xref: /qemu/hw/arm/stellaris.c (revision 4bebb9ad4e473f6433398bfccf4bc1f7786b1c34)
1 /*
2  * Luminary Micro Stellaris peripherals
3  *
4  * Copyright (c) 2006 CodeSourcery.
5  * Written by Paul Brook
6  *
7  * This code is licensed under the GPL.
8  */
9 
10 #include "qemu/osdep.h"
11 #include "qapi/error.h"
12 #include "hw/sysbus.h"
13 #include "hw/ssi/ssi.h"
14 #include "hw/arm/boot.h"
15 #include "qemu/timer.h"
16 #include "hw/i2c/i2c.h"
17 #include "net/net.h"
18 #include "hw/boards.h"
19 #include "qemu/log.h"
20 #include "exec/address-spaces.h"
21 #include "sysemu/sysemu.h"
22 #include "hw/arm/armv7m.h"
23 #include "hw/char/pl011.h"
24 #include "hw/input/gamepad.h"
25 #include "hw/irq.h"
26 #include "hw/watchdog/cmsdk-apb-watchdog.h"
27 #include "migration/vmstate.h"
28 #include "hw/misc/unimp.h"
29 #include "cpu.h"
30 #include "qom/object.h"
31 
32 #define GPIO_A 0
33 #define GPIO_B 1
34 #define GPIO_C 2
35 #define GPIO_D 3
36 #define GPIO_E 4
37 #define GPIO_F 5
38 #define GPIO_G 6
39 
40 #define BP_OLED_I2C  0x01
41 #define BP_OLED_SSI  0x02
42 #define BP_GAMEPAD   0x04
43 
44 #define NUM_IRQ_LINES 64
45 
46 typedef const struct {
47     const char *name;
48     uint32_t did0;
49     uint32_t did1;
50     uint32_t dc0;
51     uint32_t dc1;
52     uint32_t dc2;
53     uint32_t dc3;
54     uint32_t dc4;
55     uint32_t peripherals;
56 } stellaris_board_info;
57 
58 /* General purpose timer module.  */
59 
60 #define TYPE_STELLARIS_GPTM "stellaris-gptm"
61 OBJECT_DECLARE_SIMPLE_TYPE(gptm_state, STELLARIS_GPTM)
62 
63 struct gptm_state {
64     SysBusDevice parent_obj;
65 
66     MemoryRegion iomem;
67     uint32_t config;
68     uint32_t mode[2];
69     uint32_t control;
70     uint32_t state;
71     uint32_t mask;
72     uint32_t load[2];
73     uint32_t match[2];
74     uint32_t prescale[2];
75     uint32_t match_prescale[2];
76     uint32_t rtc;
77     int64_t tick[2];
78     struct gptm_state *opaque[2];
79     QEMUTimer *timer[2];
80     /* The timers have an alternate output used to trigger the ADC.  */
81     qemu_irq trigger;
82     qemu_irq irq;
83 };
84 
85 static void gptm_update_irq(gptm_state *s)
86 {
87     int level;
88     level = (s->state & s->mask) != 0;
89     qemu_set_irq(s->irq, level);
90 }
91 
92 static void gptm_stop(gptm_state *s, int n)
93 {
94     timer_del(s->timer[n]);
95 }
96 
97 static void gptm_reload(gptm_state *s, int n, int reset)
98 {
99     int64_t tick;
100     if (reset)
101         tick = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
102     else
103         tick = s->tick[n];
104 
105     if (s->config == 0) {
106         /* 32-bit CountDown.  */
107         uint32_t count;
108         count = s->load[0] | (s->load[1] << 16);
109         tick += (int64_t)count * system_clock_scale;
110     } else if (s->config == 1) {
111         /* 32-bit RTC.  1Hz tick.  */
112         tick += NANOSECONDS_PER_SECOND;
113     } else if (s->mode[n] == 0xa) {
114         /* PWM mode.  Not implemented.  */
115     } else {
116         qemu_log_mask(LOG_UNIMP,
117                       "GPTM: 16-bit timer mode unimplemented: 0x%x\n",
118                       s->mode[n]);
119         return;
120     }
121     s->tick[n] = tick;
122     timer_mod(s->timer[n], tick);
123 }
124 
125 static void gptm_tick(void *opaque)
126 {
127     gptm_state **p = (gptm_state **)opaque;
128     gptm_state *s;
129     int n;
130 
131     s = *p;
132     n = p - s->opaque;
133     if (s->config == 0) {
134         s->state |= 1;
135         if ((s->control & 0x20)) {
136             /* Output trigger.  */
137             qemu_irq_pulse(s->trigger);
138         }
139         if (s->mode[0] & 1) {
140             /* One-shot.  */
141             s->control &= ~1;
142         } else {
143             /* Periodic.  */
144             gptm_reload(s, 0, 0);
145         }
146     } else if (s->config == 1) {
147         /* RTC.  */
148         uint32_t match;
149         s->rtc++;
150         match = s->match[0] | (s->match[1] << 16);
151         if (s->rtc > match)
152             s->rtc = 0;
153         if (s->rtc == 0) {
154             s->state |= 8;
155         }
156         gptm_reload(s, 0, 0);
157     } else if (s->mode[n] == 0xa) {
158         /* PWM mode.  Not implemented.  */
159     } else {
160         qemu_log_mask(LOG_UNIMP,
161                       "GPTM: 16-bit timer mode unimplemented: 0x%x\n",
162                       s->mode[n]);
163     }
164     gptm_update_irq(s);
165 }
166 
167 static uint64_t gptm_read(void *opaque, hwaddr offset,
168                           unsigned size)
169 {
170     gptm_state *s = (gptm_state *)opaque;
171 
172     switch (offset) {
173     case 0x00: /* CFG */
174         return s->config;
175     case 0x04: /* TAMR */
176         return s->mode[0];
177     case 0x08: /* TBMR */
178         return s->mode[1];
179     case 0x0c: /* CTL */
180         return s->control;
181     case 0x18: /* IMR */
182         return s->mask;
183     case 0x1c: /* RIS */
184         return s->state;
185     case 0x20: /* MIS */
186         return s->state & s->mask;
187     case 0x24: /* CR */
188         return 0;
189     case 0x28: /* TAILR */
190         return s->load[0] | ((s->config < 4) ? (s->load[1] << 16) : 0);
191     case 0x2c: /* TBILR */
192         return s->load[1];
193     case 0x30: /* TAMARCHR */
194         return s->match[0] | ((s->config < 4) ? (s->match[1] << 16) : 0);
195     case 0x34: /* TBMATCHR */
196         return s->match[1];
197     case 0x38: /* TAPR */
198         return s->prescale[0];
199     case 0x3c: /* TBPR */
200         return s->prescale[1];
201     case 0x40: /* TAPMR */
202         return s->match_prescale[0];
203     case 0x44: /* TBPMR */
204         return s->match_prescale[1];
205     case 0x48: /* TAR */
206         if (s->config == 1) {
207             return s->rtc;
208         }
209         qemu_log_mask(LOG_UNIMP,
210                       "GPTM: read of TAR but timer read not supported\n");
211         return 0;
212     case 0x4c: /* TBR */
213         qemu_log_mask(LOG_UNIMP,
214                       "GPTM: read of TBR but timer read not supported\n");
215         return 0;
216     default:
217         qemu_log_mask(LOG_GUEST_ERROR,
218                       "GPTM: read at bad offset 0x02%" HWADDR_PRIx "\n",
219                       offset);
220         return 0;
221     }
222 }
223 
224 static void gptm_write(void *opaque, hwaddr offset,
225                        uint64_t value, unsigned size)
226 {
227     gptm_state *s = (gptm_state *)opaque;
228     uint32_t oldval;
229 
230     /* The timers should be disabled before changing the configuration.
231        We take advantage of this and defer everything until the timer
232        is enabled.  */
233     switch (offset) {
234     case 0x00: /* CFG */
235         s->config = value;
236         break;
237     case 0x04: /* TAMR */
238         s->mode[0] = value;
239         break;
240     case 0x08: /* TBMR */
241         s->mode[1] = value;
242         break;
243     case 0x0c: /* CTL */
244         oldval = s->control;
245         s->control = value;
246         /* TODO: Implement pause.  */
247         if ((oldval ^ value) & 1) {
248             if (value & 1) {
249                 gptm_reload(s, 0, 1);
250             } else {
251                 gptm_stop(s, 0);
252             }
253         }
254         if (((oldval ^ value) & 0x100) && s->config >= 4) {
255             if (value & 0x100) {
256                 gptm_reload(s, 1, 1);
257             } else {
258                 gptm_stop(s, 1);
259             }
260         }
261         break;
262     case 0x18: /* IMR */
263         s->mask = value & 0x77;
264         gptm_update_irq(s);
265         break;
266     case 0x24: /* CR */
267         s->state &= ~value;
268         break;
269     case 0x28: /* TAILR */
270         s->load[0] = value & 0xffff;
271         if (s->config < 4) {
272             s->load[1] = value >> 16;
273         }
274         break;
275     case 0x2c: /* TBILR */
276         s->load[1] = value & 0xffff;
277         break;
278     case 0x30: /* TAMARCHR */
279         s->match[0] = value & 0xffff;
280         if (s->config < 4) {
281             s->match[1] = value >> 16;
282         }
283         break;
284     case 0x34: /* TBMATCHR */
285         s->match[1] = value >> 16;
286         break;
287     case 0x38: /* TAPR */
288         s->prescale[0] = value;
289         break;
290     case 0x3c: /* TBPR */
291         s->prescale[1] = value;
292         break;
293     case 0x40: /* TAPMR */
294         s->match_prescale[0] = value;
295         break;
296     case 0x44: /* TBPMR */
297         s->match_prescale[0] = value;
298         break;
299     default:
300         qemu_log_mask(LOG_GUEST_ERROR,
301                       "GPTM: write at bad offset 0x02%" HWADDR_PRIx "\n",
302                       offset);
303     }
304     gptm_update_irq(s);
305 }
306 
307 static const MemoryRegionOps gptm_ops = {
308     .read = gptm_read,
309     .write = gptm_write,
310     .endianness = DEVICE_NATIVE_ENDIAN,
311 };
312 
313 static const VMStateDescription vmstate_stellaris_gptm = {
314     .name = "stellaris_gptm",
315     .version_id = 1,
316     .minimum_version_id = 1,
317     .fields = (VMStateField[]) {
318         VMSTATE_UINT32(config, gptm_state),
319         VMSTATE_UINT32_ARRAY(mode, gptm_state, 2),
320         VMSTATE_UINT32(control, gptm_state),
321         VMSTATE_UINT32(state, gptm_state),
322         VMSTATE_UINT32(mask, gptm_state),
323         VMSTATE_UNUSED(8),
324         VMSTATE_UINT32_ARRAY(load, gptm_state, 2),
325         VMSTATE_UINT32_ARRAY(match, gptm_state, 2),
326         VMSTATE_UINT32_ARRAY(prescale, gptm_state, 2),
327         VMSTATE_UINT32_ARRAY(match_prescale, gptm_state, 2),
328         VMSTATE_UINT32(rtc, gptm_state),
329         VMSTATE_INT64_ARRAY(tick, gptm_state, 2),
330         VMSTATE_TIMER_PTR_ARRAY(timer, gptm_state, 2),
331         VMSTATE_END_OF_LIST()
332     }
333 };
334 
335 static void stellaris_gptm_init(Object *obj)
336 {
337     DeviceState *dev = DEVICE(obj);
338     gptm_state *s = STELLARIS_GPTM(obj);
339     SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
340 
341     sysbus_init_irq(sbd, &s->irq);
342     qdev_init_gpio_out(dev, &s->trigger, 1);
343 
344     memory_region_init_io(&s->iomem, obj, &gptm_ops, s,
345                           "gptm", 0x1000);
346     sysbus_init_mmio(sbd, &s->iomem);
347 
348     s->opaque[0] = s->opaque[1] = s;
349 }
350 
351 static void stellaris_gptm_realize(DeviceState *dev, Error **errp)
352 {
353     gptm_state *s = STELLARIS_GPTM(dev);
354     s->timer[0] = timer_new_ns(QEMU_CLOCK_VIRTUAL, gptm_tick, &s->opaque[0]);
355     s->timer[1] = timer_new_ns(QEMU_CLOCK_VIRTUAL, gptm_tick, &s->opaque[1]);
356 }
357 
358 /* System controller.  */
359 
360 #define TYPE_STELLARIS_SYS "stellaris-sys"
361 OBJECT_DECLARE_SIMPLE_TYPE(ssys_state, STELLARIS_SYS)
362 
363 struct ssys_state {
364     SysBusDevice parent_obj;
365 
366     MemoryRegion iomem;
367     uint32_t pborctl;
368     uint32_t ldopctl;
369     uint32_t int_status;
370     uint32_t int_mask;
371     uint32_t resc;
372     uint32_t rcc;
373     uint32_t rcc2;
374     uint32_t rcgc[3];
375     uint32_t scgc[3];
376     uint32_t dcgc[3];
377     uint32_t clkvclr;
378     uint32_t ldoarst;
379     qemu_irq irq;
380     /* Properties (all read-only registers) */
381     uint32_t user0;
382     uint32_t user1;
383     uint32_t did0;
384     uint32_t did1;
385     uint32_t dc0;
386     uint32_t dc1;
387     uint32_t dc2;
388     uint32_t dc3;
389     uint32_t dc4;
390 };
391 
392 static void ssys_update(ssys_state *s)
393 {
394   qemu_set_irq(s->irq, (s->int_status & s->int_mask) != 0);
395 }
396 
397 static uint32_t pllcfg_sandstorm[16] = {
398     0x31c0, /* 1 Mhz */
399     0x1ae0, /* 1.8432 Mhz */
400     0x18c0, /* 2 Mhz */
401     0xd573, /* 2.4576 Mhz */
402     0x37a6, /* 3.57954 Mhz */
403     0x1ae2, /* 3.6864 Mhz */
404     0x0c40, /* 4 Mhz */
405     0x98bc, /* 4.906 Mhz */
406     0x935b, /* 4.9152 Mhz */
407     0x09c0, /* 5 Mhz */
408     0x4dee, /* 5.12 Mhz */
409     0x0c41, /* 6 Mhz */
410     0x75db, /* 6.144 Mhz */
411     0x1ae6, /* 7.3728 Mhz */
412     0x0600, /* 8 Mhz */
413     0x585b /* 8.192 Mhz */
414 };
415 
416 static uint32_t pllcfg_fury[16] = {
417     0x3200, /* 1 Mhz */
418     0x1b20, /* 1.8432 Mhz */
419     0x1900, /* 2 Mhz */
420     0xf42b, /* 2.4576 Mhz */
421     0x37e3, /* 3.57954 Mhz */
422     0x1b21, /* 3.6864 Mhz */
423     0x0c80, /* 4 Mhz */
424     0x98ee, /* 4.906 Mhz */
425     0xd5b4, /* 4.9152 Mhz */
426     0x0a00, /* 5 Mhz */
427     0x4e27, /* 5.12 Mhz */
428     0x1902, /* 6 Mhz */
429     0xec1c, /* 6.144 Mhz */
430     0x1b23, /* 7.3728 Mhz */
431     0x0640, /* 8 Mhz */
432     0xb11c /* 8.192 Mhz */
433 };
434 
435 #define DID0_VER_MASK        0x70000000
436 #define DID0_VER_0           0x00000000
437 #define DID0_VER_1           0x10000000
438 
439 #define DID0_CLASS_MASK      0x00FF0000
440 #define DID0_CLASS_SANDSTORM 0x00000000
441 #define DID0_CLASS_FURY      0x00010000
442 
443 static int ssys_board_class(const ssys_state *s)
444 {
445     uint32_t did0 = s->did0;
446     switch (did0 & DID0_VER_MASK) {
447     case DID0_VER_0:
448         return DID0_CLASS_SANDSTORM;
449     case DID0_VER_1:
450         switch (did0 & DID0_CLASS_MASK) {
451         case DID0_CLASS_SANDSTORM:
452         case DID0_CLASS_FURY:
453             return did0 & DID0_CLASS_MASK;
454         }
455         /* for unknown classes, fall through */
456     default:
457         /* This can only happen if the hardwired constant did0 value
458          * in this board's stellaris_board_info struct is wrong.
459          */
460         g_assert_not_reached();
461     }
462 }
463 
464 static uint64_t ssys_read(void *opaque, hwaddr offset,
465                           unsigned size)
466 {
467     ssys_state *s = (ssys_state *)opaque;
468 
469     switch (offset) {
470     case 0x000: /* DID0 */
471         return s->did0;
472     case 0x004: /* DID1 */
473         return s->did1;
474     case 0x008: /* DC0 */
475         return s->dc0;
476     case 0x010: /* DC1 */
477         return s->dc1;
478     case 0x014: /* DC2 */
479         return s->dc2;
480     case 0x018: /* DC3 */
481         return s->dc3;
482     case 0x01c: /* DC4 */
483         return s->dc4;
484     case 0x030: /* PBORCTL */
485         return s->pborctl;
486     case 0x034: /* LDOPCTL */
487         return s->ldopctl;
488     case 0x040: /* SRCR0 */
489         return 0;
490     case 0x044: /* SRCR1 */
491         return 0;
492     case 0x048: /* SRCR2 */
493         return 0;
494     case 0x050: /* RIS */
495         return s->int_status;
496     case 0x054: /* IMC */
497         return s->int_mask;
498     case 0x058: /* MISC */
499         return s->int_status & s->int_mask;
500     case 0x05c: /* RESC */
501         return s->resc;
502     case 0x060: /* RCC */
503         return s->rcc;
504     case 0x064: /* PLLCFG */
505         {
506             int xtal;
507             xtal = (s->rcc >> 6) & 0xf;
508             switch (ssys_board_class(s)) {
509             case DID0_CLASS_FURY:
510                 return pllcfg_fury[xtal];
511             case DID0_CLASS_SANDSTORM:
512                 return pllcfg_sandstorm[xtal];
513             default:
514                 g_assert_not_reached();
515             }
516         }
517     case 0x070: /* RCC2 */
518         return s->rcc2;
519     case 0x100: /* RCGC0 */
520         return s->rcgc[0];
521     case 0x104: /* RCGC1 */
522         return s->rcgc[1];
523     case 0x108: /* RCGC2 */
524         return s->rcgc[2];
525     case 0x110: /* SCGC0 */
526         return s->scgc[0];
527     case 0x114: /* SCGC1 */
528         return s->scgc[1];
529     case 0x118: /* SCGC2 */
530         return s->scgc[2];
531     case 0x120: /* DCGC0 */
532         return s->dcgc[0];
533     case 0x124: /* DCGC1 */
534         return s->dcgc[1];
535     case 0x128: /* DCGC2 */
536         return s->dcgc[2];
537     case 0x150: /* CLKVCLR */
538         return s->clkvclr;
539     case 0x160: /* LDOARST */
540         return s->ldoarst;
541     case 0x1e0: /* USER0 */
542         return s->user0;
543     case 0x1e4: /* USER1 */
544         return s->user1;
545     default:
546         qemu_log_mask(LOG_GUEST_ERROR,
547                       "SSYS: read at bad offset 0x%x\n", (int)offset);
548         return 0;
549     }
550 }
551 
552 static bool ssys_use_rcc2(ssys_state *s)
553 {
554     return (s->rcc2 >> 31) & 0x1;
555 }
556 
557 /*
558  * Caculate the sys. clock period in ms.
559  */
560 static void ssys_calculate_system_clock(ssys_state *s)
561 {
562     if (ssys_use_rcc2(s)) {
563         system_clock_scale = 5 * (((s->rcc2 >> 23) & 0x3f) + 1);
564     } else {
565         system_clock_scale = 5 * (((s->rcc >> 23) & 0xf) + 1);
566     }
567 }
568 
569 static void ssys_write(void *opaque, hwaddr offset,
570                        uint64_t value, unsigned size)
571 {
572     ssys_state *s = (ssys_state *)opaque;
573 
574     switch (offset) {
575     case 0x030: /* PBORCTL */
576         s->pborctl = value & 0xffff;
577         break;
578     case 0x034: /* LDOPCTL */
579         s->ldopctl = value & 0x1f;
580         break;
581     case 0x040: /* SRCR0 */
582     case 0x044: /* SRCR1 */
583     case 0x048: /* SRCR2 */
584         qemu_log_mask(LOG_UNIMP, "Peripheral reset not implemented\n");
585         break;
586     case 0x054: /* IMC */
587         s->int_mask = value & 0x7f;
588         break;
589     case 0x058: /* MISC */
590         s->int_status &= ~value;
591         break;
592     case 0x05c: /* RESC */
593         s->resc = value & 0x3f;
594         break;
595     case 0x060: /* RCC */
596         if ((s->rcc & (1 << 13)) != 0 && (value & (1 << 13)) == 0) {
597             /* PLL enable.  */
598             s->int_status |= (1 << 6);
599         }
600         s->rcc = value;
601         ssys_calculate_system_clock(s);
602         break;
603     case 0x070: /* RCC2 */
604         if (ssys_board_class(s) == DID0_CLASS_SANDSTORM) {
605             break;
606         }
607 
608         if ((s->rcc2 & (1 << 13)) != 0 && (value & (1 << 13)) == 0) {
609             /* PLL enable.  */
610             s->int_status |= (1 << 6);
611         }
612         s->rcc2 = value;
613         ssys_calculate_system_clock(s);
614         break;
615     case 0x100: /* RCGC0 */
616         s->rcgc[0] = value;
617         break;
618     case 0x104: /* RCGC1 */
619         s->rcgc[1] = value;
620         break;
621     case 0x108: /* RCGC2 */
622         s->rcgc[2] = value;
623         break;
624     case 0x110: /* SCGC0 */
625         s->scgc[0] = value;
626         break;
627     case 0x114: /* SCGC1 */
628         s->scgc[1] = value;
629         break;
630     case 0x118: /* SCGC2 */
631         s->scgc[2] = value;
632         break;
633     case 0x120: /* DCGC0 */
634         s->dcgc[0] = value;
635         break;
636     case 0x124: /* DCGC1 */
637         s->dcgc[1] = value;
638         break;
639     case 0x128: /* DCGC2 */
640         s->dcgc[2] = value;
641         break;
642     case 0x150: /* CLKVCLR */
643         s->clkvclr = value;
644         break;
645     case 0x160: /* LDOARST */
646         s->ldoarst = value;
647         break;
648     default:
649         qemu_log_mask(LOG_GUEST_ERROR,
650                       "SSYS: write at bad offset 0x%x\n", (int)offset);
651     }
652     ssys_update(s);
653 }
654 
655 static const MemoryRegionOps ssys_ops = {
656     .read = ssys_read,
657     .write = ssys_write,
658     .endianness = DEVICE_NATIVE_ENDIAN,
659 };
660 
661 static void stellaris_sys_reset_enter(Object *obj, ResetType type)
662 {
663     ssys_state *s = STELLARIS_SYS(obj);
664 
665     s->pborctl = 0x7ffd;
666     s->rcc = 0x078e3ac0;
667 
668     if (ssys_board_class(s) == DID0_CLASS_SANDSTORM) {
669         s->rcc2 = 0;
670     } else {
671         s->rcc2 = 0x07802810;
672     }
673     s->rcgc[0] = 1;
674     s->scgc[0] = 1;
675     s->dcgc[0] = 1;
676 }
677 
678 static void stellaris_sys_reset_hold(Object *obj)
679 {
680     ssys_state *s = STELLARIS_SYS(obj);
681 
682     ssys_calculate_system_clock(s);
683 }
684 
685 static void stellaris_sys_reset_exit(Object *obj)
686 {
687 }
688 
689 static int stellaris_sys_post_load(void *opaque, int version_id)
690 {
691     ssys_state *s = opaque;
692 
693     ssys_calculate_system_clock(s);
694 
695     return 0;
696 }
697 
698 static const VMStateDescription vmstate_stellaris_sys = {
699     .name = "stellaris_sys",
700     .version_id = 2,
701     .minimum_version_id = 1,
702     .post_load = stellaris_sys_post_load,
703     .fields = (VMStateField[]) {
704         VMSTATE_UINT32(pborctl, ssys_state),
705         VMSTATE_UINT32(ldopctl, ssys_state),
706         VMSTATE_UINT32(int_mask, ssys_state),
707         VMSTATE_UINT32(int_status, ssys_state),
708         VMSTATE_UINT32(resc, ssys_state),
709         VMSTATE_UINT32(rcc, ssys_state),
710         VMSTATE_UINT32_V(rcc2, ssys_state, 2),
711         VMSTATE_UINT32_ARRAY(rcgc, ssys_state, 3),
712         VMSTATE_UINT32_ARRAY(scgc, ssys_state, 3),
713         VMSTATE_UINT32_ARRAY(dcgc, ssys_state, 3),
714         VMSTATE_UINT32(clkvclr, ssys_state),
715         VMSTATE_UINT32(ldoarst, ssys_state),
716         VMSTATE_END_OF_LIST()
717     }
718 };
719 
720 static Property stellaris_sys_properties[] = {
721     DEFINE_PROP_UINT32("user0", ssys_state, user0, 0),
722     DEFINE_PROP_UINT32("user1", ssys_state, user1, 0),
723     DEFINE_PROP_UINT32("did0", ssys_state, did0, 0),
724     DEFINE_PROP_UINT32("did1", ssys_state, did1, 0),
725     DEFINE_PROP_UINT32("dc0", ssys_state, dc0, 0),
726     DEFINE_PROP_UINT32("dc1", ssys_state, dc1, 0),
727     DEFINE_PROP_UINT32("dc2", ssys_state, dc2, 0),
728     DEFINE_PROP_UINT32("dc3", ssys_state, dc3, 0),
729     DEFINE_PROP_UINT32("dc4", ssys_state, dc4, 0),
730     DEFINE_PROP_END_OF_LIST()
731 };
732 
733 static void stellaris_sys_instance_init(Object *obj)
734 {
735     ssys_state *s = STELLARIS_SYS(obj);
736     SysBusDevice *sbd = SYS_BUS_DEVICE(s);
737 
738     memory_region_init_io(&s->iomem, obj, &ssys_ops, s, "ssys", 0x00001000);
739     sysbus_init_mmio(sbd, &s->iomem);
740     sysbus_init_irq(sbd, &s->irq);
741 }
742 
743 static int stellaris_sys_init(uint32_t base, qemu_irq irq,
744                               stellaris_board_info * board,
745                               uint8_t *macaddr)
746 {
747     DeviceState *dev = qdev_new(TYPE_STELLARIS_SYS);
748     SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
749 
750     /* Most devices come preprogrammed with a MAC address in the user data. */
751     qdev_prop_set_uint32(dev, "user0",
752                          macaddr[0] | (macaddr[1] << 8) | (macaddr[2] << 16));
753     qdev_prop_set_uint32(dev, "user1",
754                          macaddr[3] | (macaddr[4] << 8) | (macaddr[5] << 16));
755     qdev_prop_set_uint32(dev, "did0", board->did0);
756     qdev_prop_set_uint32(dev, "did1", board->did1);
757     qdev_prop_set_uint32(dev, "dc0", board->dc0);
758     qdev_prop_set_uint32(dev, "dc1", board->dc1);
759     qdev_prop_set_uint32(dev, "dc2", board->dc2);
760     qdev_prop_set_uint32(dev, "dc3", board->dc3);
761     qdev_prop_set_uint32(dev, "dc4", board->dc4);
762 
763     sysbus_realize_and_unref(sbd, &error_fatal);
764     sysbus_mmio_map(sbd, 0, base);
765     sysbus_connect_irq(sbd, 0, irq);
766 
767     /*
768      * Normally we should not be resetting devices like this during
769      * board creation. For the moment we need to do so, because
770      * system_clock_scale will only get set when the STELLARIS_SYS
771      * device is reset, and we need its initial value to pass to
772      * the watchdog device. This hack can be removed once the
773      * watchdog has been converted to use a Clock input instead.
774      */
775     device_cold_reset(dev);
776 
777     return 0;
778 }
779 
780 /* I2C controller.  */
781 
782 #define TYPE_STELLARIS_I2C "stellaris-i2c"
783 OBJECT_DECLARE_SIMPLE_TYPE(stellaris_i2c_state, STELLARIS_I2C)
784 
785 struct stellaris_i2c_state {
786     SysBusDevice parent_obj;
787 
788     I2CBus *bus;
789     qemu_irq irq;
790     MemoryRegion iomem;
791     uint32_t msa;
792     uint32_t mcs;
793     uint32_t mdr;
794     uint32_t mtpr;
795     uint32_t mimr;
796     uint32_t mris;
797     uint32_t mcr;
798 };
799 
800 #define STELLARIS_I2C_MCS_BUSY    0x01
801 #define STELLARIS_I2C_MCS_ERROR   0x02
802 #define STELLARIS_I2C_MCS_ADRACK  0x04
803 #define STELLARIS_I2C_MCS_DATACK  0x08
804 #define STELLARIS_I2C_MCS_ARBLST  0x10
805 #define STELLARIS_I2C_MCS_IDLE    0x20
806 #define STELLARIS_I2C_MCS_BUSBSY  0x40
807 
808 static uint64_t stellaris_i2c_read(void *opaque, hwaddr offset,
809                                    unsigned size)
810 {
811     stellaris_i2c_state *s = (stellaris_i2c_state *)opaque;
812 
813     switch (offset) {
814     case 0x00: /* MSA */
815         return s->msa;
816     case 0x04: /* MCS */
817         /* We don't emulate timing, so the controller is never busy.  */
818         return s->mcs | STELLARIS_I2C_MCS_IDLE;
819     case 0x08: /* MDR */
820         return s->mdr;
821     case 0x0c: /* MTPR */
822         return s->mtpr;
823     case 0x10: /* MIMR */
824         return s->mimr;
825     case 0x14: /* MRIS */
826         return s->mris;
827     case 0x18: /* MMIS */
828         return s->mris & s->mimr;
829     case 0x20: /* MCR */
830         return s->mcr;
831     default:
832         qemu_log_mask(LOG_GUEST_ERROR,
833                       "stellaris_i2c: read at bad offset 0x%x\n", (int)offset);
834         return 0;
835     }
836 }
837 
838 static void stellaris_i2c_update(stellaris_i2c_state *s)
839 {
840     int level;
841 
842     level = (s->mris & s->mimr) != 0;
843     qemu_set_irq(s->irq, level);
844 }
845 
846 static void stellaris_i2c_write(void *opaque, hwaddr offset,
847                                 uint64_t value, unsigned size)
848 {
849     stellaris_i2c_state *s = (stellaris_i2c_state *)opaque;
850 
851     switch (offset) {
852     case 0x00: /* MSA */
853         s->msa = value & 0xff;
854         break;
855     case 0x04: /* MCS */
856         if ((s->mcr & 0x10) == 0) {
857             /* Disabled.  Do nothing.  */
858             break;
859         }
860         /* Grab the bus if this is starting a transfer.  */
861         if ((value & 2) && (s->mcs & STELLARIS_I2C_MCS_BUSBSY) == 0) {
862             if (i2c_start_transfer(s->bus, s->msa >> 1, s->msa & 1)) {
863                 s->mcs |= STELLARIS_I2C_MCS_ARBLST;
864             } else {
865                 s->mcs &= ~STELLARIS_I2C_MCS_ARBLST;
866                 s->mcs |= STELLARIS_I2C_MCS_BUSBSY;
867             }
868         }
869         /* If we don't have the bus then indicate an error.  */
870         if (!i2c_bus_busy(s->bus)
871                 || (s->mcs & STELLARIS_I2C_MCS_BUSBSY) == 0) {
872             s->mcs |= STELLARIS_I2C_MCS_ERROR;
873             break;
874         }
875         s->mcs &= ~STELLARIS_I2C_MCS_ERROR;
876         if (value & 1) {
877             /* Transfer a byte.  */
878             /* TODO: Handle errors.  */
879             if (s->msa & 1) {
880                 /* Recv */
881                 s->mdr = i2c_recv(s->bus);
882             } else {
883                 /* Send */
884                 i2c_send(s->bus, s->mdr);
885             }
886             /* Raise an interrupt.  */
887             s->mris |= 1;
888         }
889         if (value & 4) {
890             /* Finish transfer.  */
891             i2c_end_transfer(s->bus);
892             s->mcs &= ~STELLARIS_I2C_MCS_BUSBSY;
893         }
894         break;
895     case 0x08: /* MDR */
896         s->mdr = value & 0xff;
897         break;
898     case 0x0c: /* MTPR */
899         s->mtpr = value & 0xff;
900         break;
901     case 0x10: /* MIMR */
902         s->mimr = 1;
903         break;
904     case 0x1c: /* MICR */
905         s->mris &= ~value;
906         break;
907     case 0x20: /* MCR */
908         if (value & 1) {
909             qemu_log_mask(LOG_UNIMP,
910                           "stellaris_i2c: Loopback not implemented\n");
911         }
912         if (value & 0x20) {
913             qemu_log_mask(LOG_UNIMP,
914                           "stellaris_i2c: Slave mode not implemented\n");
915         }
916         s->mcr = value & 0x31;
917         break;
918     default:
919         qemu_log_mask(LOG_GUEST_ERROR,
920                       "stellaris_i2c: write at bad offset 0x%x\n", (int)offset);
921     }
922     stellaris_i2c_update(s);
923 }
924 
925 static void stellaris_i2c_reset(stellaris_i2c_state *s)
926 {
927     if (s->mcs & STELLARIS_I2C_MCS_BUSBSY)
928         i2c_end_transfer(s->bus);
929 
930     s->msa = 0;
931     s->mcs = 0;
932     s->mdr = 0;
933     s->mtpr = 1;
934     s->mimr = 0;
935     s->mris = 0;
936     s->mcr = 0;
937     stellaris_i2c_update(s);
938 }
939 
940 static const MemoryRegionOps stellaris_i2c_ops = {
941     .read = stellaris_i2c_read,
942     .write = stellaris_i2c_write,
943     .endianness = DEVICE_NATIVE_ENDIAN,
944 };
945 
946 static const VMStateDescription vmstate_stellaris_i2c = {
947     .name = "stellaris_i2c",
948     .version_id = 1,
949     .minimum_version_id = 1,
950     .fields = (VMStateField[]) {
951         VMSTATE_UINT32(msa, stellaris_i2c_state),
952         VMSTATE_UINT32(mcs, stellaris_i2c_state),
953         VMSTATE_UINT32(mdr, stellaris_i2c_state),
954         VMSTATE_UINT32(mtpr, stellaris_i2c_state),
955         VMSTATE_UINT32(mimr, stellaris_i2c_state),
956         VMSTATE_UINT32(mris, stellaris_i2c_state),
957         VMSTATE_UINT32(mcr, stellaris_i2c_state),
958         VMSTATE_END_OF_LIST()
959     }
960 };
961 
962 static void stellaris_i2c_init(Object *obj)
963 {
964     DeviceState *dev = DEVICE(obj);
965     stellaris_i2c_state *s = STELLARIS_I2C(obj);
966     SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
967     I2CBus *bus;
968 
969     sysbus_init_irq(sbd, &s->irq);
970     bus = i2c_init_bus(dev, "i2c");
971     s->bus = bus;
972 
973     memory_region_init_io(&s->iomem, obj, &stellaris_i2c_ops, s,
974                           "i2c", 0x1000);
975     sysbus_init_mmio(sbd, &s->iomem);
976     /* ??? For now we only implement the master interface.  */
977     stellaris_i2c_reset(s);
978 }
979 
980 /* Analogue to Digital Converter.  This is only partially implemented,
981    enough for applications that use a combined ADC and timer tick.  */
982 
983 #define STELLARIS_ADC_EM_CONTROLLER 0
984 #define STELLARIS_ADC_EM_COMP       1
985 #define STELLARIS_ADC_EM_EXTERNAL   4
986 #define STELLARIS_ADC_EM_TIMER      5
987 #define STELLARIS_ADC_EM_PWM0       6
988 #define STELLARIS_ADC_EM_PWM1       7
989 #define STELLARIS_ADC_EM_PWM2       8
990 
991 #define STELLARIS_ADC_FIFO_EMPTY    0x0100
992 #define STELLARIS_ADC_FIFO_FULL     0x1000
993 
994 #define TYPE_STELLARIS_ADC "stellaris-adc"
995 typedef struct StellarisADCState stellaris_adc_state;
996 DECLARE_INSTANCE_CHECKER(stellaris_adc_state, STELLARIS_ADC,
997                          TYPE_STELLARIS_ADC)
998 
999 struct StellarisADCState {
1000     SysBusDevice parent_obj;
1001 
1002     MemoryRegion iomem;
1003     uint32_t actss;
1004     uint32_t ris;
1005     uint32_t im;
1006     uint32_t emux;
1007     uint32_t ostat;
1008     uint32_t ustat;
1009     uint32_t sspri;
1010     uint32_t sac;
1011     struct {
1012         uint32_t state;
1013         uint32_t data[16];
1014     } fifo[4];
1015     uint32_t ssmux[4];
1016     uint32_t ssctl[4];
1017     uint32_t noise;
1018     qemu_irq irq[4];
1019 };
1020 
1021 static uint32_t stellaris_adc_fifo_read(stellaris_adc_state *s, int n)
1022 {
1023     int tail;
1024 
1025     tail = s->fifo[n].state & 0xf;
1026     if (s->fifo[n].state & STELLARIS_ADC_FIFO_EMPTY) {
1027         s->ustat |= 1 << n;
1028     } else {
1029         s->fifo[n].state = (s->fifo[n].state & ~0xf) | ((tail + 1) & 0xf);
1030         s->fifo[n].state &= ~STELLARIS_ADC_FIFO_FULL;
1031         if (tail + 1 == ((s->fifo[n].state >> 4) & 0xf))
1032             s->fifo[n].state |= STELLARIS_ADC_FIFO_EMPTY;
1033     }
1034     return s->fifo[n].data[tail];
1035 }
1036 
1037 static void stellaris_adc_fifo_write(stellaris_adc_state *s, int n,
1038                                      uint32_t value)
1039 {
1040     int head;
1041 
1042     /* TODO: Real hardware has limited size FIFOs.  We have a full 16 entry
1043        FIFO fir each sequencer.  */
1044     head = (s->fifo[n].state >> 4) & 0xf;
1045     if (s->fifo[n].state & STELLARIS_ADC_FIFO_FULL) {
1046         s->ostat |= 1 << n;
1047         return;
1048     }
1049     s->fifo[n].data[head] = value;
1050     head = (head + 1) & 0xf;
1051     s->fifo[n].state &= ~STELLARIS_ADC_FIFO_EMPTY;
1052     s->fifo[n].state = (s->fifo[n].state & ~0xf0) | (head << 4);
1053     if ((s->fifo[n].state & 0xf) == head)
1054         s->fifo[n].state |= STELLARIS_ADC_FIFO_FULL;
1055 }
1056 
1057 static void stellaris_adc_update(stellaris_adc_state *s)
1058 {
1059     int level;
1060     int n;
1061 
1062     for (n = 0; n < 4; n++) {
1063         level = (s->ris & s->im & (1 << n)) != 0;
1064         qemu_set_irq(s->irq[n], level);
1065     }
1066 }
1067 
1068 static void stellaris_adc_trigger(void *opaque, int irq, int level)
1069 {
1070     stellaris_adc_state *s = (stellaris_adc_state *)opaque;
1071     int n;
1072 
1073     for (n = 0; n < 4; n++) {
1074         if ((s->actss & (1 << n)) == 0) {
1075             continue;
1076         }
1077 
1078         if (((s->emux >> (n * 4)) & 0xff) != 5) {
1079             continue;
1080         }
1081 
1082         /* Some applications use the ADC as a random number source, so introduce
1083            some variation into the signal.  */
1084         s->noise = s->noise * 314159 + 1;
1085         /* ??? actual inputs not implemented.  Return an arbitrary value.  */
1086         stellaris_adc_fifo_write(s, n, 0x200 + ((s->noise >> 16) & 7));
1087         s->ris |= (1 << n);
1088         stellaris_adc_update(s);
1089     }
1090 }
1091 
1092 static void stellaris_adc_reset(stellaris_adc_state *s)
1093 {
1094     int n;
1095 
1096     for (n = 0; n < 4; n++) {
1097         s->ssmux[n] = 0;
1098         s->ssctl[n] = 0;
1099         s->fifo[n].state = STELLARIS_ADC_FIFO_EMPTY;
1100     }
1101 }
1102 
1103 static uint64_t stellaris_adc_read(void *opaque, hwaddr offset,
1104                                    unsigned size)
1105 {
1106     stellaris_adc_state *s = (stellaris_adc_state *)opaque;
1107 
1108     /* TODO: Implement this.  */
1109     if (offset >= 0x40 && offset < 0xc0) {
1110         int n;
1111         n = (offset - 0x40) >> 5;
1112         switch (offset & 0x1f) {
1113         case 0x00: /* SSMUX */
1114             return s->ssmux[n];
1115         case 0x04: /* SSCTL */
1116             return s->ssctl[n];
1117         case 0x08: /* SSFIFO */
1118             return stellaris_adc_fifo_read(s, n);
1119         case 0x0c: /* SSFSTAT */
1120             return s->fifo[n].state;
1121         default:
1122             break;
1123         }
1124     }
1125     switch (offset) {
1126     case 0x00: /* ACTSS */
1127         return s->actss;
1128     case 0x04: /* RIS */
1129         return s->ris;
1130     case 0x08: /* IM */
1131         return s->im;
1132     case 0x0c: /* ISC */
1133         return s->ris & s->im;
1134     case 0x10: /* OSTAT */
1135         return s->ostat;
1136     case 0x14: /* EMUX */
1137         return s->emux;
1138     case 0x18: /* USTAT */
1139         return s->ustat;
1140     case 0x20: /* SSPRI */
1141         return s->sspri;
1142     case 0x30: /* SAC */
1143         return s->sac;
1144     default:
1145         qemu_log_mask(LOG_GUEST_ERROR,
1146                       "stellaris_adc: read at bad offset 0x%x\n", (int)offset);
1147         return 0;
1148     }
1149 }
1150 
1151 static void stellaris_adc_write(void *opaque, hwaddr offset,
1152                                 uint64_t value, unsigned size)
1153 {
1154     stellaris_adc_state *s = (stellaris_adc_state *)opaque;
1155 
1156     /* TODO: Implement this.  */
1157     if (offset >= 0x40 && offset < 0xc0) {
1158         int n;
1159         n = (offset - 0x40) >> 5;
1160         switch (offset & 0x1f) {
1161         case 0x00: /* SSMUX */
1162             s->ssmux[n] = value & 0x33333333;
1163             return;
1164         case 0x04: /* SSCTL */
1165             if (value != 6) {
1166                 qemu_log_mask(LOG_UNIMP,
1167                               "ADC: Unimplemented sequence %" PRIx64 "\n",
1168                               value);
1169             }
1170             s->ssctl[n] = value;
1171             return;
1172         default:
1173             break;
1174         }
1175     }
1176     switch (offset) {
1177     case 0x00: /* ACTSS */
1178         s->actss = value & 0xf;
1179         break;
1180     case 0x08: /* IM */
1181         s->im = value;
1182         break;
1183     case 0x0c: /* ISC */
1184         s->ris &= ~value;
1185         break;
1186     case 0x10: /* OSTAT */
1187         s->ostat &= ~value;
1188         break;
1189     case 0x14: /* EMUX */
1190         s->emux = value;
1191         break;
1192     case 0x18: /* USTAT */
1193         s->ustat &= ~value;
1194         break;
1195     case 0x20: /* SSPRI */
1196         s->sspri = value;
1197         break;
1198     case 0x28: /* PSSI */
1199         qemu_log_mask(LOG_UNIMP, "ADC: sample initiate unimplemented\n");
1200         break;
1201     case 0x30: /* SAC */
1202         s->sac = value;
1203         break;
1204     default:
1205         qemu_log_mask(LOG_GUEST_ERROR,
1206                       "stellaris_adc: write at bad offset 0x%x\n", (int)offset);
1207     }
1208     stellaris_adc_update(s);
1209 }
1210 
1211 static const MemoryRegionOps stellaris_adc_ops = {
1212     .read = stellaris_adc_read,
1213     .write = stellaris_adc_write,
1214     .endianness = DEVICE_NATIVE_ENDIAN,
1215 };
1216 
1217 static const VMStateDescription vmstate_stellaris_adc = {
1218     .name = "stellaris_adc",
1219     .version_id = 1,
1220     .minimum_version_id = 1,
1221     .fields = (VMStateField[]) {
1222         VMSTATE_UINT32(actss, stellaris_adc_state),
1223         VMSTATE_UINT32(ris, stellaris_adc_state),
1224         VMSTATE_UINT32(im, stellaris_adc_state),
1225         VMSTATE_UINT32(emux, stellaris_adc_state),
1226         VMSTATE_UINT32(ostat, stellaris_adc_state),
1227         VMSTATE_UINT32(ustat, stellaris_adc_state),
1228         VMSTATE_UINT32(sspri, stellaris_adc_state),
1229         VMSTATE_UINT32(sac, stellaris_adc_state),
1230         VMSTATE_UINT32(fifo[0].state, stellaris_adc_state),
1231         VMSTATE_UINT32_ARRAY(fifo[0].data, stellaris_adc_state, 16),
1232         VMSTATE_UINT32(ssmux[0], stellaris_adc_state),
1233         VMSTATE_UINT32(ssctl[0], stellaris_adc_state),
1234         VMSTATE_UINT32(fifo[1].state, stellaris_adc_state),
1235         VMSTATE_UINT32_ARRAY(fifo[1].data, stellaris_adc_state, 16),
1236         VMSTATE_UINT32(ssmux[1], stellaris_adc_state),
1237         VMSTATE_UINT32(ssctl[1], stellaris_adc_state),
1238         VMSTATE_UINT32(fifo[2].state, stellaris_adc_state),
1239         VMSTATE_UINT32_ARRAY(fifo[2].data, stellaris_adc_state, 16),
1240         VMSTATE_UINT32(ssmux[2], stellaris_adc_state),
1241         VMSTATE_UINT32(ssctl[2], stellaris_adc_state),
1242         VMSTATE_UINT32(fifo[3].state, stellaris_adc_state),
1243         VMSTATE_UINT32_ARRAY(fifo[3].data, stellaris_adc_state, 16),
1244         VMSTATE_UINT32(ssmux[3], stellaris_adc_state),
1245         VMSTATE_UINT32(ssctl[3], stellaris_adc_state),
1246         VMSTATE_UINT32(noise, stellaris_adc_state),
1247         VMSTATE_END_OF_LIST()
1248     }
1249 };
1250 
1251 static void stellaris_adc_init(Object *obj)
1252 {
1253     DeviceState *dev = DEVICE(obj);
1254     stellaris_adc_state *s = STELLARIS_ADC(obj);
1255     SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
1256     int n;
1257 
1258     for (n = 0; n < 4; n++) {
1259         sysbus_init_irq(sbd, &s->irq[n]);
1260     }
1261 
1262     memory_region_init_io(&s->iomem, obj, &stellaris_adc_ops, s,
1263                           "adc", 0x1000);
1264     sysbus_init_mmio(sbd, &s->iomem);
1265     stellaris_adc_reset(s);
1266     qdev_init_gpio_in(dev, stellaris_adc_trigger, 1);
1267 }
1268 
1269 /* Board init.  */
1270 static stellaris_board_info stellaris_boards[] = {
1271   { "LM3S811EVB",
1272     0,
1273     0x0032000e,
1274     0x001f001f, /* dc0 */
1275     0x001132bf,
1276     0x01071013,
1277     0x3f0f01ff,
1278     0x0000001f,
1279     BP_OLED_I2C
1280   },
1281   { "LM3S6965EVB",
1282     0x10010002,
1283     0x1073402e,
1284     0x00ff007f, /* dc0 */
1285     0x001133ff,
1286     0x030f5317,
1287     0x0f0f87ff,
1288     0x5000007f,
1289     BP_OLED_SSI | BP_GAMEPAD
1290   }
1291 };
1292 
1293 static void stellaris_init(MachineState *ms, stellaris_board_info *board)
1294 {
1295     static const int uart_irq[] = {5, 6, 33, 34};
1296     static const int timer_irq[] = {19, 21, 23, 35};
1297     static const uint32_t gpio_addr[7] =
1298       { 0x40004000, 0x40005000, 0x40006000, 0x40007000,
1299         0x40024000, 0x40025000, 0x40026000};
1300     static const int gpio_irq[7] = {0, 1, 2, 3, 4, 30, 31};
1301 
1302     /* Memory map of SoC devices, from
1303      * Stellaris LM3S6965 Microcontroller Data Sheet (rev I)
1304      * http://www.ti.com/lit/ds/symlink/lm3s6965.pdf
1305      *
1306      * 40000000 wdtimer
1307      * 40002000 i2c (unimplemented)
1308      * 40004000 GPIO
1309      * 40005000 GPIO
1310      * 40006000 GPIO
1311      * 40007000 GPIO
1312      * 40008000 SSI
1313      * 4000c000 UART
1314      * 4000d000 UART
1315      * 4000e000 UART
1316      * 40020000 i2c
1317      * 40021000 i2c (unimplemented)
1318      * 40024000 GPIO
1319      * 40025000 GPIO
1320      * 40026000 GPIO
1321      * 40028000 PWM (unimplemented)
1322      * 4002c000 QEI (unimplemented)
1323      * 4002d000 QEI (unimplemented)
1324      * 40030000 gptimer
1325      * 40031000 gptimer
1326      * 40032000 gptimer
1327      * 40033000 gptimer
1328      * 40038000 ADC
1329      * 4003c000 analogue comparator (unimplemented)
1330      * 40048000 ethernet
1331      * 400fc000 hibernation module (unimplemented)
1332      * 400fd000 flash memory control (unimplemented)
1333      * 400fe000 system control
1334      */
1335 
1336     DeviceState *gpio_dev[7], *nvic;
1337     qemu_irq gpio_in[7][8];
1338     qemu_irq gpio_out[7][8];
1339     qemu_irq adc;
1340     int sram_size;
1341     int flash_size;
1342     I2CBus *i2c;
1343     DeviceState *dev;
1344     int i;
1345     int j;
1346 
1347     MemoryRegion *sram = g_new(MemoryRegion, 1);
1348     MemoryRegion *flash = g_new(MemoryRegion, 1);
1349     MemoryRegion *system_memory = get_system_memory();
1350 
1351     flash_size = (((board->dc0 & 0xffff) + 1) << 1) * 1024;
1352     sram_size = ((board->dc0 >> 18) + 1) * 1024;
1353 
1354     /* Flash programming is done via the SCU, so pretend it is ROM.  */
1355     memory_region_init_rom(flash, NULL, "stellaris.flash", flash_size,
1356                            &error_fatal);
1357     memory_region_add_subregion(system_memory, 0, flash);
1358 
1359     memory_region_init_ram(sram, NULL, "stellaris.sram", sram_size,
1360                            &error_fatal);
1361     memory_region_add_subregion(system_memory, 0x20000000, sram);
1362 
1363     nvic = qdev_new(TYPE_ARMV7M);
1364     qdev_prop_set_uint32(nvic, "num-irq", NUM_IRQ_LINES);
1365     qdev_prop_set_string(nvic, "cpu-type", ms->cpu_type);
1366     qdev_prop_set_bit(nvic, "enable-bitband", true);
1367     object_property_set_link(OBJECT(nvic), "memory",
1368                              OBJECT(get_system_memory()), &error_abort);
1369     /* This will exit with an error if the user passed us a bad cpu_type */
1370     sysbus_realize_and_unref(SYS_BUS_DEVICE(nvic), &error_fatal);
1371 
1372     if (board->dc1 & (1 << 16)) {
1373         dev = sysbus_create_varargs(TYPE_STELLARIS_ADC, 0x40038000,
1374                                     qdev_get_gpio_in(nvic, 14),
1375                                     qdev_get_gpio_in(nvic, 15),
1376                                     qdev_get_gpio_in(nvic, 16),
1377                                     qdev_get_gpio_in(nvic, 17),
1378                                     NULL);
1379         adc = qdev_get_gpio_in(dev, 0);
1380     } else {
1381         adc = NULL;
1382     }
1383     for (i = 0; i < 4; i++) {
1384         if (board->dc2 & (0x10000 << i)) {
1385             dev = sysbus_create_simple(TYPE_STELLARIS_GPTM,
1386                                        0x40030000 + i * 0x1000,
1387                                        qdev_get_gpio_in(nvic, timer_irq[i]));
1388             /* TODO: This is incorrect, but we get away with it because
1389                the ADC output is only ever pulsed.  */
1390             qdev_connect_gpio_out(dev, 0, adc);
1391         }
1392     }
1393 
1394     stellaris_sys_init(0x400fe000, qdev_get_gpio_in(nvic, 28),
1395                        board, nd_table[0].macaddr.a);
1396 
1397 
1398     if (board->dc1 & (1 << 3)) { /* watchdog present */
1399         dev = qdev_new(TYPE_LUMINARY_WATCHDOG);
1400 
1401         /* system_clock_scale is valid now */
1402         uint32_t mainclk = NANOSECONDS_PER_SECOND / system_clock_scale;
1403         qdev_prop_set_uint32(dev, "wdogclk-frq", mainclk);
1404 
1405         sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
1406         sysbus_mmio_map(SYS_BUS_DEVICE(dev),
1407                         0,
1408                         0x40000000u);
1409         sysbus_connect_irq(SYS_BUS_DEVICE(dev),
1410                            0,
1411                            qdev_get_gpio_in(nvic, 18));
1412     }
1413 
1414 
1415     for (i = 0; i < 7; i++) {
1416         if (board->dc4 & (1 << i)) {
1417             gpio_dev[i] = sysbus_create_simple("pl061_luminary", gpio_addr[i],
1418                                                qdev_get_gpio_in(nvic,
1419                                                                 gpio_irq[i]));
1420             for (j = 0; j < 8; j++) {
1421                 gpio_in[i][j] = qdev_get_gpio_in(gpio_dev[i], j);
1422                 gpio_out[i][j] = NULL;
1423             }
1424         }
1425     }
1426 
1427     if (board->dc2 & (1 << 12)) {
1428         dev = sysbus_create_simple(TYPE_STELLARIS_I2C, 0x40020000,
1429                                    qdev_get_gpio_in(nvic, 8));
1430         i2c = (I2CBus *)qdev_get_child_bus(dev, "i2c");
1431         if (board->peripherals & BP_OLED_I2C) {
1432             i2c_slave_create_simple(i2c, "ssd0303", 0x3d);
1433         }
1434     }
1435 
1436     for (i = 0; i < 4; i++) {
1437         if (board->dc2 & (1 << i)) {
1438             pl011_luminary_create(0x4000c000 + i * 0x1000,
1439                                   qdev_get_gpio_in(nvic, uart_irq[i]),
1440                                   serial_hd(i));
1441         }
1442     }
1443     if (board->dc2 & (1 << 4)) {
1444         dev = sysbus_create_simple("pl022", 0x40008000,
1445                                    qdev_get_gpio_in(nvic, 7));
1446         if (board->peripherals & BP_OLED_SSI) {
1447             void *bus;
1448             DeviceState *sddev;
1449             DeviceState *ssddev;
1450 
1451             /* Some boards have both an OLED controller and SD card connected to
1452              * the same SSI port, with the SD card chip select connected to a
1453              * GPIO pin.  Technically the OLED chip select is connected to the
1454              * SSI Fss pin.  We do not bother emulating that as both devices
1455              * should never be selected simultaneously, and our OLED controller
1456              * ignores stray 0xff commands that occur when deselecting the SD
1457              * card.
1458              */
1459             bus = qdev_get_child_bus(dev, "ssi");
1460 
1461             sddev = ssi_create_peripheral(bus, "ssi-sd");
1462             ssddev = ssi_create_peripheral(bus, "ssd0323");
1463             gpio_out[GPIO_D][0] = qemu_irq_split(
1464                     qdev_get_gpio_in_named(sddev, SSI_GPIO_CS, 0),
1465                     qdev_get_gpio_in_named(ssddev, SSI_GPIO_CS, 0));
1466             gpio_out[GPIO_C][7] = qdev_get_gpio_in(ssddev, 0);
1467 
1468             /* Make sure the select pin is high.  */
1469             qemu_irq_raise(gpio_out[GPIO_D][0]);
1470         }
1471     }
1472     if (board->dc4 & (1 << 28)) {
1473         DeviceState *enet;
1474 
1475         qemu_check_nic_model(&nd_table[0], "stellaris");
1476 
1477         enet = qdev_new("stellaris_enet");
1478         qdev_set_nic_properties(enet, &nd_table[0]);
1479         sysbus_realize_and_unref(SYS_BUS_DEVICE(enet), &error_fatal);
1480         sysbus_mmio_map(SYS_BUS_DEVICE(enet), 0, 0x40048000);
1481         sysbus_connect_irq(SYS_BUS_DEVICE(enet), 0, qdev_get_gpio_in(nvic, 42));
1482     }
1483     if (board->peripherals & BP_GAMEPAD) {
1484         qemu_irq gpad_irq[5];
1485         static const int gpad_keycode[5] = { 0xc8, 0xd0, 0xcb, 0xcd, 0x1d };
1486 
1487         gpad_irq[0] = qemu_irq_invert(gpio_in[GPIO_E][0]); /* up */
1488         gpad_irq[1] = qemu_irq_invert(gpio_in[GPIO_E][1]); /* down */
1489         gpad_irq[2] = qemu_irq_invert(gpio_in[GPIO_E][2]); /* left */
1490         gpad_irq[3] = qemu_irq_invert(gpio_in[GPIO_E][3]); /* right */
1491         gpad_irq[4] = qemu_irq_invert(gpio_in[GPIO_F][1]); /* select */
1492 
1493         stellaris_gamepad_init(5, gpad_irq, gpad_keycode);
1494     }
1495     for (i = 0; i < 7; i++) {
1496         if (board->dc4 & (1 << i)) {
1497             for (j = 0; j < 8; j++) {
1498                 if (gpio_out[i][j]) {
1499                     qdev_connect_gpio_out(gpio_dev[i], j, gpio_out[i][j]);
1500                 }
1501             }
1502         }
1503     }
1504 
1505     /* Add dummy regions for the devices we don't implement yet,
1506      * so guest accesses don't cause unlogged crashes.
1507      */
1508     create_unimplemented_device("i2c-0", 0x40002000, 0x1000);
1509     create_unimplemented_device("i2c-2", 0x40021000, 0x1000);
1510     create_unimplemented_device("PWM", 0x40028000, 0x1000);
1511     create_unimplemented_device("QEI-0", 0x4002c000, 0x1000);
1512     create_unimplemented_device("QEI-1", 0x4002d000, 0x1000);
1513     create_unimplemented_device("analogue-comparator", 0x4003c000, 0x1000);
1514     create_unimplemented_device("hibernation", 0x400fc000, 0x1000);
1515     create_unimplemented_device("flash-control", 0x400fd000, 0x1000);
1516 
1517     armv7m_load_kernel(ARM_CPU(first_cpu), ms->kernel_filename, flash_size);
1518 }
1519 
1520 /* FIXME: Figure out how to generate these from stellaris_boards.  */
1521 static void lm3s811evb_init(MachineState *machine)
1522 {
1523     stellaris_init(machine, &stellaris_boards[0]);
1524 }
1525 
1526 static void lm3s6965evb_init(MachineState *machine)
1527 {
1528     stellaris_init(machine, &stellaris_boards[1]);
1529 }
1530 
1531 static void lm3s811evb_class_init(ObjectClass *oc, void *data)
1532 {
1533     MachineClass *mc = MACHINE_CLASS(oc);
1534 
1535     mc->desc = "Stellaris LM3S811EVB";
1536     mc->init = lm3s811evb_init;
1537     mc->ignore_memory_transaction_failures = true;
1538     mc->default_cpu_type = ARM_CPU_TYPE_NAME("cortex-m3");
1539 }
1540 
1541 static const TypeInfo lm3s811evb_type = {
1542     .name = MACHINE_TYPE_NAME("lm3s811evb"),
1543     .parent = TYPE_MACHINE,
1544     .class_init = lm3s811evb_class_init,
1545 };
1546 
1547 static void lm3s6965evb_class_init(ObjectClass *oc, void *data)
1548 {
1549     MachineClass *mc = MACHINE_CLASS(oc);
1550 
1551     mc->desc = "Stellaris LM3S6965EVB";
1552     mc->init = lm3s6965evb_init;
1553     mc->ignore_memory_transaction_failures = true;
1554     mc->default_cpu_type = ARM_CPU_TYPE_NAME("cortex-m3");
1555 }
1556 
1557 static const TypeInfo lm3s6965evb_type = {
1558     .name = MACHINE_TYPE_NAME("lm3s6965evb"),
1559     .parent = TYPE_MACHINE,
1560     .class_init = lm3s6965evb_class_init,
1561 };
1562 
1563 static void stellaris_machine_init(void)
1564 {
1565     type_register_static(&lm3s811evb_type);
1566     type_register_static(&lm3s6965evb_type);
1567 }
1568 
1569 type_init(stellaris_machine_init)
1570 
1571 static void stellaris_i2c_class_init(ObjectClass *klass, void *data)
1572 {
1573     DeviceClass *dc = DEVICE_CLASS(klass);
1574 
1575     dc->vmsd = &vmstate_stellaris_i2c;
1576 }
1577 
1578 static const TypeInfo stellaris_i2c_info = {
1579     .name          = TYPE_STELLARIS_I2C,
1580     .parent        = TYPE_SYS_BUS_DEVICE,
1581     .instance_size = sizeof(stellaris_i2c_state),
1582     .instance_init = stellaris_i2c_init,
1583     .class_init    = stellaris_i2c_class_init,
1584 };
1585 
1586 static void stellaris_gptm_class_init(ObjectClass *klass, void *data)
1587 {
1588     DeviceClass *dc = DEVICE_CLASS(klass);
1589 
1590     dc->vmsd = &vmstate_stellaris_gptm;
1591     dc->realize = stellaris_gptm_realize;
1592 }
1593 
1594 static const TypeInfo stellaris_gptm_info = {
1595     .name          = TYPE_STELLARIS_GPTM,
1596     .parent        = TYPE_SYS_BUS_DEVICE,
1597     .instance_size = sizeof(gptm_state),
1598     .instance_init = stellaris_gptm_init,
1599     .class_init    = stellaris_gptm_class_init,
1600 };
1601 
1602 static void stellaris_adc_class_init(ObjectClass *klass, void *data)
1603 {
1604     DeviceClass *dc = DEVICE_CLASS(klass);
1605 
1606     dc->vmsd = &vmstate_stellaris_adc;
1607 }
1608 
1609 static const TypeInfo stellaris_adc_info = {
1610     .name          = TYPE_STELLARIS_ADC,
1611     .parent        = TYPE_SYS_BUS_DEVICE,
1612     .instance_size = sizeof(stellaris_adc_state),
1613     .instance_init = stellaris_adc_init,
1614     .class_init    = stellaris_adc_class_init,
1615 };
1616 
1617 static void stellaris_sys_class_init(ObjectClass *klass, void *data)
1618 {
1619     DeviceClass *dc = DEVICE_CLASS(klass);
1620     ResettableClass *rc = RESETTABLE_CLASS(klass);
1621 
1622     dc->vmsd = &vmstate_stellaris_sys;
1623     rc->phases.enter = stellaris_sys_reset_enter;
1624     rc->phases.hold = stellaris_sys_reset_hold;
1625     rc->phases.exit = stellaris_sys_reset_exit;
1626     device_class_set_props(dc, stellaris_sys_properties);
1627 }
1628 
1629 static const TypeInfo stellaris_sys_info = {
1630     .name = TYPE_STELLARIS_SYS,
1631     .parent = TYPE_SYS_BUS_DEVICE,
1632     .instance_size = sizeof(ssys_state),
1633     .instance_init = stellaris_sys_instance_init,
1634     .class_init = stellaris_sys_class_init,
1635 };
1636 
1637 static void stellaris_register_types(void)
1638 {
1639     type_register_static(&stellaris_i2c_info);
1640     type_register_static(&stellaris_gptm_info);
1641     type_register_static(&stellaris_adc_info);
1642     type_register_static(&stellaris_sys_info);
1643 }
1644 
1645 type_init(stellaris_register_types)
1646