1 /* 2 * Luminary Micro Stellaris peripherals 3 * 4 * Copyright (c) 2006 CodeSourcery. 5 * Written by Paul Brook 6 * 7 * This code is licensed under the GPL. 8 */ 9 10 #include "qemu/osdep.h" 11 #include "qapi/error.h" 12 #include "hw/sysbus.h" 13 #include "hw/ssi/ssi.h" 14 #include "hw/arm/boot.h" 15 #include "qemu/timer.h" 16 #include "hw/i2c/i2c.h" 17 #include "net/net.h" 18 #include "hw/boards.h" 19 #include "qemu/log.h" 20 #include "exec/address-spaces.h" 21 #include "sysemu/sysemu.h" 22 #include "hw/arm/armv7m.h" 23 #include "hw/char/pl011.h" 24 #include "hw/input/gamepad.h" 25 #include "hw/irq.h" 26 #include "hw/watchdog/cmsdk-apb-watchdog.h" 27 #include "migration/vmstate.h" 28 #include "hw/misc/unimp.h" 29 #include "hw/qdev-clock.h" 30 #include "cpu.h" 31 #include "qom/object.h" 32 33 #define GPIO_A 0 34 #define GPIO_B 1 35 #define GPIO_C 2 36 #define GPIO_D 3 37 #define GPIO_E 4 38 #define GPIO_F 5 39 #define GPIO_G 6 40 41 #define BP_OLED_I2C 0x01 42 #define BP_OLED_SSI 0x02 43 #define BP_GAMEPAD 0x04 44 45 #define NUM_IRQ_LINES 64 46 47 typedef const struct { 48 const char *name; 49 uint32_t did0; 50 uint32_t did1; 51 uint32_t dc0; 52 uint32_t dc1; 53 uint32_t dc2; 54 uint32_t dc3; 55 uint32_t dc4; 56 uint32_t peripherals; 57 } stellaris_board_info; 58 59 /* General purpose timer module. */ 60 61 #define TYPE_STELLARIS_GPTM "stellaris-gptm" 62 OBJECT_DECLARE_SIMPLE_TYPE(gptm_state, STELLARIS_GPTM) 63 64 struct gptm_state { 65 SysBusDevice parent_obj; 66 67 MemoryRegion iomem; 68 uint32_t config; 69 uint32_t mode[2]; 70 uint32_t control; 71 uint32_t state; 72 uint32_t mask; 73 uint32_t load[2]; 74 uint32_t match[2]; 75 uint32_t prescale[2]; 76 uint32_t match_prescale[2]; 77 uint32_t rtc; 78 int64_t tick[2]; 79 struct gptm_state *opaque[2]; 80 QEMUTimer *timer[2]; 81 /* The timers have an alternate output used to trigger the ADC. */ 82 qemu_irq trigger; 83 qemu_irq irq; 84 }; 85 86 static void gptm_update_irq(gptm_state *s) 87 { 88 int level; 89 level = (s->state & s->mask) != 0; 90 qemu_set_irq(s->irq, level); 91 } 92 93 static void gptm_stop(gptm_state *s, int n) 94 { 95 timer_del(s->timer[n]); 96 } 97 98 static void gptm_reload(gptm_state *s, int n, int reset) 99 { 100 int64_t tick; 101 if (reset) 102 tick = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL); 103 else 104 tick = s->tick[n]; 105 106 if (s->config == 0) { 107 /* 32-bit CountDown. */ 108 uint32_t count; 109 count = s->load[0] | (s->load[1] << 16); 110 tick += (int64_t)count * system_clock_scale; 111 } else if (s->config == 1) { 112 /* 32-bit RTC. 1Hz tick. */ 113 tick += NANOSECONDS_PER_SECOND; 114 } else if (s->mode[n] == 0xa) { 115 /* PWM mode. Not implemented. */ 116 } else { 117 qemu_log_mask(LOG_UNIMP, 118 "GPTM: 16-bit timer mode unimplemented: 0x%x\n", 119 s->mode[n]); 120 return; 121 } 122 s->tick[n] = tick; 123 timer_mod(s->timer[n], tick); 124 } 125 126 static void gptm_tick(void *opaque) 127 { 128 gptm_state **p = (gptm_state **)opaque; 129 gptm_state *s; 130 int n; 131 132 s = *p; 133 n = p - s->opaque; 134 if (s->config == 0) { 135 s->state |= 1; 136 if ((s->control & 0x20)) { 137 /* Output trigger. */ 138 qemu_irq_pulse(s->trigger); 139 } 140 if (s->mode[0] & 1) { 141 /* One-shot. */ 142 s->control &= ~1; 143 } else { 144 /* Periodic. */ 145 gptm_reload(s, 0, 0); 146 } 147 } else if (s->config == 1) { 148 /* RTC. */ 149 uint32_t match; 150 s->rtc++; 151 match = s->match[0] | (s->match[1] << 16); 152 if (s->rtc > match) 153 s->rtc = 0; 154 if (s->rtc == 0) { 155 s->state |= 8; 156 } 157 gptm_reload(s, 0, 0); 158 } else if (s->mode[n] == 0xa) { 159 /* PWM mode. Not implemented. */ 160 } else { 161 qemu_log_mask(LOG_UNIMP, 162 "GPTM: 16-bit timer mode unimplemented: 0x%x\n", 163 s->mode[n]); 164 } 165 gptm_update_irq(s); 166 } 167 168 static uint64_t gptm_read(void *opaque, hwaddr offset, 169 unsigned size) 170 { 171 gptm_state *s = (gptm_state *)opaque; 172 173 switch (offset) { 174 case 0x00: /* CFG */ 175 return s->config; 176 case 0x04: /* TAMR */ 177 return s->mode[0]; 178 case 0x08: /* TBMR */ 179 return s->mode[1]; 180 case 0x0c: /* CTL */ 181 return s->control; 182 case 0x18: /* IMR */ 183 return s->mask; 184 case 0x1c: /* RIS */ 185 return s->state; 186 case 0x20: /* MIS */ 187 return s->state & s->mask; 188 case 0x24: /* CR */ 189 return 0; 190 case 0x28: /* TAILR */ 191 return s->load[0] | ((s->config < 4) ? (s->load[1] << 16) : 0); 192 case 0x2c: /* TBILR */ 193 return s->load[1]; 194 case 0x30: /* TAMARCHR */ 195 return s->match[0] | ((s->config < 4) ? (s->match[1] << 16) : 0); 196 case 0x34: /* TBMATCHR */ 197 return s->match[1]; 198 case 0x38: /* TAPR */ 199 return s->prescale[0]; 200 case 0x3c: /* TBPR */ 201 return s->prescale[1]; 202 case 0x40: /* TAPMR */ 203 return s->match_prescale[0]; 204 case 0x44: /* TBPMR */ 205 return s->match_prescale[1]; 206 case 0x48: /* TAR */ 207 if (s->config == 1) { 208 return s->rtc; 209 } 210 qemu_log_mask(LOG_UNIMP, 211 "GPTM: read of TAR but timer read not supported\n"); 212 return 0; 213 case 0x4c: /* TBR */ 214 qemu_log_mask(LOG_UNIMP, 215 "GPTM: read of TBR but timer read not supported\n"); 216 return 0; 217 default: 218 qemu_log_mask(LOG_GUEST_ERROR, 219 "GPTM: read at bad offset 0x02%" HWADDR_PRIx "\n", 220 offset); 221 return 0; 222 } 223 } 224 225 static void gptm_write(void *opaque, hwaddr offset, 226 uint64_t value, unsigned size) 227 { 228 gptm_state *s = (gptm_state *)opaque; 229 uint32_t oldval; 230 231 /* The timers should be disabled before changing the configuration. 232 We take advantage of this and defer everything until the timer 233 is enabled. */ 234 switch (offset) { 235 case 0x00: /* CFG */ 236 s->config = value; 237 break; 238 case 0x04: /* TAMR */ 239 s->mode[0] = value; 240 break; 241 case 0x08: /* TBMR */ 242 s->mode[1] = value; 243 break; 244 case 0x0c: /* CTL */ 245 oldval = s->control; 246 s->control = value; 247 /* TODO: Implement pause. */ 248 if ((oldval ^ value) & 1) { 249 if (value & 1) { 250 gptm_reload(s, 0, 1); 251 } else { 252 gptm_stop(s, 0); 253 } 254 } 255 if (((oldval ^ value) & 0x100) && s->config >= 4) { 256 if (value & 0x100) { 257 gptm_reload(s, 1, 1); 258 } else { 259 gptm_stop(s, 1); 260 } 261 } 262 break; 263 case 0x18: /* IMR */ 264 s->mask = value & 0x77; 265 gptm_update_irq(s); 266 break; 267 case 0x24: /* CR */ 268 s->state &= ~value; 269 break; 270 case 0x28: /* TAILR */ 271 s->load[0] = value & 0xffff; 272 if (s->config < 4) { 273 s->load[1] = value >> 16; 274 } 275 break; 276 case 0x2c: /* TBILR */ 277 s->load[1] = value & 0xffff; 278 break; 279 case 0x30: /* TAMARCHR */ 280 s->match[0] = value & 0xffff; 281 if (s->config < 4) { 282 s->match[1] = value >> 16; 283 } 284 break; 285 case 0x34: /* TBMATCHR */ 286 s->match[1] = value >> 16; 287 break; 288 case 0x38: /* TAPR */ 289 s->prescale[0] = value; 290 break; 291 case 0x3c: /* TBPR */ 292 s->prescale[1] = value; 293 break; 294 case 0x40: /* TAPMR */ 295 s->match_prescale[0] = value; 296 break; 297 case 0x44: /* TBPMR */ 298 s->match_prescale[0] = value; 299 break; 300 default: 301 qemu_log_mask(LOG_GUEST_ERROR, 302 "GPTM: write at bad offset 0x02%" HWADDR_PRIx "\n", 303 offset); 304 } 305 gptm_update_irq(s); 306 } 307 308 static const MemoryRegionOps gptm_ops = { 309 .read = gptm_read, 310 .write = gptm_write, 311 .endianness = DEVICE_NATIVE_ENDIAN, 312 }; 313 314 static const VMStateDescription vmstate_stellaris_gptm = { 315 .name = "stellaris_gptm", 316 .version_id = 1, 317 .minimum_version_id = 1, 318 .fields = (VMStateField[]) { 319 VMSTATE_UINT32(config, gptm_state), 320 VMSTATE_UINT32_ARRAY(mode, gptm_state, 2), 321 VMSTATE_UINT32(control, gptm_state), 322 VMSTATE_UINT32(state, gptm_state), 323 VMSTATE_UINT32(mask, gptm_state), 324 VMSTATE_UNUSED(8), 325 VMSTATE_UINT32_ARRAY(load, gptm_state, 2), 326 VMSTATE_UINT32_ARRAY(match, gptm_state, 2), 327 VMSTATE_UINT32_ARRAY(prescale, gptm_state, 2), 328 VMSTATE_UINT32_ARRAY(match_prescale, gptm_state, 2), 329 VMSTATE_UINT32(rtc, gptm_state), 330 VMSTATE_INT64_ARRAY(tick, gptm_state, 2), 331 VMSTATE_TIMER_PTR_ARRAY(timer, gptm_state, 2), 332 VMSTATE_END_OF_LIST() 333 } 334 }; 335 336 static void stellaris_gptm_init(Object *obj) 337 { 338 DeviceState *dev = DEVICE(obj); 339 gptm_state *s = STELLARIS_GPTM(obj); 340 SysBusDevice *sbd = SYS_BUS_DEVICE(obj); 341 342 sysbus_init_irq(sbd, &s->irq); 343 qdev_init_gpio_out(dev, &s->trigger, 1); 344 345 memory_region_init_io(&s->iomem, obj, &gptm_ops, s, 346 "gptm", 0x1000); 347 sysbus_init_mmio(sbd, &s->iomem); 348 349 s->opaque[0] = s->opaque[1] = s; 350 } 351 352 static void stellaris_gptm_realize(DeviceState *dev, Error **errp) 353 { 354 gptm_state *s = STELLARIS_GPTM(dev); 355 s->timer[0] = timer_new_ns(QEMU_CLOCK_VIRTUAL, gptm_tick, &s->opaque[0]); 356 s->timer[1] = timer_new_ns(QEMU_CLOCK_VIRTUAL, gptm_tick, &s->opaque[1]); 357 } 358 359 /* System controller. */ 360 361 #define TYPE_STELLARIS_SYS "stellaris-sys" 362 OBJECT_DECLARE_SIMPLE_TYPE(ssys_state, STELLARIS_SYS) 363 364 struct ssys_state { 365 SysBusDevice parent_obj; 366 367 MemoryRegion iomem; 368 uint32_t pborctl; 369 uint32_t ldopctl; 370 uint32_t int_status; 371 uint32_t int_mask; 372 uint32_t resc; 373 uint32_t rcc; 374 uint32_t rcc2; 375 uint32_t rcgc[3]; 376 uint32_t scgc[3]; 377 uint32_t dcgc[3]; 378 uint32_t clkvclr; 379 uint32_t ldoarst; 380 qemu_irq irq; 381 Clock *sysclk; 382 /* Properties (all read-only registers) */ 383 uint32_t user0; 384 uint32_t user1; 385 uint32_t did0; 386 uint32_t did1; 387 uint32_t dc0; 388 uint32_t dc1; 389 uint32_t dc2; 390 uint32_t dc3; 391 uint32_t dc4; 392 }; 393 394 static void ssys_update(ssys_state *s) 395 { 396 qemu_set_irq(s->irq, (s->int_status & s->int_mask) != 0); 397 } 398 399 static uint32_t pllcfg_sandstorm[16] = { 400 0x31c0, /* 1 Mhz */ 401 0x1ae0, /* 1.8432 Mhz */ 402 0x18c0, /* 2 Mhz */ 403 0xd573, /* 2.4576 Mhz */ 404 0x37a6, /* 3.57954 Mhz */ 405 0x1ae2, /* 3.6864 Mhz */ 406 0x0c40, /* 4 Mhz */ 407 0x98bc, /* 4.906 Mhz */ 408 0x935b, /* 4.9152 Mhz */ 409 0x09c0, /* 5 Mhz */ 410 0x4dee, /* 5.12 Mhz */ 411 0x0c41, /* 6 Mhz */ 412 0x75db, /* 6.144 Mhz */ 413 0x1ae6, /* 7.3728 Mhz */ 414 0x0600, /* 8 Mhz */ 415 0x585b /* 8.192 Mhz */ 416 }; 417 418 static uint32_t pllcfg_fury[16] = { 419 0x3200, /* 1 Mhz */ 420 0x1b20, /* 1.8432 Mhz */ 421 0x1900, /* 2 Mhz */ 422 0xf42b, /* 2.4576 Mhz */ 423 0x37e3, /* 3.57954 Mhz */ 424 0x1b21, /* 3.6864 Mhz */ 425 0x0c80, /* 4 Mhz */ 426 0x98ee, /* 4.906 Mhz */ 427 0xd5b4, /* 4.9152 Mhz */ 428 0x0a00, /* 5 Mhz */ 429 0x4e27, /* 5.12 Mhz */ 430 0x1902, /* 6 Mhz */ 431 0xec1c, /* 6.144 Mhz */ 432 0x1b23, /* 7.3728 Mhz */ 433 0x0640, /* 8 Mhz */ 434 0xb11c /* 8.192 Mhz */ 435 }; 436 437 #define DID0_VER_MASK 0x70000000 438 #define DID0_VER_0 0x00000000 439 #define DID0_VER_1 0x10000000 440 441 #define DID0_CLASS_MASK 0x00FF0000 442 #define DID0_CLASS_SANDSTORM 0x00000000 443 #define DID0_CLASS_FURY 0x00010000 444 445 static int ssys_board_class(const ssys_state *s) 446 { 447 uint32_t did0 = s->did0; 448 switch (did0 & DID0_VER_MASK) { 449 case DID0_VER_0: 450 return DID0_CLASS_SANDSTORM; 451 case DID0_VER_1: 452 switch (did0 & DID0_CLASS_MASK) { 453 case DID0_CLASS_SANDSTORM: 454 case DID0_CLASS_FURY: 455 return did0 & DID0_CLASS_MASK; 456 } 457 /* for unknown classes, fall through */ 458 default: 459 /* This can only happen if the hardwired constant did0 value 460 * in this board's stellaris_board_info struct is wrong. 461 */ 462 g_assert_not_reached(); 463 } 464 } 465 466 static uint64_t ssys_read(void *opaque, hwaddr offset, 467 unsigned size) 468 { 469 ssys_state *s = (ssys_state *)opaque; 470 471 switch (offset) { 472 case 0x000: /* DID0 */ 473 return s->did0; 474 case 0x004: /* DID1 */ 475 return s->did1; 476 case 0x008: /* DC0 */ 477 return s->dc0; 478 case 0x010: /* DC1 */ 479 return s->dc1; 480 case 0x014: /* DC2 */ 481 return s->dc2; 482 case 0x018: /* DC3 */ 483 return s->dc3; 484 case 0x01c: /* DC4 */ 485 return s->dc4; 486 case 0x030: /* PBORCTL */ 487 return s->pborctl; 488 case 0x034: /* LDOPCTL */ 489 return s->ldopctl; 490 case 0x040: /* SRCR0 */ 491 return 0; 492 case 0x044: /* SRCR1 */ 493 return 0; 494 case 0x048: /* SRCR2 */ 495 return 0; 496 case 0x050: /* RIS */ 497 return s->int_status; 498 case 0x054: /* IMC */ 499 return s->int_mask; 500 case 0x058: /* MISC */ 501 return s->int_status & s->int_mask; 502 case 0x05c: /* RESC */ 503 return s->resc; 504 case 0x060: /* RCC */ 505 return s->rcc; 506 case 0x064: /* PLLCFG */ 507 { 508 int xtal; 509 xtal = (s->rcc >> 6) & 0xf; 510 switch (ssys_board_class(s)) { 511 case DID0_CLASS_FURY: 512 return pllcfg_fury[xtal]; 513 case DID0_CLASS_SANDSTORM: 514 return pllcfg_sandstorm[xtal]; 515 default: 516 g_assert_not_reached(); 517 } 518 } 519 case 0x070: /* RCC2 */ 520 return s->rcc2; 521 case 0x100: /* RCGC0 */ 522 return s->rcgc[0]; 523 case 0x104: /* RCGC1 */ 524 return s->rcgc[1]; 525 case 0x108: /* RCGC2 */ 526 return s->rcgc[2]; 527 case 0x110: /* SCGC0 */ 528 return s->scgc[0]; 529 case 0x114: /* SCGC1 */ 530 return s->scgc[1]; 531 case 0x118: /* SCGC2 */ 532 return s->scgc[2]; 533 case 0x120: /* DCGC0 */ 534 return s->dcgc[0]; 535 case 0x124: /* DCGC1 */ 536 return s->dcgc[1]; 537 case 0x128: /* DCGC2 */ 538 return s->dcgc[2]; 539 case 0x150: /* CLKVCLR */ 540 return s->clkvclr; 541 case 0x160: /* LDOARST */ 542 return s->ldoarst; 543 case 0x1e0: /* USER0 */ 544 return s->user0; 545 case 0x1e4: /* USER1 */ 546 return s->user1; 547 default: 548 qemu_log_mask(LOG_GUEST_ERROR, 549 "SSYS: read at bad offset 0x%x\n", (int)offset); 550 return 0; 551 } 552 } 553 554 static bool ssys_use_rcc2(ssys_state *s) 555 { 556 return (s->rcc2 >> 31) & 0x1; 557 } 558 559 /* 560 * Calculate the system clock period. We only want to propagate 561 * this change to the rest of the system if we're not being called 562 * from migration post-load. 563 */ 564 static void ssys_calculate_system_clock(ssys_state *s, bool propagate_clock) 565 { 566 /* 567 * SYSDIV field specifies divisor: 0 == /1, 1 == /2, etc. Input 568 * clock is 200MHz, which is a period of 5 ns. Dividing the clock 569 * frequency by X is the same as multiplying the period by X. 570 */ 571 if (ssys_use_rcc2(s)) { 572 system_clock_scale = 5 * (((s->rcc2 >> 23) & 0x3f) + 1); 573 } else { 574 system_clock_scale = 5 * (((s->rcc >> 23) & 0xf) + 1); 575 } 576 clock_set_ns(s->sysclk, system_clock_scale); 577 if (propagate_clock) { 578 clock_propagate(s->sysclk); 579 } 580 } 581 582 static void ssys_write(void *opaque, hwaddr offset, 583 uint64_t value, unsigned size) 584 { 585 ssys_state *s = (ssys_state *)opaque; 586 587 switch (offset) { 588 case 0x030: /* PBORCTL */ 589 s->pborctl = value & 0xffff; 590 break; 591 case 0x034: /* LDOPCTL */ 592 s->ldopctl = value & 0x1f; 593 break; 594 case 0x040: /* SRCR0 */ 595 case 0x044: /* SRCR1 */ 596 case 0x048: /* SRCR2 */ 597 qemu_log_mask(LOG_UNIMP, "Peripheral reset not implemented\n"); 598 break; 599 case 0x054: /* IMC */ 600 s->int_mask = value & 0x7f; 601 break; 602 case 0x058: /* MISC */ 603 s->int_status &= ~value; 604 break; 605 case 0x05c: /* RESC */ 606 s->resc = value & 0x3f; 607 break; 608 case 0x060: /* RCC */ 609 if ((s->rcc & (1 << 13)) != 0 && (value & (1 << 13)) == 0) { 610 /* PLL enable. */ 611 s->int_status |= (1 << 6); 612 } 613 s->rcc = value; 614 ssys_calculate_system_clock(s, true); 615 break; 616 case 0x070: /* RCC2 */ 617 if (ssys_board_class(s) == DID0_CLASS_SANDSTORM) { 618 break; 619 } 620 621 if ((s->rcc2 & (1 << 13)) != 0 && (value & (1 << 13)) == 0) { 622 /* PLL enable. */ 623 s->int_status |= (1 << 6); 624 } 625 s->rcc2 = value; 626 ssys_calculate_system_clock(s, true); 627 break; 628 case 0x100: /* RCGC0 */ 629 s->rcgc[0] = value; 630 break; 631 case 0x104: /* RCGC1 */ 632 s->rcgc[1] = value; 633 break; 634 case 0x108: /* RCGC2 */ 635 s->rcgc[2] = value; 636 break; 637 case 0x110: /* SCGC0 */ 638 s->scgc[0] = value; 639 break; 640 case 0x114: /* SCGC1 */ 641 s->scgc[1] = value; 642 break; 643 case 0x118: /* SCGC2 */ 644 s->scgc[2] = value; 645 break; 646 case 0x120: /* DCGC0 */ 647 s->dcgc[0] = value; 648 break; 649 case 0x124: /* DCGC1 */ 650 s->dcgc[1] = value; 651 break; 652 case 0x128: /* DCGC2 */ 653 s->dcgc[2] = value; 654 break; 655 case 0x150: /* CLKVCLR */ 656 s->clkvclr = value; 657 break; 658 case 0x160: /* LDOARST */ 659 s->ldoarst = value; 660 break; 661 default: 662 qemu_log_mask(LOG_GUEST_ERROR, 663 "SSYS: write at bad offset 0x%x\n", (int)offset); 664 } 665 ssys_update(s); 666 } 667 668 static const MemoryRegionOps ssys_ops = { 669 .read = ssys_read, 670 .write = ssys_write, 671 .endianness = DEVICE_NATIVE_ENDIAN, 672 }; 673 674 static void stellaris_sys_reset_enter(Object *obj, ResetType type) 675 { 676 ssys_state *s = STELLARIS_SYS(obj); 677 678 s->pborctl = 0x7ffd; 679 s->rcc = 0x078e3ac0; 680 681 if (ssys_board_class(s) == DID0_CLASS_SANDSTORM) { 682 s->rcc2 = 0; 683 } else { 684 s->rcc2 = 0x07802810; 685 } 686 s->rcgc[0] = 1; 687 s->scgc[0] = 1; 688 s->dcgc[0] = 1; 689 } 690 691 static void stellaris_sys_reset_hold(Object *obj) 692 { 693 ssys_state *s = STELLARIS_SYS(obj); 694 695 /* OK to propagate clocks from the hold phase */ 696 ssys_calculate_system_clock(s, true); 697 } 698 699 static void stellaris_sys_reset_exit(Object *obj) 700 { 701 } 702 703 static int stellaris_sys_post_load(void *opaque, int version_id) 704 { 705 ssys_state *s = opaque; 706 707 ssys_calculate_system_clock(s, false); 708 709 return 0; 710 } 711 712 static const VMStateDescription vmstate_stellaris_sys = { 713 .name = "stellaris_sys", 714 .version_id = 2, 715 .minimum_version_id = 1, 716 .post_load = stellaris_sys_post_load, 717 .fields = (VMStateField[]) { 718 VMSTATE_UINT32(pborctl, ssys_state), 719 VMSTATE_UINT32(ldopctl, ssys_state), 720 VMSTATE_UINT32(int_mask, ssys_state), 721 VMSTATE_UINT32(int_status, ssys_state), 722 VMSTATE_UINT32(resc, ssys_state), 723 VMSTATE_UINT32(rcc, ssys_state), 724 VMSTATE_UINT32_V(rcc2, ssys_state, 2), 725 VMSTATE_UINT32_ARRAY(rcgc, ssys_state, 3), 726 VMSTATE_UINT32_ARRAY(scgc, ssys_state, 3), 727 VMSTATE_UINT32_ARRAY(dcgc, ssys_state, 3), 728 VMSTATE_UINT32(clkvclr, ssys_state), 729 VMSTATE_UINT32(ldoarst, ssys_state), 730 /* No field for sysclk -- handled in post-load instead */ 731 VMSTATE_END_OF_LIST() 732 } 733 }; 734 735 static Property stellaris_sys_properties[] = { 736 DEFINE_PROP_UINT32("user0", ssys_state, user0, 0), 737 DEFINE_PROP_UINT32("user1", ssys_state, user1, 0), 738 DEFINE_PROP_UINT32("did0", ssys_state, did0, 0), 739 DEFINE_PROP_UINT32("did1", ssys_state, did1, 0), 740 DEFINE_PROP_UINT32("dc0", ssys_state, dc0, 0), 741 DEFINE_PROP_UINT32("dc1", ssys_state, dc1, 0), 742 DEFINE_PROP_UINT32("dc2", ssys_state, dc2, 0), 743 DEFINE_PROP_UINT32("dc3", ssys_state, dc3, 0), 744 DEFINE_PROP_UINT32("dc4", ssys_state, dc4, 0), 745 DEFINE_PROP_END_OF_LIST() 746 }; 747 748 static void stellaris_sys_instance_init(Object *obj) 749 { 750 ssys_state *s = STELLARIS_SYS(obj); 751 SysBusDevice *sbd = SYS_BUS_DEVICE(s); 752 753 memory_region_init_io(&s->iomem, obj, &ssys_ops, s, "ssys", 0x00001000); 754 sysbus_init_mmio(sbd, &s->iomem); 755 sysbus_init_irq(sbd, &s->irq); 756 s->sysclk = qdev_init_clock_out(DEVICE(s), "SYSCLK"); 757 } 758 759 static DeviceState *stellaris_sys_init(uint32_t base, qemu_irq irq, 760 stellaris_board_info *board, 761 uint8_t *macaddr) 762 { 763 DeviceState *dev = qdev_new(TYPE_STELLARIS_SYS); 764 SysBusDevice *sbd = SYS_BUS_DEVICE(dev); 765 766 /* Most devices come preprogrammed with a MAC address in the user data. */ 767 qdev_prop_set_uint32(dev, "user0", 768 macaddr[0] | (macaddr[1] << 8) | (macaddr[2] << 16)); 769 qdev_prop_set_uint32(dev, "user1", 770 macaddr[3] | (macaddr[4] << 8) | (macaddr[5] << 16)); 771 qdev_prop_set_uint32(dev, "did0", board->did0); 772 qdev_prop_set_uint32(dev, "did1", board->did1); 773 qdev_prop_set_uint32(dev, "dc0", board->dc0); 774 qdev_prop_set_uint32(dev, "dc1", board->dc1); 775 qdev_prop_set_uint32(dev, "dc2", board->dc2); 776 qdev_prop_set_uint32(dev, "dc3", board->dc3); 777 qdev_prop_set_uint32(dev, "dc4", board->dc4); 778 779 sysbus_realize_and_unref(sbd, &error_fatal); 780 sysbus_mmio_map(sbd, 0, base); 781 sysbus_connect_irq(sbd, 0, irq); 782 783 /* 784 * Normally we should not be resetting devices like this during 785 * board creation. For the moment we need to do so, because 786 * system_clock_scale will only get set when the STELLARIS_SYS 787 * device is reset, and we need its initial value to pass to 788 * the watchdog device. This hack can be removed once the 789 * watchdog has been converted to use a Clock input instead. 790 */ 791 device_cold_reset(dev); 792 793 return dev; 794 } 795 796 /* I2C controller. */ 797 798 #define TYPE_STELLARIS_I2C "stellaris-i2c" 799 OBJECT_DECLARE_SIMPLE_TYPE(stellaris_i2c_state, STELLARIS_I2C) 800 801 struct stellaris_i2c_state { 802 SysBusDevice parent_obj; 803 804 I2CBus *bus; 805 qemu_irq irq; 806 MemoryRegion iomem; 807 uint32_t msa; 808 uint32_t mcs; 809 uint32_t mdr; 810 uint32_t mtpr; 811 uint32_t mimr; 812 uint32_t mris; 813 uint32_t mcr; 814 }; 815 816 #define STELLARIS_I2C_MCS_BUSY 0x01 817 #define STELLARIS_I2C_MCS_ERROR 0x02 818 #define STELLARIS_I2C_MCS_ADRACK 0x04 819 #define STELLARIS_I2C_MCS_DATACK 0x08 820 #define STELLARIS_I2C_MCS_ARBLST 0x10 821 #define STELLARIS_I2C_MCS_IDLE 0x20 822 #define STELLARIS_I2C_MCS_BUSBSY 0x40 823 824 static uint64_t stellaris_i2c_read(void *opaque, hwaddr offset, 825 unsigned size) 826 { 827 stellaris_i2c_state *s = (stellaris_i2c_state *)opaque; 828 829 switch (offset) { 830 case 0x00: /* MSA */ 831 return s->msa; 832 case 0x04: /* MCS */ 833 /* We don't emulate timing, so the controller is never busy. */ 834 return s->mcs | STELLARIS_I2C_MCS_IDLE; 835 case 0x08: /* MDR */ 836 return s->mdr; 837 case 0x0c: /* MTPR */ 838 return s->mtpr; 839 case 0x10: /* MIMR */ 840 return s->mimr; 841 case 0x14: /* MRIS */ 842 return s->mris; 843 case 0x18: /* MMIS */ 844 return s->mris & s->mimr; 845 case 0x20: /* MCR */ 846 return s->mcr; 847 default: 848 qemu_log_mask(LOG_GUEST_ERROR, 849 "stellaris_i2c: read at bad offset 0x%x\n", (int)offset); 850 return 0; 851 } 852 } 853 854 static void stellaris_i2c_update(stellaris_i2c_state *s) 855 { 856 int level; 857 858 level = (s->mris & s->mimr) != 0; 859 qemu_set_irq(s->irq, level); 860 } 861 862 static void stellaris_i2c_write(void *opaque, hwaddr offset, 863 uint64_t value, unsigned size) 864 { 865 stellaris_i2c_state *s = (stellaris_i2c_state *)opaque; 866 867 switch (offset) { 868 case 0x00: /* MSA */ 869 s->msa = value & 0xff; 870 break; 871 case 0x04: /* MCS */ 872 if ((s->mcr & 0x10) == 0) { 873 /* Disabled. Do nothing. */ 874 break; 875 } 876 /* Grab the bus if this is starting a transfer. */ 877 if ((value & 2) && (s->mcs & STELLARIS_I2C_MCS_BUSBSY) == 0) { 878 if (i2c_start_transfer(s->bus, s->msa >> 1, s->msa & 1)) { 879 s->mcs |= STELLARIS_I2C_MCS_ARBLST; 880 } else { 881 s->mcs &= ~STELLARIS_I2C_MCS_ARBLST; 882 s->mcs |= STELLARIS_I2C_MCS_BUSBSY; 883 } 884 } 885 /* If we don't have the bus then indicate an error. */ 886 if (!i2c_bus_busy(s->bus) 887 || (s->mcs & STELLARIS_I2C_MCS_BUSBSY) == 0) { 888 s->mcs |= STELLARIS_I2C_MCS_ERROR; 889 break; 890 } 891 s->mcs &= ~STELLARIS_I2C_MCS_ERROR; 892 if (value & 1) { 893 /* Transfer a byte. */ 894 /* TODO: Handle errors. */ 895 if (s->msa & 1) { 896 /* Recv */ 897 s->mdr = i2c_recv(s->bus); 898 } else { 899 /* Send */ 900 i2c_send(s->bus, s->mdr); 901 } 902 /* Raise an interrupt. */ 903 s->mris |= 1; 904 } 905 if (value & 4) { 906 /* Finish transfer. */ 907 i2c_end_transfer(s->bus); 908 s->mcs &= ~STELLARIS_I2C_MCS_BUSBSY; 909 } 910 break; 911 case 0x08: /* MDR */ 912 s->mdr = value & 0xff; 913 break; 914 case 0x0c: /* MTPR */ 915 s->mtpr = value & 0xff; 916 break; 917 case 0x10: /* MIMR */ 918 s->mimr = 1; 919 break; 920 case 0x1c: /* MICR */ 921 s->mris &= ~value; 922 break; 923 case 0x20: /* MCR */ 924 if (value & 1) { 925 qemu_log_mask(LOG_UNIMP, 926 "stellaris_i2c: Loopback not implemented\n"); 927 } 928 if (value & 0x20) { 929 qemu_log_mask(LOG_UNIMP, 930 "stellaris_i2c: Slave mode not implemented\n"); 931 } 932 s->mcr = value & 0x31; 933 break; 934 default: 935 qemu_log_mask(LOG_GUEST_ERROR, 936 "stellaris_i2c: write at bad offset 0x%x\n", (int)offset); 937 } 938 stellaris_i2c_update(s); 939 } 940 941 static void stellaris_i2c_reset(stellaris_i2c_state *s) 942 { 943 if (s->mcs & STELLARIS_I2C_MCS_BUSBSY) 944 i2c_end_transfer(s->bus); 945 946 s->msa = 0; 947 s->mcs = 0; 948 s->mdr = 0; 949 s->mtpr = 1; 950 s->mimr = 0; 951 s->mris = 0; 952 s->mcr = 0; 953 stellaris_i2c_update(s); 954 } 955 956 static const MemoryRegionOps stellaris_i2c_ops = { 957 .read = stellaris_i2c_read, 958 .write = stellaris_i2c_write, 959 .endianness = DEVICE_NATIVE_ENDIAN, 960 }; 961 962 static const VMStateDescription vmstate_stellaris_i2c = { 963 .name = "stellaris_i2c", 964 .version_id = 1, 965 .minimum_version_id = 1, 966 .fields = (VMStateField[]) { 967 VMSTATE_UINT32(msa, stellaris_i2c_state), 968 VMSTATE_UINT32(mcs, stellaris_i2c_state), 969 VMSTATE_UINT32(mdr, stellaris_i2c_state), 970 VMSTATE_UINT32(mtpr, stellaris_i2c_state), 971 VMSTATE_UINT32(mimr, stellaris_i2c_state), 972 VMSTATE_UINT32(mris, stellaris_i2c_state), 973 VMSTATE_UINT32(mcr, stellaris_i2c_state), 974 VMSTATE_END_OF_LIST() 975 } 976 }; 977 978 static void stellaris_i2c_init(Object *obj) 979 { 980 DeviceState *dev = DEVICE(obj); 981 stellaris_i2c_state *s = STELLARIS_I2C(obj); 982 SysBusDevice *sbd = SYS_BUS_DEVICE(obj); 983 I2CBus *bus; 984 985 sysbus_init_irq(sbd, &s->irq); 986 bus = i2c_init_bus(dev, "i2c"); 987 s->bus = bus; 988 989 memory_region_init_io(&s->iomem, obj, &stellaris_i2c_ops, s, 990 "i2c", 0x1000); 991 sysbus_init_mmio(sbd, &s->iomem); 992 /* ??? For now we only implement the master interface. */ 993 stellaris_i2c_reset(s); 994 } 995 996 /* Analogue to Digital Converter. This is only partially implemented, 997 enough for applications that use a combined ADC and timer tick. */ 998 999 #define STELLARIS_ADC_EM_CONTROLLER 0 1000 #define STELLARIS_ADC_EM_COMP 1 1001 #define STELLARIS_ADC_EM_EXTERNAL 4 1002 #define STELLARIS_ADC_EM_TIMER 5 1003 #define STELLARIS_ADC_EM_PWM0 6 1004 #define STELLARIS_ADC_EM_PWM1 7 1005 #define STELLARIS_ADC_EM_PWM2 8 1006 1007 #define STELLARIS_ADC_FIFO_EMPTY 0x0100 1008 #define STELLARIS_ADC_FIFO_FULL 0x1000 1009 1010 #define TYPE_STELLARIS_ADC "stellaris-adc" 1011 typedef struct StellarisADCState stellaris_adc_state; 1012 DECLARE_INSTANCE_CHECKER(stellaris_adc_state, STELLARIS_ADC, 1013 TYPE_STELLARIS_ADC) 1014 1015 struct StellarisADCState { 1016 SysBusDevice parent_obj; 1017 1018 MemoryRegion iomem; 1019 uint32_t actss; 1020 uint32_t ris; 1021 uint32_t im; 1022 uint32_t emux; 1023 uint32_t ostat; 1024 uint32_t ustat; 1025 uint32_t sspri; 1026 uint32_t sac; 1027 struct { 1028 uint32_t state; 1029 uint32_t data[16]; 1030 } fifo[4]; 1031 uint32_t ssmux[4]; 1032 uint32_t ssctl[4]; 1033 uint32_t noise; 1034 qemu_irq irq[4]; 1035 }; 1036 1037 static uint32_t stellaris_adc_fifo_read(stellaris_adc_state *s, int n) 1038 { 1039 int tail; 1040 1041 tail = s->fifo[n].state & 0xf; 1042 if (s->fifo[n].state & STELLARIS_ADC_FIFO_EMPTY) { 1043 s->ustat |= 1 << n; 1044 } else { 1045 s->fifo[n].state = (s->fifo[n].state & ~0xf) | ((tail + 1) & 0xf); 1046 s->fifo[n].state &= ~STELLARIS_ADC_FIFO_FULL; 1047 if (tail + 1 == ((s->fifo[n].state >> 4) & 0xf)) 1048 s->fifo[n].state |= STELLARIS_ADC_FIFO_EMPTY; 1049 } 1050 return s->fifo[n].data[tail]; 1051 } 1052 1053 static void stellaris_adc_fifo_write(stellaris_adc_state *s, int n, 1054 uint32_t value) 1055 { 1056 int head; 1057 1058 /* TODO: Real hardware has limited size FIFOs. We have a full 16 entry 1059 FIFO fir each sequencer. */ 1060 head = (s->fifo[n].state >> 4) & 0xf; 1061 if (s->fifo[n].state & STELLARIS_ADC_FIFO_FULL) { 1062 s->ostat |= 1 << n; 1063 return; 1064 } 1065 s->fifo[n].data[head] = value; 1066 head = (head + 1) & 0xf; 1067 s->fifo[n].state &= ~STELLARIS_ADC_FIFO_EMPTY; 1068 s->fifo[n].state = (s->fifo[n].state & ~0xf0) | (head << 4); 1069 if ((s->fifo[n].state & 0xf) == head) 1070 s->fifo[n].state |= STELLARIS_ADC_FIFO_FULL; 1071 } 1072 1073 static void stellaris_adc_update(stellaris_adc_state *s) 1074 { 1075 int level; 1076 int n; 1077 1078 for (n = 0; n < 4; n++) { 1079 level = (s->ris & s->im & (1 << n)) != 0; 1080 qemu_set_irq(s->irq[n], level); 1081 } 1082 } 1083 1084 static void stellaris_adc_trigger(void *opaque, int irq, int level) 1085 { 1086 stellaris_adc_state *s = (stellaris_adc_state *)opaque; 1087 int n; 1088 1089 for (n = 0; n < 4; n++) { 1090 if ((s->actss & (1 << n)) == 0) { 1091 continue; 1092 } 1093 1094 if (((s->emux >> (n * 4)) & 0xff) != 5) { 1095 continue; 1096 } 1097 1098 /* Some applications use the ADC as a random number source, so introduce 1099 some variation into the signal. */ 1100 s->noise = s->noise * 314159 + 1; 1101 /* ??? actual inputs not implemented. Return an arbitrary value. */ 1102 stellaris_adc_fifo_write(s, n, 0x200 + ((s->noise >> 16) & 7)); 1103 s->ris |= (1 << n); 1104 stellaris_adc_update(s); 1105 } 1106 } 1107 1108 static void stellaris_adc_reset(stellaris_adc_state *s) 1109 { 1110 int n; 1111 1112 for (n = 0; n < 4; n++) { 1113 s->ssmux[n] = 0; 1114 s->ssctl[n] = 0; 1115 s->fifo[n].state = STELLARIS_ADC_FIFO_EMPTY; 1116 } 1117 } 1118 1119 static uint64_t stellaris_adc_read(void *opaque, hwaddr offset, 1120 unsigned size) 1121 { 1122 stellaris_adc_state *s = (stellaris_adc_state *)opaque; 1123 1124 /* TODO: Implement this. */ 1125 if (offset >= 0x40 && offset < 0xc0) { 1126 int n; 1127 n = (offset - 0x40) >> 5; 1128 switch (offset & 0x1f) { 1129 case 0x00: /* SSMUX */ 1130 return s->ssmux[n]; 1131 case 0x04: /* SSCTL */ 1132 return s->ssctl[n]; 1133 case 0x08: /* SSFIFO */ 1134 return stellaris_adc_fifo_read(s, n); 1135 case 0x0c: /* SSFSTAT */ 1136 return s->fifo[n].state; 1137 default: 1138 break; 1139 } 1140 } 1141 switch (offset) { 1142 case 0x00: /* ACTSS */ 1143 return s->actss; 1144 case 0x04: /* RIS */ 1145 return s->ris; 1146 case 0x08: /* IM */ 1147 return s->im; 1148 case 0x0c: /* ISC */ 1149 return s->ris & s->im; 1150 case 0x10: /* OSTAT */ 1151 return s->ostat; 1152 case 0x14: /* EMUX */ 1153 return s->emux; 1154 case 0x18: /* USTAT */ 1155 return s->ustat; 1156 case 0x20: /* SSPRI */ 1157 return s->sspri; 1158 case 0x30: /* SAC */ 1159 return s->sac; 1160 default: 1161 qemu_log_mask(LOG_GUEST_ERROR, 1162 "stellaris_adc: read at bad offset 0x%x\n", (int)offset); 1163 return 0; 1164 } 1165 } 1166 1167 static void stellaris_adc_write(void *opaque, hwaddr offset, 1168 uint64_t value, unsigned size) 1169 { 1170 stellaris_adc_state *s = (stellaris_adc_state *)opaque; 1171 1172 /* TODO: Implement this. */ 1173 if (offset >= 0x40 && offset < 0xc0) { 1174 int n; 1175 n = (offset - 0x40) >> 5; 1176 switch (offset & 0x1f) { 1177 case 0x00: /* SSMUX */ 1178 s->ssmux[n] = value & 0x33333333; 1179 return; 1180 case 0x04: /* SSCTL */ 1181 if (value != 6) { 1182 qemu_log_mask(LOG_UNIMP, 1183 "ADC: Unimplemented sequence %" PRIx64 "\n", 1184 value); 1185 } 1186 s->ssctl[n] = value; 1187 return; 1188 default: 1189 break; 1190 } 1191 } 1192 switch (offset) { 1193 case 0x00: /* ACTSS */ 1194 s->actss = value & 0xf; 1195 break; 1196 case 0x08: /* IM */ 1197 s->im = value; 1198 break; 1199 case 0x0c: /* ISC */ 1200 s->ris &= ~value; 1201 break; 1202 case 0x10: /* OSTAT */ 1203 s->ostat &= ~value; 1204 break; 1205 case 0x14: /* EMUX */ 1206 s->emux = value; 1207 break; 1208 case 0x18: /* USTAT */ 1209 s->ustat &= ~value; 1210 break; 1211 case 0x20: /* SSPRI */ 1212 s->sspri = value; 1213 break; 1214 case 0x28: /* PSSI */ 1215 qemu_log_mask(LOG_UNIMP, "ADC: sample initiate unimplemented\n"); 1216 break; 1217 case 0x30: /* SAC */ 1218 s->sac = value; 1219 break; 1220 default: 1221 qemu_log_mask(LOG_GUEST_ERROR, 1222 "stellaris_adc: write at bad offset 0x%x\n", (int)offset); 1223 } 1224 stellaris_adc_update(s); 1225 } 1226 1227 static const MemoryRegionOps stellaris_adc_ops = { 1228 .read = stellaris_adc_read, 1229 .write = stellaris_adc_write, 1230 .endianness = DEVICE_NATIVE_ENDIAN, 1231 }; 1232 1233 static const VMStateDescription vmstate_stellaris_adc = { 1234 .name = "stellaris_adc", 1235 .version_id = 1, 1236 .minimum_version_id = 1, 1237 .fields = (VMStateField[]) { 1238 VMSTATE_UINT32(actss, stellaris_adc_state), 1239 VMSTATE_UINT32(ris, stellaris_adc_state), 1240 VMSTATE_UINT32(im, stellaris_adc_state), 1241 VMSTATE_UINT32(emux, stellaris_adc_state), 1242 VMSTATE_UINT32(ostat, stellaris_adc_state), 1243 VMSTATE_UINT32(ustat, stellaris_adc_state), 1244 VMSTATE_UINT32(sspri, stellaris_adc_state), 1245 VMSTATE_UINT32(sac, stellaris_adc_state), 1246 VMSTATE_UINT32(fifo[0].state, stellaris_adc_state), 1247 VMSTATE_UINT32_ARRAY(fifo[0].data, stellaris_adc_state, 16), 1248 VMSTATE_UINT32(ssmux[0], stellaris_adc_state), 1249 VMSTATE_UINT32(ssctl[0], stellaris_adc_state), 1250 VMSTATE_UINT32(fifo[1].state, stellaris_adc_state), 1251 VMSTATE_UINT32_ARRAY(fifo[1].data, stellaris_adc_state, 16), 1252 VMSTATE_UINT32(ssmux[1], stellaris_adc_state), 1253 VMSTATE_UINT32(ssctl[1], stellaris_adc_state), 1254 VMSTATE_UINT32(fifo[2].state, stellaris_adc_state), 1255 VMSTATE_UINT32_ARRAY(fifo[2].data, stellaris_adc_state, 16), 1256 VMSTATE_UINT32(ssmux[2], stellaris_adc_state), 1257 VMSTATE_UINT32(ssctl[2], stellaris_adc_state), 1258 VMSTATE_UINT32(fifo[3].state, stellaris_adc_state), 1259 VMSTATE_UINT32_ARRAY(fifo[3].data, stellaris_adc_state, 16), 1260 VMSTATE_UINT32(ssmux[3], stellaris_adc_state), 1261 VMSTATE_UINT32(ssctl[3], stellaris_adc_state), 1262 VMSTATE_UINT32(noise, stellaris_adc_state), 1263 VMSTATE_END_OF_LIST() 1264 } 1265 }; 1266 1267 static void stellaris_adc_init(Object *obj) 1268 { 1269 DeviceState *dev = DEVICE(obj); 1270 stellaris_adc_state *s = STELLARIS_ADC(obj); 1271 SysBusDevice *sbd = SYS_BUS_DEVICE(obj); 1272 int n; 1273 1274 for (n = 0; n < 4; n++) { 1275 sysbus_init_irq(sbd, &s->irq[n]); 1276 } 1277 1278 memory_region_init_io(&s->iomem, obj, &stellaris_adc_ops, s, 1279 "adc", 0x1000); 1280 sysbus_init_mmio(sbd, &s->iomem); 1281 stellaris_adc_reset(s); 1282 qdev_init_gpio_in(dev, stellaris_adc_trigger, 1); 1283 } 1284 1285 /* Board init. */ 1286 static stellaris_board_info stellaris_boards[] = { 1287 { "LM3S811EVB", 1288 0, 1289 0x0032000e, 1290 0x001f001f, /* dc0 */ 1291 0x001132bf, 1292 0x01071013, 1293 0x3f0f01ff, 1294 0x0000001f, 1295 BP_OLED_I2C 1296 }, 1297 { "LM3S6965EVB", 1298 0x10010002, 1299 0x1073402e, 1300 0x00ff007f, /* dc0 */ 1301 0x001133ff, 1302 0x030f5317, 1303 0x0f0f87ff, 1304 0x5000007f, 1305 BP_OLED_SSI | BP_GAMEPAD 1306 } 1307 }; 1308 1309 static void stellaris_init(MachineState *ms, stellaris_board_info *board) 1310 { 1311 static const int uart_irq[] = {5, 6, 33, 34}; 1312 static const int timer_irq[] = {19, 21, 23, 35}; 1313 static const uint32_t gpio_addr[7] = 1314 { 0x40004000, 0x40005000, 0x40006000, 0x40007000, 1315 0x40024000, 0x40025000, 0x40026000}; 1316 static const int gpio_irq[7] = {0, 1, 2, 3, 4, 30, 31}; 1317 1318 /* Memory map of SoC devices, from 1319 * Stellaris LM3S6965 Microcontroller Data Sheet (rev I) 1320 * http://www.ti.com/lit/ds/symlink/lm3s6965.pdf 1321 * 1322 * 40000000 wdtimer 1323 * 40002000 i2c (unimplemented) 1324 * 40004000 GPIO 1325 * 40005000 GPIO 1326 * 40006000 GPIO 1327 * 40007000 GPIO 1328 * 40008000 SSI 1329 * 4000c000 UART 1330 * 4000d000 UART 1331 * 4000e000 UART 1332 * 40020000 i2c 1333 * 40021000 i2c (unimplemented) 1334 * 40024000 GPIO 1335 * 40025000 GPIO 1336 * 40026000 GPIO 1337 * 40028000 PWM (unimplemented) 1338 * 4002c000 QEI (unimplemented) 1339 * 4002d000 QEI (unimplemented) 1340 * 40030000 gptimer 1341 * 40031000 gptimer 1342 * 40032000 gptimer 1343 * 40033000 gptimer 1344 * 40038000 ADC 1345 * 4003c000 analogue comparator (unimplemented) 1346 * 40048000 ethernet 1347 * 400fc000 hibernation module (unimplemented) 1348 * 400fd000 flash memory control (unimplemented) 1349 * 400fe000 system control 1350 */ 1351 1352 DeviceState *gpio_dev[7], *nvic; 1353 qemu_irq gpio_in[7][8]; 1354 qemu_irq gpio_out[7][8]; 1355 qemu_irq adc; 1356 int sram_size; 1357 int flash_size; 1358 I2CBus *i2c; 1359 DeviceState *dev; 1360 DeviceState *ssys_dev; 1361 int i; 1362 int j; 1363 1364 MemoryRegion *sram = g_new(MemoryRegion, 1); 1365 MemoryRegion *flash = g_new(MemoryRegion, 1); 1366 MemoryRegion *system_memory = get_system_memory(); 1367 1368 flash_size = (((board->dc0 & 0xffff) + 1) << 1) * 1024; 1369 sram_size = ((board->dc0 >> 18) + 1) * 1024; 1370 1371 /* Flash programming is done via the SCU, so pretend it is ROM. */ 1372 memory_region_init_rom(flash, NULL, "stellaris.flash", flash_size, 1373 &error_fatal); 1374 memory_region_add_subregion(system_memory, 0, flash); 1375 1376 memory_region_init_ram(sram, NULL, "stellaris.sram", sram_size, 1377 &error_fatal); 1378 memory_region_add_subregion(system_memory, 0x20000000, sram); 1379 1380 nvic = qdev_new(TYPE_ARMV7M); 1381 qdev_prop_set_uint32(nvic, "num-irq", NUM_IRQ_LINES); 1382 qdev_prop_set_string(nvic, "cpu-type", ms->cpu_type); 1383 qdev_prop_set_bit(nvic, "enable-bitband", true); 1384 object_property_set_link(OBJECT(nvic), "memory", 1385 OBJECT(get_system_memory()), &error_abort); 1386 /* This will exit with an error if the user passed us a bad cpu_type */ 1387 sysbus_realize_and_unref(SYS_BUS_DEVICE(nvic), &error_fatal); 1388 1389 if (board->dc1 & (1 << 16)) { 1390 dev = sysbus_create_varargs(TYPE_STELLARIS_ADC, 0x40038000, 1391 qdev_get_gpio_in(nvic, 14), 1392 qdev_get_gpio_in(nvic, 15), 1393 qdev_get_gpio_in(nvic, 16), 1394 qdev_get_gpio_in(nvic, 17), 1395 NULL); 1396 adc = qdev_get_gpio_in(dev, 0); 1397 } else { 1398 adc = NULL; 1399 } 1400 for (i = 0; i < 4; i++) { 1401 if (board->dc2 & (0x10000 << i)) { 1402 dev = sysbus_create_simple(TYPE_STELLARIS_GPTM, 1403 0x40030000 + i * 0x1000, 1404 qdev_get_gpio_in(nvic, timer_irq[i])); 1405 /* TODO: This is incorrect, but we get away with it because 1406 the ADC output is only ever pulsed. */ 1407 qdev_connect_gpio_out(dev, 0, adc); 1408 } 1409 } 1410 1411 ssys_dev = stellaris_sys_init(0x400fe000, qdev_get_gpio_in(nvic, 28), 1412 board, nd_table[0].macaddr.a); 1413 1414 1415 if (board->dc1 & (1 << 3)) { /* watchdog present */ 1416 dev = qdev_new(TYPE_LUMINARY_WATCHDOG); 1417 1418 /* system_clock_scale is valid now */ 1419 uint32_t mainclk = NANOSECONDS_PER_SECOND / system_clock_scale; 1420 qdev_prop_set_uint32(dev, "wdogclk-frq", mainclk); 1421 qdev_connect_clock_in(dev, "WDOGCLK", 1422 qdev_get_clock_out(ssys_dev, "SYSCLK")); 1423 1424 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal); 1425 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 1426 0, 1427 0x40000000u); 1428 sysbus_connect_irq(SYS_BUS_DEVICE(dev), 1429 0, 1430 qdev_get_gpio_in(nvic, 18)); 1431 } 1432 1433 1434 for (i = 0; i < 7; i++) { 1435 if (board->dc4 & (1 << i)) { 1436 gpio_dev[i] = sysbus_create_simple("pl061_luminary", gpio_addr[i], 1437 qdev_get_gpio_in(nvic, 1438 gpio_irq[i])); 1439 for (j = 0; j < 8; j++) { 1440 gpio_in[i][j] = qdev_get_gpio_in(gpio_dev[i], j); 1441 gpio_out[i][j] = NULL; 1442 } 1443 } 1444 } 1445 1446 if (board->dc2 & (1 << 12)) { 1447 dev = sysbus_create_simple(TYPE_STELLARIS_I2C, 0x40020000, 1448 qdev_get_gpio_in(nvic, 8)); 1449 i2c = (I2CBus *)qdev_get_child_bus(dev, "i2c"); 1450 if (board->peripherals & BP_OLED_I2C) { 1451 i2c_slave_create_simple(i2c, "ssd0303", 0x3d); 1452 } 1453 } 1454 1455 for (i = 0; i < 4; i++) { 1456 if (board->dc2 & (1 << i)) { 1457 pl011_luminary_create(0x4000c000 + i * 0x1000, 1458 qdev_get_gpio_in(nvic, uart_irq[i]), 1459 serial_hd(i)); 1460 } 1461 } 1462 if (board->dc2 & (1 << 4)) { 1463 dev = sysbus_create_simple("pl022", 0x40008000, 1464 qdev_get_gpio_in(nvic, 7)); 1465 if (board->peripherals & BP_OLED_SSI) { 1466 void *bus; 1467 DeviceState *sddev; 1468 DeviceState *ssddev; 1469 1470 /* Some boards have both an OLED controller and SD card connected to 1471 * the same SSI port, with the SD card chip select connected to a 1472 * GPIO pin. Technically the OLED chip select is connected to the 1473 * SSI Fss pin. We do not bother emulating that as both devices 1474 * should never be selected simultaneously, and our OLED controller 1475 * ignores stray 0xff commands that occur when deselecting the SD 1476 * card. 1477 */ 1478 bus = qdev_get_child_bus(dev, "ssi"); 1479 1480 sddev = ssi_create_peripheral(bus, "ssi-sd"); 1481 ssddev = ssi_create_peripheral(bus, "ssd0323"); 1482 gpio_out[GPIO_D][0] = qemu_irq_split( 1483 qdev_get_gpio_in_named(sddev, SSI_GPIO_CS, 0), 1484 qdev_get_gpio_in_named(ssddev, SSI_GPIO_CS, 0)); 1485 gpio_out[GPIO_C][7] = qdev_get_gpio_in(ssddev, 0); 1486 1487 /* Make sure the select pin is high. */ 1488 qemu_irq_raise(gpio_out[GPIO_D][0]); 1489 } 1490 } 1491 if (board->dc4 & (1 << 28)) { 1492 DeviceState *enet; 1493 1494 qemu_check_nic_model(&nd_table[0], "stellaris"); 1495 1496 enet = qdev_new("stellaris_enet"); 1497 qdev_set_nic_properties(enet, &nd_table[0]); 1498 sysbus_realize_and_unref(SYS_BUS_DEVICE(enet), &error_fatal); 1499 sysbus_mmio_map(SYS_BUS_DEVICE(enet), 0, 0x40048000); 1500 sysbus_connect_irq(SYS_BUS_DEVICE(enet), 0, qdev_get_gpio_in(nvic, 42)); 1501 } 1502 if (board->peripherals & BP_GAMEPAD) { 1503 qemu_irq gpad_irq[5]; 1504 static const int gpad_keycode[5] = { 0xc8, 0xd0, 0xcb, 0xcd, 0x1d }; 1505 1506 gpad_irq[0] = qemu_irq_invert(gpio_in[GPIO_E][0]); /* up */ 1507 gpad_irq[1] = qemu_irq_invert(gpio_in[GPIO_E][1]); /* down */ 1508 gpad_irq[2] = qemu_irq_invert(gpio_in[GPIO_E][2]); /* left */ 1509 gpad_irq[3] = qemu_irq_invert(gpio_in[GPIO_E][3]); /* right */ 1510 gpad_irq[4] = qemu_irq_invert(gpio_in[GPIO_F][1]); /* select */ 1511 1512 stellaris_gamepad_init(5, gpad_irq, gpad_keycode); 1513 } 1514 for (i = 0; i < 7; i++) { 1515 if (board->dc4 & (1 << i)) { 1516 for (j = 0; j < 8; j++) { 1517 if (gpio_out[i][j]) { 1518 qdev_connect_gpio_out(gpio_dev[i], j, gpio_out[i][j]); 1519 } 1520 } 1521 } 1522 } 1523 1524 /* Add dummy regions for the devices we don't implement yet, 1525 * so guest accesses don't cause unlogged crashes. 1526 */ 1527 create_unimplemented_device("i2c-0", 0x40002000, 0x1000); 1528 create_unimplemented_device("i2c-2", 0x40021000, 0x1000); 1529 create_unimplemented_device("PWM", 0x40028000, 0x1000); 1530 create_unimplemented_device("QEI-0", 0x4002c000, 0x1000); 1531 create_unimplemented_device("QEI-1", 0x4002d000, 0x1000); 1532 create_unimplemented_device("analogue-comparator", 0x4003c000, 0x1000); 1533 create_unimplemented_device("hibernation", 0x400fc000, 0x1000); 1534 create_unimplemented_device("flash-control", 0x400fd000, 0x1000); 1535 1536 armv7m_load_kernel(ARM_CPU(first_cpu), ms->kernel_filename, flash_size); 1537 } 1538 1539 /* FIXME: Figure out how to generate these from stellaris_boards. */ 1540 static void lm3s811evb_init(MachineState *machine) 1541 { 1542 stellaris_init(machine, &stellaris_boards[0]); 1543 } 1544 1545 static void lm3s6965evb_init(MachineState *machine) 1546 { 1547 stellaris_init(machine, &stellaris_boards[1]); 1548 } 1549 1550 static void lm3s811evb_class_init(ObjectClass *oc, void *data) 1551 { 1552 MachineClass *mc = MACHINE_CLASS(oc); 1553 1554 mc->desc = "Stellaris LM3S811EVB"; 1555 mc->init = lm3s811evb_init; 1556 mc->ignore_memory_transaction_failures = true; 1557 mc->default_cpu_type = ARM_CPU_TYPE_NAME("cortex-m3"); 1558 } 1559 1560 static const TypeInfo lm3s811evb_type = { 1561 .name = MACHINE_TYPE_NAME("lm3s811evb"), 1562 .parent = TYPE_MACHINE, 1563 .class_init = lm3s811evb_class_init, 1564 }; 1565 1566 static void lm3s6965evb_class_init(ObjectClass *oc, void *data) 1567 { 1568 MachineClass *mc = MACHINE_CLASS(oc); 1569 1570 mc->desc = "Stellaris LM3S6965EVB"; 1571 mc->init = lm3s6965evb_init; 1572 mc->ignore_memory_transaction_failures = true; 1573 mc->default_cpu_type = ARM_CPU_TYPE_NAME("cortex-m3"); 1574 } 1575 1576 static const TypeInfo lm3s6965evb_type = { 1577 .name = MACHINE_TYPE_NAME("lm3s6965evb"), 1578 .parent = TYPE_MACHINE, 1579 .class_init = lm3s6965evb_class_init, 1580 }; 1581 1582 static void stellaris_machine_init(void) 1583 { 1584 type_register_static(&lm3s811evb_type); 1585 type_register_static(&lm3s6965evb_type); 1586 } 1587 1588 type_init(stellaris_machine_init) 1589 1590 static void stellaris_i2c_class_init(ObjectClass *klass, void *data) 1591 { 1592 DeviceClass *dc = DEVICE_CLASS(klass); 1593 1594 dc->vmsd = &vmstate_stellaris_i2c; 1595 } 1596 1597 static const TypeInfo stellaris_i2c_info = { 1598 .name = TYPE_STELLARIS_I2C, 1599 .parent = TYPE_SYS_BUS_DEVICE, 1600 .instance_size = sizeof(stellaris_i2c_state), 1601 .instance_init = stellaris_i2c_init, 1602 .class_init = stellaris_i2c_class_init, 1603 }; 1604 1605 static void stellaris_gptm_class_init(ObjectClass *klass, void *data) 1606 { 1607 DeviceClass *dc = DEVICE_CLASS(klass); 1608 1609 dc->vmsd = &vmstate_stellaris_gptm; 1610 dc->realize = stellaris_gptm_realize; 1611 } 1612 1613 static const TypeInfo stellaris_gptm_info = { 1614 .name = TYPE_STELLARIS_GPTM, 1615 .parent = TYPE_SYS_BUS_DEVICE, 1616 .instance_size = sizeof(gptm_state), 1617 .instance_init = stellaris_gptm_init, 1618 .class_init = stellaris_gptm_class_init, 1619 }; 1620 1621 static void stellaris_adc_class_init(ObjectClass *klass, void *data) 1622 { 1623 DeviceClass *dc = DEVICE_CLASS(klass); 1624 1625 dc->vmsd = &vmstate_stellaris_adc; 1626 } 1627 1628 static const TypeInfo stellaris_adc_info = { 1629 .name = TYPE_STELLARIS_ADC, 1630 .parent = TYPE_SYS_BUS_DEVICE, 1631 .instance_size = sizeof(stellaris_adc_state), 1632 .instance_init = stellaris_adc_init, 1633 .class_init = stellaris_adc_class_init, 1634 }; 1635 1636 static void stellaris_sys_class_init(ObjectClass *klass, void *data) 1637 { 1638 DeviceClass *dc = DEVICE_CLASS(klass); 1639 ResettableClass *rc = RESETTABLE_CLASS(klass); 1640 1641 dc->vmsd = &vmstate_stellaris_sys; 1642 rc->phases.enter = stellaris_sys_reset_enter; 1643 rc->phases.hold = stellaris_sys_reset_hold; 1644 rc->phases.exit = stellaris_sys_reset_exit; 1645 device_class_set_props(dc, stellaris_sys_properties); 1646 } 1647 1648 static const TypeInfo stellaris_sys_info = { 1649 .name = TYPE_STELLARIS_SYS, 1650 .parent = TYPE_SYS_BUS_DEVICE, 1651 .instance_size = sizeof(ssys_state), 1652 .instance_init = stellaris_sys_instance_init, 1653 .class_init = stellaris_sys_class_init, 1654 }; 1655 1656 static void stellaris_register_types(void) 1657 { 1658 type_register_static(&stellaris_i2c_info); 1659 type_register_static(&stellaris_gptm_info); 1660 type_register_static(&stellaris_adc_info); 1661 type_register_static(&stellaris_sys_info); 1662 } 1663 1664 type_init(stellaris_register_types) 1665