1 /* 2 * Luminary Micro Stellaris peripherals 3 * 4 * Copyright (c) 2006 CodeSourcery. 5 * Written by Paul Brook 6 * 7 * This code is licensed under the GPL. 8 */ 9 10 #include "qemu/osdep.h" 11 #include "qapi/error.h" 12 #include "hw/sysbus.h" 13 #include "hw/ssi/ssi.h" 14 #include "hw/arm/arm.h" 15 #include "hw/devices.h" 16 #include "qemu/timer.h" 17 #include "hw/i2c/i2c.h" 18 #include "net/net.h" 19 #include "hw/boards.h" 20 #include "qemu/log.h" 21 #include "exec/address-spaces.h" 22 #include "sysemu/sysemu.h" 23 24 #define GPIO_A 0 25 #define GPIO_B 1 26 #define GPIO_C 2 27 #define GPIO_D 3 28 #define GPIO_E 4 29 #define GPIO_F 5 30 #define GPIO_G 6 31 32 #define BP_OLED_I2C 0x01 33 #define BP_OLED_SSI 0x02 34 #define BP_GAMEPAD 0x04 35 36 #define NUM_IRQ_LINES 64 37 38 typedef const struct { 39 const char *name; 40 uint32_t did0; 41 uint32_t did1; 42 uint32_t dc0; 43 uint32_t dc1; 44 uint32_t dc2; 45 uint32_t dc3; 46 uint32_t dc4; 47 uint32_t peripherals; 48 } stellaris_board_info; 49 50 /* General purpose timer module. */ 51 52 #define TYPE_STELLARIS_GPTM "stellaris-gptm" 53 #define STELLARIS_GPTM(obj) \ 54 OBJECT_CHECK(gptm_state, (obj), TYPE_STELLARIS_GPTM) 55 56 typedef struct gptm_state { 57 SysBusDevice parent_obj; 58 59 MemoryRegion iomem; 60 uint32_t config; 61 uint32_t mode[2]; 62 uint32_t control; 63 uint32_t state; 64 uint32_t mask; 65 uint32_t load[2]; 66 uint32_t match[2]; 67 uint32_t prescale[2]; 68 uint32_t match_prescale[2]; 69 uint32_t rtc; 70 int64_t tick[2]; 71 struct gptm_state *opaque[2]; 72 QEMUTimer *timer[2]; 73 /* The timers have an alternate output used to trigger the ADC. */ 74 qemu_irq trigger; 75 qemu_irq irq; 76 } gptm_state; 77 78 static void gptm_update_irq(gptm_state *s) 79 { 80 int level; 81 level = (s->state & s->mask) != 0; 82 qemu_set_irq(s->irq, level); 83 } 84 85 static void gptm_stop(gptm_state *s, int n) 86 { 87 timer_del(s->timer[n]); 88 } 89 90 static void gptm_reload(gptm_state *s, int n, int reset) 91 { 92 int64_t tick; 93 if (reset) 94 tick = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL); 95 else 96 tick = s->tick[n]; 97 98 if (s->config == 0) { 99 /* 32-bit CountDown. */ 100 uint32_t count; 101 count = s->load[0] | (s->load[1] << 16); 102 tick += (int64_t)count * system_clock_scale; 103 } else if (s->config == 1) { 104 /* 32-bit RTC. 1Hz tick. */ 105 tick += NANOSECONDS_PER_SECOND; 106 } else if (s->mode[n] == 0xa) { 107 /* PWM mode. Not implemented. */ 108 } else { 109 hw_error("TODO: 16-bit timer mode 0x%x\n", s->mode[n]); 110 } 111 s->tick[n] = tick; 112 timer_mod(s->timer[n], tick); 113 } 114 115 static void gptm_tick(void *opaque) 116 { 117 gptm_state **p = (gptm_state **)opaque; 118 gptm_state *s; 119 int n; 120 121 s = *p; 122 n = p - s->opaque; 123 if (s->config == 0) { 124 s->state |= 1; 125 if ((s->control & 0x20)) { 126 /* Output trigger. */ 127 qemu_irq_pulse(s->trigger); 128 } 129 if (s->mode[0] & 1) { 130 /* One-shot. */ 131 s->control &= ~1; 132 } else { 133 /* Periodic. */ 134 gptm_reload(s, 0, 0); 135 } 136 } else if (s->config == 1) { 137 /* RTC. */ 138 uint32_t match; 139 s->rtc++; 140 match = s->match[0] | (s->match[1] << 16); 141 if (s->rtc > match) 142 s->rtc = 0; 143 if (s->rtc == 0) { 144 s->state |= 8; 145 } 146 gptm_reload(s, 0, 0); 147 } else if (s->mode[n] == 0xa) { 148 /* PWM mode. Not implemented. */ 149 } else { 150 hw_error("TODO: 16-bit timer mode 0x%x\n", s->mode[n]); 151 } 152 gptm_update_irq(s); 153 } 154 155 static uint64_t gptm_read(void *opaque, hwaddr offset, 156 unsigned size) 157 { 158 gptm_state *s = (gptm_state *)opaque; 159 160 switch (offset) { 161 case 0x00: /* CFG */ 162 return s->config; 163 case 0x04: /* TAMR */ 164 return s->mode[0]; 165 case 0x08: /* TBMR */ 166 return s->mode[1]; 167 case 0x0c: /* CTL */ 168 return s->control; 169 case 0x18: /* IMR */ 170 return s->mask; 171 case 0x1c: /* RIS */ 172 return s->state; 173 case 0x20: /* MIS */ 174 return s->state & s->mask; 175 case 0x24: /* CR */ 176 return 0; 177 case 0x28: /* TAILR */ 178 return s->load[0] | ((s->config < 4) ? (s->load[1] << 16) : 0); 179 case 0x2c: /* TBILR */ 180 return s->load[1]; 181 case 0x30: /* TAMARCHR */ 182 return s->match[0] | ((s->config < 4) ? (s->match[1] << 16) : 0); 183 case 0x34: /* TBMATCHR */ 184 return s->match[1]; 185 case 0x38: /* TAPR */ 186 return s->prescale[0]; 187 case 0x3c: /* TBPR */ 188 return s->prescale[1]; 189 case 0x40: /* TAPMR */ 190 return s->match_prescale[0]; 191 case 0x44: /* TBPMR */ 192 return s->match_prescale[1]; 193 case 0x48: /* TAR */ 194 if (s->config == 1) { 195 return s->rtc; 196 } 197 qemu_log_mask(LOG_UNIMP, 198 "GPTM: read of TAR but timer read not supported"); 199 return 0; 200 case 0x4c: /* TBR */ 201 qemu_log_mask(LOG_UNIMP, 202 "GPTM: read of TBR but timer read not supported"); 203 return 0; 204 default: 205 qemu_log_mask(LOG_GUEST_ERROR, 206 "GPTM: read at bad offset 0x%x\n", (int)offset); 207 return 0; 208 } 209 } 210 211 static void gptm_write(void *opaque, hwaddr offset, 212 uint64_t value, unsigned size) 213 { 214 gptm_state *s = (gptm_state *)opaque; 215 uint32_t oldval; 216 217 /* The timers should be disabled before changing the configuration. 218 We take advantage of this and defer everything until the timer 219 is enabled. */ 220 switch (offset) { 221 case 0x00: /* CFG */ 222 s->config = value; 223 break; 224 case 0x04: /* TAMR */ 225 s->mode[0] = value; 226 break; 227 case 0x08: /* TBMR */ 228 s->mode[1] = value; 229 break; 230 case 0x0c: /* CTL */ 231 oldval = s->control; 232 s->control = value; 233 /* TODO: Implement pause. */ 234 if ((oldval ^ value) & 1) { 235 if (value & 1) { 236 gptm_reload(s, 0, 1); 237 } else { 238 gptm_stop(s, 0); 239 } 240 } 241 if (((oldval ^ value) & 0x100) && s->config >= 4) { 242 if (value & 0x100) { 243 gptm_reload(s, 1, 1); 244 } else { 245 gptm_stop(s, 1); 246 } 247 } 248 break; 249 case 0x18: /* IMR */ 250 s->mask = value & 0x77; 251 gptm_update_irq(s); 252 break; 253 case 0x24: /* CR */ 254 s->state &= ~value; 255 break; 256 case 0x28: /* TAILR */ 257 s->load[0] = value & 0xffff; 258 if (s->config < 4) { 259 s->load[1] = value >> 16; 260 } 261 break; 262 case 0x2c: /* TBILR */ 263 s->load[1] = value & 0xffff; 264 break; 265 case 0x30: /* TAMARCHR */ 266 s->match[0] = value & 0xffff; 267 if (s->config < 4) { 268 s->match[1] = value >> 16; 269 } 270 break; 271 case 0x34: /* TBMATCHR */ 272 s->match[1] = value >> 16; 273 break; 274 case 0x38: /* TAPR */ 275 s->prescale[0] = value; 276 break; 277 case 0x3c: /* TBPR */ 278 s->prescale[1] = value; 279 break; 280 case 0x40: /* TAPMR */ 281 s->match_prescale[0] = value; 282 break; 283 case 0x44: /* TBPMR */ 284 s->match_prescale[0] = value; 285 break; 286 default: 287 hw_error("gptm_write: Bad offset 0x%x\n", (int)offset); 288 } 289 gptm_update_irq(s); 290 } 291 292 static const MemoryRegionOps gptm_ops = { 293 .read = gptm_read, 294 .write = gptm_write, 295 .endianness = DEVICE_NATIVE_ENDIAN, 296 }; 297 298 static const VMStateDescription vmstate_stellaris_gptm = { 299 .name = "stellaris_gptm", 300 .version_id = 1, 301 .minimum_version_id = 1, 302 .fields = (VMStateField[]) { 303 VMSTATE_UINT32(config, gptm_state), 304 VMSTATE_UINT32_ARRAY(mode, gptm_state, 2), 305 VMSTATE_UINT32(control, gptm_state), 306 VMSTATE_UINT32(state, gptm_state), 307 VMSTATE_UINT32(mask, gptm_state), 308 VMSTATE_UNUSED(8), 309 VMSTATE_UINT32_ARRAY(load, gptm_state, 2), 310 VMSTATE_UINT32_ARRAY(match, gptm_state, 2), 311 VMSTATE_UINT32_ARRAY(prescale, gptm_state, 2), 312 VMSTATE_UINT32_ARRAY(match_prescale, gptm_state, 2), 313 VMSTATE_UINT32(rtc, gptm_state), 314 VMSTATE_INT64_ARRAY(tick, gptm_state, 2), 315 VMSTATE_TIMER_PTR_ARRAY(timer, gptm_state, 2), 316 VMSTATE_END_OF_LIST() 317 } 318 }; 319 320 static void stellaris_gptm_init(Object *obj) 321 { 322 DeviceState *dev = DEVICE(obj); 323 gptm_state *s = STELLARIS_GPTM(obj); 324 SysBusDevice *sbd = SYS_BUS_DEVICE(obj); 325 326 sysbus_init_irq(sbd, &s->irq); 327 qdev_init_gpio_out(dev, &s->trigger, 1); 328 329 memory_region_init_io(&s->iomem, obj, &gptm_ops, s, 330 "gptm", 0x1000); 331 sysbus_init_mmio(sbd, &s->iomem); 332 333 s->opaque[0] = s->opaque[1] = s; 334 s->timer[0] = timer_new_ns(QEMU_CLOCK_VIRTUAL, gptm_tick, &s->opaque[0]); 335 s->timer[1] = timer_new_ns(QEMU_CLOCK_VIRTUAL, gptm_tick, &s->opaque[1]); 336 } 337 338 339 /* System controller. */ 340 341 typedef struct { 342 MemoryRegion iomem; 343 uint32_t pborctl; 344 uint32_t ldopctl; 345 uint32_t int_status; 346 uint32_t int_mask; 347 uint32_t resc; 348 uint32_t rcc; 349 uint32_t rcc2; 350 uint32_t rcgc[3]; 351 uint32_t scgc[3]; 352 uint32_t dcgc[3]; 353 uint32_t clkvclr; 354 uint32_t ldoarst; 355 uint32_t user0; 356 uint32_t user1; 357 qemu_irq irq; 358 stellaris_board_info *board; 359 } ssys_state; 360 361 static void ssys_update(ssys_state *s) 362 { 363 qemu_set_irq(s->irq, (s->int_status & s->int_mask) != 0); 364 } 365 366 static uint32_t pllcfg_sandstorm[16] = { 367 0x31c0, /* 1 Mhz */ 368 0x1ae0, /* 1.8432 Mhz */ 369 0x18c0, /* 2 Mhz */ 370 0xd573, /* 2.4576 Mhz */ 371 0x37a6, /* 3.57954 Mhz */ 372 0x1ae2, /* 3.6864 Mhz */ 373 0x0c40, /* 4 Mhz */ 374 0x98bc, /* 4.906 Mhz */ 375 0x935b, /* 4.9152 Mhz */ 376 0x09c0, /* 5 Mhz */ 377 0x4dee, /* 5.12 Mhz */ 378 0x0c41, /* 6 Mhz */ 379 0x75db, /* 6.144 Mhz */ 380 0x1ae6, /* 7.3728 Mhz */ 381 0x0600, /* 8 Mhz */ 382 0x585b /* 8.192 Mhz */ 383 }; 384 385 static uint32_t pllcfg_fury[16] = { 386 0x3200, /* 1 Mhz */ 387 0x1b20, /* 1.8432 Mhz */ 388 0x1900, /* 2 Mhz */ 389 0xf42b, /* 2.4576 Mhz */ 390 0x37e3, /* 3.57954 Mhz */ 391 0x1b21, /* 3.6864 Mhz */ 392 0x0c80, /* 4 Mhz */ 393 0x98ee, /* 4.906 Mhz */ 394 0xd5b4, /* 4.9152 Mhz */ 395 0x0a00, /* 5 Mhz */ 396 0x4e27, /* 5.12 Mhz */ 397 0x1902, /* 6 Mhz */ 398 0xec1c, /* 6.144 Mhz */ 399 0x1b23, /* 7.3728 Mhz */ 400 0x0640, /* 8 Mhz */ 401 0xb11c /* 8.192 Mhz */ 402 }; 403 404 #define DID0_VER_MASK 0x70000000 405 #define DID0_VER_0 0x00000000 406 #define DID0_VER_1 0x10000000 407 408 #define DID0_CLASS_MASK 0x00FF0000 409 #define DID0_CLASS_SANDSTORM 0x00000000 410 #define DID0_CLASS_FURY 0x00010000 411 412 static int ssys_board_class(const ssys_state *s) 413 { 414 uint32_t did0 = s->board->did0; 415 switch (did0 & DID0_VER_MASK) { 416 case DID0_VER_0: 417 return DID0_CLASS_SANDSTORM; 418 case DID0_VER_1: 419 switch (did0 & DID0_CLASS_MASK) { 420 case DID0_CLASS_SANDSTORM: 421 case DID0_CLASS_FURY: 422 return did0 & DID0_CLASS_MASK; 423 } 424 /* for unknown classes, fall through */ 425 default: 426 hw_error("ssys_board_class: Unknown class 0x%08x\n", did0); 427 } 428 } 429 430 static uint64_t ssys_read(void *opaque, hwaddr offset, 431 unsigned size) 432 { 433 ssys_state *s = (ssys_state *)opaque; 434 435 switch (offset) { 436 case 0x000: /* DID0 */ 437 return s->board->did0; 438 case 0x004: /* DID1 */ 439 return s->board->did1; 440 case 0x008: /* DC0 */ 441 return s->board->dc0; 442 case 0x010: /* DC1 */ 443 return s->board->dc1; 444 case 0x014: /* DC2 */ 445 return s->board->dc2; 446 case 0x018: /* DC3 */ 447 return s->board->dc3; 448 case 0x01c: /* DC4 */ 449 return s->board->dc4; 450 case 0x030: /* PBORCTL */ 451 return s->pborctl; 452 case 0x034: /* LDOPCTL */ 453 return s->ldopctl; 454 case 0x040: /* SRCR0 */ 455 return 0; 456 case 0x044: /* SRCR1 */ 457 return 0; 458 case 0x048: /* SRCR2 */ 459 return 0; 460 case 0x050: /* RIS */ 461 return s->int_status; 462 case 0x054: /* IMC */ 463 return s->int_mask; 464 case 0x058: /* MISC */ 465 return s->int_status & s->int_mask; 466 case 0x05c: /* RESC */ 467 return s->resc; 468 case 0x060: /* RCC */ 469 return s->rcc; 470 case 0x064: /* PLLCFG */ 471 { 472 int xtal; 473 xtal = (s->rcc >> 6) & 0xf; 474 switch (ssys_board_class(s)) { 475 case DID0_CLASS_FURY: 476 return pllcfg_fury[xtal]; 477 case DID0_CLASS_SANDSTORM: 478 return pllcfg_sandstorm[xtal]; 479 default: 480 hw_error("ssys_read: Unhandled class for PLLCFG read.\n"); 481 return 0; 482 } 483 } 484 case 0x070: /* RCC2 */ 485 return s->rcc2; 486 case 0x100: /* RCGC0 */ 487 return s->rcgc[0]; 488 case 0x104: /* RCGC1 */ 489 return s->rcgc[1]; 490 case 0x108: /* RCGC2 */ 491 return s->rcgc[2]; 492 case 0x110: /* SCGC0 */ 493 return s->scgc[0]; 494 case 0x114: /* SCGC1 */ 495 return s->scgc[1]; 496 case 0x118: /* SCGC2 */ 497 return s->scgc[2]; 498 case 0x120: /* DCGC0 */ 499 return s->dcgc[0]; 500 case 0x124: /* DCGC1 */ 501 return s->dcgc[1]; 502 case 0x128: /* DCGC2 */ 503 return s->dcgc[2]; 504 case 0x150: /* CLKVCLR */ 505 return s->clkvclr; 506 case 0x160: /* LDOARST */ 507 return s->ldoarst; 508 case 0x1e0: /* USER0 */ 509 return s->user0; 510 case 0x1e4: /* USER1 */ 511 return s->user1; 512 default: 513 hw_error("ssys_read: Bad offset 0x%x\n", (int)offset); 514 return 0; 515 } 516 } 517 518 static bool ssys_use_rcc2(ssys_state *s) 519 { 520 return (s->rcc2 >> 31) & 0x1; 521 } 522 523 /* 524 * Caculate the sys. clock period in ms. 525 */ 526 static void ssys_calculate_system_clock(ssys_state *s) 527 { 528 if (ssys_use_rcc2(s)) { 529 system_clock_scale = 5 * (((s->rcc2 >> 23) & 0x3f) + 1); 530 } else { 531 system_clock_scale = 5 * (((s->rcc >> 23) & 0xf) + 1); 532 } 533 } 534 535 static void ssys_write(void *opaque, hwaddr offset, 536 uint64_t value, unsigned size) 537 { 538 ssys_state *s = (ssys_state *)opaque; 539 540 switch (offset) { 541 case 0x030: /* PBORCTL */ 542 s->pborctl = value & 0xffff; 543 break; 544 case 0x034: /* LDOPCTL */ 545 s->ldopctl = value & 0x1f; 546 break; 547 case 0x040: /* SRCR0 */ 548 case 0x044: /* SRCR1 */ 549 case 0x048: /* SRCR2 */ 550 fprintf(stderr, "Peripheral reset not implemented\n"); 551 break; 552 case 0x054: /* IMC */ 553 s->int_mask = value & 0x7f; 554 break; 555 case 0x058: /* MISC */ 556 s->int_status &= ~value; 557 break; 558 case 0x05c: /* RESC */ 559 s->resc = value & 0x3f; 560 break; 561 case 0x060: /* RCC */ 562 if ((s->rcc & (1 << 13)) != 0 && (value & (1 << 13)) == 0) { 563 /* PLL enable. */ 564 s->int_status |= (1 << 6); 565 } 566 s->rcc = value; 567 ssys_calculate_system_clock(s); 568 break; 569 case 0x070: /* RCC2 */ 570 if (ssys_board_class(s) == DID0_CLASS_SANDSTORM) { 571 break; 572 } 573 574 if ((s->rcc2 & (1 << 13)) != 0 && (value & (1 << 13)) == 0) { 575 /* PLL enable. */ 576 s->int_status |= (1 << 6); 577 } 578 s->rcc2 = value; 579 ssys_calculate_system_clock(s); 580 break; 581 case 0x100: /* RCGC0 */ 582 s->rcgc[0] = value; 583 break; 584 case 0x104: /* RCGC1 */ 585 s->rcgc[1] = value; 586 break; 587 case 0x108: /* RCGC2 */ 588 s->rcgc[2] = value; 589 break; 590 case 0x110: /* SCGC0 */ 591 s->scgc[0] = value; 592 break; 593 case 0x114: /* SCGC1 */ 594 s->scgc[1] = value; 595 break; 596 case 0x118: /* SCGC2 */ 597 s->scgc[2] = value; 598 break; 599 case 0x120: /* DCGC0 */ 600 s->dcgc[0] = value; 601 break; 602 case 0x124: /* DCGC1 */ 603 s->dcgc[1] = value; 604 break; 605 case 0x128: /* DCGC2 */ 606 s->dcgc[2] = value; 607 break; 608 case 0x150: /* CLKVCLR */ 609 s->clkvclr = value; 610 break; 611 case 0x160: /* LDOARST */ 612 s->ldoarst = value; 613 break; 614 default: 615 hw_error("ssys_write: Bad offset 0x%x\n", (int)offset); 616 } 617 ssys_update(s); 618 } 619 620 static const MemoryRegionOps ssys_ops = { 621 .read = ssys_read, 622 .write = ssys_write, 623 .endianness = DEVICE_NATIVE_ENDIAN, 624 }; 625 626 static void ssys_reset(void *opaque) 627 { 628 ssys_state *s = (ssys_state *)opaque; 629 630 s->pborctl = 0x7ffd; 631 s->rcc = 0x078e3ac0; 632 633 if (ssys_board_class(s) == DID0_CLASS_SANDSTORM) { 634 s->rcc2 = 0; 635 } else { 636 s->rcc2 = 0x07802810; 637 } 638 s->rcgc[0] = 1; 639 s->scgc[0] = 1; 640 s->dcgc[0] = 1; 641 ssys_calculate_system_clock(s); 642 } 643 644 static int stellaris_sys_post_load(void *opaque, int version_id) 645 { 646 ssys_state *s = opaque; 647 648 ssys_calculate_system_clock(s); 649 650 return 0; 651 } 652 653 static const VMStateDescription vmstate_stellaris_sys = { 654 .name = "stellaris_sys", 655 .version_id = 2, 656 .minimum_version_id = 1, 657 .post_load = stellaris_sys_post_load, 658 .fields = (VMStateField[]) { 659 VMSTATE_UINT32(pborctl, ssys_state), 660 VMSTATE_UINT32(ldopctl, ssys_state), 661 VMSTATE_UINT32(int_mask, ssys_state), 662 VMSTATE_UINT32(int_status, ssys_state), 663 VMSTATE_UINT32(resc, ssys_state), 664 VMSTATE_UINT32(rcc, ssys_state), 665 VMSTATE_UINT32_V(rcc2, ssys_state, 2), 666 VMSTATE_UINT32_ARRAY(rcgc, ssys_state, 3), 667 VMSTATE_UINT32_ARRAY(scgc, ssys_state, 3), 668 VMSTATE_UINT32_ARRAY(dcgc, ssys_state, 3), 669 VMSTATE_UINT32(clkvclr, ssys_state), 670 VMSTATE_UINT32(ldoarst, ssys_state), 671 VMSTATE_END_OF_LIST() 672 } 673 }; 674 675 static int stellaris_sys_init(uint32_t base, qemu_irq irq, 676 stellaris_board_info * board, 677 uint8_t *macaddr) 678 { 679 ssys_state *s; 680 681 s = g_new0(ssys_state, 1); 682 s->irq = irq; 683 s->board = board; 684 /* Most devices come preprogrammed with a MAC address in the user data. */ 685 s->user0 = macaddr[0] | (macaddr[1] << 8) | (macaddr[2] << 16); 686 s->user1 = macaddr[3] | (macaddr[4] << 8) | (macaddr[5] << 16); 687 688 memory_region_init_io(&s->iomem, NULL, &ssys_ops, s, "ssys", 0x00001000); 689 memory_region_add_subregion(get_system_memory(), base, &s->iomem); 690 ssys_reset(s); 691 vmstate_register(NULL, -1, &vmstate_stellaris_sys, s); 692 return 0; 693 } 694 695 696 /* I2C controller. */ 697 698 #define TYPE_STELLARIS_I2C "stellaris-i2c" 699 #define STELLARIS_I2C(obj) \ 700 OBJECT_CHECK(stellaris_i2c_state, (obj), TYPE_STELLARIS_I2C) 701 702 typedef struct { 703 SysBusDevice parent_obj; 704 705 I2CBus *bus; 706 qemu_irq irq; 707 MemoryRegion iomem; 708 uint32_t msa; 709 uint32_t mcs; 710 uint32_t mdr; 711 uint32_t mtpr; 712 uint32_t mimr; 713 uint32_t mris; 714 uint32_t mcr; 715 } stellaris_i2c_state; 716 717 #define STELLARIS_I2C_MCS_BUSY 0x01 718 #define STELLARIS_I2C_MCS_ERROR 0x02 719 #define STELLARIS_I2C_MCS_ADRACK 0x04 720 #define STELLARIS_I2C_MCS_DATACK 0x08 721 #define STELLARIS_I2C_MCS_ARBLST 0x10 722 #define STELLARIS_I2C_MCS_IDLE 0x20 723 #define STELLARIS_I2C_MCS_BUSBSY 0x40 724 725 static uint64_t stellaris_i2c_read(void *opaque, hwaddr offset, 726 unsigned size) 727 { 728 stellaris_i2c_state *s = (stellaris_i2c_state *)opaque; 729 730 switch (offset) { 731 case 0x00: /* MSA */ 732 return s->msa; 733 case 0x04: /* MCS */ 734 /* We don't emulate timing, so the controller is never busy. */ 735 return s->mcs | STELLARIS_I2C_MCS_IDLE; 736 case 0x08: /* MDR */ 737 return s->mdr; 738 case 0x0c: /* MTPR */ 739 return s->mtpr; 740 case 0x10: /* MIMR */ 741 return s->mimr; 742 case 0x14: /* MRIS */ 743 return s->mris; 744 case 0x18: /* MMIS */ 745 return s->mris & s->mimr; 746 case 0x20: /* MCR */ 747 return s->mcr; 748 default: 749 hw_error("strllaris_i2c_read: Bad offset 0x%x\n", (int)offset); 750 return 0; 751 } 752 } 753 754 static void stellaris_i2c_update(stellaris_i2c_state *s) 755 { 756 int level; 757 758 level = (s->mris & s->mimr) != 0; 759 qemu_set_irq(s->irq, level); 760 } 761 762 static void stellaris_i2c_write(void *opaque, hwaddr offset, 763 uint64_t value, unsigned size) 764 { 765 stellaris_i2c_state *s = (stellaris_i2c_state *)opaque; 766 767 switch (offset) { 768 case 0x00: /* MSA */ 769 s->msa = value & 0xff; 770 break; 771 case 0x04: /* MCS */ 772 if ((s->mcr & 0x10) == 0) { 773 /* Disabled. Do nothing. */ 774 break; 775 } 776 /* Grab the bus if this is starting a transfer. */ 777 if ((value & 2) && (s->mcs & STELLARIS_I2C_MCS_BUSBSY) == 0) { 778 if (i2c_start_transfer(s->bus, s->msa >> 1, s->msa & 1)) { 779 s->mcs |= STELLARIS_I2C_MCS_ARBLST; 780 } else { 781 s->mcs &= ~STELLARIS_I2C_MCS_ARBLST; 782 s->mcs |= STELLARIS_I2C_MCS_BUSBSY; 783 } 784 } 785 /* If we don't have the bus then indicate an error. */ 786 if (!i2c_bus_busy(s->bus) 787 || (s->mcs & STELLARIS_I2C_MCS_BUSBSY) == 0) { 788 s->mcs |= STELLARIS_I2C_MCS_ERROR; 789 break; 790 } 791 s->mcs &= ~STELLARIS_I2C_MCS_ERROR; 792 if (value & 1) { 793 /* Transfer a byte. */ 794 /* TODO: Handle errors. */ 795 if (s->msa & 1) { 796 /* Recv */ 797 s->mdr = i2c_recv(s->bus) & 0xff; 798 } else { 799 /* Send */ 800 i2c_send(s->bus, s->mdr); 801 } 802 /* Raise an interrupt. */ 803 s->mris |= 1; 804 } 805 if (value & 4) { 806 /* Finish transfer. */ 807 i2c_end_transfer(s->bus); 808 s->mcs &= ~STELLARIS_I2C_MCS_BUSBSY; 809 } 810 break; 811 case 0x08: /* MDR */ 812 s->mdr = value & 0xff; 813 break; 814 case 0x0c: /* MTPR */ 815 s->mtpr = value & 0xff; 816 break; 817 case 0x10: /* MIMR */ 818 s->mimr = 1; 819 break; 820 case 0x1c: /* MICR */ 821 s->mris &= ~value; 822 break; 823 case 0x20: /* MCR */ 824 if (value & 1) 825 hw_error( 826 "stellaris_i2c_write: Loopback not implemented\n"); 827 if (value & 0x20) 828 hw_error( 829 "stellaris_i2c_write: Slave mode not implemented\n"); 830 s->mcr = value & 0x31; 831 break; 832 default: 833 hw_error("stellaris_i2c_write: Bad offset 0x%x\n", 834 (int)offset); 835 } 836 stellaris_i2c_update(s); 837 } 838 839 static void stellaris_i2c_reset(stellaris_i2c_state *s) 840 { 841 if (s->mcs & STELLARIS_I2C_MCS_BUSBSY) 842 i2c_end_transfer(s->bus); 843 844 s->msa = 0; 845 s->mcs = 0; 846 s->mdr = 0; 847 s->mtpr = 1; 848 s->mimr = 0; 849 s->mris = 0; 850 s->mcr = 0; 851 stellaris_i2c_update(s); 852 } 853 854 static const MemoryRegionOps stellaris_i2c_ops = { 855 .read = stellaris_i2c_read, 856 .write = stellaris_i2c_write, 857 .endianness = DEVICE_NATIVE_ENDIAN, 858 }; 859 860 static const VMStateDescription vmstate_stellaris_i2c = { 861 .name = "stellaris_i2c", 862 .version_id = 1, 863 .minimum_version_id = 1, 864 .fields = (VMStateField[]) { 865 VMSTATE_UINT32(msa, stellaris_i2c_state), 866 VMSTATE_UINT32(mcs, stellaris_i2c_state), 867 VMSTATE_UINT32(mdr, stellaris_i2c_state), 868 VMSTATE_UINT32(mtpr, stellaris_i2c_state), 869 VMSTATE_UINT32(mimr, stellaris_i2c_state), 870 VMSTATE_UINT32(mris, stellaris_i2c_state), 871 VMSTATE_UINT32(mcr, stellaris_i2c_state), 872 VMSTATE_END_OF_LIST() 873 } 874 }; 875 876 static void stellaris_i2c_init(Object *obj) 877 { 878 DeviceState *dev = DEVICE(obj); 879 stellaris_i2c_state *s = STELLARIS_I2C(obj); 880 SysBusDevice *sbd = SYS_BUS_DEVICE(obj); 881 I2CBus *bus; 882 883 sysbus_init_irq(sbd, &s->irq); 884 bus = i2c_init_bus(dev, "i2c"); 885 s->bus = bus; 886 887 memory_region_init_io(&s->iomem, obj, &stellaris_i2c_ops, s, 888 "i2c", 0x1000); 889 sysbus_init_mmio(sbd, &s->iomem); 890 /* ??? For now we only implement the master interface. */ 891 stellaris_i2c_reset(s); 892 } 893 894 /* Analogue to Digital Converter. This is only partially implemented, 895 enough for applications that use a combined ADC and timer tick. */ 896 897 #define STELLARIS_ADC_EM_CONTROLLER 0 898 #define STELLARIS_ADC_EM_COMP 1 899 #define STELLARIS_ADC_EM_EXTERNAL 4 900 #define STELLARIS_ADC_EM_TIMER 5 901 #define STELLARIS_ADC_EM_PWM0 6 902 #define STELLARIS_ADC_EM_PWM1 7 903 #define STELLARIS_ADC_EM_PWM2 8 904 905 #define STELLARIS_ADC_FIFO_EMPTY 0x0100 906 #define STELLARIS_ADC_FIFO_FULL 0x1000 907 908 #define TYPE_STELLARIS_ADC "stellaris-adc" 909 #define STELLARIS_ADC(obj) \ 910 OBJECT_CHECK(stellaris_adc_state, (obj), TYPE_STELLARIS_ADC) 911 912 typedef struct StellarisADCState { 913 SysBusDevice parent_obj; 914 915 MemoryRegion iomem; 916 uint32_t actss; 917 uint32_t ris; 918 uint32_t im; 919 uint32_t emux; 920 uint32_t ostat; 921 uint32_t ustat; 922 uint32_t sspri; 923 uint32_t sac; 924 struct { 925 uint32_t state; 926 uint32_t data[16]; 927 } fifo[4]; 928 uint32_t ssmux[4]; 929 uint32_t ssctl[4]; 930 uint32_t noise; 931 qemu_irq irq[4]; 932 } stellaris_adc_state; 933 934 static uint32_t stellaris_adc_fifo_read(stellaris_adc_state *s, int n) 935 { 936 int tail; 937 938 tail = s->fifo[n].state & 0xf; 939 if (s->fifo[n].state & STELLARIS_ADC_FIFO_EMPTY) { 940 s->ustat |= 1 << n; 941 } else { 942 s->fifo[n].state = (s->fifo[n].state & ~0xf) | ((tail + 1) & 0xf); 943 s->fifo[n].state &= ~STELLARIS_ADC_FIFO_FULL; 944 if (tail + 1 == ((s->fifo[n].state >> 4) & 0xf)) 945 s->fifo[n].state |= STELLARIS_ADC_FIFO_EMPTY; 946 } 947 return s->fifo[n].data[tail]; 948 } 949 950 static void stellaris_adc_fifo_write(stellaris_adc_state *s, int n, 951 uint32_t value) 952 { 953 int head; 954 955 /* TODO: Real hardware has limited size FIFOs. We have a full 16 entry 956 FIFO fir each sequencer. */ 957 head = (s->fifo[n].state >> 4) & 0xf; 958 if (s->fifo[n].state & STELLARIS_ADC_FIFO_FULL) { 959 s->ostat |= 1 << n; 960 return; 961 } 962 s->fifo[n].data[head] = value; 963 head = (head + 1) & 0xf; 964 s->fifo[n].state &= ~STELLARIS_ADC_FIFO_EMPTY; 965 s->fifo[n].state = (s->fifo[n].state & ~0xf0) | (head << 4); 966 if ((s->fifo[n].state & 0xf) == head) 967 s->fifo[n].state |= STELLARIS_ADC_FIFO_FULL; 968 } 969 970 static void stellaris_adc_update(stellaris_adc_state *s) 971 { 972 int level; 973 int n; 974 975 for (n = 0; n < 4; n++) { 976 level = (s->ris & s->im & (1 << n)) != 0; 977 qemu_set_irq(s->irq[n], level); 978 } 979 } 980 981 static void stellaris_adc_trigger(void *opaque, int irq, int level) 982 { 983 stellaris_adc_state *s = (stellaris_adc_state *)opaque; 984 int n; 985 986 for (n = 0; n < 4; n++) { 987 if ((s->actss & (1 << n)) == 0) { 988 continue; 989 } 990 991 if (((s->emux >> (n * 4)) & 0xff) != 5) { 992 continue; 993 } 994 995 /* Some applications use the ADC as a random number source, so introduce 996 some variation into the signal. */ 997 s->noise = s->noise * 314159 + 1; 998 /* ??? actual inputs not implemented. Return an arbitrary value. */ 999 stellaris_adc_fifo_write(s, n, 0x200 + ((s->noise >> 16) & 7)); 1000 s->ris |= (1 << n); 1001 stellaris_adc_update(s); 1002 } 1003 } 1004 1005 static void stellaris_adc_reset(stellaris_adc_state *s) 1006 { 1007 int n; 1008 1009 for (n = 0; n < 4; n++) { 1010 s->ssmux[n] = 0; 1011 s->ssctl[n] = 0; 1012 s->fifo[n].state = STELLARIS_ADC_FIFO_EMPTY; 1013 } 1014 } 1015 1016 static uint64_t stellaris_adc_read(void *opaque, hwaddr offset, 1017 unsigned size) 1018 { 1019 stellaris_adc_state *s = (stellaris_adc_state *)opaque; 1020 1021 /* TODO: Implement this. */ 1022 if (offset >= 0x40 && offset < 0xc0) { 1023 int n; 1024 n = (offset - 0x40) >> 5; 1025 switch (offset & 0x1f) { 1026 case 0x00: /* SSMUX */ 1027 return s->ssmux[n]; 1028 case 0x04: /* SSCTL */ 1029 return s->ssctl[n]; 1030 case 0x08: /* SSFIFO */ 1031 return stellaris_adc_fifo_read(s, n); 1032 case 0x0c: /* SSFSTAT */ 1033 return s->fifo[n].state; 1034 default: 1035 break; 1036 } 1037 } 1038 switch (offset) { 1039 case 0x00: /* ACTSS */ 1040 return s->actss; 1041 case 0x04: /* RIS */ 1042 return s->ris; 1043 case 0x08: /* IM */ 1044 return s->im; 1045 case 0x0c: /* ISC */ 1046 return s->ris & s->im; 1047 case 0x10: /* OSTAT */ 1048 return s->ostat; 1049 case 0x14: /* EMUX */ 1050 return s->emux; 1051 case 0x18: /* USTAT */ 1052 return s->ustat; 1053 case 0x20: /* SSPRI */ 1054 return s->sspri; 1055 case 0x30: /* SAC */ 1056 return s->sac; 1057 default: 1058 hw_error("strllaris_adc_read: Bad offset 0x%x\n", 1059 (int)offset); 1060 return 0; 1061 } 1062 } 1063 1064 static void stellaris_adc_write(void *opaque, hwaddr offset, 1065 uint64_t value, unsigned size) 1066 { 1067 stellaris_adc_state *s = (stellaris_adc_state *)opaque; 1068 1069 /* TODO: Implement this. */ 1070 if (offset >= 0x40 && offset < 0xc0) { 1071 int n; 1072 n = (offset - 0x40) >> 5; 1073 switch (offset & 0x1f) { 1074 case 0x00: /* SSMUX */ 1075 s->ssmux[n] = value & 0x33333333; 1076 return; 1077 case 0x04: /* SSCTL */ 1078 if (value != 6) { 1079 hw_error("ADC: Unimplemented sequence %" PRIx64 "\n", 1080 value); 1081 } 1082 s->ssctl[n] = value; 1083 return; 1084 default: 1085 break; 1086 } 1087 } 1088 switch (offset) { 1089 case 0x00: /* ACTSS */ 1090 s->actss = value & 0xf; 1091 break; 1092 case 0x08: /* IM */ 1093 s->im = value; 1094 break; 1095 case 0x0c: /* ISC */ 1096 s->ris &= ~value; 1097 break; 1098 case 0x10: /* OSTAT */ 1099 s->ostat &= ~value; 1100 break; 1101 case 0x14: /* EMUX */ 1102 s->emux = value; 1103 break; 1104 case 0x18: /* USTAT */ 1105 s->ustat &= ~value; 1106 break; 1107 case 0x20: /* SSPRI */ 1108 s->sspri = value; 1109 break; 1110 case 0x28: /* PSSI */ 1111 hw_error("Not implemented: ADC sample initiate\n"); 1112 break; 1113 case 0x30: /* SAC */ 1114 s->sac = value; 1115 break; 1116 default: 1117 hw_error("stellaris_adc_write: Bad offset 0x%x\n", (int)offset); 1118 } 1119 stellaris_adc_update(s); 1120 } 1121 1122 static const MemoryRegionOps stellaris_adc_ops = { 1123 .read = stellaris_adc_read, 1124 .write = stellaris_adc_write, 1125 .endianness = DEVICE_NATIVE_ENDIAN, 1126 }; 1127 1128 static const VMStateDescription vmstate_stellaris_adc = { 1129 .name = "stellaris_adc", 1130 .version_id = 1, 1131 .minimum_version_id = 1, 1132 .fields = (VMStateField[]) { 1133 VMSTATE_UINT32(actss, stellaris_adc_state), 1134 VMSTATE_UINT32(ris, stellaris_adc_state), 1135 VMSTATE_UINT32(im, stellaris_adc_state), 1136 VMSTATE_UINT32(emux, stellaris_adc_state), 1137 VMSTATE_UINT32(ostat, stellaris_adc_state), 1138 VMSTATE_UINT32(ustat, stellaris_adc_state), 1139 VMSTATE_UINT32(sspri, stellaris_adc_state), 1140 VMSTATE_UINT32(sac, stellaris_adc_state), 1141 VMSTATE_UINT32(fifo[0].state, stellaris_adc_state), 1142 VMSTATE_UINT32_ARRAY(fifo[0].data, stellaris_adc_state, 16), 1143 VMSTATE_UINT32(ssmux[0], stellaris_adc_state), 1144 VMSTATE_UINT32(ssctl[0], stellaris_adc_state), 1145 VMSTATE_UINT32(fifo[1].state, stellaris_adc_state), 1146 VMSTATE_UINT32_ARRAY(fifo[1].data, stellaris_adc_state, 16), 1147 VMSTATE_UINT32(ssmux[1], stellaris_adc_state), 1148 VMSTATE_UINT32(ssctl[1], stellaris_adc_state), 1149 VMSTATE_UINT32(fifo[2].state, stellaris_adc_state), 1150 VMSTATE_UINT32_ARRAY(fifo[2].data, stellaris_adc_state, 16), 1151 VMSTATE_UINT32(ssmux[2], stellaris_adc_state), 1152 VMSTATE_UINT32(ssctl[2], stellaris_adc_state), 1153 VMSTATE_UINT32(fifo[3].state, stellaris_adc_state), 1154 VMSTATE_UINT32_ARRAY(fifo[3].data, stellaris_adc_state, 16), 1155 VMSTATE_UINT32(ssmux[3], stellaris_adc_state), 1156 VMSTATE_UINT32(ssctl[3], stellaris_adc_state), 1157 VMSTATE_UINT32(noise, stellaris_adc_state), 1158 VMSTATE_END_OF_LIST() 1159 } 1160 }; 1161 1162 static void stellaris_adc_init(Object *obj) 1163 { 1164 DeviceState *dev = DEVICE(obj); 1165 stellaris_adc_state *s = STELLARIS_ADC(obj); 1166 SysBusDevice *sbd = SYS_BUS_DEVICE(obj); 1167 int n; 1168 1169 for (n = 0; n < 4; n++) { 1170 sysbus_init_irq(sbd, &s->irq[n]); 1171 } 1172 1173 memory_region_init_io(&s->iomem, obj, &stellaris_adc_ops, s, 1174 "adc", 0x1000); 1175 sysbus_init_mmio(sbd, &s->iomem); 1176 stellaris_adc_reset(s); 1177 qdev_init_gpio_in(dev, stellaris_adc_trigger, 1); 1178 } 1179 1180 static 1181 void do_sys_reset(void *opaque, int n, int level) 1182 { 1183 if (level) { 1184 qemu_system_reset_request(); 1185 } 1186 } 1187 1188 /* Board init. */ 1189 static stellaris_board_info stellaris_boards[] = { 1190 { "LM3S811EVB", 1191 0, 1192 0x0032000e, 1193 0x001f001f, /* dc0 */ 1194 0x001132bf, 1195 0x01071013, 1196 0x3f0f01ff, 1197 0x0000001f, 1198 BP_OLED_I2C 1199 }, 1200 { "LM3S6965EVB", 1201 0x10010002, 1202 0x1073402e, 1203 0x00ff007f, /* dc0 */ 1204 0x001133ff, 1205 0x030f5317, 1206 0x0f0f87ff, 1207 0x5000007f, 1208 BP_OLED_SSI | BP_GAMEPAD 1209 } 1210 }; 1211 1212 static void stellaris_init(const char *kernel_filename, const char *cpu_model, 1213 stellaris_board_info *board) 1214 { 1215 static const int uart_irq[] = {5, 6, 33, 34}; 1216 static const int timer_irq[] = {19, 21, 23, 35}; 1217 static const uint32_t gpio_addr[7] = 1218 { 0x40004000, 0x40005000, 0x40006000, 0x40007000, 1219 0x40024000, 0x40025000, 0x40026000}; 1220 static const int gpio_irq[7] = {0, 1, 2, 3, 4, 30, 31}; 1221 1222 DeviceState *gpio_dev[7], *nvic; 1223 qemu_irq gpio_in[7][8]; 1224 qemu_irq gpio_out[7][8]; 1225 qemu_irq adc; 1226 int sram_size; 1227 int flash_size; 1228 I2CBus *i2c; 1229 DeviceState *dev; 1230 int i; 1231 int j; 1232 1233 MemoryRegion *sram = g_new(MemoryRegion, 1); 1234 MemoryRegion *flash = g_new(MemoryRegion, 1); 1235 MemoryRegion *system_memory = get_system_memory(); 1236 1237 flash_size = (((board->dc0 & 0xffff) + 1) << 1) * 1024; 1238 sram_size = ((board->dc0 >> 18) + 1) * 1024; 1239 1240 /* Flash programming is done via the SCU, so pretend it is ROM. */ 1241 memory_region_init_ram(flash, NULL, "stellaris.flash", flash_size, 1242 &error_fatal); 1243 vmstate_register_ram_global(flash); 1244 memory_region_set_readonly(flash, true); 1245 memory_region_add_subregion(system_memory, 0, flash); 1246 1247 memory_region_init_ram(sram, NULL, "stellaris.sram", sram_size, 1248 &error_fatal); 1249 vmstate_register_ram_global(sram); 1250 memory_region_add_subregion(system_memory, 0x20000000, sram); 1251 1252 nvic = armv7m_init(system_memory, flash_size, NUM_IRQ_LINES, 1253 kernel_filename, cpu_model); 1254 1255 qdev_connect_gpio_out_named(nvic, "SYSRESETREQ", 0, 1256 qemu_allocate_irq(&do_sys_reset, NULL, 0)); 1257 1258 if (board->dc1 & (1 << 16)) { 1259 dev = sysbus_create_varargs(TYPE_STELLARIS_ADC, 0x40038000, 1260 qdev_get_gpio_in(nvic, 14), 1261 qdev_get_gpio_in(nvic, 15), 1262 qdev_get_gpio_in(nvic, 16), 1263 qdev_get_gpio_in(nvic, 17), 1264 NULL); 1265 adc = qdev_get_gpio_in(dev, 0); 1266 } else { 1267 adc = NULL; 1268 } 1269 for (i = 0; i < 4; i++) { 1270 if (board->dc2 & (0x10000 << i)) { 1271 dev = sysbus_create_simple(TYPE_STELLARIS_GPTM, 1272 0x40030000 + i * 0x1000, 1273 qdev_get_gpio_in(nvic, timer_irq[i])); 1274 /* TODO: This is incorrect, but we get away with it because 1275 the ADC output is only ever pulsed. */ 1276 qdev_connect_gpio_out(dev, 0, adc); 1277 } 1278 } 1279 1280 stellaris_sys_init(0x400fe000, qdev_get_gpio_in(nvic, 28), 1281 board, nd_table[0].macaddr.a); 1282 1283 for (i = 0; i < 7; i++) { 1284 if (board->dc4 & (1 << i)) { 1285 gpio_dev[i] = sysbus_create_simple("pl061_luminary", gpio_addr[i], 1286 qdev_get_gpio_in(nvic, 1287 gpio_irq[i])); 1288 for (j = 0; j < 8; j++) { 1289 gpio_in[i][j] = qdev_get_gpio_in(gpio_dev[i], j); 1290 gpio_out[i][j] = NULL; 1291 } 1292 } 1293 } 1294 1295 if (board->dc2 & (1 << 12)) { 1296 dev = sysbus_create_simple(TYPE_STELLARIS_I2C, 0x40020000, 1297 qdev_get_gpio_in(nvic, 8)); 1298 i2c = (I2CBus *)qdev_get_child_bus(dev, "i2c"); 1299 if (board->peripherals & BP_OLED_I2C) { 1300 i2c_create_slave(i2c, "ssd0303", 0x3d); 1301 } 1302 } 1303 1304 for (i = 0; i < 4; i++) { 1305 if (board->dc2 & (1 << i)) { 1306 sysbus_create_simple("pl011_luminary", 0x4000c000 + i * 0x1000, 1307 qdev_get_gpio_in(nvic, uart_irq[i])); 1308 } 1309 } 1310 if (board->dc2 & (1 << 4)) { 1311 dev = sysbus_create_simple("pl022", 0x40008000, 1312 qdev_get_gpio_in(nvic, 7)); 1313 if (board->peripherals & BP_OLED_SSI) { 1314 void *bus; 1315 DeviceState *sddev; 1316 DeviceState *ssddev; 1317 1318 /* Some boards have both an OLED controller and SD card connected to 1319 * the same SSI port, with the SD card chip select connected to a 1320 * GPIO pin. Technically the OLED chip select is connected to the 1321 * SSI Fss pin. We do not bother emulating that as both devices 1322 * should never be selected simultaneously, and our OLED controller 1323 * ignores stray 0xff commands that occur when deselecting the SD 1324 * card. 1325 */ 1326 bus = qdev_get_child_bus(dev, "ssi"); 1327 1328 sddev = ssi_create_slave(bus, "ssi-sd"); 1329 ssddev = ssi_create_slave(bus, "ssd0323"); 1330 gpio_out[GPIO_D][0] = qemu_irq_split( 1331 qdev_get_gpio_in_named(sddev, SSI_GPIO_CS, 0), 1332 qdev_get_gpio_in_named(ssddev, SSI_GPIO_CS, 0)); 1333 gpio_out[GPIO_C][7] = qdev_get_gpio_in(ssddev, 0); 1334 1335 /* Make sure the select pin is high. */ 1336 qemu_irq_raise(gpio_out[GPIO_D][0]); 1337 } 1338 } 1339 if (board->dc4 & (1 << 28)) { 1340 DeviceState *enet; 1341 1342 qemu_check_nic_model(&nd_table[0], "stellaris"); 1343 1344 enet = qdev_create(NULL, "stellaris_enet"); 1345 qdev_set_nic_properties(enet, &nd_table[0]); 1346 qdev_init_nofail(enet); 1347 sysbus_mmio_map(SYS_BUS_DEVICE(enet), 0, 0x40048000); 1348 sysbus_connect_irq(SYS_BUS_DEVICE(enet), 0, qdev_get_gpio_in(nvic, 42)); 1349 } 1350 if (board->peripherals & BP_GAMEPAD) { 1351 qemu_irq gpad_irq[5]; 1352 static const int gpad_keycode[5] = { 0xc8, 0xd0, 0xcb, 0xcd, 0x1d }; 1353 1354 gpad_irq[0] = qemu_irq_invert(gpio_in[GPIO_E][0]); /* up */ 1355 gpad_irq[1] = qemu_irq_invert(gpio_in[GPIO_E][1]); /* down */ 1356 gpad_irq[2] = qemu_irq_invert(gpio_in[GPIO_E][2]); /* left */ 1357 gpad_irq[3] = qemu_irq_invert(gpio_in[GPIO_E][3]); /* right */ 1358 gpad_irq[4] = qemu_irq_invert(gpio_in[GPIO_F][1]); /* select */ 1359 1360 stellaris_gamepad_init(5, gpad_irq, gpad_keycode); 1361 } 1362 for (i = 0; i < 7; i++) { 1363 if (board->dc4 & (1 << i)) { 1364 for (j = 0; j < 8; j++) { 1365 if (gpio_out[i][j]) { 1366 qdev_connect_gpio_out(gpio_dev[i], j, gpio_out[i][j]); 1367 } 1368 } 1369 } 1370 } 1371 } 1372 1373 /* FIXME: Figure out how to generate these from stellaris_boards. */ 1374 static void lm3s811evb_init(MachineState *machine) 1375 { 1376 const char *cpu_model = machine->cpu_model; 1377 const char *kernel_filename = machine->kernel_filename; 1378 stellaris_init(kernel_filename, cpu_model, &stellaris_boards[0]); 1379 } 1380 1381 static void lm3s6965evb_init(MachineState *machine) 1382 { 1383 const char *cpu_model = machine->cpu_model; 1384 const char *kernel_filename = machine->kernel_filename; 1385 stellaris_init(kernel_filename, cpu_model, &stellaris_boards[1]); 1386 } 1387 1388 static void lm3s811evb_class_init(ObjectClass *oc, void *data) 1389 { 1390 MachineClass *mc = MACHINE_CLASS(oc); 1391 1392 mc->desc = "Stellaris LM3S811EVB"; 1393 mc->init = lm3s811evb_init; 1394 } 1395 1396 static const TypeInfo lm3s811evb_type = { 1397 .name = MACHINE_TYPE_NAME("lm3s811evb"), 1398 .parent = TYPE_MACHINE, 1399 .class_init = lm3s811evb_class_init, 1400 }; 1401 1402 static void lm3s6965evb_class_init(ObjectClass *oc, void *data) 1403 { 1404 MachineClass *mc = MACHINE_CLASS(oc); 1405 1406 mc->desc = "Stellaris LM3S6965EVB"; 1407 mc->init = lm3s6965evb_init; 1408 } 1409 1410 static const TypeInfo lm3s6965evb_type = { 1411 .name = MACHINE_TYPE_NAME("lm3s6965evb"), 1412 .parent = TYPE_MACHINE, 1413 .class_init = lm3s6965evb_class_init, 1414 }; 1415 1416 static void stellaris_machine_init(void) 1417 { 1418 type_register_static(&lm3s811evb_type); 1419 type_register_static(&lm3s6965evb_type); 1420 } 1421 1422 type_init(stellaris_machine_init) 1423 1424 static void stellaris_i2c_class_init(ObjectClass *klass, void *data) 1425 { 1426 DeviceClass *dc = DEVICE_CLASS(klass); 1427 1428 dc->vmsd = &vmstate_stellaris_i2c; 1429 } 1430 1431 static const TypeInfo stellaris_i2c_info = { 1432 .name = TYPE_STELLARIS_I2C, 1433 .parent = TYPE_SYS_BUS_DEVICE, 1434 .instance_size = sizeof(stellaris_i2c_state), 1435 .instance_init = stellaris_i2c_init, 1436 .class_init = stellaris_i2c_class_init, 1437 }; 1438 1439 static void stellaris_gptm_class_init(ObjectClass *klass, void *data) 1440 { 1441 DeviceClass *dc = DEVICE_CLASS(klass); 1442 1443 dc->vmsd = &vmstate_stellaris_gptm; 1444 } 1445 1446 static const TypeInfo stellaris_gptm_info = { 1447 .name = TYPE_STELLARIS_GPTM, 1448 .parent = TYPE_SYS_BUS_DEVICE, 1449 .instance_size = sizeof(gptm_state), 1450 .instance_init = stellaris_gptm_init, 1451 .class_init = stellaris_gptm_class_init, 1452 }; 1453 1454 static void stellaris_adc_class_init(ObjectClass *klass, void *data) 1455 { 1456 DeviceClass *dc = DEVICE_CLASS(klass); 1457 1458 dc->vmsd = &vmstate_stellaris_adc; 1459 } 1460 1461 static const TypeInfo stellaris_adc_info = { 1462 .name = TYPE_STELLARIS_ADC, 1463 .parent = TYPE_SYS_BUS_DEVICE, 1464 .instance_size = sizeof(stellaris_adc_state), 1465 .instance_init = stellaris_adc_init, 1466 .class_init = stellaris_adc_class_init, 1467 }; 1468 1469 static void stellaris_register_types(void) 1470 { 1471 type_register_static(&stellaris_i2c_info); 1472 type_register_static(&stellaris_gptm_info); 1473 type_register_static(&stellaris_adc_info); 1474 } 1475 1476 type_init(stellaris_register_types) 1477