_request(HotplugHandler *hotplug_dev,
2783                                       DeviceState *dev, Error **errp)
2784  {
2785      VirtMachineState *vms = VIRT_MACHINE(hotplug_dev);
2786  
2787      if (!vms->acpi_dev) {
2788          error_setg(errp,
2789                     "memory hotplug is not enabled: missing acpi-ged device");
2790          return;
2791      }
2792  
2793      if (object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM)) {
2794          error_setg(errp, "nvdimm device hot unplug is not supported yet.");
2795          return;
2796      }
2797  
2798      hotplug_handler_unplug_request(HOTPLUG_HANDLER(vms->acpi_dev), dev,
2799                                     errp);
2800  }
2801  
2802  static void virt_dimm_unplug(HotplugHandler *hotplug_dev,
2803                               DeviceState *dev, Error **errp)
2804  {
2805      VirtMachineState *vms = VIRT_MACHINE(hotplug_dev);
2806      Error *local_err = NULL;
2807  
2808      hotplug_handler_unplug(HOTPLUG_HANDLER(vms->acpi_dev), dev, &local_err);
2809      if (local_err) {
2810          goto out;
2811      }
2812  
2813      pc_dimm_unplug(PC_DIMM(dev), MACHINE(vms));
2814      qdev_unrealize(dev);
2815  
2816  out:
2817      error_propagate(errp, local_err);
2818  }
2819  
2820  static void virt_machine_device_unplug_request_cb(HotplugHandler *hotplug_dev,
2821                                            DeviceState *dev, Error **errp)
2822  {
2823      if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2824          virt_dimm_unplug_request(hotplug_dev, dev, errp);
2825      } else if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_MD_PCI)) {
2826          virtio_md_pci_unplug_request(VIRTIO_MD_PCI(dev), MACHINE(hotplug_dev),
2827                                       errp);
2828      } else {
2829          error_setg(errp, "device unplug request for unsupported device"
2830                     " type: %s", object_get_typename(OBJECT(dev)));
2831      }
2832  }
2833  
2834  static void virt_machine_device_unplug_cb(HotplugHandler *hotplug_dev,
2835                                            DeviceState *dev, Error **errp)
2836  {
2837      if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2838          virt_dimm_unplug(hotplug_dev, dev, errp);
2839      } else if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_MD_PCI)) {
2840          virtio_md_pci_unplug(VIRTIO_MD_PCI(dev), MACHINE(hotplug_dev), errp);
2841      } else {
2842          error_setg(errp, "virt: device unplug for unsupported device"
2843                     " type: %s", object_get_typename(OBJECT(dev)));
2844      }
2845  }
2846  
2847  static HotplugHandler *virt_machine_get_hotplug_handler(MachineState *machine,
2848                                                          DeviceState *dev)
2849  {
2850      MachineClass *mc = MACHINE_GET_CLASS(machine);
2851  
2852      if (device_is_dynamic_sysbus(mc, dev) ||
2853          object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) ||
2854          object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_MD_PCI) ||
2855          object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_IOMMU_PCI)) {
2856          return HOTPLUG_HANDLER(machine);
2857      }
2858      return NULL;
2859  }
2860  
2861  /*
2862   * for arm64 kvm_type [7-0] encodes the requested number of bits
2863   * in the IPA address space
2864   */
2865  static int virt_kvm_type(MachineState *ms, const char *type_str)
2866  {
2867      VirtMachineState *vms = VIRT_MACHINE(ms);
2868      int max_vm_pa_size, requested_pa_size;
2869      bool fixed_ipa;
2870  
2871      max_vm_pa_size = kvm_arm_get_max_vm_ipa_size(ms, &fixed_ipa);
2872  
2873      /* we freeze the memory map to compute the highest gpa */
2874      virt_set_memmap(vms, max_vm_pa_size);
2875  
2876      requested_pa_size = 64 - clz64(vms->highest_gpa);
2877  
2878      /*
2879       * KVM requires the IPA size to be at least 32 bits.
2880       */
2881      if (requested_pa_size < 32) {
2882          requested_pa_size = 32;
2883      }
2884  
2885      if (requested_pa_size > max_vm_pa_size) {
2886          error_report("-m and ,maxmem option values "
2887                       "require an IPA range (%d bits) larger than "
2888                       "the one supported by the host (%d bits)",
2889                       requested_pa_size, max_vm_pa_size);
2890          return -1;
2891      }
2892      /*
2893       * We return the requested PA log size, unless KVM only supports
2894       * the implicit legacy 40b IPA setting, in which case the kvm_type
2895       * must be 0.
2896       */
2897      return fixed_ipa ? 0 : requested_pa_size;
2898  }
2899  
2900  static void virt_machine_class_init(ObjectClass *oc, void *data)
2901  {
2902      MachineClass *mc = MACHINE_CLASS(oc);
2903      HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc);
2904      static const char * const valid_cpu_types[] = {
2905  #ifdef CONFIG_TCG
2906          ARM_CPU_TYPE_NAME("cortex-a7"),
2907          ARM_CPU_TYPE_NAME("cortex-a15"),
2908          ARM_CPU_TYPE_NAME("cortex-a35"),
2909          ARM_CPU_TYPE_NAME("cortex-a55"),
2910          ARM_CPU_TYPE_NAME("cortex-a72"),
2911          ARM_CPU_TYPE_NAME("cortex-a76"),
2912          ARM_CPU_TYPE_NAME("cortex-a710"),
2913          ARM_CPU_TYPE_NAME("a64fx"),
2914          ARM_CPU_TYPE_NAME("neoverse-n1"),
2915          ARM_CPU_TYPE_NAME("neoverse-v1"),
2916          ARM_CPU_TYPE_NAME("neoverse-n2"),
2917  #endif
2918          ARM_CPU_TYPE_NAME("cortex-a53"),
2919          ARM_CPU_TYPE_NAME("cortex-a57"),
2920  #if defined(CONFIG_KVM) || defined(CONFIG_HVF)
2921          ARM_CPU_TYPE_NAME("host"),
2922  #endif
2923          ARM_CPU_TYPE_NAME("max"),
2924          NULL
2925      };
2926  
2927      mc->init = machvirt_init;
2928      /* Start with max_cpus set to 512, which is the maximum supported by KVM.
2929       * The value may be reduced later when we have more information about the
2930       * configuration of the particular instance.
2931       */
2932      mc->max_cpus = 512;
2933      machine_class_allow_dynamic_sysbus_dev(mc, TYPE_VFIO_CALXEDA_XGMAC);
2934      machine_class_allow_dynamic_sysbus_dev(mc, TYPE_VFIO_AMD_XGBE);
2935      machine_class_allow_dynamic_sysbus_dev(mc, TYPE_RAMFB_DEVICE);
2936      machine_class_allow_dynamic_sysbus_dev(mc, TYPE_VFIO_PLATFORM);
2937  #ifdef CONFIG_TPM
2938      machine_class_allow_dynamic_sysbus_dev(mc, TYPE_TPM_TIS_SYSBUS);
2939  #endif
2940      mc->block_default_type = IF_VIRTIO;
2941      mc->no_cdrom = 1;
2942      mc->pci_allow_0_address = true;
2943      /* We know we will never create a pre-ARMv7 CPU which needs 1K pages */
2944      mc->minimum_page_bits = 12;
2945      mc->possible_cpu_arch_ids = virt_possible_cpu_arch_ids;
2946      mc->cpu_index_to_instance_props = virt_cpu_index_to_props;
2947  #ifdef CONFIG_TCG
2948      mc->default_cpu_type = ARM_CPU_TYPE_NAME("cortex-a15");
2949  #else
2950      mc->default_cpu_type = ARM_CPU_TYPE_NAME("max");
2951  #endif
2952      mc->valid_cpu_types = valid_cpu_types;
2953      mc->get_default_cpu_node_id = virt_get_default_cpu_node_id;
2954      mc->kvm_type = virt_kvm_type;
2955      assert(!mc->get_hotplug_handler);
2956      mc->get_hotplug_handler = virt_machine_get_hotplug_handler;
2957      hc->pre_plug = virt_machine_device_pre_plug_cb;
2958      hc->plug = virt_machine_device_plug_cb;
2959      hc->unplug_request = virt_machine_device_unplug_request_cb;
2960      hc->unplug = virt_machine_device_unplug_cb;
2961      mc->nvdimm_supported = true;
2962      mc->smp_props.clusters_supported = true;
2963      mc->auto_enable_numa_with_memhp = true;
2964      mc->auto_enable_numa_with_memdev = true;
2965      /* platform instead of architectural choice */
2966      mc->cpu_cluster_has_numa_boundary = true;
2967      mc->default_ram_id = "mach-virt.ram";
2968      mc->default_nic = "virtio-net-pci";
2969  
2970      object_class_property_add(oc, "acpi", "OnOffAuto",
2971          virt_get_acpi, virt_set_acpi,
2972          NULL, NULL);
2973      object_class_property_set_description(oc, "acpi",
2974          "Enable ACPI");
2975      object_class_property_add_bool(oc, "secure", virt_get_secure,
2976                                     virt_set_secure);
2977      object_class_property_set_description(oc, "secure",
2978                                                  "Set on/off to enable/disable the ARM "
2979                                                  "Security Extensions (TrustZone)");
2980  
2981      object_class_property_add_bool(oc, "virtualization", virt_get_virt,
2982                                     virt_set_virt);
2983      object_class_property_set_description(oc, "virtualization",
2984                                            "Set on/off to enable/disable emulating a "
2985                                            "guest CPU which implements the ARM "
2986                                            "Virtualization Extensions");
2987  
2988      object_class_property_add_bool(oc, "highmem", virt_get_highmem,
2989                                     virt_set_highmem);
2990      object_class_property_set_description(oc, "highmem",
2991                                            "Set on/off to enable/disable using "
2992                                            "physical address space above 32 bits");
2993  
2994      object_class_property_add_bool(oc, "compact-highmem",
2995                                     virt_get_compact_highmem,
2996                                     virt_set_compact_highmem);
2997      object_class_property_set_description(oc, "compact-highmem",
2998                                            "Set on/off to enable/disable compact "
2999                                            "layout for high memory regions");
3000  
3001      object_class_property_add_bool(oc, "highmem-redists",
3002                                     virt_get_highmem_redists,
3003                                     virt_set_highmem_redists);
3004      object_class_property_set_description(oc, "highmem-redists",
3005                                            "Set on/off to enable/disable high "
3006                                            "memory region for GICv3 or GICv4 "
3007                                            "redistributor");
3008  
3009      object_class_property_add_bool(oc, "highmem-ecam",
3010                                     virt_get_highmem_ecam,
3011                                     virt_set_highmem_ecam);
3012      object_class_property_set_description(oc, "highmem-ecam",
3013                                            "Set on/off to enable/disable high "
3014                                            "memory region for PCI ECAM");
3015  
3016      object_class_property_add_bool(oc, "highmem-mmio",
3017                                     virt_get_highmem_mmio,
3018                                     virt_set_highmem_mmio);
3019      object_class_property_set_description(oc, "highmem-mmio",
3020                                            "Set on/off to enable/disable high "
3021                                            "memory region for PCI MMIO");
3022  
3023      object_class_property_add_str(oc, "gic-version", virt_get_gic_version,
3024                                    virt_set_gic_version);
3025      object_class_property_set_description(oc, "gic-version",
3026                                            "Set GIC version. "
3027                                            "Valid values are 2, 3, 4, host and max");
3028  
3029      object_class_property_add_str(oc, "iommu", virt_get_iommu, virt_set_iommu);
3030      object_class_property_set_description(oc, "iommu",
3031                                            "Set the IOMMU type. "
3032                                            "Valid values are none and smmuv3");
3033  
3034      object_class_property_add_bool(oc, "default-bus-bypass-iommu",
3035                                     virt_get_default_bus_bypass_iommu,
3036                                     virt_set_default_bus_bypass_iommu);
3037      object_class_property_set_description(oc, "default-bus-bypass-iommu",
3038                                            "Set on/off to enable/disable "
3039                                            "bypass_iommu for default root bus");
3040  
3041      object_class_property_add_bool(oc, "ras", virt_get_ras,
3042                                     virt_set_ras);
3043      object_class_property_set_description(oc, "ras",
3044                                            "Set on/off to enable/disable reporting host memory errors "
3045                                            "to a KVM guest using ACPI and guest external abort exceptions");
3046  
3047      object_class_property_add_bool(oc, "mte", virt_get_mte, virt_set_mte);
3048      object_class_property_set_description(oc, "mte",
3049                                            "Set on/off to enable/disable emulating a "
3050                                            "guest CPU which implements the ARM "
3051                                            "Memory Tagging Extension");
3052  
3053      object_class_property_add_bool(oc, "its", virt_get_its,
3054                                     virt_set_its);
3055      object_class_property_set_description(oc, "its",
3056                                            "Set on/off to enable/disable "
3057                                            "ITS instantiation");
3058  
3059      object_class_property_add_bool(oc, "dtb-randomness",
3060                                     virt_get_dtb_randomness,
3061                                     virt_set_dtb_randomness);
3062      object_class_property_set_description(oc, "dtb-randomness",
3063                                            "Set off to disable passing random or "
3064                                            "non-deterministic dtb nodes to guest");
3065  
3066      object_class_property_add_bool(oc, "dtb-kaslr-seed",
3067                                     virt_get_dtb_randomness,
3068                                     virt_set_dtb_randomness);
3069      object_class_property_set_description(oc, "dtb-kaslr-seed",
3070                                            "Deprecated synonym of dtb-randomness");
3071  
3072      object_class_property_add_str(oc, "x-oem-id",
3073                                    virt_get_oem_id,
3074                                    virt_set_oem_id);
3075      object_class_property_set_description(oc, "x-oem-id",
3076                                            "Override the default value of field OEMID "
3077                                            "in ACPI table header."
3078                                            "The string may be up to 6 bytes in size");
3079  
3080  
3081      object_class_property_add_str(oc, "x-oem-table-id",
3082                                    virt_get_oem_table_id,
3083                                    virt_set_oem_table_id);
3084      object_class_property_set_description(oc, "x-oem-table-id",
3085                                            "Override the default value of field OEM Table ID "
3086                                            "in ACPI table header."
3087                                            "The string may be up to 8 bytes in size");
3088  
3089  }
3090  
3091  static void virt_instance_init(Object *obj)
3092  {
3093      VirtMachineState *vms = VIRT_MACHINE(obj);
3094      VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
3095  
3096      /* EL3 is disabled by default on virt: this makes us consistent
3097       * between KVM and TCG for this board, and it also allows us to
3098       * boot UEFI blobs which assume no TrustZone support.
3099       */
3100      vms->secure = false;
3101  
3102      /* EL2 is also disabled by default, for similar reasons */
3103      vms->virt = false;
3104  
3105      /* High memory is enabled by default */
3106      vms->highmem = true;
3107      vms->highmem_compact = !vmc->no_highmem_compact;
3108      vms->gic_version = VIRT_GIC_VERSION_NOSEL;
3109  
3110      vms->highmem_ecam = !vmc->no_highmem_ecam;
3111      vms->highmem_mmio = true;
3112      vms->highmem_redists = true;
3113  
3114      if (vmc->no_its) {
3115          vms->its = false;
3116      } else {
3117          /* Default allows ITS instantiation */
3118          vms->its = true;
3119  
3120          if (vmc->no_tcg_its) {
3121              vms->tcg_its = false;
3122          } else {
3123              vms->tcg_its = true;
3124          }
3125      }
3126  
3127      /* Default disallows iommu instantiation */
3128      vms->iommu = VIRT_IOMMU_NONE;
3129  
3130      /* The default root bus is attached to iommu by default */
3131      vms->default_bus_bypass_iommu = false;
3132  
3133      /* Default disallows RAS instantiation */
3134      vms->ras = false;
3135  
3136      /* MTE is disabled by default.  */
3137      vms->mte = false;
3138  
3139      /* Supply kaslr-seed and rng-seed by default */
3140      vms->dtb_randomness = true;
3141  
3142      vms->irqmap = a15irqmap;
3143  
3144      virt_flash_create(vms);
3145  
3146      vms->oem_id = g_strndup(ACPI_BUILD_APPNAME6, 6);
3147      vms->oem_table_id = g_strndup(ACPI_BUILD_APPNAME8, 8);
3148  }
3149  
3150  static const TypeInfo virt_machine_info = {
3151      .name          = TYPE_VIRT_MACHINE,
3152      .parent        = TYPE_MACHINE,
3153      .abstract      = true,
3154      .instance_size = sizeof(VirtMachineState),
3155      .class_size    = sizeof(VirtMachineClass),
3156      .class_init    = virt_machine_class_init,
3157      .instance_init = virt_instance_init,
3158      .interfaces = (InterfaceInfo[]) {
3159           { TYPE_HOTPLUG_HANDLER },
3160           { }
3161      },
3162  };
3163  
3164  static void machvirt_machine_init(void)
3165  {
3166      type_register_static(&virt_machine_info);
3167  }
3168  type_init(machvirt_machine_init);
3169  
3170  static void virt_machine_9_0_options(MachineClass *mc)
3171  {
3172  }
3173  DEFINE_VIRT_MACHINE_AS_LATEST(9, 0)
3174  
3175  static void virt_machine_8_2_options(MachineClass *mc)
3176  {
3177      virt_machine_9_0_options(mc);
3178      compat_props_add(mc->compat_props, hw_compat_8_2, hw_compat_8_2_len);
3179  }
3180  DEFINE_VIRT_MACHINE(8, 2)
3181  
3182  static void virt_machine_8_1_options(MachineClass *mc)
3183  {
3184      virt_machine_8_2_options(mc);
3185      compat_props_add(mc->compat_props, hw_compat_8_1, hw_compat_8_1_len);
3186  }
3187  DEFINE_VIRT_MACHINE(8, 1)
3188  
3189  static void virt_machine_8_0_options(MachineClass *mc)
3190  {
3191      virt_machine_8_1_options(mc);
3192      compat_props_add(mc->compat_props, hw_compat_8_0, hw_compat_8_0_len);
3193  }
3194  DEFINE_VIRT_MACHINE(8, 0)
3195  
3196  static void virt_machine_7_2_options(MachineClass *mc)
3197  {
3198      virt_machine_8_0_options(mc);
3199      compat_props_add(mc->compat_props, hw_compat_7_2, hw_compat_7_2_len);
3200  }
3201  DEFINE_VIRT_MACHINE(7, 2)
3202  
3203  static void virt_machine_7_1_options(MachineClass *mc)
3204  {
3205      VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
3206  
3207      virt_machine_7_2_options(mc);
3208      compat_props_add(mc->compat_props, hw_compat_7_1, hw_compat_7_1_len);
3209      /* Compact layout for high memory regions was introduced with 7.2 */
3210      vmc->no_highmem_compact = true;
3211  }
3212  DEFINE_VIRT_MACHINE(7, 1)
3213  
3214  static void virt_machine_7_0_options(MachineClass *mc)
3215  {
3216      virt_machine_7_1_options(mc);
3217      compat_props_add(mc->compat_props, hw_compat_7_0, hw_compat_7_0_len);
3218  }
3219  DEFINE_VIRT_MACHINE(7, 0)
3220  
3221  static void virt_machine_6_2_options(MachineClass *mc)
3222  {
3223      VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
3224  
3225      virt_machine_7_0_options(mc);
3226      compat_props_add(mc->compat_props, hw_compat_6_2, hw_compat_6_2_len);
3227      vmc->no_tcg_lpa2 = true;
3228  }
3229  DEFINE_VIRT_MACHINE(6, 2)
3230  
3231  static void virt_machine_6_1_options(MachineClass *mc)
3232  {
3233      VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
3234  
3235      virt_machine_6_2_options(mc);
3236      compat_props_add(mc->compat_props, hw_compat_6_1, hw_compat_6_1_len);
3237      mc->smp_props.prefer_sockets = true;
3238      vmc->no_cpu_topology = true;
3239  
3240      /* qemu ITS was introduced with 6.2 */
3241      vmc->no_tcg_its = true;
3242  }
3243  DEFINE_VIRT_MACHINE(6, 1)
3244  
3245  static void virt_machine_6_0_options(MachineClass *mc)
3246  {
3247      virt_machine_6_1_options(mc);
3248      compat_props_add(mc->compat_props, hw_compat_6_0, hw_compat_6_0_len);
3249  }
3250  DEFINE_VIRT_MACHINE(6, 0)
3251  
3252  static void virt_machine_5_2_options(MachineClass *mc)
3253  {
3254      VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
3255  
3256      virt_machine_6_0_options(mc);
3257      compat_props_add(mc->compat_props, hw_compat_5_2, hw_compat_5_2_len);
3258      vmc->no_secure_gpio = true;
3259  }
3260  DEFINE_VIRT_MACHINE(5, 2)
3261  
3262  static void virt_machine_5_1_options(MachineClass *mc)
3263  {
3264      VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
3265  
3266      virt_machine_5_2_options(mc);
3267      compat_props_add(mc->compat_props, hw_compat_5_1, hw_compat_5_1_len);
3268      vmc->no_kvm_steal_time = true;
3269  }
3270  DEFINE_VIRT_MACHINE(5, 1)
3271  
3272  static void virt_machine_5_0_options(MachineClass *mc)
3273  {
3274      VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
3275  
3276      virt_machine_5_1_options(mc);
3277      compat_props_add(mc->compat_props, hw_compat_5_0, hw_compat_5_0_len);
3278      mc->numa_mem_supported = true;
3279      vmc->acpi_expose_flash = true;
3280      mc->auto_enable_numa_with_memdev = false;
3281  }
3282  DEFINE_VIRT_MACHINE(5, 0)
3283  
3284  static void virt_machine_4_2_options(MachineClass *mc)
3285  {
3286      VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
3287  
3288      virt_machine_5_0_options(mc);
3289      compat_props_add(mc->compat_props, hw_compat_4_2, hw_compat_4_2_len);
3290      vmc->kvm_no_adjvtime = true;
3291  }
3292  DEFINE_VIRT_MACHINE(4, 2)
3293  
3294  static void virt_machine_4_1_options(MachineClass *mc)
3295  {
3296      VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
3297  
3298      virt_machine_4_2_options(mc);
3299      compat_props_add(mc->compat_props, hw_compat_4_1, hw_compat_4_1_len);
3300      vmc->no_ged = true;
3301      mc->auto_enable_numa_with_memhp = false;
3302  }
3303  DEFINE_VIRT_MACHINE(4, 1)
3304  
3305  static void virt_machine_4_0_options(MachineClass *mc)
3306  {
3307      virt_machine_4_1_options(mc);
3308      compat_props_add(mc->compat_props, hw_compat_4_0, hw_compat_4_0_len);
3309  }
3310  DEFINE_VIRT_MACHINE(4, 0)
3311  
3312  static void virt_machine_3_1_options(MachineClass *mc)
3313  {
3314      virt_machine_4_0_options(mc);
3315      compat_props_add(mc->compat_props, hw_compat_3_1, hw_compat_3_1_len);
3316  }
3317  DEFINE_VIRT_MACHINE(3, 1)
3318  
3319  static void virt_machine_3_0_options(MachineClass *mc)
3320  {
3321      virt_machine_3_1_options(mc);
3322      compat_props_add(mc->compat_props, hw_compat_3_0, hw_compat_3_0_len);
3323  }
3324  DEFINE_VIRT_MACHINE(3, 0)
3325  
3326  static void virt_machine_2_12_options(MachineClass *mc)
3327  {
3328      VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
3329  
3330      virt_machine_3_0_options(mc);
3331      compat_props_add(mc->compat_props, hw_compat_2_12, hw_compat_2_12_len);
3332      vmc->no_highmem_ecam = true;
3333      mc->max_cpus = 255;
3334  }
3335  DEFINE_VIRT_MACHINE(2, 12)
3336  
3337  static void virt_machine_2_11_options(MachineClass *mc)
3338  {
3339      VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
3340  
3341      virt_machine_2_12_options(mc);
3342      compat_props_add(mc->compat_props, hw_compat_2_11, hw_compat_2_11_len);
3343      vmc->smbios_old_sys_ver = true;
3344  }
3345  DEFINE_VIRT_MACHINE(2, 11)
3346  
3347  static void virt_machine_2_10_options(MachineClass *mc)
3348  {
3349      virt_machine_2_11_options(mc);
3350      compat_props_add(mc->compat_props, hw_compat_2_10, hw_compat_2_10_len);
3351      /* before 2.11 we never faulted accesses to bad addresses */
3352      mc->ignore_memory_transaction_failures = true;
3353  }
3354  DEFINE_VIRT_MACHINE(2, 10)
3355  
3356  static void virt_machine_2_9_options(MachineClass *mc)
3357  {
3358      virt_machine_2_10_options(mc);
3359      compat_props_add(mc->compat_props, hw_compat_2_9, hw_compat_2_9_len);
3360  }
3361  DEFINE_VIRT_MACHINE(2, 9)
3362  
3363  static void virt_machine_2_8_options(MachineClass *mc)
3364  {
3365      VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
3366  
3367      virt_machine_2_9_options(mc);
3368      compat_props_add(mc->compat_props, hw_compat_2_8, hw_compat_2_8_len);
3369      /* For 2.8 and earlier we falsely claimed in the DT that
3370       * our timers were edge-triggered, not level-triggered.
3371       */
3372      vmc->claim_edge_triggered_timers = true;
3373  }
3374  DEFINE_VIRT_MACHINE(2, 8)
3375  
3376  static void virt_machine_2_7_options(MachineClass *mc)
3377  {
3378      VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
3379  
3380      virt_machine_2_8_options(mc);
3381      compat_props_add(mc->compat_props, hw_compat_2_7, hw_compat_2_7_len);
3382      /* ITS was introduced with 2.8 */
3383      vmc->no_its = true;
3384      /* Stick with 1K pages for migration compatibility */
3385      mc->minimum_page_bits = 0;
3386  }
3387  DEFINE_VIRT_MACHINE(2, 7)
3388  
3389  static void virt_machine_2_6_options(MachineClass *mc)
3390  {
3391      VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
3392  
3393      virt_machine_2_7_options(mc);
3394      compat_props_add(mc->compat_props, hw_compat_2_6, hw_compat_2_6_len);
3395      vmc->disallow_affinity_adjustment = true;
3396      /* Disable PMU for 2.6 as PMU support was first introduced in 2.7 */
3397      vmc->no_pmu = true;
3398  }
3399  DEFINE_VIRT_MACHINE(2, 6)
3400