xref: /qemu/hw/arm/stellaris.c (revision a861b3e94eb62495c0e3caac8ef2fb0ce4400a95)
1 /*
2  * Luminary Micro Stellaris peripherals
3  *
4  * Copyright (c) 2006 CodeSourcery.
5  * Written by Paul Brook
6  *
7  * This code is licensed under the GPL.
8  */
9 
10 #include "qemu/osdep.h"
11 #include "qapi/error.h"
12 #include "hw/sysbus.h"
13 #include "hw/ssi/ssi.h"
14 #include "hw/arm/boot.h"
15 #include "qemu/timer.h"
16 #include "hw/i2c/i2c.h"
17 #include "net/net.h"
18 #include "hw/boards.h"
19 #include "qemu/log.h"
20 #include "exec/address-spaces.h"
21 #include "sysemu/sysemu.h"
22 #include "hw/arm/armv7m.h"
23 #include "hw/char/pl011.h"
24 #include "hw/input/gamepad.h"
25 #include "hw/irq.h"
26 #include "hw/watchdog/cmsdk-apb-watchdog.h"
27 #include "migration/vmstate.h"
28 #include "hw/misc/unimp.h"
29 #include "hw/qdev-clock.h"
30 #include "qom/object.h"
31 
32 #define GPIO_A 0
33 #define GPIO_B 1
34 #define GPIO_C 2
35 #define GPIO_D 3
36 #define GPIO_E 4
37 #define GPIO_F 5
38 #define GPIO_G 6
39 
40 #define BP_OLED_I2C  0x01
41 #define BP_OLED_SSI  0x02
42 #define BP_GAMEPAD   0x04
43 
44 #define NUM_IRQ_LINES 64
45 
46 typedef const struct {
47     const char *name;
48     uint32_t did0;
49     uint32_t did1;
50     uint32_t dc0;
51     uint32_t dc1;
52     uint32_t dc2;
53     uint32_t dc3;
54     uint32_t dc4;
55     uint32_t peripherals;
56 } stellaris_board_info;
57 
58 /* General purpose timer module.  */
59 
60 #define TYPE_STELLARIS_GPTM "stellaris-gptm"
61 OBJECT_DECLARE_SIMPLE_TYPE(gptm_state, STELLARIS_GPTM)
62 
63 struct gptm_state {
64     SysBusDevice parent_obj;
65 
66     MemoryRegion iomem;
67     uint32_t config;
68     uint32_t mode[2];
69     uint32_t control;
70     uint32_t state;
71     uint32_t mask;
72     uint32_t load[2];
73     uint32_t match[2];
74     uint32_t prescale[2];
75     uint32_t match_prescale[2];
76     uint32_t rtc;
77     int64_t tick[2];
78     struct gptm_state *opaque[2];
79     QEMUTimer *timer[2];
80     /* The timers have an alternate output used to trigger the ADC.  */
81     qemu_irq trigger;
82     qemu_irq irq;
83 };
84 
85 static void gptm_update_irq(gptm_state *s)
86 {
87     int level;
88     level = (s->state & s->mask) != 0;
89     qemu_set_irq(s->irq, level);
90 }
91 
92 static void gptm_stop(gptm_state *s, int n)
93 {
94     timer_del(s->timer[n]);
95 }
96 
97 static void gptm_reload(gptm_state *s, int n, int reset)
98 {
99     int64_t tick;
100     if (reset)
101         tick = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
102     else
103         tick = s->tick[n];
104 
105     if (s->config == 0) {
106         /* 32-bit CountDown.  */
107         uint32_t count;
108         count = s->load[0] | (s->load[1] << 16);
109         tick += (int64_t)count * system_clock_scale;
110     } else if (s->config == 1) {
111         /* 32-bit RTC.  1Hz tick.  */
112         tick += NANOSECONDS_PER_SECOND;
113     } else if (s->mode[n] == 0xa) {
114         /* PWM mode.  Not implemented.  */
115     } else {
116         qemu_log_mask(LOG_UNIMP,
117                       "GPTM: 16-bit timer mode unimplemented: 0x%x\n",
118                       s->mode[n]);
119         return;
120     }
121     s->tick[n] = tick;
122     timer_mod(s->timer[n], tick);
123 }
124 
125 static void gptm_tick(void *opaque)
126 {
127     gptm_state **p = (gptm_state **)opaque;
128     gptm_state *s;
129     int n;
130 
131     s = *p;
132     n = p - s->opaque;
133     if (s->config == 0) {
134         s->state |= 1;
135         if ((s->control & 0x20)) {
136             /* Output trigger.  */
137             qemu_irq_pulse(s->trigger);
138         }
139         if (s->mode[0] & 1) {
140             /* One-shot.  */
141             s->control &= ~1;
142         } else {
143             /* Periodic.  */
144             gptm_reload(s, 0, 0);
145         }
146     } else if (s->config == 1) {
147         /* RTC.  */
148         uint32_t match;
149         s->rtc++;
150         match = s->match[0] | (s->match[1] << 16);
151         if (s->rtc > match)
152             s->rtc = 0;
153         if (s->rtc == 0) {
154             s->state |= 8;
155         }
156         gptm_reload(s, 0, 0);
157     } else if (s->mode[n] == 0xa) {
158         /* PWM mode.  Not implemented.  */
159     } else {
160         qemu_log_mask(LOG_UNIMP,
161                       "GPTM: 16-bit timer mode unimplemented: 0x%x\n",
162                       s->mode[n]);
163     }
164     gptm_update_irq(s);
165 }
166 
167 static uint64_t gptm_read(void *opaque, hwaddr offset,
168                           unsigned size)
169 {
170     gptm_state *s = (gptm_state *)opaque;
171 
172     switch (offset) {
173     case 0x00: /* CFG */
174         return s->config;
175     case 0x04: /* TAMR */
176         return s->mode[0];
177     case 0x08: /* TBMR */
178         return s->mode[1];
179     case 0x0c: /* CTL */
180         return s->control;
181     case 0x18: /* IMR */
182         return s->mask;
183     case 0x1c: /* RIS */
184         return s->state;
185     case 0x20: /* MIS */
186         return s->state & s->mask;
187     case 0x24: /* CR */
188         return 0;
189     case 0x28: /* TAILR */
190         return s->load[0] | ((s->config < 4) ? (s->load[1] << 16) : 0);
191     case 0x2c: /* TBILR */
192         return s->load[1];
193     case 0x30: /* TAMARCHR */
194         return s->match[0] | ((s->config < 4) ? (s->match[1] << 16) : 0);
195     case 0x34: /* TBMATCHR */
196         return s->match[1];
197     case 0x38: /* TAPR */
198         return s->prescale[0];
199     case 0x3c: /* TBPR */
200         return s->prescale[1];
201     case 0x40: /* TAPMR */
202         return s->match_prescale[0];
203     case 0x44: /* TBPMR */
204         return s->match_prescale[1];
205     case 0x48: /* TAR */
206         if (s->config == 1) {
207             return s->rtc;
208         }
209         qemu_log_mask(LOG_UNIMP,
210                       "GPTM: read of TAR but timer read not supported\n");
211         return 0;
212     case 0x4c: /* TBR */
213         qemu_log_mask(LOG_UNIMP,
214                       "GPTM: read of TBR but timer read not supported\n");
215         return 0;
216     default:
217         qemu_log_mask(LOG_GUEST_ERROR,
218                       "GPTM: read at bad offset 0x02%" HWADDR_PRIx "\n",
219                       offset);
220         return 0;
221     }
222 }
223 
224 static void gptm_write(void *opaque, hwaddr offset,
225                        uint64_t value, unsigned size)
226 {
227     gptm_state *s = (gptm_state *)opaque;
228     uint32_t oldval;
229 
230     /* The timers should be disabled before changing the configuration.
231        We take advantage of this and defer everything until the timer
232        is enabled.  */
233     switch (offset) {
234     case 0x00: /* CFG */
235         s->config = value;
236         break;
237     case 0x04: /* TAMR */
238         s->mode[0] = value;
239         break;
240     case 0x08: /* TBMR */
241         s->mode[1] = value;
242         break;
243     case 0x0c: /* CTL */
244         oldval = s->control;
245         s->control = value;
246         /* TODO: Implement pause.  */
247         if ((oldval ^ value) & 1) {
248             if (value & 1) {
249                 gptm_reload(s, 0, 1);
250             } else {
251                 gptm_stop(s, 0);
252             }
253         }
254         if (((oldval ^ value) & 0x100) && s->config >= 4) {
255             if (value & 0x100) {
256                 gptm_reload(s, 1, 1);
257             } else {
258                 gptm_stop(s, 1);
259             }
260         }
261         break;
262     case 0x18: /* IMR */
263         s->mask = value & 0x77;
264         gptm_update_irq(s);
265         break;
266     case 0x24: /* CR */
267         s->state &= ~value;
268         break;
269     case 0x28: /* TAILR */
270         s->load[0] = value & 0xffff;
271         if (s->config < 4) {
272             s->load[1] = value >> 16;
273         }
274         break;
275     case 0x2c: /* TBILR */
276         s->load[1] = value & 0xffff;
277         break;
278     case 0x30: /* TAMARCHR */
279         s->match[0] = value & 0xffff;
280         if (s->config < 4) {
281             s->match[1] = value >> 16;
282         }
283         break;
284     case 0x34: /* TBMATCHR */
285         s->match[1] = value >> 16;
286         break;
287     case 0x38: /* TAPR */
288         s->prescale[0] = value;
289         break;
290     case 0x3c: /* TBPR */
291         s->prescale[1] = value;
292         break;
293     case 0x40: /* TAPMR */
294         s->match_prescale[0] = value;
295         break;
296     case 0x44: /* TBPMR */
297         s->match_prescale[0] = value;
298         break;
299     default:
300         qemu_log_mask(LOG_GUEST_ERROR,
301                       "GPTM: write at bad offset 0x02%" HWADDR_PRIx "\n",
302                       offset);
303     }
304     gptm_update_irq(s);
305 }
306 
307 static const MemoryRegionOps gptm_ops = {
308     .read = gptm_read,
309     .write = gptm_write,
310     .endianness = DEVICE_NATIVE_ENDIAN,
311 };
312 
313 static const VMStateDescription vmstate_stellaris_gptm = {
314     .name = "stellaris_gptm",
315     .version_id = 1,
316     .minimum_version_id = 1,
317     .fields = (VMStateField[]) {
318         VMSTATE_UINT32(config, gptm_state),
319         VMSTATE_UINT32_ARRAY(mode, gptm_state, 2),
320         VMSTATE_UINT32(control, gptm_state),
321         VMSTATE_UINT32(state, gptm_state),
322         VMSTATE_UINT32(mask, gptm_state),
323         VMSTATE_UNUSED(8),
324         VMSTATE_UINT32_ARRAY(load, gptm_state, 2),
325         VMSTATE_UINT32_ARRAY(match, gptm_state, 2),
326         VMSTATE_UINT32_ARRAY(prescale, gptm_state, 2),
327         VMSTATE_UINT32_ARRAY(match_prescale, gptm_state, 2),
328         VMSTATE_UINT32(rtc, gptm_state),
329         VMSTATE_INT64_ARRAY(tick, gptm_state, 2),
330         VMSTATE_TIMER_PTR_ARRAY(timer, gptm_state, 2),
331         VMSTATE_END_OF_LIST()
332     }
333 };
334 
335 static void stellaris_gptm_init(Object *obj)
336 {
337     DeviceState *dev = DEVICE(obj);
338     gptm_state *s = STELLARIS_GPTM(obj);
339     SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
340 
341     sysbus_init_irq(sbd, &s->irq);
342     qdev_init_gpio_out(dev, &s->trigger, 1);
343 
344     memory_region_init_io(&s->iomem, obj, &gptm_ops, s,
345                           "gptm", 0x1000);
346     sysbus_init_mmio(sbd, &s->iomem);
347 
348     s->opaque[0] = s->opaque[1] = s;
349 }
350 
351 static void stellaris_gptm_realize(DeviceState *dev, Error **errp)
352 {
353     gptm_state *s = STELLARIS_GPTM(dev);
354     s->timer[0] = timer_new_ns(QEMU_CLOCK_VIRTUAL, gptm_tick, &s->opaque[0]);
355     s->timer[1] = timer_new_ns(QEMU_CLOCK_VIRTUAL, gptm_tick, &s->opaque[1]);
356 }
357 
358 /* System controller.  */
359 
360 #define TYPE_STELLARIS_SYS "stellaris-sys"
361 OBJECT_DECLARE_SIMPLE_TYPE(ssys_state, STELLARIS_SYS)
362 
363 struct ssys_state {
364     SysBusDevice parent_obj;
365 
366     MemoryRegion iomem;
367     uint32_t pborctl;
368     uint32_t ldopctl;
369     uint32_t int_status;
370     uint32_t int_mask;
371     uint32_t resc;
372     uint32_t rcc;
373     uint32_t rcc2;
374     uint32_t rcgc[3];
375     uint32_t scgc[3];
376     uint32_t dcgc[3];
377     uint32_t clkvclr;
378     uint32_t ldoarst;
379     qemu_irq irq;
380     Clock *sysclk;
381     /* Properties (all read-only registers) */
382     uint32_t user0;
383     uint32_t user1;
384     uint32_t did0;
385     uint32_t did1;
386     uint32_t dc0;
387     uint32_t dc1;
388     uint32_t dc2;
389     uint32_t dc3;
390     uint32_t dc4;
391 };
392 
393 static void ssys_update(ssys_state *s)
394 {
395   qemu_set_irq(s->irq, (s->int_status & s->int_mask) != 0);
396 }
397 
398 static uint32_t pllcfg_sandstorm[16] = {
399     0x31c0, /* 1 Mhz */
400     0x1ae0, /* 1.8432 Mhz */
401     0x18c0, /* 2 Mhz */
402     0xd573, /* 2.4576 Mhz */
403     0x37a6, /* 3.57954 Mhz */
404     0x1ae2, /* 3.6864 Mhz */
405     0x0c40, /* 4 Mhz */
406     0x98bc, /* 4.906 Mhz */
407     0x935b, /* 4.9152 Mhz */
408     0x09c0, /* 5 Mhz */
409     0x4dee, /* 5.12 Mhz */
410     0x0c41, /* 6 Mhz */
411     0x75db, /* 6.144 Mhz */
412     0x1ae6, /* 7.3728 Mhz */
413     0x0600, /* 8 Mhz */
414     0x585b /* 8.192 Mhz */
415 };
416 
417 static uint32_t pllcfg_fury[16] = {
418     0x3200, /* 1 Mhz */
419     0x1b20, /* 1.8432 Mhz */
420     0x1900, /* 2 Mhz */
421     0xf42b, /* 2.4576 Mhz */
422     0x37e3, /* 3.57954 Mhz */
423     0x1b21, /* 3.6864 Mhz */
424     0x0c80, /* 4 Mhz */
425     0x98ee, /* 4.906 Mhz */
426     0xd5b4, /* 4.9152 Mhz */
427     0x0a00, /* 5 Mhz */
428     0x4e27, /* 5.12 Mhz */
429     0x1902, /* 6 Mhz */
430     0xec1c, /* 6.144 Mhz */
431     0x1b23, /* 7.3728 Mhz */
432     0x0640, /* 8 Mhz */
433     0xb11c /* 8.192 Mhz */
434 };
435 
436 #define DID0_VER_MASK        0x70000000
437 #define DID0_VER_0           0x00000000
438 #define DID0_VER_1           0x10000000
439 
440 #define DID0_CLASS_MASK      0x00FF0000
441 #define DID0_CLASS_SANDSTORM 0x00000000
442 #define DID0_CLASS_FURY      0x00010000
443 
444 static int ssys_board_class(const ssys_state *s)
445 {
446     uint32_t did0 = s->did0;
447     switch (did0 & DID0_VER_MASK) {
448     case DID0_VER_0:
449         return DID0_CLASS_SANDSTORM;
450     case DID0_VER_1:
451         switch (did0 & DID0_CLASS_MASK) {
452         case DID0_CLASS_SANDSTORM:
453         case DID0_CLASS_FURY:
454             return did0 & DID0_CLASS_MASK;
455         }
456         /* for unknown classes, fall through */
457     default:
458         /* This can only happen if the hardwired constant did0 value
459          * in this board's stellaris_board_info struct is wrong.
460          */
461         g_assert_not_reached();
462     }
463 }
464 
465 static uint64_t ssys_read(void *opaque, hwaddr offset,
466                           unsigned size)
467 {
468     ssys_state *s = (ssys_state *)opaque;
469 
470     switch (offset) {
471     case 0x000: /* DID0 */
472         return s->did0;
473     case 0x004: /* DID1 */
474         return s->did1;
475     case 0x008: /* DC0 */
476         return s->dc0;
477     case 0x010: /* DC1 */
478         return s->dc1;
479     case 0x014: /* DC2 */
480         return s->dc2;
481     case 0x018: /* DC3 */
482         return s->dc3;
483     case 0x01c: /* DC4 */
484         return s->dc4;
485     case 0x030: /* PBORCTL */
486         return s->pborctl;
487     case 0x034: /* LDOPCTL */
488         return s->ldopctl;
489     case 0x040: /* SRCR0 */
490         return 0;
491     case 0x044: /* SRCR1 */
492         return 0;
493     case 0x048: /* SRCR2 */
494         return 0;
495     case 0x050: /* RIS */
496         return s->int_status;
497     case 0x054: /* IMC */
498         return s->int_mask;
499     case 0x058: /* MISC */
500         return s->int_status & s->int_mask;
501     case 0x05c: /* RESC */
502         return s->resc;
503     case 0x060: /* RCC */
504         return s->rcc;
505     case 0x064: /* PLLCFG */
506         {
507             int xtal;
508             xtal = (s->rcc >> 6) & 0xf;
509             switch (ssys_board_class(s)) {
510             case DID0_CLASS_FURY:
511                 return pllcfg_fury[xtal];
512             case DID0_CLASS_SANDSTORM:
513                 return pllcfg_sandstorm[xtal];
514             default:
515                 g_assert_not_reached();
516             }
517         }
518     case 0x070: /* RCC2 */
519         return s->rcc2;
520     case 0x100: /* RCGC0 */
521         return s->rcgc[0];
522     case 0x104: /* RCGC1 */
523         return s->rcgc[1];
524     case 0x108: /* RCGC2 */
525         return s->rcgc[2];
526     case 0x110: /* SCGC0 */
527         return s->scgc[0];
528     case 0x114: /* SCGC1 */
529         return s->scgc[1];
530     case 0x118: /* SCGC2 */
531         return s->scgc[2];
532     case 0x120: /* DCGC0 */
533         return s->dcgc[0];
534     case 0x124: /* DCGC1 */
535         return s->dcgc[1];
536     case 0x128: /* DCGC2 */
537         return s->dcgc[2];
538     case 0x150: /* CLKVCLR */
539         return s->clkvclr;
540     case 0x160: /* LDOARST */
541         return s->ldoarst;
542     case 0x1e0: /* USER0 */
543         return s->user0;
544     case 0x1e4: /* USER1 */
545         return s->user1;
546     default:
547         qemu_log_mask(LOG_GUEST_ERROR,
548                       "SSYS: read at bad offset 0x%x\n", (int)offset);
549         return 0;
550     }
551 }
552 
553 static bool ssys_use_rcc2(ssys_state *s)
554 {
555     return (s->rcc2 >> 31) & 0x1;
556 }
557 
558 /*
559  * Calculate the system clock period. We only want to propagate
560  * this change to the rest of the system if we're not being called
561  * from migration post-load.
562  */
563 static void ssys_calculate_system_clock(ssys_state *s, bool propagate_clock)
564 {
565     /*
566      * SYSDIV field specifies divisor: 0 == /1, 1 == /2, etc.  Input
567      * clock is 200MHz, which is a period of 5 ns. Dividing the clock
568      * frequency by X is the same as multiplying the period by X.
569      */
570     if (ssys_use_rcc2(s)) {
571         system_clock_scale = 5 * (((s->rcc2 >> 23) & 0x3f) + 1);
572     } else {
573         system_clock_scale = 5 * (((s->rcc >> 23) & 0xf) + 1);
574     }
575     clock_set_ns(s->sysclk, system_clock_scale);
576     if (propagate_clock) {
577         clock_propagate(s->sysclk);
578     }
579 }
580 
581 static void ssys_write(void *opaque, hwaddr offset,
582                        uint64_t value, unsigned size)
583 {
584     ssys_state *s = (ssys_state *)opaque;
585 
586     switch (offset) {
587     case 0x030: /* PBORCTL */
588         s->pborctl = value & 0xffff;
589         break;
590     case 0x034: /* LDOPCTL */
591         s->ldopctl = value & 0x1f;
592         break;
593     case 0x040: /* SRCR0 */
594     case 0x044: /* SRCR1 */
595     case 0x048: /* SRCR2 */
596         qemu_log_mask(LOG_UNIMP, "Peripheral reset not implemented\n");
597         break;
598     case 0x054: /* IMC */
599         s->int_mask = value & 0x7f;
600         break;
601     case 0x058: /* MISC */
602         s->int_status &= ~value;
603         break;
604     case 0x05c: /* RESC */
605         s->resc = value & 0x3f;
606         break;
607     case 0x060: /* RCC */
608         if ((s->rcc & (1 << 13)) != 0 && (value & (1 << 13)) == 0) {
609             /* PLL enable.  */
610             s->int_status |= (1 << 6);
611         }
612         s->rcc = value;
613         ssys_calculate_system_clock(s, true);
614         break;
615     case 0x070: /* RCC2 */
616         if (ssys_board_class(s) == DID0_CLASS_SANDSTORM) {
617             break;
618         }
619 
620         if ((s->rcc2 & (1 << 13)) != 0 && (value & (1 << 13)) == 0) {
621             /* PLL enable.  */
622             s->int_status |= (1 << 6);
623         }
624         s->rcc2 = value;
625         ssys_calculate_system_clock(s, true);
626         break;
627     case 0x100: /* RCGC0 */
628         s->rcgc[0] = value;
629         break;
630     case 0x104: /* RCGC1 */
631         s->rcgc[1] = value;
632         break;
633     case 0x108: /* RCGC2 */
634         s->rcgc[2] = value;
635         break;
636     case 0x110: /* SCGC0 */
637         s->scgc[0] = value;
638         break;
639     case 0x114: /* SCGC1 */
640         s->scgc[1] = value;
641         break;
642     case 0x118: /* SCGC2 */
643         s->scgc[2] = value;
644         break;
645     case 0x120: /* DCGC0 */
646         s->dcgc[0] = value;
647         break;
648     case 0x124: /* DCGC1 */
649         s->dcgc[1] = value;
650         break;
651     case 0x128: /* DCGC2 */
652         s->dcgc[2] = value;
653         break;
654     case 0x150: /* CLKVCLR */
655         s->clkvclr = value;
656         break;
657     case 0x160: /* LDOARST */
658         s->ldoarst = value;
659         break;
660     default:
661         qemu_log_mask(LOG_GUEST_ERROR,
662                       "SSYS: write at bad offset 0x%x\n", (int)offset);
663     }
664     ssys_update(s);
665 }
666 
667 static const MemoryRegionOps ssys_ops = {
668     .read = ssys_read,
669     .write = ssys_write,
670     .endianness = DEVICE_NATIVE_ENDIAN,
671 };
672 
673 static void stellaris_sys_reset_enter(Object *obj, ResetType type)
674 {
675     ssys_state *s = STELLARIS_SYS(obj);
676 
677     s->pborctl = 0x7ffd;
678     s->rcc = 0x078e3ac0;
679 
680     if (ssys_board_class(s) == DID0_CLASS_SANDSTORM) {
681         s->rcc2 = 0;
682     } else {
683         s->rcc2 = 0x07802810;
684     }
685     s->rcgc[0] = 1;
686     s->scgc[0] = 1;
687     s->dcgc[0] = 1;
688 }
689 
690 static void stellaris_sys_reset_hold(Object *obj)
691 {
692     ssys_state *s = STELLARIS_SYS(obj);
693 
694     /* OK to propagate clocks from the hold phase */
695     ssys_calculate_system_clock(s, true);
696 }
697 
698 static void stellaris_sys_reset_exit(Object *obj)
699 {
700 }
701 
702 static int stellaris_sys_post_load(void *opaque, int version_id)
703 {
704     ssys_state *s = opaque;
705 
706     ssys_calculate_system_clock(s, false);
707 
708     return 0;
709 }
710 
711 static const VMStateDescription vmstate_stellaris_sys = {
712     .name = "stellaris_sys",
713     .version_id = 2,
714     .minimum_version_id = 1,
715     .post_load = stellaris_sys_post_load,
716     .fields = (VMStateField[]) {
717         VMSTATE_UINT32(pborctl, ssys_state),
718         VMSTATE_UINT32(ldopctl, ssys_state),
719         VMSTATE_UINT32(int_mask, ssys_state),
720         VMSTATE_UINT32(int_status, ssys_state),
721         VMSTATE_UINT32(resc, ssys_state),
722         VMSTATE_UINT32(rcc, ssys_state),
723         VMSTATE_UINT32_V(rcc2, ssys_state, 2),
724         VMSTATE_UINT32_ARRAY(rcgc, ssys_state, 3),
725         VMSTATE_UINT32_ARRAY(scgc, ssys_state, 3),
726         VMSTATE_UINT32_ARRAY(dcgc, ssys_state, 3),
727         VMSTATE_UINT32(clkvclr, ssys_state),
728         VMSTATE_UINT32(ldoarst, ssys_state),
729         /* No field for sysclk -- handled in post-load instead */
730         VMSTATE_END_OF_LIST()
731     }
732 };
733 
734 static Property stellaris_sys_properties[] = {
735     DEFINE_PROP_UINT32("user0", ssys_state, user0, 0),
736     DEFINE_PROP_UINT32("user1", ssys_state, user1, 0),
737     DEFINE_PROP_UINT32("did0", ssys_state, did0, 0),
738     DEFINE_PROP_UINT32("did1", ssys_state, did1, 0),
739     DEFINE_PROP_UINT32("dc0", ssys_state, dc0, 0),
740     DEFINE_PROP_UINT32("dc1", ssys_state, dc1, 0),
741     DEFINE_PROP_UINT32("dc2", ssys_state, dc2, 0),
742     DEFINE_PROP_UINT32("dc3", ssys_state, dc3, 0),
743     DEFINE_PROP_UINT32("dc4", ssys_state, dc4, 0),
744     DEFINE_PROP_END_OF_LIST()
745 };
746 
747 static void stellaris_sys_instance_init(Object *obj)
748 {
749     ssys_state *s = STELLARIS_SYS(obj);
750     SysBusDevice *sbd = SYS_BUS_DEVICE(s);
751 
752     memory_region_init_io(&s->iomem, obj, &ssys_ops, s, "ssys", 0x00001000);
753     sysbus_init_mmio(sbd, &s->iomem);
754     sysbus_init_irq(sbd, &s->irq);
755     s->sysclk = qdev_init_clock_out(DEVICE(s), "SYSCLK");
756 }
757 
758 /* I2C controller.  */
759 
760 #define TYPE_STELLARIS_I2C "stellaris-i2c"
761 OBJECT_DECLARE_SIMPLE_TYPE(stellaris_i2c_state, STELLARIS_I2C)
762 
763 struct stellaris_i2c_state {
764     SysBusDevice parent_obj;
765 
766     I2CBus *bus;
767     qemu_irq irq;
768     MemoryRegion iomem;
769     uint32_t msa;
770     uint32_t mcs;
771     uint32_t mdr;
772     uint32_t mtpr;
773     uint32_t mimr;
774     uint32_t mris;
775     uint32_t mcr;
776 };
777 
778 #define STELLARIS_I2C_MCS_BUSY    0x01
779 #define STELLARIS_I2C_MCS_ERROR   0x02
780 #define STELLARIS_I2C_MCS_ADRACK  0x04
781 #define STELLARIS_I2C_MCS_DATACK  0x08
782 #define STELLARIS_I2C_MCS_ARBLST  0x10
783 #define STELLARIS_I2C_MCS_IDLE    0x20
784 #define STELLARIS_I2C_MCS_BUSBSY  0x40
785 
786 static uint64_t stellaris_i2c_read(void *opaque, hwaddr offset,
787                                    unsigned size)
788 {
789     stellaris_i2c_state *s = (stellaris_i2c_state *)opaque;
790 
791     switch (offset) {
792     case 0x00: /* MSA */
793         return s->msa;
794     case 0x04: /* MCS */
795         /* We don't emulate timing, so the controller is never busy.  */
796         return s->mcs | STELLARIS_I2C_MCS_IDLE;
797     case 0x08: /* MDR */
798         return s->mdr;
799     case 0x0c: /* MTPR */
800         return s->mtpr;
801     case 0x10: /* MIMR */
802         return s->mimr;
803     case 0x14: /* MRIS */
804         return s->mris;
805     case 0x18: /* MMIS */
806         return s->mris & s->mimr;
807     case 0x20: /* MCR */
808         return s->mcr;
809     default:
810         qemu_log_mask(LOG_GUEST_ERROR,
811                       "stellaris_i2c: read at bad offset 0x%x\n", (int)offset);
812         return 0;
813     }
814 }
815 
816 static void stellaris_i2c_update(stellaris_i2c_state *s)
817 {
818     int level;
819 
820     level = (s->mris & s->mimr) != 0;
821     qemu_set_irq(s->irq, level);
822 }
823 
824 static void stellaris_i2c_write(void *opaque, hwaddr offset,
825                                 uint64_t value, unsigned size)
826 {
827     stellaris_i2c_state *s = (stellaris_i2c_state *)opaque;
828 
829     switch (offset) {
830     case 0x00: /* MSA */
831         s->msa = value & 0xff;
832         break;
833     case 0x04: /* MCS */
834         if ((s->mcr & 0x10) == 0) {
835             /* Disabled.  Do nothing.  */
836             break;
837         }
838         /* Grab the bus if this is starting a transfer.  */
839         if ((value & 2) && (s->mcs & STELLARIS_I2C_MCS_BUSBSY) == 0) {
840             if (i2c_start_transfer(s->bus, s->msa >> 1, s->msa & 1)) {
841                 s->mcs |= STELLARIS_I2C_MCS_ARBLST;
842             } else {
843                 s->mcs &= ~STELLARIS_I2C_MCS_ARBLST;
844                 s->mcs |= STELLARIS_I2C_MCS_BUSBSY;
845             }
846         }
847         /* If we don't have the bus then indicate an error.  */
848         if (!i2c_bus_busy(s->bus)
849                 || (s->mcs & STELLARIS_I2C_MCS_BUSBSY) == 0) {
850             s->mcs |= STELLARIS_I2C_MCS_ERROR;
851             break;
852         }
853         s->mcs &= ~STELLARIS_I2C_MCS_ERROR;
854         if (value & 1) {
855             /* Transfer a byte.  */
856             /* TODO: Handle errors.  */
857             if (s->msa & 1) {
858                 /* Recv */
859                 s->mdr = i2c_recv(s->bus);
860             } else {
861                 /* Send */
862                 i2c_send(s->bus, s->mdr);
863             }
864             /* Raise an interrupt.  */
865             s->mris |= 1;
866         }
867         if (value & 4) {
868             /* Finish transfer.  */
869             i2c_end_transfer(s->bus);
870             s->mcs &= ~STELLARIS_I2C_MCS_BUSBSY;
871         }
872         break;
873     case 0x08: /* MDR */
874         s->mdr = value & 0xff;
875         break;
876     case 0x0c: /* MTPR */
877         s->mtpr = value & 0xff;
878         break;
879     case 0x10: /* MIMR */
880         s->mimr = 1;
881         break;
882     case 0x1c: /* MICR */
883         s->mris &= ~value;
884         break;
885     case 0x20: /* MCR */
886         if (value & 1) {
887             qemu_log_mask(LOG_UNIMP,
888                           "stellaris_i2c: Loopback not implemented\n");
889         }
890         if (value & 0x20) {
891             qemu_log_mask(LOG_UNIMP,
892                           "stellaris_i2c: Slave mode not implemented\n");
893         }
894         s->mcr = value & 0x31;
895         break;
896     default:
897         qemu_log_mask(LOG_GUEST_ERROR,
898                       "stellaris_i2c: write at bad offset 0x%x\n", (int)offset);
899     }
900     stellaris_i2c_update(s);
901 }
902 
903 static void stellaris_i2c_reset(stellaris_i2c_state *s)
904 {
905     if (s->mcs & STELLARIS_I2C_MCS_BUSBSY)
906         i2c_end_transfer(s->bus);
907 
908     s->msa = 0;
909     s->mcs = 0;
910     s->mdr = 0;
911     s->mtpr = 1;
912     s->mimr = 0;
913     s->mris = 0;
914     s->mcr = 0;
915     stellaris_i2c_update(s);
916 }
917 
918 static const MemoryRegionOps stellaris_i2c_ops = {
919     .read = stellaris_i2c_read,
920     .write = stellaris_i2c_write,
921     .endianness = DEVICE_NATIVE_ENDIAN,
922 };
923 
924 static const VMStateDescription vmstate_stellaris_i2c = {
925     .name = "stellaris_i2c",
926     .version_id = 1,
927     .minimum_version_id = 1,
928     .fields = (VMStateField[]) {
929         VMSTATE_UINT32(msa, stellaris_i2c_state),
930         VMSTATE_UINT32(mcs, stellaris_i2c_state),
931         VMSTATE_UINT32(mdr, stellaris_i2c_state),
932         VMSTATE_UINT32(mtpr, stellaris_i2c_state),
933         VMSTATE_UINT32(mimr, stellaris_i2c_state),
934         VMSTATE_UINT32(mris, stellaris_i2c_state),
935         VMSTATE_UINT32(mcr, stellaris_i2c_state),
936         VMSTATE_END_OF_LIST()
937     }
938 };
939 
940 static void stellaris_i2c_init(Object *obj)
941 {
942     DeviceState *dev = DEVICE(obj);
943     stellaris_i2c_state *s = STELLARIS_I2C(obj);
944     SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
945     I2CBus *bus;
946 
947     sysbus_init_irq(sbd, &s->irq);
948     bus = i2c_init_bus(dev, "i2c");
949     s->bus = bus;
950 
951     memory_region_init_io(&s->iomem, obj, &stellaris_i2c_ops, s,
952                           "i2c", 0x1000);
953     sysbus_init_mmio(sbd, &s->iomem);
954     /* ??? For now we only implement the master interface.  */
955     stellaris_i2c_reset(s);
956 }
957 
958 /* Analogue to Digital Converter.  This is only partially implemented,
959    enough for applications that use a combined ADC and timer tick.  */
960 
961 #define STELLARIS_ADC_EM_CONTROLLER 0
962 #define STELLARIS_ADC_EM_COMP       1
963 #define STELLARIS_ADC_EM_EXTERNAL   4
964 #define STELLARIS_ADC_EM_TIMER      5
965 #define STELLARIS_ADC_EM_PWM0       6
966 #define STELLARIS_ADC_EM_PWM1       7
967 #define STELLARIS_ADC_EM_PWM2       8
968 
969 #define STELLARIS_ADC_FIFO_EMPTY    0x0100
970 #define STELLARIS_ADC_FIFO_FULL     0x1000
971 
972 #define TYPE_STELLARIS_ADC "stellaris-adc"
973 typedef struct StellarisADCState stellaris_adc_state;
974 DECLARE_INSTANCE_CHECKER(stellaris_adc_state, STELLARIS_ADC,
975                          TYPE_STELLARIS_ADC)
976 
977 struct StellarisADCState {
978     SysBusDevice parent_obj;
979 
980     MemoryRegion iomem;
981     uint32_t actss;
982     uint32_t ris;
983     uint32_t im;
984     uint32_t emux;
985     uint32_t ostat;
986     uint32_t ustat;
987     uint32_t sspri;
988     uint32_t sac;
989     struct {
990         uint32_t state;
991         uint32_t data[16];
992     } fifo[4];
993     uint32_t ssmux[4];
994     uint32_t ssctl[4];
995     uint32_t noise;
996     qemu_irq irq[4];
997 };
998 
999 static uint32_t stellaris_adc_fifo_read(stellaris_adc_state *s, int n)
1000 {
1001     int tail;
1002 
1003     tail = s->fifo[n].state & 0xf;
1004     if (s->fifo[n].state & STELLARIS_ADC_FIFO_EMPTY) {
1005         s->ustat |= 1 << n;
1006     } else {
1007         s->fifo[n].state = (s->fifo[n].state & ~0xf) | ((tail + 1) & 0xf);
1008         s->fifo[n].state &= ~STELLARIS_ADC_FIFO_FULL;
1009         if (tail + 1 == ((s->fifo[n].state >> 4) & 0xf))
1010             s->fifo[n].state |= STELLARIS_ADC_FIFO_EMPTY;
1011     }
1012     return s->fifo[n].data[tail];
1013 }
1014 
1015 static void stellaris_adc_fifo_write(stellaris_adc_state *s, int n,
1016                                      uint32_t value)
1017 {
1018     int head;
1019 
1020     /* TODO: Real hardware has limited size FIFOs.  We have a full 16 entry
1021        FIFO fir each sequencer.  */
1022     head = (s->fifo[n].state >> 4) & 0xf;
1023     if (s->fifo[n].state & STELLARIS_ADC_FIFO_FULL) {
1024         s->ostat |= 1 << n;
1025         return;
1026     }
1027     s->fifo[n].data[head] = value;
1028     head = (head + 1) & 0xf;
1029     s->fifo[n].state &= ~STELLARIS_ADC_FIFO_EMPTY;
1030     s->fifo[n].state = (s->fifo[n].state & ~0xf0) | (head << 4);
1031     if ((s->fifo[n].state & 0xf) == head)
1032         s->fifo[n].state |= STELLARIS_ADC_FIFO_FULL;
1033 }
1034 
1035 static void stellaris_adc_update(stellaris_adc_state *s)
1036 {
1037     int level;
1038     int n;
1039 
1040     for (n = 0; n < 4; n++) {
1041         level = (s->ris & s->im & (1 << n)) != 0;
1042         qemu_set_irq(s->irq[n], level);
1043     }
1044 }
1045 
1046 static void stellaris_adc_trigger(void *opaque, int irq, int level)
1047 {
1048     stellaris_adc_state *s = (stellaris_adc_state *)opaque;
1049     int n;
1050 
1051     for (n = 0; n < 4; n++) {
1052         if ((s->actss & (1 << n)) == 0) {
1053             continue;
1054         }
1055 
1056         if (((s->emux >> (n * 4)) & 0xff) != 5) {
1057             continue;
1058         }
1059 
1060         /* Some applications use the ADC as a random number source, so introduce
1061            some variation into the signal.  */
1062         s->noise = s->noise * 314159 + 1;
1063         /* ??? actual inputs not implemented.  Return an arbitrary value.  */
1064         stellaris_adc_fifo_write(s, n, 0x200 + ((s->noise >> 16) & 7));
1065         s->ris |= (1 << n);
1066         stellaris_adc_update(s);
1067     }
1068 }
1069 
1070 static void stellaris_adc_reset(stellaris_adc_state *s)
1071 {
1072     int n;
1073 
1074     for (n = 0; n < 4; n++) {
1075         s->ssmux[n] = 0;
1076         s->ssctl[n] = 0;
1077         s->fifo[n].state = STELLARIS_ADC_FIFO_EMPTY;
1078     }
1079 }
1080 
1081 static uint64_t stellaris_adc_read(void *opaque, hwaddr offset,
1082                                    unsigned size)
1083 {
1084     stellaris_adc_state *s = (stellaris_adc_state *)opaque;
1085 
1086     /* TODO: Implement this.  */
1087     if (offset >= 0x40 && offset < 0xc0) {
1088         int n;
1089         n = (offset - 0x40) >> 5;
1090         switch (offset & 0x1f) {
1091         case 0x00: /* SSMUX */
1092             return s->ssmux[n];
1093         case 0x04: /* SSCTL */
1094             return s->ssctl[n];
1095         case 0x08: /* SSFIFO */
1096             return stellaris_adc_fifo_read(s, n);
1097         case 0x0c: /* SSFSTAT */
1098             return s->fifo[n].state;
1099         default:
1100             break;
1101         }
1102     }
1103     switch (offset) {
1104     case 0x00: /* ACTSS */
1105         return s->actss;
1106     case 0x04: /* RIS */
1107         return s->ris;
1108     case 0x08: /* IM */
1109         return s->im;
1110     case 0x0c: /* ISC */
1111         return s->ris & s->im;
1112     case 0x10: /* OSTAT */
1113         return s->ostat;
1114     case 0x14: /* EMUX */
1115         return s->emux;
1116     case 0x18: /* USTAT */
1117         return s->ustat;
1118     case 0x20: /* SSPRI */
1119         return s->sspri;
1120     case 0x30: /* SAC */
1121         return s->sac;
1122     default:
1123         qemu_log_mask(LOG_GUEST_ERROR,
1124                       "stellaris_adc: read at bad offset 0x%x\n", (int)offset);
1125         return 0;
1126     }
1127 }
1128 
1129 static void stellaris_adc_write(void *opaque, hwaddr offset,
1130                                 uint64_t value, unsigned size)
1131 {
1132     stellaris_adc_state *s = (stellaris_adc_state *)opaque;
1133 
1134     /* TODO: Implement this.  */
1135     if (offset >= 0x40 && offset < 0xc0) {
1136         int n;
1137         n = (offset - 0x40) >> 5;
1138         switch (offset & 0x1f) {
1139         case 0x00: /* SSMUX */
1140             s->ssmux[n] = value & 0x33333333;
1141             return;
1142         case 0x04: /* SSCTL */
1143             if (value != 6) {
1144                 qemu_log_mask(LOG_UNIMP,
1145                               "ADC: Unimplemented sequence %" PRIx64 "\n",
1146                               value);
1147             }
1148             s->ssctl[n] = value;
1149             return;
1150         default:
1151             break;
1152         }
1153     }
1154     switch (offset) {
1155     case 0x00: /* ACTSS */
1156         s->actss = value & 0xf;
1157         break;
1158     case 0x08: /* IM */
1159         s->im = value;
1160         break;
1161     case 0x0c: /* ISC */
1162         s->ris &= ~value;
1163         break;
1164     case 0x10: /* OSTAT */
1165         s->ostat &= ~value;
1166         break;
1167     case 0x14: /* EMUX */
1168         s->emux = value;
1169         break;
1170     case 0x18: /* USTAT */
1171         s->ustat &= ~value;
1172         break;
1173     case 0x20: /* SSPRI */
1174         s->sspri = value;
1175         break;
1176     case 0x28: /* PSSI */
1177         qemu_log_mask(LOG_UNIMP, "ADC: sample initiate unimplemented\n");
1178         break;
1179     case 0x30: /* SAC */
1180         s->sac = value;
1181         break;
1182     default:
1183         qemu_log_mask(LOG_GUEST_ERROR,
1184                       "stellaris_adc: write at bad offset 0x%x\n", (int)offset);
1185     }
1186     stellaris_adc_update(s);
1187 }
1188 
1189 static const MemoryRegionOps stellaris_adc_ops = {
1190     .read = stellaris_adc_read,
1191     .write = stellaris_adc_write,
1192     .endianness = DEVICE_NATIVE_ENDIAN,
1193 };
1194 
1195 static const VMStateDescription vmstate_stellaris_adc = {
1196     .name = "stellaris_adc",
1197     .version_id = 1,
1198     .minimum_version_id = 1,
1199     .fields = (VMStateField[]) {
1200         VMSTATE_UINT32(actss, stellaris_adc_state),
1201         VMSTATE_UINT32(ris, stellaris_adc_state),
1202         VMSTATE_UINT32(im, stellaris_adc_state),
1203         VMSTATE_UINT32(emux, stellaris_adc_state),
1204         VMSTATE_UINT32(ostat, stellaris_adc_state),
1205         VMSTATE_UINT32(ustat, stellaris_adc_state),
1206         VMSTATE_UINT32(sspri, stellaris_adc_state),
1207         VMSTATE_UINT32(sac, stellaris_adc_state),
1208         VMSTATE_UINT32(fifo[0].state, stellaris_adc_state),
1209         VMSTATE_UINT32_ARRAY(fifo[0].data, stellaris_adc_state, 16),
1210         VMSTATE_UINT32(ssmux[0], stellaris_adc_state),
1211         VMSTATE_UINT32(ssctl[0], stellaris_adc_state),
1212         VMSTATE_UINT32(fifo[1].state, stellaris_adc_state),
1213         VMSTATE_UINT32_ARRAY(fifo[1].data, stellaris_adc_state, 16),
1214         VMSTATE_UINT32(ssmux[1], stellaris_adc_state),
1215         VMSTATE_UINT32(ssctl[1], stellaris_adc_state),
1216         VMSTATE_UINT32(fifo[2].state, stellaris_adc_state),
1217         VMSTATE_UINT32_ARRAY(fifo[2].data, stellaris_adc_state, 16),
1218         VMSTATE_UINT32(ssmux[2], stellaris_adc_state),
1219         VMSTATE_UINT32(ssctl[2], stellaris_adc_state),
1220         VMSTATE_UINT32(fifo[3].state, stellaris_adc_state),
1221         VMSTATE_UINT32_ARRAY(fifo[3].data, stellaris_adc_state, 16),
1222         VMSTATE_UINT32(ssmux[3], stellaris_adc_state),
1223         VMSTATE_UINT32(ssctl[3], stellaris_adc_state),
1224         VMSTATE_UINT32(noise, stellaris_adc_state),
1225         VMSTATE_END_OF_LIST()
1226     }
1227 };
1228 
1229 static void stellaris_adc_init(Object *obj)
1230 {
1231     DeviceState *dev = DEVICE(obj);
1232     stellaris_adc_state *s = STELLARIS_ADC(obj);
1233     SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
1234     int n;
1235 
1236     for (n = 0; n < 4; n++) {
1237         sysbus_init_irq(sbd, &s->irq[n]);
1238     }
1239 
1240     memory_region_init_io(&s->iomem, obj, &stellaris_adc_ops, s,
1241                           "adc", 0x1000);
1242     sysbus_init_mmio(sbd, &s->iomem);
1243     stellaris_adc_reset(s);
1244     qdev_init_gpio_in(dev, stellaris_adc_trigger, 1);
1245 }
1246 
1247 /* Board init.  */
1248 static stellaris_board_info stellaris_boards[] = {
1249   { "LM3S811EVB",
1250     0,
1251     0x0032000e,
1252     0x001f001f, /* dc0 */
1253     0x001132bf,
1254     0x01071013,
1255     0x3f0f01ff,
1256     0x0000001f,
1257     BP_OLED_I2C
1258   },
1259   { "LM3S6965EVB",
1260     0x10010002,
1261     0x1073402e,
1262     0x00ff007f, /* dc0 */
1263     0x001133ff,
1264     0x030f5317,
1265     0x0f0f87ff,
1266     0x5000007f,
1267     BP_OLED_SSI | BP_GAMEPAD
1268   }
1269 };
1270 
1271 static void stellaris_init(MachineState *ms, stellaris_board_info *board)
1272 {
1273     static const int uart_irq[] = {5, 6, 33, 34};
1274     static const int timer_irq[] = {19, 21, 23, 35};
1275     static const uint32_t gpio_addr[7] =
1276       { 0x40004000, 0x40005000, 0x40006000, 0x40007000,
1277         0x40024000, 0x40025000, 0x40026000};
1278     static const int gpio_irq[7] = {0, 1, 2, 3, 4, 30, 31};
1279 
1280     /* Memory map of SoC devices, from
1281      * Stellaris LM3S6965 Microcontroller Data Sheet (rev I)
1282      * http://www.ti.com/lit/ds/symlink/lm3s6965.pdf
1283      *
1284      * 40000000 wdtimer
1285      * 40002000 i2c (unimplemented)
1286      * 40004000 GPIO
1287      * 40005000 GPIO
1288      * 40006000 GPIO
1289      * 40007000 GPIO
1290      * 40008000 SSI
1291      * 4000c000 UART
1292      * 4000d000 UART
1293      * 4000e000 UART
1294      * 40020000 i2c
1295      * 40021000 i2c (unimplemented)
1296      * 40024000 GPIO
1297      * 40025000 GPIO
1298      * 40026000 GPIO
1299      * 40028000 PWM (unimplemented)
1300      * 4002c000 QEI (unimplemented)
1301      * 4002d000 QEI (unimplemented)
1302      * 40030000 gptimer
1303      * 40031000 gptimer
1304      * 40032000 gptimer
1305      * 40033000 gptimer
1306      * 40038000 ADC
1307      * 4003c000 analogue comparator (unimplemented)
1308      * 40048000 ethernet
1309      * 400fc000 hibernation module (unimplemented)
1310      * 400fd000 flash memory control (unimplemented)
1311      * 400fe000 system control
1312      */
1313 
1314     DeviceState *gpio_dev[7], *nvic;
1315     qemu_irq gpio_in[7][8];
1316     qemu_irq gpio_out[7][8];
1317     qemu_irq adc;
1318     int sram_size;
1319     int flash_size;
1320     I2CBus *i2c;
1321     DeviceState *dev;
1322     DeviceState *ssys_dev;
1323     int i;
1324     int j;
1325     uint8_t *macaddr;
1326 
1327     MemoryRegion *sram = g_new(MemoryRegion, 1);
1328     MemoryRegion *flash = g_new(MemoryRegion, 1);
1329     MemoryRegion *system_memory = get_system_memory();
1330 
1331     flash_size = (((board->dc0 & 0xffff) + 1) << 1) * 1024;
1332     sram_size = ((board->dc0 >> 18) + 1) * 1024;
1333 
1334     /* Flash programming is done via the SCU, so pretend it is ROM.  */
1335     memory_region_init_rom(flash, NULL, "stellaris.flash", flash_size,
1336                            &error_fatal);
1337     memory_region_add_subregion(system_memory, 0, flash);
1338 
1339     memory_region_init_ram(sram, NULL, "stellaris.sram", sram_size,
1340                            &error_fatal);
1341     memory_region_add_subregion(system_memory, 0x20000000, sram);
1342 
1343     /*
1344      * Create the system-registers object early, because we will
1345      * need its sysclk output.
1346      */
1347     ssys_dev = qdev_new(TYPE_STELLARIS_SYS);
1348     /* Most devices come preprogrammed with a MAC address in the user data. */
1349     macaddr = nd_table[0].macaddr.a;
1350     qdev_prop_set_uint32(ssys_dev, "user0",
1351                          macaddr[0] | (macaddr[1] << 8) | (macaddr[2] << 16));
1352     qdev_prop_set_uint32(ssys_dev, "user1",
1353                          macaddr[3] | (macaddr[4] << 8) | (macaddr[5] << 16));
1354     qdev_prop_set_uint32(ssys_dev, "did0", board->did0);
1355     qdev_prop_set_uint32(ssys_dev, "did1", board->did1);
1356     qdev_prop_set_uint32(ssys_dev, "dc0", board->dc0);
1357     qdev_prop_set_uint32(ssys_dev, "dc1", board->dc1);
1358     qdev_prop_set_uint32(ssys_dev, "dc2", board->dc2);
1359     qdev_prop_set_uint32(ssys_dev, "dc3", board->dc3);
1360     qdev_prop_set_uint32(ssys_dev, "dc4", board->dc4);
1361     sysbus_realize_and_unref(SYS_BUS_DEVICE(ssys_dev), &error_fatal);
1362 
1363     nvic = qdev_new(TYPE_ARMV7M);
1364     qdev_prop_set_uint32(nvic, "num-irq", NUM_IRQ_LINES);
1365     qdev_prop_set_string(nvic, "cpu-type", ms->cpu_type);
1366     qdev_prop_set_bit(nvic, "enable-bitband", true);
1367     object_property_set_link(OBJECT(nvic), "memory",
1368                              OBJECT(get_system_memory()), &error_abort);
1369     /* This will exit with an error if the user passed us a bad cpu_type */
1370     sysbus_realize_and_unref(SYS_BUS_DEVICE(nvic), &error_fatal);
1371 
1372     /* Now we can wire up the IRQ and MMIO of the system registers */
1373     sysbus_mmio_map(SYS_BUS_DEVICE(ssys_dev), 0, 0x400fe000);
1374     sysbus_connect_irq(SYS_BUS_DEVICE(ssys_dev), 0, qdev_get_gpio_in(nvic, 28));
1375 
1376     if (board->dc1 & (1 << 16)) {
1377         dev = sysbus_create_varargs(TYPE_STELLARIS_ADC, 0x40038000,
1378                                     qdev_get_gpio_in(nvic, 14),
1379                                     qdev_get_gpio_in(nvic, 15),
1380                                     qdev_get_gpio_in(nvic, 16),
1381                                     qdev_get_gpio_in(nvic, 17),
1382                                     NULL);
1383         adc = qdev_get_gpio_in(dev, 0);
1384     } else {
1385         adc = NULL;
1386     }
1387     for (i = 0; i < 4; i++) {
1388         if (board->dc2 & (0x10000 << i)) {
1389             dev = sysbus_create_simple(TYPE_STELLARIS_GPTM,
1390                                        0x40030000 + i * 0x1000,
1391                                        qdev_get_gpio_in(nvic, timer_irq[i]));
1392             /* TODO: This is incorrect, but we get away with it because
1393                the ADC output is only ever pulsed.  */
1394             qdev_connect_gpio_out(dev, 0, adc);
1395         }
1396     }
1397 
1398     if (board->dc1 & (1 << 3)) { /* watchdog present */
1399         dev = qdev_new(TYPE_LUMINARY_WATCHDOG);
1400 
1401         qdev_connect_clock_in(dev, "WDOGCLK",
1402                               qdev_get_clock_out(ssys_dev, "SYSCLK"));
1403 
1404         sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
1405         sysbus_mmio_map(SYS_BUS_DEVICE(dev),
1406                         0,
1407                         0x40000000u);
1408         sysbus_connect_irq(SYS_BUS_DEVICE(dev),
1409                            0,
1410                            qdev_get_gpio_in(nvic, 18));
1411     }
1412 
1413 
1414     for (i = 0; i < 7; i++) {
1415         if (board->dc4 & (1 << i)) {
1416             gpio_dev[i] = sysbus_create_simple("pl061_luminary", gpio_addr[i],
1417                                                qdev_get_gpio_in(nvic,
1418                                                                 gpio_irq[i]));
1419             for (j = 0; j < 8; j++) {
1420                 gpio_in[i][j] = qdev_get_gpio_in(gpio_dev[i], j);
1421                 gpio_out[i][j] = NULL;
1422             }
1423         }
1424     }
1425 
1426     if (board->dc2 & (1 << 12)) {
1427         dev = sysbus_create_simple(TYPE_STELLARIS_I2C, 0x40020000,
1428                                    qdev_get_gpio_in(nvic, 8));
1429         i2c = (I2CBus *)qdev_get_child_bus(dev, "i2c");
1430         if (board->peripherals & BP_OLED_I2C) {
1431             i2c_slave_create_simple(i2c, "ssd0303", 0x3d);
1432         }
1433     }
1434 
1435     for (i = 0; i < 4; i++) {
1436         if (board->dc2 & (1 << i)) {
1437             pl011_luminary_create(0x4000c000 + i * 0x1000,
1438                                   qdev_get_gpio_in(nvic, uart_irq[i]),
1439                                   serial_hd(i));
1440         }
1441     }
1442     if (board->dc2 & (1 << 4)) {
1443         dev = sysbus_create_simple("pl022", 0x40008000,
1444                                    qdev_get_gpio_in(nvic, 7));
1445         if (board->peripherals & BP_OLED_SSI) {
1446             void *bus;
1447             DeviceState *sddev;
1448             DeviceState *ssddev;
1449 
1450             /*
1451              * Some boards have both an OLED controller and SD card connected to
1452              * the same SSI port, with the SD card chip select connected to a
1453              * GPIO pin.  Technically the OLED chip select is connected to the
1454              * SSI Fss pin.  We do not bother emulating that as both devices
1455              * should never be selected simultaneously, and our OLED controller
1456              * ignores stray 0xff commands that occur when deselecting the SD
1457              * card.
1458              *
1459              * The h/w wiring is:
1460              *  - GPIO pin D0 is wired to the active-low SD card chip select
1461              *  - GPIO pin A3 is wired to the active-low OLED chip select
1462              *  - The SoC wiring of the PL061 "auxiliary function" for A3 is
1463              *    SSI0Fss ("frame signal"), which is an output from the SoC's
1464              *    SSI controller. The SSI controller takes SSI0Fss low when it
1465              *    transmits a frame, so it can work as a chip-select signal.
1466              *  - GPIO A4 is aux-function SSI0Rx, and wired to the SD card Tx
1467              *    (the OLED never sends data to the CPU, so no wiring needed)
1468              *  - GPIO A5 is aux-function SSI0Tx, and wired to the SD card Rx
1469              *    and the OLED display-data-in
1470              *  - GPIO A2 is aux-function SSI0Clk, wired to SD card and OLED
1471              *    serial-clock input
1472              * So a guest that wants to use the OLED can configure the PL061
1473              * to make pins A2, A3, A5 aux-function, so they are connected
1474              * directly to the SSI controller. When the SSI controller sends
1475              * data it asserts SSI0Fss which selects the OLED.
1476              * A guest that wants to use the SD card configures A2, A4 and A5
1477              * as aux-function, but leaves A3 as a software-controlled GPIO
1478              * line. It asserts the SD card chip-select by using the PL061
1479              * to control pin D0, and lets the SSI controller handle Clk, Tx
1480              * and Rx. (The SSI controller asserts Fss during tx cycles as
1481              * usual, but because A3 is not set to aux-function this is not
1482              * forwarded to the OLED, and so the OLED stays unselected.)
1483              *
1484              * The QEMU implementation instead is:
1485              *  - GPIO pin D0 is wired to the active-low SD card chip select,
1486              *    and also to the OLED chip-select which is implemented
1487              *    as *active-high*
1488              *  - SSI controller signals go to the devices regardless of
1489              *    whether the guest programs A2, A4, A5 as aux-function or not
1490              *
1491              * The problem with this implementation is if the guest doesn't
1492              * care about the SD card and only uses the OLED. In that case it
1493              * may choose never to do anything with D0 (leaving it in its
1494              * default floating state, which reliably leaves the card disabled
1495              * because an SD card has a pullup on CS within the card itself),
1496              * and only set up A2, A3, A5. This for us would mean the OLED
1497              * never gets the chip-select assert it needs. We work around
1498              * this with a manual raise of D0 here (despite board creation
1499              * code being the wrong place to raise IRQ lines) to put the OLED
1500              * into an initially selected state.
1501              *
1502              * In theory the right way to model this would be:
1503              *  - Implement aux-function support in the PL061, with an
1504              *    extra set of AFIN and AFOUT GPIO lines (set up so that
1505              *    if a GPIO line is in auxfn mode the main GPIO in and out
1506              *    track the AFIN and AFOUT lines)
1507              *  - Wire the AFOUT for D0 up to either a line from the
1508              *    SSI controller that's pulled low around every transmit,
1509              *    or at least to an always-0 line here on the board
1510              *  - Make the ssd0323 OLED controller chipselect active-low
1511              */
1512             bus = qdev_get_child_bus(dev, "ssi");
1513 
1514             sddev = ssi_create_peripheral(bus, "ssi-sd");
1515             ssddev = ssi_create_peripheral(bus, "ssd0323");
1516             gpio_out[GPIO_D][0] = qemu_irq_split(
1517                     qdev_get_gpio_in_named(sddev, SSI_GPIO_CS, 0),
1518                     qdev_get_gpio_in_named(ssddev, SSI_GPIO_CS, 0));
1519             gpio_out[GPIO_C][7] = qdev_get_gpio_in(ssddev, 0);
1520 
1521             /* Make sure the select pin is high.  */
1522             qemu_irq_raise(gpio_out[GPIO_D][0]);
1523         }
1524     }
1525     if (board->dc4 & (1 << 28)) {
1526         DeviceState *enet;
1527 
1528         qemu_check_nic_model(&nd_table[0], "stellaris");
1529 
1530         enet = qdev_new("stellaris_enet");
1531         qdev_set_nic_properties(enet, &nd_table[0]);
1532         sysbus_realize_and_unref(SYS_BUS_DEVICE(enet), &error_fatal);
1533         sysbus_mmio_map(SYS_BUS_DEVICE(enet), 0, 0x40048000);
1534         sysbus_connect_irq(SYS_BUS_DEVICE(enet), 0, qdev_get_gpio_in(nvic, 42));
1535     }
1536     if (board->peripherals & BP_GAMEPAD) {
1537         qemu_irq gpad_irq[5];
1538         static const int gpad_keycode[5] = { 0xc8, 0xd0, 0xcb, 0xcd, 0x1d };
1539 
1540         gpad_irq[0] = qemu_irq_invert(gpio_in[GPIO_E][0]); /* up */
1541         gpad_irq[1] = qemu_irq_invert(gpio_in[GPIO_E][1]); /* down */
1542         gpad_irq[2] = qemu_irq_invert(gpio_in[GPIO_E][2]); /* left */
1543         gpad_irq[3] = qemu_irq_invert(gpio_in[GPIO_E][3]); /* right */
1544         gpad_irq[4] = qemu_irq_invert(gpio_in[GPIO_F][1]); /* select */
1545 
1546         stellaris_gamepad_init(5, gpad_irq, gpad_keycode);
1547     }
1548     for (i = 0; i < 7; i++) {
1549         if (board->dc4 & (1 << i)) {
1550             for (j = 0; j < 8; j++) {
1551                 if (gpio_out[i][j]) {
1552                     qdev_connect_gpio_out(gpio_dev[i], j, gpio_out[i][j]);
1553                 }
1554             }
1555         }
1556     }
1557 
1558     /* Add dummy regions for the devices we don't implement yet,
1559      * so guest accesses don't cause unlogged crashes.
1560      */
1561     create_unimplemented_device("i2c-0", 0x40002000, 0x1000);
1562     create_unimplemented_device("i2c-2", 0x40021000, 0x1000);
1563     create_unimplemented_device("PWM", 0x40028000, 0x1000);
1564     create_unimplemented_device("QEI-0", 0x4002c000, 0x1000);
1565     create_unimplemented_device("QEI-1", 0x4002d000, 0x1000);
1566     create_unimplemented_device("analogue-comparator", 0x4003c000, 0x1000);
1567     create_unimplemented_device("hibernation", 0x400fc000, 0x1000);
1568     create_unimplemented_device("flash-control", 0x400fd000, 0x1000);
1569 
1570     armv7m_load_kernel(ARM_CPU(first_cpu), ms->kernel_filename, flash_size);
1571 }
1572 
1573 /* FIXME: Figure out how to generate these from stellaris_boards.  */
1574 static void lm3s811evb_init(MachineState *machine)
1575 {
1576     stellaris_init(machine, &stellaris_boards[0]);
1577 }
1578 
1579 static void lm3s6965evb_init(MachineState *machine)
1580 {
1581     stellaris_init(machine, &stellaris_boards[1]);
1582 }
1583 
1584 static void lm3s811evb_class_init(ObjectClass *oc, void *data)
1585 {
1586     MachineClass *mc = MACHINE_CLASS(oc);
1587 
1588     mc->desc = "Stellaris LM3S811EVB (Cortex-M3)";
1589     mc->init = lm3s811evb_init;
1590     mc->ignore_memory_transaction_failures = true;
1591     mc->default_cpu_type = ARM_CPU_TYPE_NAME("cortex-m3");
1592 }
1593 
1594 static const TypeInfo lm3s811evb_type = {
1595     .name = MACHINE_TYPE_NAME("lm3s811evb"),
1596     .parent = TYPE_MACHINE,
1597     .class_init = lm3s811evb_class_init,
1598 };
1599 
1600 static void lm3s6965evb_class_init(ObjectClass *oc, void *data)
1601 {
1602     MachineClass *mc = MACHINE_CLASS(oc);
1603 
1604     mc->desc = "Stellaris LM3S6965EVB (Cortex-M3)";
1605     mc->init = lm3s6965evb_init;
1606     mc->ignore_memory_transaction_failures = true;
1607     mc->default_cpu_type = ARM_CPU_TYPE_NAME("cortex-m3");
1608 }
1609 
1610 static const TypeInfo lm3s6965evb_type = {
1611     .name = MACHINE_TYPE_NAME("lm3s6965evb"),
1612     .parent = TYPE_MACHINE,
1613     .class_init = lm3s6965evb_class_init,
1614 };
1615 
1616 static void stellaris_machine_init(void)
1617 {
1618     type_register_static(&lm3s811evb_type);
1619     type_register_static(&lm3s6965evb_type);
1620 }
1621 
1622 type_init(stellaris_machine_init)
1623 
1624 static void stellaris_i2c_class_init(ObjectClass *klass, void *data)
1625 {
1626     DeviceClass *dc = DEVICE_CLASS(klass);
1627 
1628     dc->vmsd = &vmstate_stellaris_i2c;
1629 }
1630 
1631 static const TypeInfo stellaris_i2c_info = {
1632     .name          = TYPE_STELLARIS_I2C,
1633     .parent        = TYPE_SYS_BUS_DEVICE,
1634     .instance_size = sizeof(stellaris_i2c_state),
1635     .instance_init = stellaris_i2c_init,
1636     .class_init    = stellaris_i2c_class_init,
1637 };
1638 
1639 static void stellaris_gptm_class_init(ObjectClass *klass, void *data)
1640 {
1641     DeviceClass *dc = DEVICE_CLASS(klass);
1642 
1643     dc->vmsd = &vmstate_stellaris_gptm;
1644     dc->realize = stellaris_gptm_realize;
1645 }
1646 
1647 static const TypeInfo stellaris_gptm_info = {
1648     .name          = TYPE_STELLARIS_GPTM,
1649     .parent        = TYPE_SYS_BUS_DEVICE,
1650     .instance_size = sizeof(gptm_state),
1651     .instance_init = stellaris_gptm_init,
1652     .class_init    = stellaris_gptm_class_init,
1653 };
1654 
1655 static void stellaris_adc_class_init(ObjectClass *klass, void *data)
1656 {
1657     DeviceClass *dc = DEVICE_CLASS(klass);
1658 
1659     dc->vmsd = &vmstate_stellaris_adc;
1660 }
1661 
1662 static const TypeInfo stellaris_adc_info = {
1663     .name          = TYPE_STELLARIS_ADC,
1664     .parent        = TYPE_SYS_BUS_DEVICE,
1665     .instance_size = sizeof(stellaris_adc_state),
1666     .instance_init = stellaris_adc_init,
1667     .class_init    = stellaris_adc_class_init,
1668 };
1669 
1670 static void stellaris_sys_class_init(ObjectClass *klass, void *data)
1671 {
1672     DeviceClass *dc = DEVICE_CLASS(klass);
1673     ResettableClass *rc = RESETTABLE_CLASS(klass);
1674 
1675     dc->vmsd = &vmstate_stellaris_sys;
1676     rc->phases.enter = stellaris_sys_reset_enter;
1677     rc->phases.hold = stellaris_sys_reset_hold;
1678     rc->phases.exit = stellaris_sys_reset_exit;
1679     device_class_set_props(dc, stellaris_sys_properties);
1680 }
1681 
1682 static const TypeInfo stellaris_sys_info = {
1683     .name = TYPE_STELLARIS_SYS,
1684     .parent = TYPE_SYS_BUS_DEVICE,
1685     .instance_size = sizeof(ssys_state),
1686     .instance_init = stellaris_sys_instance_init,
1687     .class_init = stellaris_sys_class_init,
1688 };
1689 
1690 static void stellaris_register_types(void)
1691 {
1692     type_register_static(&stellaris_i2c_info);
1693     type_register_static(&stellaris_gptm_info);
1694     type_register_static(&stellaris_adc_info);
1695     type_register_static(&stellaris_sys_info);
1696 }
1697 
1698 type_init(stellaris_register_types)
1699