xref: /qemu/hw/arm/stellaris.c (revision 7330c1c5c61acd8172ff218dd9e169cd2a4fa87b)
1 /*
2  * Luminary Micro Stellaris peripherals
3  *
4  * Copyright (c) 2006 CodeSourcery.
5  * Written by Paul Brook
6  *
7  * This code is licensed under the GPL.
8  */
9 
10 #include "qemu/osdep.h"
11 #include "qapi/error.h"
12 #include "hw/core/split-irq.h"
13 #include "hw/sysbus.h"
14 #include "hw/sd/sd.h"
15 #include "hw/ssi/ssi.h"
16 #include "hw/arm/boot.h"
17 #include "qemu/timer.h"
18 #include "hw/i2c/i2c.h"
19 #include "net/net.h"
20 #include "hw/boards.h"
21 #include "qemu/log.h"
22 #include "exec/address-spaces.h"
23 #include "system/system.h"
24 #include "hw/arm/armv7m.h"
25 #include "hw/char/pl011.h"
26 #include "hw/input/stellaris_gamepad.h"
27 #include "hw/irq.h"
28 #include "hw/watchdog/cmsdk-apb-watchdog.h"
29 #include "migration/vmstate.h"
30 #include "hw/misc/unimp.h"
31 #include "hw/timer/stellaris-gptm.h"
32 #include "hw/qdev-clock.h"
33 #include "qom/object.h"
34 #include "qapi/qmp/qlist.h"
35 #include "ui/input.h"
36 
37 #define GPIO_A 0
38 #define GPIO_B 1
39 #define GPIO_C 2
40 #define GPIO_D 3
41 #define GPIO_E 4
42 #define GPIO_F 5
43 #define GPIO_G 6
44 
45 #define BP_OLED_I2C  0x01
46 #define BP_OLED_SSI  0x02
47 #define BP_GAMEPAD   0x04
48 
49 #define NUM_IRQ_LINES 64
50 #define NUM_PRIO_BITS 3
51 
52 #define NUM_GPIO    7
53 #define NUM_UART    4
54 #define NUM_GPTM    4
55 #define NUM_I2C     2
56 
57 typedef const struct {
58     const char *name;
59     uint32_t did0;
60     uint32_t did1;
61     uint32_t dc0;
62     uint32_t dc1;
63     uint32_t dc2;
64     uint32_t dc3;
65     uint32_t dc4;
66     uint32_t peripherals;
67 } stellaris_board_info;
68 
69 /* System controller.  */
70 
71 #define TYPE_STELLARIS_SYS "stellaris-sys"
72 OBJECT_DECLARE_SIMPLE_TYPE(ssys_state, STELLARIS_SYS)
73 
74 struct ssys_state {
75     SysBusDevice parent_obj;
76 
77     MemoryRegion iomem;
78     uint32_t pborctl;
79     uint32_t ldopctl;
80     uint32_t int_status;
81     uint32_t int_mask;
82     uint32_t resc;
83     uint32_t rcc;
84     uint32_t rcc2;
85     uint32_t rcgc[3];
86     uint32_t scgc[3];
87     uint32_t dcgc[3];
88     uint32_t clkvclr;
89     uint32_t ldoarst;
90     qemu_irq irq;
91     Clock *sysclk;
92     /* Properties (all read-only registers) */
93     uint32_t user0;
94     uint32_t user1;
95     uint32_t did0;
96     uint32_t did1;
97     uint32_t dc0;
98     uint32_t dc1;
99     uint32_t dc2;
100     uint32_t dc3;
101     uint32_t dc4;
102 };
103 
104 static void ssys_update(ssys_state *s)
105 {
106   qemu_set_irq(s->irq, (s->int_status & s->int_mask) != 0);
107 }
108 
109 static const uint32_t pllcfg_sandstorm[16] = {
110     0x31c0, /* 1 Mhz */
111     0x1ae0, /* 1.8432 Mhz */
112     0x18c0, /* 2 Mhz */
113     0xd573, /* 2.4576 Mhz */
114     0x37a6, /* 3.57954 Mhz */
115     0x1ae2, /* 3.6864 Mhz */
116     0x0c40, /* 4 Mhz */
117     0x98bc, /* 4.906 Mhz */
118     0x935b, /* 4.9152 Mhz */
119     0x09c0, /* 5 Mhz */
120     0x4dee, /* 5.12 Mhz */
121     0x0c41, /* 6 Mhz */
122     0x75db, /* 6.144 Mhz */
123     0x1ae6, /* 7.3728 Mhz */
124     0x0600, /* 8 Mhz */
125     0x585b /* 8.192 Mhz */
126 };
127 
128 static const uint32_t pllcfg_fury[16] = {
129     0x3200, /* 1 Mhz */
130     0x1b20, /* 1.8432 Mhz */
131     0x1900, /* 2 Mhz */
132     0xf42b, /* 2.4576 Mhz */
133     0x37e3, /* 3.57954 Mhz */
134     0x1b21, /* 3.6864 Mhz */
135     0x0c80, /* 4 Mhz */
136     0x98ee, /* 4.906 Mhz */
137     0xd5b4, /* 4.9152 Mhz */
138     0x0a00, /* 5 Mhz */
139     0x4e27, /* 5.12 Mhz */
140     0x1902, /* 6 Mhz */
141     0xec1c, /* 6.144 Mhz */
142     0x1b23, /* 7.3728 Mhz */
143     0x0640, /* 8 Mhz */
144     0xb11c /* 8.192 Mhz */
145 };
146 
147 #define DID0_VER_MASK        0x70000000
148 #define DID0_VER_0           0x00000000
149 #define DID0_VER_1           0x10000000
150 
151 #define DID0_CLASS_MASK      0x00FF0000
152 #define DID0_CLASS_SANDSTORM 0x00000000
153 #define DID0_CLASS_FURY      0x00010000
154 
155 static int ssys_board_class(const ssys_state *s)
156 {
157     uint32_t did0 = s->did0;
158     switch (did0 & DID0_VER_MASK) {
159     case DID0_VER_0:
160         return DID0_CLASS_SANDSTORM;
161     case DID0_VER_1:
162         switch (did0 & DID0_CLASS_MASK) {
163         case DID0_CLASS_SANDSTORM:
164         case DID0_CLASS_FURY:
165             return did0 & DID0_CLASS_MASK;
166         }
167         /* for unknown classes, fall through */
168     default:
169         /* This can only happen if the hardwired constant did0 value
170          * in this board's stellaris_board_info struct is wrong.
171          */
172         g_assert_not_reached();
173     }
174 }
175 
176 static uint64_t ssys_read(void *opaque, hwaddr offset,
177                           unsigned size)
178 {
179     ssys_state *s = (ssys_state *)opaque;
180 
181     switch (offset) {
182     case 0x000: /* DID0 */
183         return s->did0;
184     case 0x004: /* DID1 */
185         return s->did1;
186     case 0x008: /* DC0 */
187         return s->dc0;
188     case 0x010: /* DC1 */
189         return s->dc1;
190     case 0x014: /* DC2 */
191         return s->dc2;
192     case 0x018: /* DC3 */
193         return s->dc3;
194     case 0x01c: /* DC4 */
195         return s->dc4;
196     case 0x030: /* PBORCTL */
197         return s->pborctl;
198     case 0x034: /* LDOPCTL */
199         return s->ldopctl;
200     case 0x040: /* SRCR0 */
201         return 0;
202     case 0x044: /* SRCR1 */
203         return 0;
204     case 0x048: /* SRCR2 */
205         return 0;
206     case 0x050: /* RIS */
207         return s->int_status;
208     case 0x054: /* IMC */
209         return s->int_mask;
210     case 0x058: /* MISC */
211         return s->int_status & s->int_mask;
212     case 0x05c: /* RESC */
213         return s->resc;
214     case 0x060: /* RCC */
215         return s->rcc;
216     case 0x064: /* PLLCFG */
217         {
218             int xtal;
219             xtal = (s->rcc >> 6) & 0xf;
220             switch (ssys_board_class(s)) {
221             case DID0_CLASS_FURY:
222                 return pllcfg_fury[xtal];
223             case DID0_CLASS_SANDSTORM:
224                 return pllcfg_sandstorm[xtal];
225             default:
226                 g_assert_not_reached();
227             }
228         }
229     case 0x070: /* RCC2 */
230         return s->rcc2;
231     case 0x100: /* RCGC0 */
232         return s->rcgc[0];
233     case 0x104: /* RCGC1 */
234         return s->rcgc[1];
235     case 0x108: /* RCGC2 */
236         return s->rcgc[2];
237     case 0x110: /* SCGC0 */
238         return s->scgc[0];
239     case 0x114: /* SCGC1 */
240         return s->scgc[1];
241     case 0x118: /* SCGC2 */
242         return s->scgc[2];
243     case 0x120: /* DCGC0 */
244         return s->dcgc[0];
245     case 0x124: /* DCGC1 */
246         return s->dcgc[1];
247     case 0x128: /* DCGC2 */
248         return s->dcgc[2];
249     case 0x150: /* CLKVCLR */
250         return s->clkvclr;
251     case 0x160: /* LDOARST */
252         return s->ldoarst;
253     case 0x1e0: /* USER0 */
254         return s->user0;
255     case 0x1e4: /* USER1 */
256         return s->user1;
257     default:
258         qemu_log_mask(LOG_GUEST_ERROR,
259                       "SSYS: read at bad offset 0x%x\n", (int)offset);
260         return 0;
261     }
262 }
263 
264 static bool ssys_use_rcc2(ssys_state *s)
265 {
266     return (s->rcc2 >> 31) & 0x1;
267 }
268 
269 /*
270  * Calculate the system clock period. We only want to propagate
271  * this change to the rest of the system if we're not being called
272  * from migration post-load.
273  */
274 static void ssys_calculate_system_clock(ssys_state *s, bool propagate_clock)
275 {
276     int period_ns;
277     /*
278      * SYSDIV field specifies divisor: 0 == /1, 1 == /2, etc.  Input
279      * clock is 200MHz, which is a period of 5 ns. Dividing the clock
280      * frequency by X is the same as multiplying the period by X.
281      */
282     if (ssys_use_rcc2(s)) {
283         period_ns = 5 * (((s->rcc2 >> 23) & 0x3f) + 1);
284     } else {
285         period_ns = 5 * (((s->rcc >> 23) & 0xf) + 1);
286     }
287     clock_set_ns(s->sysclk, period_ns);
288     if (propagate_clock) {
289         clock_propagate(s->sysclk);
290     }
291 }
292 
293 static void ssys_write(void *opaque, hwaddr offset,
294                        uint64_t value, unsigned size)
295 {
296     ssys_state *s = (ssys_state *)opaque;
297 
298     switch (offset) {
299     case 0x030: /* PBORCTL */
300         s->pborctl = value & 0xffff;
301         break;
302     case 0x034: /* LDOPCTL */
303         s->ldopctl = value & 0x1f;
304         break;
305     case 0x040: /* SRCR0 */
306     case 0x044: /* SRCR1 */
307     case 0x048: /* SRCR2 */
308         qemu_log_mask(LOG_UNIMP, "Peripheral reset not implemented\n");
309         break;
310     case 0x054: /* IMC */
311         s->int_mask = value & 0x7f;
312         break;
313     case 0x058: /* MISC */
314         s->int_status &= ~value;
315         break;
316     case 0x05c: /* RESC */
317         s->resc = value & 0x3f;
318         break;
319     case 0x060: /* RCC */
320         if ((s->rcc & (1 << 13)) != 0 && (value & (1 << 13)) == 0) {
321             /* PLL enable.  */
322             s->int_status |= (1 << 6);
323         }
324         s->rcc = value;
325         ssys_calculate_system_clock(s, true);
326         break;
327     case 0x070: /* RCC2 */
328         if (ssys_board_class(s) == DID0_CLASS_SANDSTORM) {
329             break;
330         }
331 
332         if ((s->rcc2 & (1 << 13)) != 0 && (value & (1 << 13)) == 0) {
333             /* PLL enable.  */
334             s->int_status |= (1 << 6);
335         }
336         s->rcc2 = value;
337         ssys_calculate_system_clock(s, true);
338         break;
339     case 0x100: /* RCGC0 */
340         s->rcgc[0] = value;
341         break;
342     case 0x104: /* RCGC1 */
343         s->rcgc[1] = value;
344         break;
345     case 0x108: /* RCGC2 */
346         s->rcgc[2] = value;
347         break;
348     case 0x110: /* SCGC0 */
349         s->scgc[0] = value;
350         break;
351     case 0x114: /* SCGC1 */
352         s->scgc[1] = value;
353         break;
354     case 0x118: /* SCGC2 */
355         s->scgc[2] = value;
356         break;
357     case 0x120: /* DCGC0 */
358         s->dcgc[0] = value;
359         break;
360     case 0x124: /* DCGC1 */
361         s->dcgc[1] = value;
362         break;
363     case 0x128: /* DCGC2 */
364         s->dcgc[2] = value;
365         break;
366     case 0x150: /* CLKVCLR */
367         s->clkvclr = value;
368         break;
369     case 0x160: /* LDOARST */
370         s->ldoarst = value;
371         break;
372     default:
373         qemu_log_mask(LOG_GUEST_ERROR,
374                       "SSYS: write at bad offset 0x%x\n", (int)offset);
375     }
376     ssys_update(s);
377 }
378 
379 static const MemoryRegionOps ssys_ops = {
380     .read = ssys_read,
381     .write = ssys_write,
382     .endianness = DEVICE_NATIVE_ENDIAN,
383 };
384 
385 static void stellaris_sys_reset_enter(Object *obj, ResetType type)
386 {
387     ssys_state *s = STELLARIS_SYS(obj);
388 
389     s->pborctl = 0x7ffd;
390     s->rcc = 0x078e3ac0;
391 
392     if (ssys_board_class(s) == DID0_CLASS_SANDSTORM) {
393         s->rcc2 = 0;
394     } else {
395         s->rcc2 = 0x07802810;
396     }
397     s->rcgc[0] = 1;
398     s->scgc[0] = 1;
399     s->dcgc[0] = 1;
400 }
401 
402 static void stellaris_sys_reset_hold(Object *obj, ResetType type)
403 {
404     ssys_state *s = STELLARIS_SYS(obj);
405 
406     /* OK to propagate clocks from the hold phase */
407     ssys_calculate_system_clock(s, true);
408 }
409 
410 static void stellaris_sys_reset_exit(Object *obj, ResetType type)
411 {
412 }
413 
414 static int stellaris_sys_post_load(void *opaque, int version_id)
415 {
416     ssys_state *s = opaque;
417 
418     ssys_calculate_system_clock(s, false);
419 
420     return 0;
421 }
422 
423 static const VMStateDescription vmstate_stellaris_sys = {
424     .name = "stellaris_sys",
425     .version_id = 2,
426     .minimum_version_id = 1,
427     .post_load = stellaris_sys_post_load,
428     .fields = (const VMStateField[]) {
429         VMSTATE_UINT32(pborctl, ssys_state),
430         VMSTATE_UINT32(ldopctl, ssys_state),
431         VMSTATE_UINT32(int_mask, ssys_state),
432         VMSTATE_UINT32(int_status, ssys_state),
433         VMSTATE_UINT32(resc, ssys_state),
434         VMSTATE_UINT32(rcc, ssys_state),
435         VMSTATE_UINT32_V(rcc2, ssys_state, 2),
436         VMSTATE_UINT32_ARRAY(rcgc, ssys_state, 3),
437         VMSTATE_UINT32_ARRAY(scgc, ssys_state, 3),
438         VMSTATE_UINT32_ARRAY(dcgc, ssys_state, 3),
439         VMSTATE_UINT32(clkvclr, ssys_state),
440         VMSTATE_UINT32(ldoarst, ssys_state),
441         /* No field for sysclk -- handled in post-load instead */
442         VMSTATE_END_OF_LIST()
443     }
444 };
445 
446 static const Property stellaris_sys_properties[] = {
447     DEFINE_PROP_UINT32("user0", ssys_state, user0, 0),
448     DEFINE_PROP_UINT32("user1", ssys_state, user1, 0),
449     DEFINE_PROP_UINT32("did0", ssys_state, did0, 0),
450     DEFINE_PROP_UINT32("did1", ssys_state, did1, 0),
451     DEFINE_PROP_UINT32("dc0", ssys_state, dc0, 0),
452     DEFINE_PROP_UINT32("dc1", ssys_state, dc1, 0),
453     DEFINE_PROP_UINT32("dc2", ssys_state, dc2, 0),
454     DEFINE_PROP_UINT32("dc3", ssys_state, dc3, 0),
455     DEFINE_PROP_UINT32("dc4", ssys_state, dc4, 0),
456 };
457 
458 static void stellaris_sys_instance_init(Object *obj)
459 {
460     ssys_state *s = STELLARIS_SYS(obj);
461     SysBusDevice *sbd = SYS_BUS_DEVICE(s);
462 
463     memory_region_init_io(&s->iomem, obj, &ssys_ops, s, "ssys", 0x00001000);
464     sysbus_init_mmio(sbd, &s->iomem);
465     sysbus_init_irq(sbd, &s->irq);
466     s->sysclk = qdev_init_clock_out(DEVICE(s), "SYSCLK");
467 }
468 
469 /*
470  * I2C controller.
471  * ??? For now we only implement the master interface.
472  */
473 
474 #define TYPE_STELLARIS_I2C "stellaris-i2c"
475 OBJECT_DECLARE_SIMPLE_TYPE(stellaris_i2c_state, STELLARIS_I2C)
476 
477 struct stellaris_i2c_state {
478     SysBusDevice parent_obj;
479 
480     I2CBus *bus;
481     qemu_irq irq;
482     MemoryRegion iomem;
483     uint32_t msa;
484     uint32_t mcs;
485     uint32_t mdr;
486     uint32_t mtpr;
487     uint32_t mimr;
488     uint32_t mris;
489     uint32_t mcr;
490 };
491 
492 #define STELLARIS_I2C_MCS_BUSY    0x01
493 #define STELLARIS_I2C_MCS_ERROR   0x02
494 #define STELLARIS_I2C_MCS_ADRACK  0x04
495 #define STELLARIS_I2C_MCS_DATACK  0x08
496 #define STELLARIS_I2C_MCS_ARBLST  0x10
497 #define STELLARIS_I2C_MCS_IDLE    0x20
498 #define STELLARIS_I2C_MCS_BUSBSY  0x40
499 
500 static uint64_t stellaris_i2c_read(void *opaque, hwaddr offset,
501                                    unsigned size)
502 {
503     stellaris_i2c_state *s = (stellaris_i2c_state *)opaque;
504 
505     switch (offset) {
506     case 0x00: /* MSA */
507         return s->msa;
508     case 0x04: /* MCS */
509         /* We don't emulate timing, so the controller is never busy.  */
510         return s->mcs | STELLARIS_I2C_MCS_IDLE;
511     case 0x08: /* MDR */
512         return s->mdr;
513     case 0x0c: /* MTPR */
514         return s->mtpr;
515     case 0x10: /* MIMR */
516         return s->mimr;
517     case 0x14: /* MRIS */
518         return s->mris;
519     case 0x18: /* MMIS */
520         return s->mris & s->mimr;
521     case 0x20: /* MCR */
522         return s->mcr;
523     default:
524         qemu_log_mask(LOG_GUEST_ERROR,
525                       "stellaris_i2c: read at bad offset 0x%x\n", (int)offset);
526         return 0;
527     }
528 }
529 
530 static void stellaris_i2c_update(stellaris_i2c_state *s)
531 {
532     int level;
533 
534     level = (s->mris & s->mimr) != 0;
535     qemu_set_irq(s->irq, level);
536 }
537 
538 static void stellaris_i2c_write(void *opaque, hwaddr offset,
539                                 uint64_t value, unsigned size)
540 {
541     stellaris_i2c_state *s = (stellaris_i2c_state *)opaque;
542 
543     switch (offset) {
544     case 0x00: /* MSA */
545         s->msa = value & 0xff;
546         break;
547     case 0x04: /* MCS */
548         if ((s->mcr & 0x10) == 0) {
549             /* Disabled.  Do nothing.  */
550             break;
551         }
552         /* Grab the bus if this is starting a transfer.  */
553         if ((value & 2) && (s->mcs & STELLARIS_I2C_MCS_BUSBSY) == 0) {
554             if (i2c_start_transfer(s->bus, s->msa >> 1, s->msa & 1)) {
555                 s->mcs |= STELLARIS_I2C_MCS_ARBLST;
556             } else {
557                 s->mcs &= ~STELLARIS_I2C_MCS_ARBLST;
558                 s->mcs |= STELLARIS_I2C_MCS_BUSBSY;
559             }
560         }
561         /* If we don't have the bus then indicate an error.  */
562         if (!i2c_bus_busy(s->bus)
563                 || (s->mcs & STELLARIS_I2C_MCS_BUSBSY) == 0) {
564             s->mcs |= STELLARIS_I2C_MCS_ERROR;
565             break;
566         }
567         s->mcs &= ~STELLARIS_I2C_MCS_ERROR;
568         if (value & 1) {
569             /* Transfer a byte.  */
570             /* TODO: Handle errors.  */
571             if (s->msa & 1) {
572                 /* Recv */
573                 s->mdr = i2c_recv(s->bus);
574             } else {
575                 /* Send */
576                 i2c_send(s->bus, s->mdr);
577             }
578             /* Raise an interrupt.  */
579             s->mris |= 1;
580         }
581         if (value & 4) {
582             /* Finish transfer.  */
583             i2c_end_transfer(s->bus);
584             s->mcs &= ~STELLARIS_I2C_MCS_BUSBSY;
585         }
586         break;
587     case 0x08: /* MDR */
588         s->mdr = value & 0xff;
589         break;
590     case 0x0c: /* MTPR */
591         s->mtpr = value & 0xff;
592         break;
593     case 0x10: /* MIMR */
594         s->mimr = 1;
595         break;
596     case 0x1c: /* MICR */
597         s->mris &= ~value;
598         break;
599     case 0x20: /* MCR */
600         if (value & 1) {
601             qemu_log_mask(LOG_UNIMP,
602                           "stellaris_i2c: Loopback not implemented\n");
603         }
604         if (value & 0x20) {
605             qemu_log_mask(LOG_UNIMP,
606                           "stellaris_i2c: Slave mode not implemented\n");
607         }
608         s->mcr = value & 0x31;
609         break;
610     default:
611         qemu_log_mask(LOG_GUEST_ERROR,
612                       "stellaris_i2c: write at bad offset 0x%x\n", (int)offset);
613     }
614     stellaris_i2c_update(s);
615 }
616 
617 static void stellaris_i2c_reset_enter(Object *obj, ResetType type)
618 {
619     stellaris_i2c_state *s = STELLARIS_I2C(obj);
620 
621     if (s->mcs & STELLARIS_I2C_MCS_BUSBSY)
622         i2c_end_transfer(s->bus);
623 }
624 
625 static void stellaris_i2c_reset_hold(Object *obj, ResetType type)
626 {
627     stellaris_i2c_state *s = STELLARIS_I2C(obj);
628 
629     s->msa = 0;
630     s->mcs = 0;
631     s->mdr = 0;
632     s->mtpr = 1;
633     s->mimr = 0;
634     s->mris = 0;
635     s->mcr = 0;
636 }
637 
638 static void stellaris_i2c_reset_exit(Object *obj, ResetType type)
639 {
640     stellaris_i2c_state *s = STELLARIS_I2C(obj);
641 
642     stellaris_i2c_update(s);
643 }
644 
645 static const MemoryRegionOps stellaris_i2c_ops = {
646     .read = stellaris_i2c_read,
647     .write = stellaris_i2c_write,
648     .endianness = DEVICE_NATIVE_ENDIAN,
649 };
650 
651 static const VMStateDescription vmstate_stellaris_i2c = {
652     .name = "stellaris_i2c",
653     .version_id = 1,
654     .minimum_version_id = 1,
655     .fields = (const VMStateField[]) {
656         VMSTATE_UINT32(msa, stellaris_i2c_state),
657         VMSTATE_UINT32(mcs, stellaris_i2c_state),
658         VMSTATE_UINT32(mdr, stellaris_i2c_state),
659         VMSTATE_UINT32(mtpr, stellaris_i2c_state),
660         VMSTATE_UINT32(mimr, stellaris_i2c_state),
661         VMSTATE_UINT32(mris, stellaris_i2c_state),
662         VMSTATE_UINT32(mcr, stellaris_i2c_state),
663         VMSTATE_END_OF_LIST()
664     }
665 };
666 
667 static void stellaris_i2c_init(Object *obj)
668 {
669     DeviceState *dev = DEVICE(obj);
670     stellaris_i2c_state *s = STELLARIS_I2C(obj);
671     SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
672     I2CBus *bus;
673 
674     sysbus_init_irq(sbd, &s->irq);
675     bus = i2c_init_bus(dev, "i2c");
676     s->bus = bus;
677 
678     memory_region_init_io(&s->iomem, obj, &stellaris_i2c_ops, s,
679                           "i2c", 0x1000);
680     sysbus_init_mmio(sbd, &s->iomem);
681 }
682 
683 /* Analogue to Digital Converter.  This is only partially implemented,
684    enough for applications that use a combined ADC and timer tick.  */
685 
686 #define STELLARIS_ADC_EM_CONTROLLER 0
687 #define STELLARIS_ADC_EM_COMP       1
688 #define STELLARIS_ADC_EM_EXTERNAL   4
689 #define STELLARIS_ADC_EM_TIMER      5
690 #define STELLARIS_ADC_EM_PWM0       6
691 #define STELLARIS_ADC_EM_PWM1       7
692 #define STELLARIS_ADC_EM_PWM2       8
693 
694 #define STELLARIS_ADC_FIFO_EMPTY    0x0100
695 #define STELLARIS_ADC_FIFO_FULL     0x1000
696 
697 #define TYPE_STELLARIS_ADC "stellaris-adc"
698 typedef struct StellarisADCState StellarisADCState;
699 DECLARE_INSTANCE_CHECKER(StellarisADCState, STELLARIS_ADC, TYPE_STELLARIS_ADC)
700 
701 struct StellarisADCState {
702     SysBusDevice parent_obj;
703 
704     MemoryRegion iomem;
705     uint32_t actss;
706     uint32_t ris;
707     uint32_t im;
708     uint32_t emux;
709     uint32_t ostat;
710     uint32_t ustat;
711     uint32_t sspri;
712     uint32_t sac;
713     struct {
714         uint32_t state;
715         uint32_t data[16];
716     } fifo[4];
717     uint32_t ssmux[4];
718     uint32_t ssctl[4];
719     uint32_t noise;
720     qemu_irq irq[4];
721 };
722 
723 static uint32_t stellaris_adc_fifo_read(StellarisADCState *s, int n)
724 {
725     int tail;
726 
727     tail = s->fifo[n].state & 0xf;
728     if (s->fifo[n].state & STELLARIS_ADC_FIFO_EMPTY) {
729         s->ustat |= 1 << n;
730     } else {
731         s->fifo[n].state = (s->fifo[n].state & ~0xf) | ((tail + 1) & 0xf);
732         s->fifo[n].state &= ~STELLARIS_ADC_FIFO_FULL;
733         if (tail + 1 == ((s->fifo[n].state >> 4) & 0xf))
734             s->fifo[n].state |= STELLARIS_ADC_FIFO_EMPTY;
735     }
736     return s->fifo[n].data[tail];
737 }
738 
739 static void stellaris_adc_fifo_write(StellarisADCState *s, int n,
740                                      uint32_t value)
741 {
742     int head;
743 
744     /* TODO: Real hardware has limited size FIFOs.  We have a full 16 entry
745        FIFO fir each sequencer.  */
746     head = (s->fifo[n].state >> 4) & 0xf;
747     if (s->fifo[n].state & STELLARIS_ADC_FIFO_FULL) {
748         s->ostat |= 1 << n;
749         return;
750     }
751     s->fifo[n].data[head] = value;
752     head = (head + 1) & 0xf;
753     s->fifo[n].state &= ~STELLARIS_ADC_FIFO_EMPTY;
754     s->fifo[n].state = (s->fifo[n].state & ~0xf0) | (head << 4);
755     if ((s->fifo[n].state & 0xf) == head)
756         s->fifo[n].state |= STELLARIS_ADC_FIFO_FULL;
757 }
758 
759 static void stellaris_adc_update(StellarisADCState *s)
760 {
761     int level;
762     int n;
763 
764     for (n = 0; n < 4; n++) {
765         level = (s->ris & s->im & (1 << n)) != 0;
766         qemu_set_irq(s->irq[n], level);
767     }
768 }
769 
770 static void stellaris_adc_trigger(void *opaque, int irq, int level)
771 {
772     StellarisADCState *s = opaque;
773     int n;
774 
775     for (n = 0; n < 4; n++) {
776         if ((s->actss & (1 << n)) == 0) {
777             continue;
778         }
779 
780         if (((s->emux >> (n * 4)) & 0xff) != 5) {
781             continue;
782         }
783 
784         /* Some applications use the ADC as a random number source, so introduce
785            some variation into the signal.  */
786         s->noise = s->noise * 314159 + 1;
787         /* ??? actual inputs not implemented.  Return an arbitrary value.  */
788         stellaris_adc_fifo_write(s, n, 0x200 + ((s->noise >> 16) & 7));
789         s->ris |= (1 << n);
790         stellaris_adc_update(s);
791     }
792 }
793 
794 static void stellaris_adc_reset_hold(Object *obj, ResetType type)
795 {
796     StellarisADCState *s = STELLARIS_ADC(obj);
797     int n;
798 
799     for (n = 0; n < 4; n++) {
800         s->ssmux[n] = 0;
801         s->ssctl[n] = 0;
802         s->fifo[n].state = STELLARIS_ADC_FIFO_EMPTY;
803     }
804 }
805 
806 static uint64_t stellaris_adc_read(void *opaque, hwaddr offset,
807                                    unsigned size)
808 {
809     StellarisADCState *s = opaque;
810 
811     /* TODO: Implement this.  */
812     if (offset >= 0x40 && offset < 0xc0) {
813         int n;
814         n = (offset - 0x40) >> 5;
815         switch (offset & 0x1f) {
816         case 0x00: /* SSMUX */
817             return s->ssmux[n];
818         case 0x04: /* SSCTL */
819             return s->ssctl[n];
820         case 0x08: /* SSFIFO */
821             return stellaris_adc_fifo_read(s, n);
822         case 0x0c: /* SSFSTAT */
823             return s->fifo[n].state;
824         default:
825             break;
826         }
827     }
828     switch (offset) {
829     case 0x00: /* ACTSS */
830         return s->actss;
831     case 0x04: /* RIS */
832         return s->ris;
833     case 0x08: /* IM */
834         return s->im;
835     case 0x0c: /* ISC */
836         return s->ris & s->im;
837     case 0x10: /* OSTAT */
838         return s->ostat;
839     case 0x14: /* EMUX */
840         return s->emux;
841     case 0x18: /* USTAT */
842         return s->ustat;
843     case 0x20: /* SSPRI */
844         return s->sspri;
845     case 0x30: /* SAC */
846         return s->sac;
847     default:
848         qemu_log_mask(LOG_GUEST_ERROR,
849                       "stellaris_adc: read at bad offset 0x%x\n", (int)offset);
850         return 0;
851     }
852 }
853 
854 static void stellaris_adc_write(void *opaque, hwaddr offset,
855                                 uint64_t value, unsigned size)
856 {
857     StellarisADCState *s = opaque;
858 
859     /* TODO: Implement this.  */
860     if (offset >= 0x40 && offset < 0xc0) {
861         int n;
862         n = (offset - 0x40) >> 5;
863         switch (offset & 0x1f) {
864         case 0x00: /* SSMUX */
865             s->ssmux[n] = value & 0x33333333;
866             return;
867         case 0x04: /* SSCTL */
868             if (value != 6) {
869                 qemu_log_mask(LOG_UNIMP,
870                               "ADC: Unimplemented sequence %" PRIx64 "\n",
871                               value);
872             }
873             s->ssctl[n] = value;
874             return;
875         default:
876             break;
877         }
878     }
879     switch (offset) {
880     case 0x00: /* ACTSS */
881         s->actss = value & 0xf;
882         break;
883     case 0x08: /* IM */
884         s->im = value;
885         break;
886     case 0x0c: /* ISC */
887         s->ris &= ~value;
888         break;
889     case 0x10: /* OSTAT */
890         s->ostat &= ~value;
891         break;
892     case 0x14: /* EMUX */
893         s->emux = value;
894         break;
895     case 0x18: /* USTAT */
896         s->ustat &= ~value;
897         break;
898     case 0x20: /* SSPRI */
899         s->sspri = value;
900         break;
901     case 0x28: /* PSSI */
902         qemu_log_mask(LOG_UNIMP, "ADC: sample initiate unimplemented\n");
903         break;
904     case 0x30: /* SAC */
905         s->sac = value;
906         break;
907     default:
908         qemu_log_mask(LOG_GUEST_ERROR,
909                       "stellaris_adc: write at bad offset 0x%x\n", (int)offset);
910     }
911     stellaris_adc_update(s);
912 }
913 
914 static const MemoryRegionOps stellaris_adc_ops = {
915     .read = stellaris_adc_read,
916     .write = stellaris_adc_write,
917     .endianness = DEVICE_NATIVE_ENDIAN,
918 };
919 
920 static const VMStateDescription vmstate_stellaris_adc = {
921     .name = "stellaris_adc",
922     .version_id = 1,
923     .minimum_version_id = 1,
924     .fields = (const VMStateField[]) {
925         VMSTATE_UINT32(actss, StellarisADCState),
926         VMSTATE_UINT32(ris, StellarisADCState),
927         VMSTATE_UINT32(im, StellarisADCState),
928         VMSTATE_UINT32(emux, StellarisADCState),
929         VMSTATE_UINT32(ostat, StellarisADCState),
930         VMSTATE_UINT32(ustat, StellarisADCState),
931         VMSTATE_UINT32(sspri, StellarisADCState),
932         VMSTATE_UINT32(sac, StellarisADCState),
933         VMSTATE_UINT32(fifo[0].state, StellarisADCState),
934         VMSTATE_UINT32_ARRAY(fifo[0].data, StellarisADCState, 16),
935         VMSTATE_UINT32(ssmux[0], StellarisADCState),
936         VMSTATE_UINT32(ssctl[0], StellarisADCState),
937         VMSTATE_UINT32(fifo[1].state, StellarisADCState),
938         VMSTATE_UINT32_ARRAY(fifo[1].data, StellarisADCState, 16),
939         VMSTATE_UINT32(ssmux[1], StellarisADCState),
940         VMSTATE_UINT32(ssctl[1], StellarisADCState),
941         VMSTATE_UINT32(fifo[2].state, StellarisADCState),
942         VMSTATE_UINT32_ARRAY(fifo[2].data, StellarisADCState, 16),
943         VMSTATE_UINT32(ssmux[2], StellarisADCState),
944         VMSTATE_UINT32(ssctl[2], StellarisADCState),
945         VMSTATE_UINT32(fifo[3].state, StellarisADCState),
946         VMSTATE_UINT32_ARRAY(fifo[3].data, StellarisADCState, 16),
947         VMSTATE_UINT32(ssmux[3], StellarisADCState),
948         VMSTATE_UINT32(ssctl[3], StellarisADCState),
949         VMSTATE_UINT32(noise, StellarisADCState),
950         VMSTATE_END_OF_LIST()
951     }
952 };
953 
954 static void stellaris_adc_init(Object *obj)
955 {
956     DeviceState *dev = DEVICE(obj);
957     StellarisADCState *s = STELLARIS_ADC(obj);
958     SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
959     int n;
960 
961     for (n = 0; n < 4; n++) {
962         sysbus_init_irq(sbd, &s->irq[n]);
963     }
964 
965     memory_region_init_io(&s->iomem, obj, &stellaris_adc_ops, s,
966                           "adc", 0x1000);
967     sysbus_init_mmio(sbd, &s->iomem);
968     qdev_init_gpio_in(dev, stellaris_adc_trigger, 1);
969 }
970 
971 /* Board init.  */
972 static const stellaris_board_info stellaris_boards[] = {
973   { "LM3S811EVB",
974     0,
975     0x0032000e,
976     0x001f001f, /* dc0 */
977     0x001132bf,
978     0x01071013,
979     0x3f0f01ff,
980     0x0000001f,
981     BP_OLED_I2C
982   },
983   { "LM3S6965EVB",
984     0x10010002,
985     0x1073402e,
986     0x00ff007f, /* dc0 */
987     0x001133ff,
988     0x030f5317,
989     0x0f0f87ff,
990     0x5000007f,
991     BP_OLED_SSI | BP_GAMEPAD
992   }
993 };
994 
995 static void stellaris_init(MachineState *ms, stellaris_board_info *board)
996 {
997     static const int uart_irq[NUM_UART] = {5, 6, 33, 34};
998     static const int timer_irq[NUM_GPTM] = {19, 21, 23, 35};
999     static const uint32_t gpio_addr[NUM_GPIO] =
1000       { 0x40004000, 0x40005000, 0x40006000, 0x40007000,
1001         0x40024000, 0x40025000, 0x40026000};
1002     static const int gpio_irq[NUM_GPIO] = {0, 1, 2, 3, 4, 30, 31};
1003 
1004     /* Memory map of SoC devices, from
1005      * Stellaris LM3S6965 Microcontroller Data Sheet (rev I)
1006      * http://www.ti.com/lit/ds/symlink/lm3s6965.pdf
1007      *
1008      * 40000000 wdtimer
1009      * 40004000 GPIO
1010      * 40005000 GPIO
1011      * 40006000 GPIO
1012      * 40007000 GPIO
1013      * 40008000 SSI
1014      * 4000c000 UART
1015      * 4000d000 UART
1016      * 4000e000 UART
1017      * 40020000 i2c
1018      * 40021000 i2c (unimplemented)
1019      * 40024000 GPIO
1020      * 40025000 GPIO
1021      * 40026000 GPIO
1022      * 40028000 PWM (unimplemented)
1023      * 4002c000 QEI (unimplemented)
1024      * 4002d000 QEI (unimplemented)
1025      * 40030000 gptimer
1026      * 40031000 gptimer
1027      * 40032000 gptimer
1028      * 40033000 gptimer
1029      * 40038000 ADC
1030      * 4003c000 analogue comparator (unimplemented)
1031      * 40048000 ethernet
1032      * 400fc000 hibernation module (unimplemented)
1033      * 400fd000 flash memory control (unimplemented)
1034      * 400fe000 system control
1035      */
1036 
1037     Object *soc_container;
1038     DeviceState *gpio_dev[NUM_GPIO], *armv7m, *nvic;
1039     qemu_irq gpio_in[NUM_GPIO][8];
1040     qemu_irq gpio_out[NUM_GPIO][8];
1041     qemu_irq adc;
1042     int sram_size;
1043     int flash_size;
1044     I2CBus *i2c;
1045     DeviceState *dev;
1046     DeviceState *ssys_dev;
1047     int i;
1048     int j;
1049     NICInfo *nd;
1050     MACAddr mac;
1051 
1052     MemoryRegion *sram = g_new(MemoryRegion, 1);
1053     MemoryRegion *flash = g_new(MemoryRegion, 1);
1054     MemoryRegion *system_memory = get_system_memory();
1055 
1056     flash_size = (((board->dc0 & 0xffff) + 1) << 1) * 1024;
1057     sram_size = ((board->dc0 >> 18) + 1) * 1024;
1058 
1059     soc_container = object_new(TYPE_CONTAINER);
1060     object_property_add_child(OBJECT(ms), "soc", soc_container);
1061 
1062     /* Flash programming is done via the SCU, so pretend it is ROM.  */
1063     memory_region_init_rom(flash, NULL, "stellaris.flash", flash_size,
1064                            &error_fatal);
1065     memory_region_add_subregion(system_memory, 0, flash);
1066 
1067     memory_region_init_ram(sram, NULL, "stellaris.sram", sram_size,
1068                            &error_fatal);
1069     memory_region_add_subregion(system_memory, 0x20000000, sram);
1070 
1071     /*
1072      * Create the system-registers object early, because we will
1073      * need its sysclk output.
1074      */
1075     ssys_dev = qdev_new(TYPE_STELLARIS_SYS);
1076     object_property_add_child(soc_container, "sys", OBJECT(ssys_dev));
1077 
1078     /*
1079      * Most devices come preprogrammed with a MAC address in the user data.
1080      * Generate a MAC address now, if there isn't a matching -nic for it.
1081      */
1082     nd = qemu_find_nic_info("stellaris_enet", true, "stellaris");
1083     if (nd) {
1084         memcpy(mac.a, nd->macaddr.a, sizeof(mac.a));
1085     } else {
1086         qemu_macaddr_default_if_unset(&mac);
1087     }
1088 
1089     qdev_prop_set_uint32(ssys_dev, "user0",
1090                          mac.a[0] | (mac.a[1] << 8) | (mac.a[2] << 16));
1091     qdev_prop_set_uint32(ssys_dev, "user1",
1092                          mac.a[3] | (mac.a[4] << 8) | (mac.a[5] << 16));
1093     qdev_prop_set_uint32(ssys_dev, "did0", board->did0);
1094     qdev_prop_set_uint32(ssys_dev, "did1", board->did1);
1095     qdev_prop_set_uint32(ssys_dev, "dc0", board->dc0);
1096     qdev_prop_set_uint32(ssys_dev, "dc1", board->dc1);
1097     qdev_prop_set_uint32(ssys_dev, "dc2", board->dc2);
1098     qdev_prop_set_uint32(ssys_dev, "dc3", board->dc3);
1099     qdev_prop_set_uint32(ssys_dev, "dc4", board->dc4);
1100     sysbus_realize_and_unref(SYS_BUS_DEVICE(ssys_dev), &error_fatal);
1101 
1102     armv7m = qdev_new(TYPE_ARMV7M);
1103     object_property_add_child(soc_container, "v7m", OBJECT(armv7m));
1104     qdev_prop_set_uint32(armv7m, "num-irq", NUM_IRQ_LINES);
1105     qdev_prop_set_uint8(armv7m, "num-prio-bits", NUM_PRIO_BITS);
1106     qdev_prop_set_string(armv7m, "cpu-type", ms->cpu_type);
1107     qdev_prop_set_bit(armv7m, "enable-bitband", true);
1108     qdev_connect_clock_in(armv7m, "cpuclk",
1109                           qdev_get_clock_out(ssys_dev, "SYSCLK"));
1110     /* This SoC does not connect the systick reference clock */
1111     object_property_set_link(OBJECT(armv7m), "memory",
1112                              OBJECT(get_system_memory()), &error_abort);
1113     /* This will exit with an error if the user passed us a bad cpu_type */
1114     sysbus_realize_and_unref(SYS_BUS_DEVICE(armv7m), &error_fatal);
1115     nvic = armv7m;
1116 
1117     /* Now we can wire up the IRQ and MMIO of the system registers */
1118     sysbus_mmio_map(SYS_BUS_DEVICE(ssys_dev), 0, 0x400fe000);
1119     sysbus_connect_irq(SYS_BUS_DEVICE(ssys_dev), 0, qdev_get_gpio_in(nvic, 28));
1120 
1121     if (board->dc1 & (1 << 16)) {
1122         dev = sysbus_create_varargs(TYPE_STELLARIS_ADC, 0x40038000,
1123                                     qdev_get_gpio_in(nvic, 14),
1124                                     qdev_get_gpio_in(nvic, 15),
1125                                     qdev_get_gpio_in(nvic, 16),
1126                                     qdev_get_gpio_in(nvic, 17),
1127                                     NULL);
1128         adc = qdev_get_gpio_in(dev, 0);
1129     } else {
1130         adc = NULL;
1131     }
1132     for (i = 0; i < NUM_GPTM; i++) {
1133         if (board->dc2 & (0x10000 << i)) {
1134             SysBusDevice *sbd;
1135 
1136             dev = qdev_new(TYPE_STELLARIS_GPTM);
1137             sbd = SYS_BUS_DEVICE(dev);
1138             object_property_add_child(soc_container, "gptm[*]", OBJECT(dev));
1139             qdev_connect_clock_in(dev, "clk",
1140                                   qdev_get_clock_out(ssys_dev, "SYSCLK"));
1141             sysbus_realize_and_unref(sbd, &error_fatal);
1142             sysbus_mmio_map(sbd, 0, 0x40030000 + i * 0x1000);
1143             sysbus_connect_irq(sbd, 0, qdev_get_gpio_in(nvic, timer_irq[i]));
1144             /* TODO: This is incorrect, but we get away with it because
1145                the ADC output is only ever pulsed.  */
1146             qdev_connect_gpio_out(dev, 0, adc);
1147         }
1148     }
1149 
1150     if (board->dc1 & (1 << 3)) { /* watchdog present */
1151         dev = qdev_new(TYPE_LUMINARY_WATCHDOG);
1152         object_property_add_child(soc_container, "wdg", OBJECT(dev));
1153         qdev_connect_clock_in(dev, "WDOGCLK",
1154                               qdev_get_clock_out(ssys_dev, "SYSCLK"));
1155 
1156         sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
1157         sysbus_mmio_map(SYS_BUS_DEVICE(dev),
1158                         0,
1159                         0x40000000u);
1160         sysbus_connect_irq(SYS_BUS_DEVICE(dev),
1161                            0,
1162                            qdev_get_gpio_in(nvic, 18));
1163     }
1164 
1165 
1166     for (i = 0; i < NUM_GPIO; i++) {
1167         if (board->dc4 & (1 << i)) {
1168             gpio_dev[i] = sysbus_create_simple("pl061_luminary", gpio_addr[i],
1169                                                qdev_get_gpio_in(nvic,
1170                                                                 gpio_irq[i]));
1171             for (j = 0; j < 8; j++) {
1172                 gpio_in[i][j] = qdev_get_gpio_in(gpio_dev[i], j);
1173                 gpio_out[i][j] = NULL;
1174             }
1175         }
1176     }
1177 
1178     if (board->dc2 & (1 << 12)) {
1179         dev = sysbus_create_simple(TYPE_STELLARIS_I2C, 0x40020000,
1180                                    qdev_get_gpio_in(nvic, 8));
1181         i2c = (I2CBus *)qdev_get_child_bus(dev, "i2c");
1182         if (board->peripherals & BP_OLED_I2C) {
1183             i2c_slave_create_simple(i2c, "ssd0303", 0x3d);
1184         }
1185     }
1186 
1187     for (i = 0; i < NUM_UART; i++) {
1188         if (board->dc2 & (1 << i)) {
1189             SysBusDevice *sbd;
1190 
1191             dev = qdev_new("pl011_luminary");
1192             object_property_add_child(soc_container, "uart[*]", OBJECT(dev));
1193             sbd = SYS_BUS_DEVICE(dev);
1194             qdev_prop_set_chr(dev, "chardev", serial_hd(i));
1195             sysbus_realize_and_unref(sbd, &error_fatal);
1196             sysbus_mmio_map(sbd, 0, 0x4000c000 + i * 0x1000);
1197             sysbus_connect_irq(sbd, 0, qdev_get_gpio_in(nvic, uart_irq[i]));
1198         }
1199     }
1200     if (board->dc2 & (1 << 4)) {
1201         dev = sysbus_create_simple("pl022", 0x40008000,
1202                                    qdev_get_gpio_in(nvic, 7));
1203         if (board->peripherals & BP_OLED_SSI) {
1204             void *bus;
1205             DeviceState *sddev;
1206             DeviceState *ssddev;
1207             DriveInfo *dinfo;
1208             DeviceState *carddev;
1209             DeviceState *gpio_d_splitter;
1210             BlockBackend *blk;
1211 
1212             /*
1213              * Some boards have both an OLED controller and SD card connected to
1214              * the same SSI port, with the SD card chip select connected to a
1215              * GPIO pin.  Technically the OLED chip select is connected to the
1216              * SSI Fss pin.  We do not bother emulating that as both devices
1217              * should never be selected simultaneously, and our OLED controller
1218              * ignores stray 0xff commands that occur when deselecting the SD
1219              * card.
1220              *
1221              * The h/w wiring is:
1222              *  - GPIO pin D0 is wired to the active-low SD card chip select
1223              *  - GPIO pin A3 is wired to the active-low OLED chip select
1224              *  - The SoC wiring of the PL061 "auxiliary function" for A3 is
1225              *    SSI0Fss ("frame signal"), which is an output from the SoC's
1226              *    SSI controller. The SSI controller takes SSI0Fss low when it
1227              *    transmits a frame, so it can work as a chip-select signal.
1228              *  - GPIO A4 is aux-function SSI0Rx, and wired to the SD card Tx
1229              *    (the OLED never sends data to the CPU, so no wiring needed)
1230              *  - GPIO A5 is aux-function SSI0Tx, and wired to the SD card Rx
1231              *    and the OLED display-data-in
1232              *  - GPIO A2 is aux-function SSI0Clk, wired to SD card and OLED
1233              *    serial-clock input
1234              * So a guest that wants to use the OLED can configure the PL061
1235              * to make pins A2, A3, A5 aux-function, so they are connected
1236              * directly to the SSI controller. When the SSI controller sends
1237              * data it asserts SSI0Fss which selects the OLED.
1238              * A guest that wants to use the SD card configures A2, A4 and A5
1239              * as aux-function, but leaves A3 as a software-controlled GPIO
1240              * line. It asserts the SD card chip-select by using the PL061
1241              * to control pin D0, and lets the SSI controller handle Clk, Tx
1242              * and Rx. (The SSI controller asserts Fss during tx cycles as
1243              * usual, but because A3 is not set to aux-function this is not
1244              * forwarded to the OLED, and so the OLED stays unselected.)
1245              *
1246              * The QEMU implementation instead is:
1247              *  - GPIO pin D0 is wired to the active-low SD card chip select,
1248              *    and also to the OLED chip-select which is implemented
1249              *    as *active-high*
1250              *  - SSI controller signals go to the devices regardless of
1251              *    whether the guest programs A2, A4, A5 as aux-function or not
1252              *
1253              * The problem with this implementation is if the guest doesn't
1254              * care about the SD card and only uses the OLED. In that case it
1255              * may choose never to do anything with D0 (leaving it in its
1256              * default floating state, which reliably leaves the card disabled
1257              * because an SD card has a pullup on CS within the card itself),
1258              * and only set up A2, A3, A5. This for us would mean the OLED
1259              * never gets the chip-select assert it needs. We work around
1260              * this with a manual raise of D0 here (despite board creation
1261              * code being the wrong place to raise IRQ lines) to put the OLED
1262              * into an initially selected state.
1263              *
1264              * In theory the right way to model this would be:
1265              *  - Implement aux-function support in the PL061, with an
1266              *    extra set of AFIN and AFOUT GPIO lines (set up so that
1267              *    if a GPIO line is in auxfn mode the main GPIO in and out
1268              *    track the AFIN and AFOUT lines)
1269              *  - Wire the AFOUT for D0 up to either a line from the
1270              *    SSI controller that's pulled low around every transmit,
1271              *    or at least to an always-0 line here on the board
1272              *  - Make the ssd0323 OLED controller chipselect active-low
1273              */
1274             bus = qdev_get_child_bus(dev, "ssi");
1275             sddev = ssi_create_peripheral(bus, "ssi-sd");
1276 
1277             dinfo = drive_get(IF_SD, 0, 0);
1278             blk = dinfo ? blk_by_legacy_dinfo(dinfo) : NULL;
1279             carddev = qdev_new(TYPE_SD_CARD_SPI);
1280             qdev_prop_set_drive_err(carddev, "drive", blk, &error_fatal);
1281             qdev_realize_and_unref(carddev,
1282                                    qdev_get_child_bus(sddev, "sd-bus"),
1283                                    &error_fatal);
1284 
1285             ssddev = qdev_new("ssd0323");
1286             object_property_add_child(OBJECT(ms), "oled", OBJECT(ssddev));
1287             qdev_prop_set_uint8(ssddev, "cs", 1);
1288             qdev_realize_and_unref(ssddev, bus, &error_fatal);
1289 
1290             gpio_d_splitter = qdev_new(TYPE_SPLIT_IRQ);
1291             object_property_add_child(OBJECT(ms), "splitter",
1292                                       OBJECT(gpio_d_splitter));
1293             qdev_prop_set_uint32(gpio_d_splitter, "num-lines", 2);
1294             qdev_realize_and_unref(gpio_d_splitter, NULL, &error_fatal);
1295             qdev_connect_gpio_out(
1296                     gpio_d_splitter, 0,
1297                     qdev_get_gpio_in_named(sddev, SSI_GPIO_CS, 0));
1298             qdev_connect_gpio_out(
1299                     gpio_d_splitter, 1,
1300                     qdev_get_gpio_in_named(ssddev, SSI_GPIO_CS, 0));
1301             gpio_out[GPIO_D][0] = qdev_get_gpio_in(gpio_d_splitter, 0);
1302 
1303             gpio_out[GPIO_C][7] = qdev_get_gpio_in(ssddev, 0);
1304 
1305             /* Make sure the select pin is high.  */
1306             qemu_irq_raise(gpio_out[GPIO_D][0]);
1307         }
1308     }
1309     if (board->dc4 & (1 << 28)) {
1310         DeviceState *enet;
1311 
1312         enet = qdev_new("stellaris_enet");
1313         object_property_add_child(soc_container, "enet", OBJECT(enet));
1314         if (nd) {
1315             qdev_set_nic_properties(enet, nd);
1316         } else {
1317             qdev_prop_set_macaddr(enet, "mac", mac.a);
1318         }
1319 
1320         sysbus_realize_and_unref(SYS_BUS_DEVICE(enet), &error_fatal);
1321         sysbus_mmio_map(SYS_BUS_DEVICE(enet), 0, 0x40048000);
1322         sysbus_connect_irq(SYS_BUS_DEVICE(enet), 0, qdev_get_gpio_in(nvic, 42));
1323     }
1324     if (board->peripherals & BP_GAMEPAD) {
1325         QList *gpad_keycode_list = qlist_new();
1326         static const int gpad_keycode[5] = {
1327             Q_KEY_CODE_UP, Q_KEY_CODE_DOWN, Q_KEY_CODE_LEFT,
1328             Q_KEY_CODE_RIGHT, Q_KEY_CODE_CTRL,
1329         };
1330         DeviceState *gpad;
1331 
1332         gpad = qdev_new(TYPE_STELLARIS_GAMEPAD);
1333         object_property_add_child(OBJECT(ms), "gamepad", OBJECT(gpad));
1334         for (i = 0; i < ARRAY_SIZE(gpad_keycode); i++) {
1335             qlist_append_int(gpad_keycode_list, gpad_keycode[i]);
1336         }
1337         qdev_prop_set_array(gpad, "keycodes", gpad_keycode_list);
1338         sysbus_realize_and_unref(SYS_BUS_DEVICE(gpad), &error_fatal);
1339 
1340         qdev_connect_gpio_out(gpad, 0,
1341                               qemu_irq_invert(gpio_in[GPIO_E][0])); /* up */
1342         qdev_connect_gpio_out(gpad, 1,
1343                               qemu_irq_invert(gpio_in[GPIO_E][1])); /* down */
1344         qdev_connect_gpio_out(gpad, 2,
1345                               qemu_irq_invert(gpio_in[GPIO_E][2])); /* left */
1346         qdev_connect_gpio_out(gpad, 3,
1347                               qemu_irq_invert(gpio_in[GPIO_E][3])); /* right */
1348         qdev_connect_gpio_out(gpad, 4,
1349                               qemu_irq_invert(gpio_in[GPIO_F][1])); /* select */
1350     }
1351     for (i = 0; i < 7; i++) {
1352         if (board->dc4 & (1 << i)) {
1353             for (j = 0; j < 8; j++) {
1354                 if (gpio_out[i][j]) {
1355                     qdev_connect_gpio_out(gpio_dev[i], j, gpio_out[i][j]);
1356                 }
1357             }
1358         }
1359     }
1360 
1361     /* Add dummy regions for the devices we don't implement yet,
1362      * so guest accesses don't cause unlogged crashes.
1363      */
1364     create_unimplemented_device("i2c-2", 0x40021000, 0x1000);
1365     create_unimplemented_device("PWM", 0x40028000, 0x1000);
1366     create_unimplemented_device("QEI-0", 0x4002c000, 0x1000);
1367     create_unimplemented_device("QEI-1", 0x4002d000, 0x1000);
1368     create_unimplemented_device("analogue-comparator", 0x4003c000, 0x1000);
1369     create_unimplemented_device("hibernation", 0x400fc000, 0x1000);
1370     create_unimplemented_device("flash-control", 0x400fd000, 0x1000);
1371 
1372     armv7m_load_kernel(ARMV7M(armv7m)->cpu, ms->kernel_filename, 0, flash_size);
1373 }
1374 
1375 /* FIXME: Figure out how to generate these from stellaris_boards.  */
1376 static void lm3s811evb_init(MachineState *machine)
1377 {
1378     stellaris_init(machine, &stellaris_boards[0]);
1379 }
1380 
1381 static void lm3s6965evb_init(MachineState *machine)
1382 {
1383     stellaris_init(machine, &stellaris_boards[1]);
1384 }
1385 
1386 /*
1387  * Stellaris LM3S811 Evaluation Board Schematics:
1388  * https://www.ti.com/lit/ug/symlink/spmu030.pdf
1389  */
1390 static void lm3s811evb_class_init(ObjectClass *oc, void *data)
1391 {
1392     MachineClass *mc = MACHINE_CLASS(oc);
1393 
1394     mc->desc = "Stellaris LM3S811EVB (Cortex-M3)";
1395     mc->init = lm3s811evb_init;
1396     mc->ignore_memory_transaction_failures = true;
1397     mc->default_cpu_type = ARM_CPU_TYPE_NAME("cortex-m3");
1398 }
1399 
1400 static const TypeInfo lm3s811evb_type = {
1401     .name = MACHINE_TYPE_NAME("lm3s811evb"),
1402     .parent = TYPE_MACHINE,
1403     .class_init = lm3s811evb_class_init,
1404 };
1405 
1406 /*
1407  * Stellaris: LM3S6965 Evaluation Board Schematics:
1408  * https://www.ti.com/lit/ug/symlink/spmu029.pdf
1409  */
1410 static void lm3s6965evb_class_init(ObjectClass *oc, void *data)
1411 {
1412     MachineClass *mc = MACHINE_CLASS(oc);
1413 
1414     mc->desc = "Stellaris LM3S6965EVB (Cortex-M3)";
1415     mc->init = lm3s6965evb_init;
1416     mc->ignore_memory_transaction_failures = true;
1417     mc->default_cpu_type = ARM_CPU_TYPE_NAME("cortex-m3");
1418 }
1419 
1420 static const TypeInfo lm3s6965evb_type = {
1421     .name = MACHINE_TYPE_NAME("lm3s6965evb"),
1422     .parent = TYPE_MACHINE,
1423     .class_init = lm3s6965evb_class_init,
1424 };
1425 
1426 static void stellaris_machine_init(void)
1427 {
1428     type_register_static(&lm3s811evb_type);
1429     type_register_static(&lm3s6965evb_type);
1430 }
1431 
1432 type_init(stellaris_machine_init)
1433 
1434 static void stellaris_i2c_class_init(ObjectClass *klass, void *data)
1435 {
1436     DeviceClass *dc = DEVICE_CLASS(klass);
1437     ResettableClass *rc = RESETTABLE_CLASS(klass);
1438 
1439     rc->phases.enter = stellaris_i2c_reset_enter;
1440     rc->phases.hold = stellaris_i2c_reset_hold;
1441     rc->phases.exit = stellaris_i2c_reset_exit;
1442     dc->vmsd = &vmstate_stellaris_i2c;
1443 }
1444 
1445 static const TypeInfo stellaris_i2c_info = {
1446     .name          = TYPE_STELLARIS_I2C,
1447     .parent        = TYPE_SYS_BUS_DEVICE,
1448     .instance_size = sizeof(stellaris_i2c_state),
1449     .instance_init = stellaris_i2c_init,
1450     .class_init    = stellaris_i2c_class_init,
1451 };
1452 
1453 static void stellaris_adc_class_init(ObjectClass *klass, void *data)
1454 {
1455     DeviceClass *dc = DEVICE_CLASS(klass);
1456     ResettableClass *rc = RESETTABLE_CLASS(klass);
1457 
1458     rc->phases.hold = stellaris_adc_reset_hold;
1459     dc->vmsd = &vmstate_stellaris_adc;
1460 }
1461 
1462 static const TypeInfo stellaris_adc_info = {
1463     .name          = TYPE_STELLARIS_ADC,
1464     .parent        = TYPE_SYS_BUS_DEVICE,
1465     .instance_size = sizeof(StellarisADCState),
1466     .instance_init = stellaris_adc_init,
1467     .class_init    = stellaris_adc_class_init,
1468 };
1469 
1470 static void stellaris_sys_class_init(ObjectClass *klass, void *data)
1471 {
1472     DeviceClass *dc = DEVICE_CLASS(klass);
1473     ResettableClass *rc = RESETTABLE_CLASS(klass);
1474 
1475     dc->vmsd = &vmstate_stellaris_sys;
1476     rc->phases.enter = stellaris_sys_reset_enter;
1477     rc->phases.hold = stellaris_sys_reset_hold;
1478     rc->phases.exit = stellaris_sys_reset_exit;
1479     device_class_set_props(dc, stellaris_sys_properties);
1480 }
1481 
1482 static const TypeInfo stellaris_sys_info = {
1483     .name = TYPE_STELLARIS_SYS,
1484     .parent = TYPE_SYS_BUS_DEVICE,
1485     .instance_size = sizeof(ssys_state),
1486     .instance_init = stellaris_sys_instance_init,
1487     .class_init = stellaris_sys_class_init,
1488 };
1489 
1490 static void stellaris_register_types(void)
1491 {
1492     type_register_static(&stellaris_i2c_info);
1493     type_register_static(&stellaris_adc_info);
1494     type_register_static(&stellaris_sys_info);
1495 }
1496 
1497 type_init(stellaris_register_types)
1498