xref: /qemu/hw/arm/stellaris.c (revision 513823e7521a09ed7ad1e32e6454bac3b2cbf52d)
1 /*
2  * Luminary Micro Stellaris peripherals
3  *
4  * Copyright (c) 2006 CodeSourcery.
5  * Written by Paul Brook
6  *
7  * This code is licensed under the GPL.
8  */
9 
10 #include "qemu/osdep.h"
11 #include "qemu/bitops.h"
12 #include "qapi/error.h"
13 #include "hw/core/split-irq.h"
14 #include "hw/sysbus.h"
15 #include "hw/sd/sd.h"
16 #include "hw/ssi/ssi.h"
17 #include "hw/arm/boot.h"
18 #include "qemu/timer.h"
19 #include "hw/i2c/i2c.h"
20 #include "net/net.h"
21 #include "hw/boards.h"
22 #include "qemu/log.h"
23 #include "exec/address-spaces.h"
24 #include "system/system.h"
25 #include "hw/arm/armv7m.h"
26 #include "hw/char/pl011.h"
27 #include "hw/input/stellaris_gamepad.h"
28 #include "hw/irq.h"
29 #include "hw/watchdog/cmsdk-apb-watchdog.h"
30 #include "migration/vmstate.h"
31 #include "hw/misc/unimp.h"
32 #include "hw/timer/stellaris-gptm.h"
33 #include "hw/qdev-clock.h"
34 #include "qom/object.h"
35 #include "qobject/qlist.h"
36 #include "ui/input.h"
37 
38 #define GPIO_A 0
39 #define GPIO_B 1
40 #define GPIO_C 2
41 #define GPIO_D 3
42 #define GPIO_E 4
43 #define GPIO_F 5
44 #define GPIO_G 6
45 
46 #define BP_OLED_I2C  0x01
47 #define BP_OLED_SSI  0x02
48 #define BP_GAMEPAD   0x04
49 
50 #define NUM_IRQ_LINES 64
51 #define NUM_PRIO_BITS 3
52 
53 #define NUM_GPIO    7
54 #define NUM_UART    4
55 #define NUM_GPTM    4
56 #define NUM_I2C     2
57 
58 /*
59  * See Stellaris Data Sheet chapter 5.2.5 "System Control",
60  * Register 13 .. 17: Device Capabilities 0 .. 4 (DC0 .. DC4).
61  */
62 #define DC1_WDT          3
63 #define DC1_HIB          6
64 #define DC1_MPU          7
65 #define DC1_ADC          16
66 #define DC1_PWM          20
67 #define DC2_UART(n)     (n)
68 #define DC2_SSI          4
69 #define DC2_QEI(n)      (8 + n)
70 #define DC2_I2C(n)      (12 + 2 * n)
71 #define DC2_GPTM(n)     (16 + n)
72 #define DC2_COMP(n)     (24 + n)
73 #define DC4_GPIO(n)     (n)
74 #define DC4_EMAC         28
75 
76 #define DEV_CAP(_dc, _cap) extract32(board->dc##_dc, DC##_dc##_##_cap, 1)
77 
78 typedef const struct {
79     const char *name;
80     uint32_t did0;
81     uint32_t did1;
82     uint32_t dc0;
83     uint32_t dc1;
84     uint32_t dc2;
85     uint32_t dc3;
86     uint32_t dc4;
87     uint32_t peripherals;
88 } stellaris_board_info;
89 
90 /* System controller.  */
91 
92 #define TYPE_STELLARIS_SYS "stellaris-sys"
93 OBJECT_DECLARE_SIMPLE_TYPE(ssys_state, STELLARIS_SYS)
94 
95 struct ssys_state {
96     SysBusDevice parent_obj;
97 
98     MemoryRegion iomem;
99     uint32_t pborctl;
100     uint32_t ldopctl;
101     uint32_t int_status;
102     uint32_t int_mask;
103     uint32_t resc;
104     uint32_t rcc;
105     uint32_t rcc2;
106     uint32_t rcgc[3];
107     uint32_t scgc[3];
108     uint32_t dcgc[3];
109     uint32_t clkvclr;
110     uint32_t ldoarst;
111     qemu_irq irq;
112     Clock *sysclk;
113     /* Properties (all read-only registers) */
114     uint32_t user0;
115     uint32_t user1;
116     uint32_t did0;
117     uint32_t did1;
118     uint32_t dc0;
119     uint32_t dc1;
120     uint32_t dc2;
121     uint32_t dc3;
122     uint32_t dc4;
123 };
124 
125 static void ssys_update(ssys_state *s)
126 {
127   qemu_set_irq(s->irq, (s->int_status & s->int_mask) != 0);
128 }
129 
130 static const uint32_t pllcfg_sandstorm[16] = {
131     0x31c0, /* 1 Mhz */
132     0x1ae0, /* 1.8432 Mhz */
133     0x18c0, /* 2 Mhz */
134     0xd573, /* 2.4576 Mhz */
135     0x37a6, /* 3.57954 Mhz */
136     0x1ae2, /* 3.6864 Mhz */
137     0x0c40, /* 4 Mhz */
138     0x98bc, /* 4.906 Mhz */
139     0x935b, /* 4.9152 Mhz */
140     0x09c0, /* 5 Mhz */
141     0x4dee, /* 5.12 Mhz */
142     0x0c41, /* 6 Mhz */
143     0x75db, /* 6.144 Mhz */
144     0x1ae6, /* 7.3728 Mhz */
145     0x0600, /* 8 Mhz */
146     0x585b /* 8.192 Mhz */
147 };
148 
149 static const uint32_t pllcfg_fury[16] = {
150     0x3200, /* 1 Mhz */
151     0x1b20, /* 1.8432 Mhz */
152     0x1900, /* 2 Mhz */
153     0xf42b, /* 2.4576 Mhz */
154     0x37e3, /* 3.57954 Mhz */
155     0x1b21, /* 3.6864 Mhz */
156     0x0c80, /* 4 Mhz */
157     0x98ee, /* 4.906 Mhz */
158     0xd5b4, /* 4.9152 Mhz */
159     0x0a00, /* 5 Mhz */
160     0x4e27, /* 5.12 Mhz */
161     0x1902, /* 6 Mhz */
162     0xec1c, /* 6.144 Mhz */
163     0x1b23, /* 7.3728 Mhz */
164     0x0640, /* 8 Mhz */
165     0xb11c /* 8.192 Mhz */
166 };
167 
168 #define DID0_VER_MASK        0x70000000
169 #define DID0_VER_0           0x00000000
170 #define DID0_VER_1           0x10000000
171 
172 #define DID0_CLASS_MASK      0x00FF0000
173 #define DID0_CLASS_SANDSTORM 0x00000000
174 #define DID0_CLASS_FURY      0x00010000
175 
176 static int ssys_board_class(const ssys_state *s)
177 {
178     uint32_t did0 = s->did0;
179     switch (did0 & DID0_VER_MASK) {
180     case DID0_VER_0:
181         return DID0_CLASS_SANDSTORM;
182     case DID0_VER_1:
183         switch (did0 & DID0_CLASS_MASK) {
184         case DID0_CLASS_SANDSTORM:
185         case DID0_CLASS_FURY:
186             return did0 & DID0_CLASS_MASK;
187         }
188         /* for unknown classes, fall through */
189     default:
190         /* This can only happen if the hardwired constant did0 value
191          * in this board's stellaris_board_info struct is wrong.
192          */
193         g_assert_not_reached();
194     }
195 }
196 
197 static uint64_t ssys_read(void *opaque, hwaddr offset,
198                           unsigned size)
199 {
200     ssys_state *s = (ssys_state *)opaque;
201 
202     switch (offset) {
203     case 0x000: /* DID0 */
204         return s->did0;
205     case 0x004: /* DID1 */
206         return s->did1;
207     case 0x008: /* DC0 */
208         return s->dc0;
209     case 0x010: /* DC1 */
210         return s->dc1;
211     case 0x014: /* DC2 */
212         return s->dc2;
213     case 0x018: /* DC3 */
214         return s->dc3;
215     case 0x01c: /* DC4 */
216         return s->dc4;
217     case 0x030: /* PBORCTL */
218         return s->pborctl;
219     case 0x034: /* LDOPCTL */
220         return s->ldopctl;
221     case 0x040: /* SRCR0 */
222         return 0;
223     case 0x044: /* SRCR1 */
224         return 0;
225     case 0x048: /* SRCR2 */
226         return 0;
227     case 0x050: /* RIS */
228         return s->int_status;
229     case 0x054: /* IMC */
230         return s->int_mask;
231     case 0x058: /* MISC */
232         return s->int_status & s->int_mask;
233     case 0x05c: /* RESC */
234         return s->resc;
235     case 0x060: /* RCC */
236         return s->rcc;
237     case 0x064: /* PLLCFG */
238         {
239             int xtal;
240             xtal = (s->rcc >> 6) & 0xf;
241             switch (ssys_board_class(s)) {
242             case DID0_CLASS_FURY:
243                 return pllcfg_fury[xtal];
244             case DID0_CLASS_SANDSTORM:
245                 return pllcfg_sandstorm[xtal];
246             default:
247                 g_assert_not_reached();
248             }
249         }
250     case 0x070: /* RCC2 */
251         return s->rcc2;
252     case 0x100: /* RCGC0 */
253         return s->rcgc[0];
254     case 0x104: /* RCGC1 */
255         return s->rcgc[1];
256     case 0x108: /* RCGC2 */
257         return s->rcgc[2];
258     case 0x110: /* SCGC0 */
259         return s->scgc[0];
260     case 0x114: /* SCGC1 */
261         return s->scgc[1];
262     case 0x118: /* SCGC2 */
263         return s->scgc[2];
264     case 0x120: /* DCGC0 */
265         return s->dcgc[0];
266     case 0x124: /* DCGC1 */
267         return s->dcgc[1];
268     case 0x128: /* DCGC2 */
269         return s->dcgc[2];
270     case 0x150: /* CLKVCLR */
271         return s->clkvclr;
272     case 0x160: /* LDOARST */
273         return s->ldoarst;
274     case 0x1e0: /* USER0 */
275         return s->user0;
276     case 0x1e4: /* USER1 */
277         return s->user1;
278     default:
279         qemu_log_mask(LOG_GUEST_ERROR,
280                       "SSYS: read at bad offset 0x%x\n", (int)offset);
281         return 0;
282     }
283 }
284 
285 static bool ssys_use_rcc2(ssys_state *s)
286 {
287     return (s->rcc2 >> 31) & 0x1;
288 }
289 
290 /*
291  * Calculate the system clock period. We only want to propagate
292  * this change to the rest of the system if we're not being called
293  * from migration post-load.
294  */
295 static void ssys_calculate_system_clock(ssys_state *s, bool propagate_clock)
296 {
297     int period_ns;
298     /*
299      * SYSDIV field specifies divisor: 0 == /1, 1 == /2, etc.  Input
300      * clock is 200MHz, which is a period of 5 ns. Dividing the clock
301      * frequency by X is the same as multiplying the period by X.
302      */
303     if (ssys_use_rcc2(s)) {
304         period_ns = 5 * (((s->rcc2 >> 23) & 0x3f) + 1);
305     } else {
306         period_ns = 5 * (((s->rcc >> 23) & 0xf) + 1);
307     }
308     clock_set_ns(s->sysclk, period_ns);
309     if (propagate_clock) {
310         clock_propagate(s->sysclk);
311     }
312 }
313 
314 static void ssys_write(void *opaque, hwaddr offset,
315                        uint64_t value, unsigned size)
316 {
317     ssys_state *s = (ssys_state *)opaque;
318 
319     switch (offset) {
320     case 0x030: /* PBORCTL */
321         s->pborctl = value & 0xffff;
322         break;
323     case 0x034: /* LDOPCTL */
324         s->ldopctl = value & 0x1f;
325         break;
326     case 0x040: /* SRCR0 */
327     case 0x044: /* SRCR1 */
328     case 0x048: /* SRCR2 */
329         qemu_log_mask(LOG_UNIMP, "Peripheral reset not implemented\n");
330         break;
331     case 0x054: /* IMC */
332         s->int_mask = value & 0x7f;
333         break;
334     case 0x058: /* MISC */
335         s->int_status &= ~value;
336         break;
337     case 0x05c: /* RESC */
338         s->resc = value & 0x3f;
339         break;
340     case 0x060: /* RCC */
341         if ((s->rcc & (1 << 13)) != 0 && (value & (1 << 13)) == 0) {
342             /* PLL enable.  */
343             s->int_status |= (1 << 6);
344         }
345         s->rcc = value;
346         ssys_calculate_system_clock(s, true);
347         break;
348     case 0x070: /* RCC2 */
349         if (ssys_board_class(s) == DID0_CLASS_SANDSTORM) {
350             break;
351         }
352 
353         if ((s->rcc2 & (1 << 13)) != 0 && (value & (1 << 13)) == 0) {
354             /* PLL enable.  */
355             s->int_status |= (1 << 6);
356         }
357         s->rcc2 = value;
358         ssys_calculate_system_clock(s, true);
359         break;
360     case 0x100: /* RCGC0 */
361         s->rcgc[0] = value;
362         break;
363     case 0x104: /* RCGC1 */
364         s->rcgc[1] = value;
365         break;
366     case 0x108: /* RCGC2 */
367         s->rcgc[2] = value;
368         break;
369     case 0x110: /* SCGC0 */
370         s->scgc[0] = value;
371         break;
372     case 0x114: /* SCGC1 */
373         s->scgc[1] = value;
374         break;
375     case 0x118: /* SCGC2 */
376         s->scgc[2] = value;
377         break;
378     case 0x120: /* DCGC0 */
379         s->dcgc[0] = value;
380         break;
381     case 0x124: /* DCGC1 */
382         s->dcgc[1] = value;
383         break;
384     case 0x128: /* DCGC2 */
385         s->dcgc[2] = value;
386         break;
387     case 0x150: /* CLKVCLR */
388         s->clkvclr = value;
389         break;
390     case 0x160: /* LDOARST */
391         s->ldoarst = value;
392         break;
393     default:
394         qemu_log_mask(LOG_GUEST_ERROR,
395                       "SSYS: write at bad offset 0x%x\n", (int)offset);
396     }
397     ssys_update(s);
398 }
399 
400 static const MemoryRegionOps ssys_ops = {
401     .read = ssys_read,
402     .write = ssys_write,
403     .endianness = DEVICE_NATIVE_ENDIAN,
404 };
405 
406 static void stellaris_sys_reset_enter(Object *obj, ResetType type)
407 {
408     ssys_state *s = STELLARIS_SYS(obj);
409 
410     s->pborctl = 0x7ffd;
411     s->rcc = 0x078e3ac0;
412 
413     if (ssys_board_class(s) == DID0_CLASS_SANDSTORM) {
414         s->rcc2 = 0;
415     } else {
416         s->rcc2 = 0x07802810;
417     }
418     s->rcgc[0] = 1;
419     s->scgc[0] = 1;
420     s->dcgc[0] = 1;
421 }
422 
423 static void stellaris_sys_reset_hold(Object *obj, ResetType type)
424 {
425     ssys_state *s = STELLARIS_SYS(obj);
426 
427     /* OK to propagate clocks from the hold phase */
428     ssys_calculate_system_clock(s, true);
429 }
430 
431 static void stellaris_sys_reset_exit(Object *obj, ResetType type)
432 {
433 }
434 
435 static int stellaris_sys_post_load(void *opaque, int version_id)
436 {
437     ssys_state *s = opaque;
438 
439     ssys_calculate_system_clock(s, false);
440 
441     return 0;
442 }
443 
444 static const VMStateDescription vmstate_stellaris_sys = {
445     .name = "stellaris_sys",
446     .version_id = 2,
447     .minimum_version_id = 1,
448     .post_load = stellaris_sys_post_load,
449     .fields = (const VMStateField[]) {
450         VMSTATE_UINT32(pborctl, ssys_state),
451         VMSTATE_UINT32(ldopctl, ssys_state),
452         VMSTATE_UINT32(int_mask, ssys_state),
453         VMSTATE_UINT32(int_status, ssys_state),
454         VMSTATE_UINT32(resc, ssys_state),
455         VMSTATE_UINT32(rcc, ssys_state),
456         VMSTATE_UINT32_V(rcc2, ssys_state, 2),
457         VMSTATE_UINT32_ARRAY(rcgc, ssys_state, 3),
458         VMSTATE_UINT32_ARRAY(scgc, ssys_state, 3),
459         VMSTATE_UINT32_ARRAY(dcgc, ssys_state, 3),
460         VMSTATE_UINT32(clkvclr, ssys_state),
461         VMSTATE_UINT32(ldoarst, ssys_state),
462         /* No field for sysclk -- handled in post-load instead */
463         VMSTATE_END_OF_LIST()
464     }
465 };
466 
467 static const Property stellaris_sys_properties[] = {
468     DEFINE_PROP_UINT32("user0", ssys_state, user0, 0),
469     DEFINE_PROP_UINT32("user1", ssys_state, user1, 0),
470     DEFINE_PROP_UINT32("did0", ssys_state, did0, 0),
471     DEFINE_PROP_UINT32("did1", ssys_state, did1, 0),
472     DEFINE_PROP_UINT32("dc0", ssys_state, dc0, 0),
473     DEFINE_PROP_UINT32("dc1", ssys_state, dc1, 0),
474     DEFINE_PROP_UINT32("dc2", ssys_state, dc2, 0),
475     DEFINE_PROP_UINT32("dc3", ssys_state, dc3, 0),
476     DEFINE_PROP_UINT32("dc4", ssys_state, dc4, 0),
477 };
478 
479 static void stellaris_sys_instance_init(Object *obj)
480 {
481     ssys_state *s = STELLARIS_SYS(obj);
482     SysBusDevice *sbd = SYS_BUS_DEVICE(s);
483 
484     memory_region_init_io(&s->iomem, obj, &ssys_ops, s, "ssys", 0x00001000);
485     sysbus_init_mmio(sbd, &s->iomem);
486     sysbus_init_irq(sbd, &s->irq);
487     s->sysclk = qdev_init_clock_out(DEVICE(s), "SYSCLK");
488 }
489 
490 /*
491  * I2C controller.
492  * ??? For now we only implement the master interface.
493  */
494 
495 #define TYPE_STELLARIS_I2C "stellaris-i2c"
496 OBJECT_DECLARE_SIMPLE_TYPE(stellaris_i2c_state, STELLARIS_I2C)
497 
498 struct stellaris_i2c_state {
499     SysBusDevice parent_obj;
500 
501     I2CBus *bus;
502     qemu_irq irq;
503     MemoryRegion iomem;
504     uint32_t msa;
505     uint32_t mcs;
506     uint32_t mdr;
507     uint32_t mtpr;
508     uint32_t mimr;
509     uint32_t mris;
510     uint32_t mcr;
511 };
512 
513 #define STELLARIS_I2C_MCS_BUSY    0x01
514 #define STELLARIS_I2C_MCS_ERROR   0x02
515 #define STELLARIS_I2C_MCS_ADRACK  0x04
516 #define STELLARIS_I2C_MCS_DATACK  0x08
517 #define STELLARIS_I2C_MCS_ARBLST  0x10
518 #define STELLARIS_I2C_MCS_IDLE    0x20
519 #define STELLARIS_I2C_MCS_BUSBSY  0x40
520 
521 static uint64_t stellaris_i2c_read(void *opaque, hwaddr offset,
522                                    unsigned size)
523 {
524     stellaris_i2c_state *s = (stellaris_i2c_state *)opaque;
525 
526     switch (offset) {
527     case 0x00: /* MSA */
528         return s->msa;
529     case 0x04: /* MCS */
530         /* We don't emulate timing, so the controller is never busy.  */
531         return s->mcs | STELLARIS_I2C_MCS_IDLE;
532     case 0x08: /* MDR */
533         return s->mdr;
534     case 0x0c: /* MTPR */
535         return s->mtpr;
536     case 0x10: /* MIMR */
537         return s->mimr;
538     case 0x14: /* MRIS */
539         return s->mris;
540     case 0x18: /* MMIS */
541         return s->mris & s->mimr;
542     case 0x20: /* MCR */
543         return s->mcr;
544     default:
545         qemu_log_mask(LOG_GUEST_ERROR,
546                       "stellaris_i2c: read at bad offset 0x%x\n", (int)offset);
547         return 0;
548     }
549 }
550 
551 static void stellaris_i2c_update(stellaris_i2c_state *s)
552 {
553     int level;
554 
555     level = (s->mris & s->mimr) != 0;
556     qemu_set_irq(s->irq, level);
557 }
558 
559 static void stellaris_i2c_write(void *opaque, hwaddr offset,
560                                 uint64_t value, unsigned size)
561 {
562     stellaris_i2c_state *s = (stellaris_i2c_state *)opaque;
563 
564     switch (offset) {
565     case 0x00: /* MSA */
566         s->msa = value & 0xff;
567         break;
568     case 0x04: /* MCS */
569         if ((s->mcr & 0x10) == 0) {
570             /* Disabled.  Do nothing.  */
571             break;
572         }
573         /* Grab the bus if this is starting a transfer.  */
574         if ((value & 2) && (s->mcs & STELLARIS_I2C_MCS_BUSBSY) == 0) {
575             if (i2c_start_transfer(s->bus, s->msa >> 1, s->msa & 1)) {
576                 s->mcs |= STELLARIS_I2C_MCS_ARBLST;
577             } else {
578                 s->mcs &= ~STELLARIS_I2C_MCS_ARBLST;
579                 s->mcs |= STELLARIS_I2C_MCS_BUSBSY;
580             }
581         }
582         /* If we don't have the bus then indicate an error.  */
583         if (!i2c_bus_busy(s->bus)
584                 || (s->mcs & STELLARIS_I2C_MCS_BUSBSY) == 0) {
585             s->mcs |= STELLARIS_I2C_MCS_ERROR;
586             break;
587         }
588         s->mcs &= ~STELLARIS_I2C_MCS_ERROR;
589         if (value & 1) {
590             /* Transfer a byte.  */
591             /* TODO: Handle errors.  */
592             if (s->msa & 1) {
593                 /* Recv */
594                 s->mdr = i2c_recv(s->bus);
595             } else {
596                 /* Send */
597                 i2c_send(s->bus, s->mdr);
598             }
599             /* Raise an interrupt.  */
600             s->mris |= 1;
601         }
602         if (value & 4) {
603             /* Finish transfer.  */
604             i2c_end_transfer(s->bus);
605             s->mcs &= ~STELLARIS_I2C_MCS_BUSBSY;
606         }
607         break;
608     case 0x08: /* MDR */
609         s->mdr = value & 0xff;
610         break;
611     case 0x0c: /* MTPR */
612         s->mtpr = value & 0xff;
613         break;
614     case 0x10: /* MIMR */
615         s->mimr = 1;
616         break;
617     case 0x1c: /* MICR */
618         s->mris &= ~value;
619         break;
620     case 0x20: /* MCR */
621         if (value & 1) {
622             qemu_log_mask(LOG_UNIMP,
623                           "stellaris_i2c: Loopback not implemented\n");
624         }
625         if (value & 0x20) {
626             qemu_log_mask(LOG_UNIMP,
627                           "stellaris_i2c: Slave mode not implemented\n");
628         }
629         s->mcr = value & 0x31;
630         break;
631     default:
632         qemu_log_mask(LOG_GUEST_ERROR,
633                       "stellaris_i2c: write at bad offset 0x%x\n", (int)offset);
634     }
635     stellaris_i2c_update(s);
636 }
637 
638 static void stellaris_i2c_reset_enter(Object *obj, ResetType type)
639 {
640     stellaris_i2c_state *s = STELLARIS_I2C(obj);
641 
642     if (s->mcs & STELLARIS_I2C_MCS_BUSBSY)
643         i2c_end_transfer(s->bus);
644 }
645 
646 static void stellaris_i2c_reset_hold(Object *obj, ResetType type)
647 {
648     stellaris_i2c_state *s = STELLARIS_I2C(obj);
649 
650     s->msa = 0;
651     s->mcs = 0;
652     s->mdr = 0;
653     s->mtpr = 1;
654     s->mimr = 0;
655     s->mris = 0;
656     s->mcr = 0;
657 }
658 
659 static void stellaris_i2c_reset_exit(Object *obj, ResetType type)
660 {
661     stellaris_i2c_state *s = STELLARIS_I2C(obj);
662 
663     stellaris_i2c_update(s);
664 }
665 
666 static const MemoryRegionOps stellaris_i2c_ops = {
667     .read = stellaris_i2c_read,
668     .write = stellaris_i2c_write,
669     .endianness = DEVICE_NATIVE_ENDIAN,
670 };
671 
672 static const VMStateDescription vmstate_stellaris_i2c = {
673     .name = "stellaris_i2c",
674     .version_id = 1,
675     .minimum_version_id = 1,
676     .fields = (const VMStateField[]) {
677         VMSTATE_UINT32(msa, stellaris_i2c_state),
678         VMSTATE_UINT32(mcs, stellaris_i2c_state),
679         VMSTATE_UINT32(mdr, stellaris_i2c_state),
680         VMSTATE_UINT32(mtpr, stellaris_i2c_state),
681         VMSTATE_UINT32(mimr, stellaris_i2c_state),
682         VMSTATE_UINT32(mris, stellaris_i2c_state),
683         VMSTATE_UINT32(mcr, stellaris_i2c_state),
684         VMSTATE_END_OF_LIST()
685     }
686 };
687 
688 static void stellaris_i2c_init(Object *obj)
689 {
690     DeviceState *dev = DEVICE(obj);
691     stellaris_i2c_state *s = STELLARIS_I2C(obj);
692     SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
693     I2CBus *bus;
694 
695     sysbus_init_irq(sbd, &s->irq);
696     bus = i2c_init_bus(dev, "i2c");
697     s->bus = bus;
698 
699     memory_region_init_io(&s->iomem, obj, &stellaris_i2c_ops, s,
700                           "i2c", 0x1000);
701     sysbus_init_mmio(sbd, &s->iomem);
702 }
703 
704 /* Analogue to Digital Converter.  This is only partially implemented,
705    enough for applications that use a combined ADC and timer tick.  */
706 
707 #define STELLARIS_ADC_EM_CONTROLLER 0
708 #define STELLARIS_ADC_EM_COMP       1
709 #define STELLARIS_ADC_EM_EXTERNAL   4
710 #define STELLARIS_ADC_EM_TIMER      5
711 #define STELLARIS_ADC_EM_PWM0       6
712 #define STELLARIS_ADC_EM_PWM1       7
713 #define STELLARIS_ADC_EM_PWM2       8
714 
715 #define STELLARIS_ADC_FIFO_EMPTY    0x0100
716 #define STELLARIS_ADC_FIFO_FULL     0x1000
717 
718 #define TYPE_STELLARIS_ADC "stellaris-adc"
719 typedef struct StellarisADCState StellarisADCState;
720 DECLARE_INSTANCE_CHECKER(StellarisADCState, STELLARIS_ADC, TYPE_STELLARIS_ADC)
721 
722 struct StellarisADCState {
723     SysBusDevice parent_obj;
724 
725     MemoryRegion iomem;
726     uint32_t actss;
727     uint32_t ris;
728     uint32_t im;
729     uint32_t emux;
730     uint32_t ostat;
731     uint32_t ustat;
732     uint32_t sspri;
733     uint32_t sac;
734     struct {
735         uint32_t state;
736         uint32_t data[16];
737     } fifo[4];
738     uint32_t ssmux[4];
739     uint32_t ssctl[4];
740     uint32_t noise;
741     qemu_irq irq[4];
742 };
743 
744 static uint32_t stellaris_adc_fifo_read(StellarisADCState *s, int n)
745 {
746     int tail;
747 
748     tail = s->fifo[n].state & 0xf;
749     if (s->fifo[n].state & STELLARIS_ADC_FIFO_EMPTY) {
750         s->ustat |= 1 << n;
751     } else {
752         s->fifo[n].state = (s->fifo[n].state & ~0xf) | ((tail + 1) & 0xf);
753         s->fifo[n].state &= ~STELLARIS_ADC_FIFO_FULL;
754         if (tail + 1 == ((s->fifo[n].state >> 4) & 0xf))
755             s->fifo[n].state |= STELLARIS_ADC_FIFO_EMPTY;
756     }
757     return s->fifo[n].data[tail];
758 }
759 
760 static void stellaris_adc_fifo_write(StellarisADCState *s, int n,
761                                      uint32_t value)
762 {
763     int head;
764 
765     /* TODO: Real hardware has limited size FIFOs.  We have a full 16 entry
766        FIFO fir each sequencer.  */
767     head = (s->fifo[n].state >> 4) & 0xf;
768     if (s->fifo[n].state & STELLARIS_ADC_FIFO_FULL) {
769         s->ostat |= 1 << n;
770         return;
771     }
772     s->fifo[n].data[head] = value;
773     head = (head + 1) & 0xf;
774     s->fifo[n].state &= ~STELLARIS_ADC_FIFO_EMPTY;
775     s->fifo[n].state = (s->fifo[n].state & ~0xf0) | (head << 4);
776     if ((s->fifo[n].state & 0xf) == head)
777         s->fifo[n].state |= STELLARIS_ADC_FIFO_FULL;
778 }
779 
780 static void stellaris_adc_update(StellarisADCState *s)
781 {
782     int level;
783     int n;
784 
785     for (n = 0; n < 4; n++) {
786         level = (s->ris & s->im & (1 << n)) != 0;
787         qemu_set_irq(s->irq[n], level);
788     }
789 }
790 
791 static void stellaris_adc_trigger(void *opaque, int irq, int level)
792 {
793     StellarisADCState *s = opaque;
794     int n;
795 
796     for (n = 0; n < 4; n++) {
797         if ((s->actss & (1 << n)) == 0) {
798             continue;
799         }
800 
801         if (((s->emux >> (n * 4)) & 0xff) != 5) {
802             continue;
803         }
804 
805         /* Some applications use the ADC as a random number source, so introduce
806            some variation into the signal.  */
807         s->noise = s->noise * 314159 + 1;
808         /* ??? actual inputs not implemented.  Return an arbitrary value.  */
809         stellaris_adc_fifo_write(s, n, 0x200 + ((s->noise >> 16) & 7));
810         s->ris |= (1 << n);
811         stellaris_adc_update(s);
812     }
813 }
814 
815 static void stellaris_adc_reset_hold(Object *obj, ResetType type)
816 {
817     StellarisADCState *s = STELLARIS_ADC(obj);
818     int n;
819 
820     for (n = 0; n < 4; n++) {
821         s->ssmux[n] = 0;
822         s->ssctl[n] = 0;
823         s->fifo[n].state = STELLARIS_ADC_FIFO_EMPTY;
824     }
825 }
826 
827 static uint64_t stellaris_adc_read(void *opaque, hwaddr offset,
828                                    unsigned size)
829 {
830     StellarisADCState *s = opaque;
831 
832     /* TODO: Implement this.  */
833     if (offset >= 0x40 && offset < 0xc0) {
834         int n;
835         n = (offset - 0x40) >> 5;
836         switch (offset & 0x1f) {
837         case 0x00: /* SSMUX */
838             return s->ssmux[n];
839         case 0x04: /* SSCTL */
840             return s->ssctl[n];
841         case 0x08: /* SSFIFO */
842             return stellaris_adc_fifo_read(s, n);
843         case 0x0c: /* SSFSTAT */
844             return s->fifo[n].state;
845         default:
846             break;
847         }
848     }
849     switch (offset) {
850     case 0x00: /* ACTSS */
851         return s->actss;
852     case 0x04: /* RIS */
853         return s->ris;
854     case 0x08: /* IM */
855         return s->im;
856     case 0x0c: /* ISC */
857         return s->ris & s->im;
858     case 0x10: /* OSTAT */
859         return s->ostat;
860     case 0x14: /* EMUX */
861         return s->emux;
862     case 0x18: /* USTAT */
863         return s->ustat;
864     case 0x20: /* SSPRI */
865         return s->sspri;
866     case 0x30: /* SAC */
867         return s->sac;
868     default:
869         qemu_log_mask(LOG_GUEST_ERROR,
870                       "stellaris_adc: read at bad offset 0x%x\n", (int)offset);
871         return 0;
872     }
873 }
874 
875 static void stellaris_adc_write(void *opaque, hwaddr offset,
876                                 uint64_t value, unsigned size)
877 {
878     StellarisADCState *s = opaque;
879 
880     /* TODO: Implement this.  */
881     if (offset >= 0x40 && offset < 0xc0) {
882         int n;
883         n = (offset - 0x40) >> 5;
884         switch (offset & 0x1f) {
885         case 0x00: /* SSMUX */
886             s->ssmux[n] = value & 0x33333333;
887             return;
888         case 0x04: /* SSCTL */
889             if (value != 6) {
890                 qemu_log_mask(LOG_UNIMP,
891                               "ADC: Unimplemented sequence %" PRIx64 "\n",
892                               value);
893             }
894             s->ssctl[n] = value;
895             return;
896         default:
897             break;
898         }
899     }
900     switch (offset) {
901     case 0x00: /* ACTSS */
902         s->actss = value & 0xf;
903         break;
904     case 0x08: /* IM */
905         s->im = value;
906         break;
907     case 0x0c: /* ISC */
908         s->ris &= ~value;
909         break;
910     case 0x10: /* OSTAT */
911         s->ostat &= ~value;
912         break;
913     case 0x14: /* EMUX */
914         s->emux = value;
915         break;
916     case 0x18: /* USTAT */
917         s->ustat &= ~value;
918         break;
919     case 0x20: /* SSPRI */
920         s->sspri = value;
921         break;
922     case 0x28: /* PSSI */
923         qemu_log_mask(LOG_UNIMP, "ADC: sample initiate unimplemented\n");
924         break;
925     case 0x30: /* SAC */
926         s->sac = value;
927         break;
928     default:
929         qemu_log_mask(LOG_GUEST_ERROR,
930                       "stellaris_adc: write at bad offset 0x%x\n", (int)offset);
931     }
932     stellaris_adc_update(s);
933 }
934 
935 static const MemoryRegionOps stellaris_adc_ops = {
936     .read = stellaris_adc_read,
937     .write = stellaris_adc_write,
938     .endianness = DEVICE_NATIVE_ENDIAN,
939 };
940 
941 static const VMStateDescription vmstate_stellaris_adc = {
942     .name = "stellaris_adc",
943     .version_id = 1,
944     .minimum_version_id = 1,
945     .fields = (const VMStateField[]) {
946         VMSTATE_UINT32(actss, StellarisADCState),
947         VMSTATE_UINT32(ris, StellarisADCState),
948         VMSTATE_UINT32(im, StellarisADCState),
949         VMSTATE_UINT32(emux, StellarisADCState),
950         VMSTATE_UINT32(ostat, StellarisADCState),
951         VMSTATE_UINT32(ustat, StellarisADCState),
952         VMSTATE_UINT32(sspri, StellarisADCState),
953         VMSTATE_UINT32(sac, StellarisADCState),
954         VMSTATE_UINT32(fifo[0].state, StellarisADCState),
955         VMSTATE_UINT32_ARRAY(fifo[0].data, StellarisADCState, 16),
956         VMSTATE_UINT32(ssmux[0], StellarisADCState),
957         VMSTATE_UINT32(ssctl[0], StellarisADCState),
958         VMSTATE_UINT32(fifo[1].state, StellarisADCState),
959         VMSTATE_UINT32_ARRAY(fifo[1].data, StellarisADCState, 16),
960         VMSTATE_UINT32(ssmux[1], StellarisADCState),
961         VMSTATE_UINT32(ssctl[1], StellarisADCState),
962         VMSTATE_UINT32(fifo[2].state, StellarisADCState),
963         VMSTATE_UINT32_ARRAY(fifo[2].data, StellarisADCState, 16),
964         VMSTATE_UINT32(ssmux[2], StellarisADCState),
965         VMSTATE_UINT32(ssctl[2], StellarisADCState),
966         VMSTATE_UINT32(fifo[3].state, StellarisADCState),
967         VMSTATE_UINT32_ARRAY(fifo[3].data, StellarisADCState, 16),
968         VMSTATE_UINT32(ssmux[3], StellarisADCState),
969         VMSTATE_UINT32(ssctl[3], StellarisADCState),
970         VMSTATE_UINT32(noise, StellarisADCState),
971         VMSTATE_END_OF_LIST()
972     }
973 };
974 
975 static void stellaris_adc_init(Object *obj)
976 {
977     DeviceState *dev = DEVICE(obj);
978     StellarisADCState *s = STELLARIS_ADC(obj);
979     SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
980     int n;
981 
982     for (n = 0; n < 4; n++) {
983         sysbus_init_irq(sbd, &s->irq[n]);
984     }
985 
986     memory_region_init_io(&s->iomem, obj, &stellaris_adc_ops, s,
987                           "adc", 0x1000);
988     sysbus_init_mmio(sbd, &s->iomem);
989     qdev_init_gpio_in(dev, stellaris_adc_trigger, 1);
990 }
991 
992 /* Board init.  */
993 static const stellaris_board_info stellaris_boards[] = {
994   { "LM3S811EVB",
995     0,
996     0x0032000e,
997     0x001f001f, /* dc0 */
998     0x001132bf,
999     0x01071013,
1000     0x3f0f01ff,
1001     0x0000001f,
1002     BP_OLED_I2C
1003   },
1004   { "LM3S6965EVB",
1005     0x10010002,
1006     0x1073402e,
1007     0x00ff007f, /* dc0 */
1008     0x001133ff,
1009     0x030f5317,
1010     0x0f0f87ff,
1011     0x5000007f,
1012     BP_OLED_SSI | BP_GAMEPAD
1013   }
1014 };
1015 
1016 static void stellaris_init(MachineState *ms, stellaris_board_info *board)
1017 {
1018     static const int uart_irq[NUM_UART] = {5, 6, 33, 34};
1019     static const int timer_irq[NUM_GPTM] = {19, 21, 23, 35};
1020     static const uint32_t gpio_addr[NUM_GPIO] =
1021       { 0x40004000, 0x40005000, 0x40006000, 0x40007000,
1022         0x40024000, 0x40025000, 0x40026000};
1023     static const int gpio_irq[NUM_GPIO] = {0, 1, 2, 3, 4, 30, 31};
1024     static const uint32_t i2c_addr[NUM_I2C] = {0x40020000, 0x40021000};
1025     static const int i2c_irq[NUM_I2C] = {8, 37};
1026 
1027     /* Memory map of SoC devices, from
1028      * Stellaris LM3S6965 Microcontroller Data Sheet (rev I)
1029      * http://www.ti.com/lit/ds/symlink/lm3s6965.pdf
1030      *
1031      * 40000000 wdtimer
1032      * 40004000 GPIO
1033      * 40005000 GPIO
1034      * 40006000 GPIO
1035      * 40007000 GPIO
1036      * 40008000 SSI
1037      * 4000c000 UART
1038      * 4000d000 UART
1039      * 4000e000 UART
1040      * 40020000 i2c
1041      * 40021000 i2c (unimplemented)
1042      * 40024000 GPIO
1043      * 40025000 GPIO
1044      * 40026000 GPIO
1045      * 40028000 PWM (unimplemented)
1046      * 4002c000 QEI (unimplemented)
1047      * 4002d000 QEI (unimplemented)
1048      * 40030000 gptimer
1049      * 40031000 gptimer
1050      * 40032000 gptimer
1051      * 40033000 gptimer
1052      * 40038000 ADC
1053      * 4003c000 analogue comparator (unimplemented)
1054      * 40048000 ethernet
1055      * 400fc000 hibernation module (unimplemented)
1056      * 400fd000 flash memory control (unimplemented)
1057      * 400fe000 system control
1058      */
1059 
1060     Object *soc_container;
1061     DeviceState *gpio_dev[NUM_GPIO], *armv7m, *nvic;
1062     qemu_irq gpio_in[NUM_GPIO][8];
1063     qemu_irq gpio_out[NUM_GPIO][8];
1064     qemu_irq adc;
1065     int sram_size;
1066     int flash_size;
1067     DeviceState *i2c_dev[NUM_I2C] = { };
1068     DeviceState *dev;
1069     DeviceState *ssys_dev;
1070     int i;
1071     int j;
1072     NICInfo *nd;
1073     MACAddr mac;
1074 
1075     MemoryRegion *sram = g_new(MemoryRegion, 1);
1076     MemoryRegion *flash = g_new(MemoryRegion, 1);
1077     MemoryRegion *system_memory = get_system_memory();
1078 
1079     flash_size = (((board->dc0 & 0xffff) + 1) << 1) * 1024;
1080     sram_size = ((board->dc0 >> 18) + 1) * 1024;
1081 
1082     soc_container = object_new(TYPE_CONTAINER);
1083     object_property_add_child(OBJECT(ms), "soc", soc_container);
1084 
1085     /* Flash programming is done via the SCU, so pretend it is ROM.  */
1086     memory_region_init_rom(flash, NULL, "stellaris.flash", flash_size,
1087                            &error_fatal);
1088     memory_region_add_subregion(system_memory, 0, flash);
1089 
1090     memory_region_init_ram(sram, NULL, "stellaris.sram", sram_size,
1091                            &error_fatal);
1092     memory_region_add_subregion(system_memory, 0x20000000, sram);
1093 
1094     /*
1095      * Create the system-registers object early, because we will
1096      * need its sysclk output.
1097      */
1098     ssys_dev = qdev_new(TYPE_STELLARIS_SYS);
1099     object_property_add_child(soc_container, "sys", OBJECT(ssys_dev));
1100 
1101     /*
1102      * Most devices come preprogrammed with a MAC address in the user data.
1103      * Generate a MAC address now, if there isn't a matching -nic for it.
1104      */
1105     nd = qemu_find_nic_info("stellaris_enet", true, "stellaris");
1106     if (nd) {
1107         memcpy(mac.a, nd->macaddr.a, sizeof(mac.a));
1108     } else {
1109         qemu_macaddr_default_if_unset(&mac);
1110     }
1111 
1112     qdev_prop_set_uint32(ssys_dev, "user0",
1113                          mac.a[0] | (mac.a[1] << 8) | (mac.a[2] << 16));
1114     qdev_prop_set_uint32(ssys_dev, "user1",
1115                          mac.a[3] | (mac.a[4] << 8) | (mac.a[5] << 16));
1116     qdev_prop_set_uint32(ssys_dev, "did0", board->did0);
1117     qdev_prop_set_uint32(ssys_dev, "did1", board->did1);
1118     qdev_prop_set_uint32(ssys_dev, "dc0", board->dc0);
1119     qdev_prop_set_uint32(ssys_dev, "dc1", board->dc1);
1120     qdev_prop_set_uint32(ssys_dev, "dc2", board->dc2);
1121     qdev_prop_set_uint32(ssys_dev, "dc3", board->dc3);
1122     qdev_prop_set_uint32(ssys_dev, "dc4", board->dc4);
1123     sysbus_realize_and_unref(SYS_BUS_DEVICE(ssys_dev), &error_fatal);
1124 
1125     armv7m = qdev_new(TYPE_ARMV7M);
1126     object_property_add_child(soc_container, "v7m", OBJECT(armv7m));
1127     qdev_prop_set_uint32(armv7m, "num-irq", NUM_IRQ_LINES);
1128     qdev_prop_set_uint8(armv7m, "num-prio-bits", NUM_PRIO_BITS);
1129     qdev_prop_set_string(armv7m, "cpu-type", ms->cpu_type);
1130     qdev_prop_set_bit(armv7m, "enable-bitband", true);
1131     qdev_connect_clock_in(armv7m, "cpuclk",
1132                           qdev_get_clock_out(ssys_dev, "SYSCLK"));
1133     /* This SoC does not connect the systick reference clock */
1134     object_property_set_link(OBJECT(armv7m), "memory",
1135                              OBJECT(get_system_memory()), &error_abort);
1136     /* This will exit with an error if the user passed us a bad cpu_type */
1137     sysbus_realize_and_unref(SYS_BUS_DEVICE(armv7m), &error_fatal);
1138     nvic = armv7m;
1139 
1140     /* Now we can wire up the IRQ and MMIO of the system registers */
1141     sysbus_mmio_map(SYS_BUS_DEVICE(ssys_dev), 0, 0x400fe000);
1142     sysbus_connect_irq(SYS_BUS_DEVICE(ssys_dev), 0, qdev_get_gpio_in(nvic, 28));
1143 
1144     if (DEV_CAP(1, ADC)) {
1145         dev = sysbus_create_varargs(TYPE_STELLARIS_ADC, 0x40038000,
1146                                     qdev_get_gpio_in(nvic, 14),
1147                                     qdev_get_gpio_in(nvic, 15),
1148                                     qdev_get_gpio_in(nvic, 16),
1149                                     qdev_get_gpio_in(nvic, 17),
1150                                     NULL);
1151         adc = qdev_get_gpio_in(dev, 0);
1152     } else {
1153         adc = NULL;
1154     }
1155     for (i = 0; i < NUM_GPTM; i++) {
1156         if (DEV_CAP(2, GPTM(i))) {
1157             SysBusDevice *sbd;
1158 
1159             dev = qdev_new(TYPE_STELLARIS_GPTM);
1160             sbd = SYS_BUS_DEVICE(dev);
1161             object_property_add_child(soc_container, "gptm[*]", OBJECT(dev));
1162             qdev_connect_clock_in(dev, "clk",
1163                                   qdev_get_clock_out(ssys_dev, "SYSCLK"));
1164             sysbus_realize_and_unref(sbd, &error_fatal);
1165             sysbus_mmio_map(sbd, 0, 0x40030000 + i * 0x1000);
1166             sysbus_connect_irq(sbd, 0, qdev_get_gpio_in(nvic, timer_irq[i]));
1167             /* TODO: This is incorrect, but we get away with it because
1168                the ADC output is only ever pulsed.  */
1169             qdev_connect_gpio_out(dev, 0, adc);
1170         }
1171     }
1172 
1173     if (DEV_CAP(1, WDT)) {
1174         dev = qdev_new(TYPE_LUMINARY_WATCHDOG);
1175         object_property_add_child(soc_container, "wdg", OBJECT(dev));
1176         qdev_connect_clock_in(dev, "WDOGCLK",
1177                               qdev_get_clock_out(ssys_dev, "SYSCLK"));
1178 
1179         sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
1180         sysbus_mmio_map(SYS_BUS_DEVICE(dev),
1181                         0,
1182                         0x40000000u);
1183         sysbus_connect_irq(SYS_BUS_DEVICE(dev),
1184                            0,
1185                            qdev_get_gpio_in(nvic, 18));
1186     }
1187 
1188 
1189     for (i = 0; i < NUM_GPIO; i++) {
1190         if (DEV_CAP(4, GPIO(i))) {
1191             gpio_dev[i] = sysbus_create_simple("pl061_luminary", gpio_addr[i],
1192                                                qdev_get_gpio_in(nvic,
1193                                                                 gpio_irq[i]));
1194             for (j = 0; j < 8; j++) {
1195                 gpio_in[i][j] = qdev_get_gpio_in(gpio_dev[i], j);
1196                 gpio_out[i][j] = NULL;
1197             }
1198         }
1199     }
1200 
1201     for (i = 0; i < NUM_I2C; i++) {
1202         if (DEV_CAP(2, I2C(i))) {
1203             i2c_dev[i] = sysbus_create_simple(TYPE_STELLARIS_I2C, i2c_addr[i],
1204                                               qdev_get_gpio_in(nvic,
1205                                                                i2c_irq[i]));
1206         }
1207     }
1208     if (board->peripherals & BP_OLED_I2C) {
1209         I2CBus *bus = (I2CBus *)qdev_get_child_bus(i2c_dev[0], "i2c");
1210 
1211         i2c_slave_create_simple(bus, "ssd0303", 0x3d);
1212     }
1213 
1214     for (i = 0; i < NUM_UART; i++) {
1215         if (DEV_CAP(2, UART(i))) {
1216             SysBusDevice *sbd;
1217 
1218             dev = qdev_new("pl011_luminary");
1219             object_property_add_child(soc_container, "uart[*]", OBJECT(dev));
1220             sbd = SYS_BUS_DEVICE(dev);
1221             qdev_prop_set_chr(dev, "chardev", serial_hd(i));
1222             sysbus_realize_and_unref(sbd, &error_fatal);
1223             sysbus_mmio_map(sbd, 0, 0x4000c000 + i * 0x1000);
1224             sysbus_connect_irq(sbd, 0, qdev_get_gpio_in(nvic, uart_irq[i]));
1225         }
1226     }
1227     if (DEV_CAP(2, SSI)) {
1228         dev = sysbus_create_simple("pl022", 0x40008000,
1229                                    qdev_get_gpio_in(nvic, 7));
1230         if (board->peripherals & BP_OLED_SSI) {
1231             void *bus;
1232             DeviceState *sddev;
1233             DeviceState *ssddev;
1234             DriveInfo *dinfo;
1235             DeviceState *carddev;
1236             DeviceState *gpio_d_splitter;
1237             BlockBackend *blk;
1238 
1239             /*
1240              * Some boards have both an OLED controller and SD card connected to
1241              * the same SSI port, with the SD card chip select connected to a
1242              * GPIO pin.  Technically the OLED chip select is connected to the
1243              * SSI Fss pin.  We do not bother emulating that as both devices
1244              * should never be selected simultaneously, and our OLED controller
1245              * ignores stray 0xff commands that occur when deselecting the SD
1246              * card.
1247              *
1248              * The h/w wiring is:
1249              *  - GPIO pin D0 is wired to the active-low SD card chip select
1250              *  - GPIO pin A3 is wired to the active-low OLED chip select
1251              *  - The SoC wiring of the PL061 "auxiliary function" for A3 is
1252              *    SSI0Fss ("frame signal"), which is an output from the SoC's
1253              *    SSI controller. The SSI controller takes SSI0Fss low when it
1254              *    transmits a frame, so it can work as a chip-select signal.
1255              *  - GPIO A4 is aux-function SSI0Rx, and wired to the SD card Tx
1256              *    (the OLED never sends data to the CPU, so no wiring needed)
1257              *  - GPIO A5 is aux-function SSI0Tx, and wired to the SD card Rx
1258              *    and the OLED display-data-in
1259              *  - GPIO A2 is aux-function SSI0Clk, wired to SD card and OLED
1260              *    serial-clock input
1261              * So a guest that wants to use the OLED can configure the PL061
1262              * to make pins A2, A3, A5 aux-function, so they are connected
1263              * directly to the SSI controller. When the SSI controller sends
1264              * data it asserts SSI0Fss which selects the OLED.
1265              * A guest that wants to use the SD card configures A2, A4 and A5
1266              * as aux-function, but leaves A3 as a software-controlled GPIO
1267              * line. It asserts the SD card chip-select by using the PL061
1268              * to control pin D0, and lets the SSI controller handle Clk, Tx
1269              * and Rx. (The SSI controller asserts Fss during tx cycles as
1270              * usual, but because A3 is not set to aux-function this is not
1271              * forwarded to the OLED, and so the OLED stays unselected.)
1272              *
1273              * The QEMU implementation instead is:
1274              *  - GPIO pin D0 is wired to the active-low SD card chip select,
1275              *    and also to the OLED chip-select which is implemented
1276              *    as *active-high*
1277              *  - SSI controller signals go to the devices regardless of
1278              *    whether the guest programs A2, A4, A5 as aux-function or not
1279              *
1280              * The problem with this implementation is if the guest doesn't
1281              * care about the SD card and only uses the OLED. In that case it
1282              * may choose never to do anything with D0 (leaving it in its
1283              * default floating state, which reliably leaves the card disabled
1284              * because an SD card has a pullup on CS within the card itself),
1285              * and only set up A2, A3, A5. This for us would mean the OLED
1286              * never gets the chip-select assert it needs. We work around
1287              * this with a manual raise of D0 here (despite board creation
1288              * code being the wrong place to raise IRQ lines) to put the OLED
1289              * into an initially selected state.
1290              *
1291              * In theory the right way to model this would be:
1292              *  - Implement aux-function support in the PL061, with an
1293              *    extra set of AFIN and AFOUT GPIO lines (set up so that
1294              *    if a GPIO line is in auxfn mode the main GPIO in and out
1295              *    track the AFIN and AFOUT lines)
1296              *  - Wire the AFOUT for D0 up to either a line from the
1297              *    SSI controller that's pulled low around every transmit,
1298              *    or at least to an always-0 line here on the board
1299              *  - Make the ssd0323 OLED controller chipselect active-low
1300              */
1301             bus = qdev_get_child_bus(dev, "ssi");
1302             sddev = ssi_create_peripheral(bus, "ssi-sd");
1303 
1304             dinfo = drive_get(IF_SD, 0, 0);
1305             blk = dinfo ? blk_by_legacy_dinfo(dinfo) : NULL;
1306             carddev = qdev_new(TYPE_SD_CARD_SPI);
1307             qdev_prop_set_drive_err(carddev, "drive", blk, &error_fatal);
1308             qdev_realize_and_unref(carddev,
1309                                    qdev_get_child_bus(sddev, "sd-bus"),
1310                                    &error_fatal);
1311 
1312             ssddev = qdev_new("ssd0323");
1313             object_property_add_child(OBJECT(ms), "oled", OBJECT(ssddev));
1314             qdev_prop_set_uint8(ssddev, "cs", 1);
1315             qdev_realize_and_unref(ssddev, bus, &error_fatal);
1316 
1317             gpio_d_splitter = qdev_new(TYPE_SPLIT_IRQ);
1318             object_property_add_child(OBJECT(ms), "splitter",
1319                                       OBJECT(gpio_d_splitter));
1320             qdev_prop_set_uint32(gpio_d_splitter, "num-lines", 2);
1321             qdev_realize_and_unref(gpio_d_splitter, NULL, &error_fatal);
1322             qdev_connect_gpio_out(
1323                     gpio_d_splitter, 0,
1324                     qdev_get_gpio_in_named(sddev, SSI_GPIO_CS, 0));
1325             qdev_connect_gpio_out(
1326                     gpio_d_splitter, 1,
1327                     qdev_get_gpio_in_named(ssddev, SSI_GPIO_CS, 0));
1328             gpio_out[GPIO_D][0] = qdev_get_gpio_in(gpio_d_splitter, 0);
1329 
1330             gpio_out[GPIO_C][7] = qdev_get_gpio_in(ssddev, 0);
1331 
1332             /* Make sure the select pin is high.  */
1333             qemu_irq_raise(gpio_out[GPIO_D][0]);
1334         }
1335     }
1336     if (DEV_CAP(4, EMAC)) {
1337         DeviceState *enet;
1338 
1339         enet = qdev_new("stellaris_enet");
1340         object_property_add_child(soc_container, "enet", OBJECT(enet));
1341         if (nd) {
1342             qdev_set_nic_properties(enet, nd);
1343         } else {
1344             qdev_prop_set_macaddr(enet, "mac", mac.a);
1345         }
1346 
1347         sysbus_realize_and_unref(SYS_BUS_DEVICE(enet), &error_fatal);
1348         sysbus_mmio_map(SYS_BUS_DEVICE(enet), 0, 0x40048000);
1349         sysbus_connect_irq(SYS_BUS_DEVICE(enet), 0, qdev_get_gpio_in(nvic, 42));
1350     }
1351     if (board->peripherals & BP_GAMEPAD) {
1352         QList *gpad_keycode_list = qlist_new();
1353         static const int gpad_keycode[5] = {
1354             Q_KEY_CODE_UP, Q_KEY_CODE_DOWN, Q_KEY_CODE_LEFT,
1355             Q_KEY_CODE_RIGHT, Q_KEY_CODE_CTRL,
1356         };
1357         DeviceState *gpad;
1358 
1359         gpad = qdev_new(TYPE_STELLARIS_GAMEPAD);
1360         object_property_add_child(OBJECT(ms), "gamepad", OBJECT(gpad));
1361         for (i = 0; i < ARRAY_SIZE(gpad_keycode); i++) {
1362             qlist_append_int(gpad_keycode_list, gpad_keycode[i]);
1363         }
1364         qdev_prop_set_array(gpad, "keycodes", gpad_keycode_list);
1365         sysbus_realize_and_unref(SYS_BUS_DEVICE(gpad), &error_fatal);
1366 
1367         qdev_connect_gpio_out(gpad, 0,
1368                               qemu_irq_invert(gpio_in[GPIO_E][0])); /* up */
1369         qdev_connect_gpio_out(gpad, 1,
1370                               qemu_irq_invert(gpio_in[GPIO_E][1])); /* down */
1371         qdev_connect_gpio_out(gpad, 2,
1372                               qemu_irq_invert(gpio_in[GPIO_E][2])); /* left */
1373         qdev_connect_gpio_out(gpad, 3,
1374                               qemu_irq_invert(gpio_in[GPIO_E][3])); /* right */
1375         qdev_connect_gpio_out(gpad, 4,
1376                               qemu_irq_invert(gpio_in[GPIO_F][1])); /* select */
1377     }
1378     for (i = 0; i < 7; i++) {
1379         if (board->dc4 & (1 << i)) {
1380             for (j = 0; j < 8; j++) {
1381                 if (gpio_out[i][j]) {
1382                     qdev_connect_gpio_out(gpio_dev[i], j, gpio_out[i][j]);
1383                 }
1384             }
1385         }
1386     }
1387 
1388     /* Add dummy regions for the devices we don't implement yet,
1389      * so guest accesses don't cause unlogged crashes.
1390      */
1391     create_unimplemented_device("PWM", 0x40028000, 0x1000);
1392     create_unimplemented_device("QEI-0", 0x4002c000, 0x1000);
1393     create_unimplemented_device("QEI-1", 0x4002d000, 0x1000);
1394     create_unimplemented_device("analogue-comparator", 0x4003c000, 0x1000);
1395     create_unimplemented_device("hibernation", 0x400fc000, 0x1000);
1396     create_unimplemented_device("flash-control", 0x400fd000, 0x1000);
1397 
1398     armv7m_load_kernel(ARMV7M(armv7m)->cpu, ms->kernel_filename, 0, flash_size);
1399 }
1400 
1401 /* FIXME: Figure out how to generate these from stellaris_boards.  */
1402 static void lm3s811evb_init(MachineState *machine)
1403 {
1404     stellaris_init(machine, &stellaris_boards[0]);
1405 }
1406 
1407 static void lm3s6965evb_init(MachineState *machine)
1408 {
1409     stellaris_init(machine, &stellaris_boards[1]);
1410 }
1411 
1412 /*
1413  * Stellaris LM3S811 Evaluation Board Schematics:
1414  * https://www.ti.com/lit/ug/symlink/spmu030.pdf
1415  */
1416 static void lm3s811evb_class_init(ObjectClass *oc, void *data)
1417 {
1418     MachineClass *mc = MACHINE_CLASS(oc);
1419 
1420     mc->desc = "Stellaris LM3S811EVB (Cortex-M3)";
1421     mc->init = lm3s811evb_init;
1422     mc->ignore_memory_transaction_failures = true;
1423     mc->default_cpu_type = ARM_CPU_TYPE_NAME("cortex-m3");
1424 }
1425 
1426 static const TypeInfo lm3s811evb_type = {
1427     .name = MACHINE_TYPE_NAME("lm3s811evb"),
1428     .parent = TYPE_MACHINE,
1429     .class_init = lm3s811evb_class_init,
1430 };
1431 
1432 /*
1433  * Stellaris: LM3S6965 Evaluation Board Schematics:
1434  * https://www.ti.com/lit/ug/symlink/spmu029.pdf
1435  */
1436 static void lm3s6965evb_class_init(ObjectClass *oc, void *data)
1437 {
1438     MachineClass *mc = MACHINE_CLASS(oc);
1439 
1440     mc->desc = "Stellaris LM3S6965EVB (Cortex-M3)";
1441     mc->init = lm3s6965evb_init;
1442     mc->ignore_memory_transaction_failures = true;
1443     mc->default_cpu_type = ARM_CPU_TYPE_NAME("cortex-m3");
1444     mc->auto_create_sdcard = true;
1445 }
1446 
1447 static const TypeInfo lm3s6965evb_type = {
1448     .name = MACHINE_TYPE_NAME("lm3s6965evb"),
1449     .parent = TYPE_MACHINE,
1450     .class_init = lm3s6965evb_class_init,
1451 };
1452 
1453 static void stellaris_machine_init(void)
1454 {
1455     type_register_static(&lm3s811evb_type);
1456     type_register_static(&lm3s6965evb_type);
1457 }
1458 
1459 type_init(stellaris_machine_init)
1460 
1461 static void stellaris_i2c_class_init(ObjectClass *klass, void *data)
1462 {
1463     DeviceClass *dc = DEVICE_CLASS(klass);
1464     ResettableClass *rc = RESETTABLE_CLASS(klass);
1465 
1466     rc->phases.enter = stellaris_i2c_reset_enter;
1467     rc->phases.hold = stellaris_i2c_reset_hold;
1468     rc->phases.exit = stellaris_i2c_reset_exit;
1469     dc->vmsd = &vmstate_stellaris_i2c;
1470 }
1471 
1472 static const TypeInfo stellaris_i2c_info = {
1473     .name          = TYPE_STELLARIS_I2C,
1474     .parent        = TYPE_SYS_BUS_DEVICE,
1475     .instance_size = sizeof(stellaris_i2c_state),
1476     .instance_init = stellaris_i2c_init,
1477     .class_init    = stellaris_i2c_class_init,
1478 };
1479 
1480 static void stellaris_adc_class_init(ObjectClass *klass, void *data)
1481 {
1482     DeviceClass *dc = DEVICE_CLASS(klass);
1483     ResettableClass *rc = RESETTABLE_CLASS(klass);
1484 
1485     rc->phases.hold = stellaris_adc_reset_hold;
1486     dc->vmsd = &vmstate_stellaris_adc;
1487 }
1488 
1489 static const TypeInfo stellaris_adc_info = {
1490     .name          = TYPE_STELLARIS_ADC,
1491     .parent        = TYPE_SYS_BUS_DEVICE,
1492     .instance_size = sizeof(StellarisADCState),
1493     .instance_init = stellaris_adc_init,
1494     .class_init    = stellaris_adc_class_init,
1495 };
1496 
1497 static void stellaris_sys_class_init(ObjectClass *klass, void *data)
1498 {
1499     DeviceClass *dc = DEVICE_CLASS(klass);
1500     ResettableClass *rc = RESETTABLE_CLASS(klass);
1501 
1502     dc->vmsd = &vmstate_stellaris_sys;
1503     rc->phases.enter = stellaris_sys_reset_enter;
1504     rc->phases.hold = stellaris_sys_reset_hold;
1505     rc->phases.exit = stellaris_sys_reset_exit;
1506     device_class_set_props(dc, stellaris_sys_properties);
1507 }
1508 
1509 static const TypeInfo stellaris_sys_info = {
1510     .name = TYPE_STELLARIS_SYS,
1511     .parent = TYPE_SYS_BUS_DEVICE,
1512     .instance_size = sizeof(ssys_state),
1513     .instance_init = stellaris_sys_instance_init,
1514     .class_init = stellaris_sys_class_init,
1515 };
1516 
1517 static void stellaris_register_types(void)
1518 {
1519     type_register_static(&stellaris_i2c_info);
1520     type_register_static(&stellaris_adc_info);
1521     type_register_static(&stellaris_sys_info);
1522 }
1523 
1524 type_init(stellaris_register_types)
1525