xref: /qemu/hw/arm/stellaris.c (revision 0d883c540462bed9b6fa64594290edfd27cb0fc0)
1 /*
2  * Luminary Micro Stellaris peripherals
3  *
4  * Copyright (c) 2006 CodeSourcery.
5  * Written by Paul Brook
6  *
7  * This code is licensed under the GPL.
8  */
9 
10 #include "qemu/osdep.h"
11 #include "qapi/error.h"
12 #include "hw/sysbus.h"
13 #include "hw/ssi/ssi.h"
14 #include "hw/arm/boot.h"
15 #include "qemu/timer.h"
16 #include "hw/i2c/i2c.h"
17 #include "net/net.h"
18 #include "hw/boards.h"
19 #include "qemu/log.h"
20 #include "exec/address-spaces.h"
21 #include "sysemu/sysemu.h"
22 #include "hw/arm/armv7m.h"
23 #include "hw/char/pl011.h"
24 #include "hw/input/gamepad.h"
25 #include "hw/irq.h"
26 #include "hw/watchdog/cmsdk-apb-watchdog.h"
27 #include "migration/vmstate.h"
28 #include "hw/misc/unimp.h"
29 #include "hw/qdev-clock.h"
30 #include "qom/object.h"
31 
32 #define GPIO_A 0
33 #define GPIO_B 1
34 #define GPIO_C 2
35 #define GPIO_D 3
36 #define GPIO_E 4
37 #define GPIO_F 5
38 #define GPIO_G 6
39 
40 #define BP_OLED_I2C  0x01
41 #define BP_OLED_SSI  0x02
42 #define BP_GAMEPAD   0x04
43 
44 #define NUM_IRQ_LINES 64
45 
46 typedef const struct {
47     const char *name;
48     uint32_t did0;
49     uint32_t did1;
50     uint32_t dc0;
51     uint32_t dc1;
52     uint32_t dc2;
53     uint32_t dc3;
54     uint32_t dc4;
55     uint32_t peripherals;
56 } stellaris_board_info;
57 
58 /* General purpose timer module.  */
59 
60 #define TYPE_STELLARIS_GPTM "stellaris-gptm"
61 OBJECT_DECLARE_SIMPLE_TYPE(gptm_state, STELLARIS_GPTM)
62 
63 struct gptm_state {
64     SysBusDevice parent_obj;
65 
66     MemoryRegion iomem;
67     uint32_t config;
68     uint32_t mode[2];
69     uint32_t control;
70     uint32_t state;
71     uint32_t mask;
72     uint32_t load[2];
73     uint32_t match[2];
74     uint32_t prescale[2];
75     uint32_t match_prescale[2];
76     uint32_t rtc;
77     int64_t tick[2];
78     struct gptm_state *opaque[2];
79     QEMUTimer *timer[2];
80     /* The timers have an alternate output used to trigger the ADC.  */
81     qemu_irq trigger;
82     qemu_irq irq;
83 };
84 
85 static void gptm_update_irq(gptm_state *s)
86 {
87     int level;
88     level = (s->state & s->mask) != 0;
89     qemu_set_irq(s->irq, level);
90 }
91 
92 static void gptm_stop(gptm_state *s, int n)
93 {
94     timer_del(s->timer[n]);
95 }
96 
97 static void gptm_reload(gptm_state *s, int n, int reset)
98 {
99     int64_t tick;
100     if (reset) {
101         tick = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
102     } else {
103         tick = s->tick[n];
104     }
105 
106     if (s->config == 0) {
107         /* 32-bit CountDown.  */
108         uint32_t count;
109         count = s->load[0] | (s->load[1] << 16);
110         tick += (int64_t)count * system_clock_scale;
111     } else if (s->config == 1) {
112         /* 32-bit RTC.  1Hz tick.  */
113         tick += NANOSECONDS_PER_SECOND;
114     } else if (s->mode[n] == 0xa) {
115         /* PWM mode.  Not implemented.  */
116     } else {
117         qemu_log_mask(LOG_UNIMP,
118                       "GPTM: 16-bit timer mode unimplemented: 0x%x\n",
119                       s->mode[n]);
120         return;
121     }
122     s->tick[n] = tick;
123     timer_mod(s->timer[n], tick);
124 }
125 
126 static void gptm_tick(void *opaque)
127 {
128     gptm_state **p = (gptm_state **)opaque;
129     gptm_state *s;
130     int n;
131 
132     s = *p;
133     n = p - s->opaque;
134     if (s->config == 0) {
135         s->state |= 1;
136         if ((s->control & 0x20)) {
137             /* Output trigger.  */
138             qemu_irq_pulse(s->trigger);
139         }
140         if (s->mode[0] & 1) {
141             /* One-shot.  */
142             s->control &= ~1;
143         } else {
144             /* Periodic.  */
145             gptm_reload(s, 0, 0);
146         }
147     } else if (s->config == 1) {
148         /* RTC.  */
149         uint32_t match;
150         s->rtc++;
151         match = s->match[0] | (s->match[1] << 16);
152         if (s->rtc > match)
153             s->rtc = 0;
154         if (s->rtc == 0) {
155             s->state |= 8;
156         }
157         gptm_reload(s, 0, 0);
158     } else if (s->mode[n] == 0xa) {
159         /* PWM mode.  Not implemented.  */
160     } else {
161         qemu_log_mask(LOG_UNIMP,
162                       "GPTM: 16-bit timer mode unimplemented: 0x%x\n",
163                       s->mode[n]);
164     }
165     gptm_update_irq(s);
166 }
167 
168 static uint64_t gptm_read(void *opaque, hwaddr offset,
169                           unsigned size)
170 {
171     gptm_state *s = (gptm_state *)opaque;
172 
173     switch (offset) {
174     case 0x00: /* CFG */
175         return s->config;
176     case 0x04: /* TAMR */
177         return s->mode[0];
178     case 0x08: /* TBMR */
179         return s->mode[1];
180     case 0x0c: /* CTL */
181         return s->control;
182     case 0x18: /* IMR */
183         return s->mask;
184     case 0x1c: /* RIS */
185         return s->state;
186     case 0x20: /* MIS */
187         return s->state & s->mask;
188     case 0x24: /* CR */
189         return 0;
190     case 0x28: /* TAILR */
191         return s->load[0] | ((s->config < 4) ? (s->load[1] << 16) : 0);
192     case 0x2c: /* TBILR */
193         return s->load[1];
194     case 0x30: /* TAMARCHR */
195         return s->match[0] | ((s->config < 4) ? (s->match[1] << 16) : 0);
196     case 0x34: /* TBMATCHR */
197         return s->match[1];
198     case 0x38: /* TAPR */
199         return s->prescale[0];
200     case 0x3c: /* TBPR */
201         return s->prescale[1];
202     case 0x40: /* TAPMR */
203         return s->match_prescale[0];
204     case 0x44: /* TBPMR */
205         return s->match_prescale[1];
206     case 0x48: /* TAR */
207         if (s->config == 1) {
208             return s->rtc;
209         }
210         qemu_log_mask(LOG_UNIMP,
211                       "GPTM: read of TAR but timer read not supported\n");
212         return 0;
213     case 0x4c: /* TBR */
214         qemu_log_mask(LOG_UNIMP,
215                       "GPTM: read of TBR but timer read not supported\n");
216         return 0;
217     default:
218         qemu_log_mask(LOG_GUEST_ERROR,
219                       "GPTM: read at bad offset 0x02%" HWADDR_PRIx "\n",
220                       offset);
221         return 0;
222     }
223 }
224 
225 static void gptm_write(void *opaque, hwaddr offset,
226                        uint64_t value, unsigned size)
227 {
228     gptm_state *s = (gptm_state *)opaque;
229     uint32_t oldval;
230 
231     /*
232      * The timers should be disabled before changing the configuration.
233      * We take advantage of this and defer everything until the timer
234      * is enabled.
235      */
236     switch (offset) {
237     case 0x00: /* CFG */
238         s->config = value;
239         break;
240     case 0x04: /* TAMR */
241         s->mode[0] = value;
242         break;
243     case 0x08: /* TBMR */
244         s->mode[1] = value;
245         break;
246     case 0x0c: /* CTL */
247         oldval = s->control;
248         s->control = value;
249         /* TODO: Implement pause.  */
250         if ((oldval ^ value) & 1) {
251             if (value & 1) {
252                 gptm_reload(s, 0, 1);
253             } else {
254                 gptm_stop(s, 0);
255             }
256         }
257         if (((oldval ^ value) & 0x100) && s->config >= 4) {
258             if (value & 0x100) {
259                 gptm_reload(s, 1, 1);
260             } else {
261                 gptm_stop(s, 1);
262             }
263         }
264         break;
265     case 0x18: /* IMR */
266         s->mask = value & 0x77;
267         gptm_update_irq(s);
268         break;
269     case 0x24: /* CR */
270         s->state &= ~value;
271         break;
272     case 0x28: /* TAILR */
273         s->load[0] = value & 0xffff;
274         if (s->config < 4) {
275             s->load[1] = value >> 16;
276         }
277         break;
278     case 0x2c: /* TBILR */
279         s->load[1] = value & 0xffff;
280         break;
281     case 0x30: /* TAMARCHR */
282         s->match[0] = value & 0xffff;
283         if (s->config < 4) {
284             s->match[1] = value >> 16;
285         }
286         break;
287     case 0x34: /* TBMATCHR */
288         s->match[1] = value >> 16;
289         break;
290     case 0x38: /* TAPR */
291         s->prescale[0] = value;
292         break;
293     case 0x3c: /* TBPR */
294         s->prescale[1] = value;
295         break;
296     case 0x40: /* TAPMR */
297         s->match_prescale[0] = value;
298         break;
299     case 0x44: /* TBPMR */
300         s->match_prescale[0] = value;
301         break;
302     default:
303         qemu_log_mask(LOG_GUEST_ERROR,
304                       "GPTM: write at bad offset 0x02%" HWADDR_PRIx "\n",
305                       offset);
306     }
307     gptm_update_irq(s);
308 }
309 
310 static const MemoryRegionOps gptm_ops = {
311     .read = gptm_read,
312     .write = gptm_write,
313     .endianness = DEVICE_NATIVE_ENDIAN,
314 };
315 
316 static const VMStateDescription vmstate_stellaris_gptm = {
317     .name = "stellaris_gptm",
318     .version_id = 1,
319     .minimum_version_id = 1,
320     .fields = (VMStateField[]) {
321         VMSTATE_UINT32(config, gptm_state),
322         VMSTATE_UINT32_ARRAY(mode, gptm_state, 2),
323         VMSTATE_UINT32(control, gptm_state),
324         VMSTATE_UINT32(state, gptm_state),
325         VMSTATE_UINT32(mask, gptm_state),
326         VMSTATE_UNUSED(8),
327         VMSTATE_UINT32_ARRAY(load, gptm_state, 2),
328         VMSTATE_UINT32_ARRAY(match, gptm_state, 2),
329         VMSTATE_UINT32_ARRAY(prescale, gptm_state, 2),
330         VMSTATE_UINT32_ARRAY(match_prescale, gptm_state, 2),
331         VMSTATE_UINT32(rtc, gptm_state),
332         VMSTATE_INT64_ARRAY(tick, gptm_state, 2),
333         VMSTATE_TIMER_PTR_ARRAY(timer, gptm_state, 2),
334         VMSTATE_END_OF_LIST()
335     }
336 };
337 
338 static void stellaris_gptm_init(Object *obj)
339 {
340     DeviceState *dev = DEVICE(obj);
341     gptm_state *s = STELLARIS_GPTM(obj);
342     SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
343 
344     sysbus_init_irq(sbd, &s->irq);
345     qdev_init_gpio_out(dev, &s->trigger, 1);
346 
347     memory_region_init_io(&s->iomem, obj, &gptm_ops, s,
348                           "gptm", 0x1000);
349     sysbus_init_mmio(sbd, &s->iomem);
350 
351     s->opaque[0] = s->opaque[1] = s;
352 }
353 
354 static void stellaris_gptm_realize(DeviceState *dev, Error **errp)
355 {
356     gptm_state *s = STELLARIS_GPTM(dev);
357     s->timer[0] = timer_new_ns(QEMU_CLOCK_VIRTUAL, gptm_tick, &s->opaque[0]);
358     s->timer[1] = timer_new_ns(QEMU_CLOCK_VIRTUAL, gptm_tick, &s->opaque[1]);
359 }
360 
361 /* System controller.  */
362 
363 #define TYPE_STELLARIS_SYS "stellaris-sys"
364 OBJECT_DECLARE_SIMPLE_TYPE(ssys_state, STELLARIS_SYS)
365 
366 struct ssys_state {
367     SysBusDevice parent_obj;
368 
369     MemoryRegion iomem;
370     uint32_t pborctl;
371     uint32_t ldopctl;
372     uint32_t int_status;
373     uint32_t int_mask;
374     uint32_t resc;
375     uint32_t rcc;
376     uint32_t rcc2;
377     uint32_t rcgc[3];
378     uint32_t scgc[3];
379     uint32_t dcgc[3];
380     uint32_t clkvclr;
381     uint32_t ldoarst;
382     qemu_irq irq;
383     Clock *sysclk;
384     /* Properties (all read-only registers) */
385     uint32_t user0;
386     uint32_t user1;
387     uint32_t did0;
388     uint32_t did1;
389     uint32_t dc0;
390     uint32_t dc1;
391     uint32_t dc2;
392     uint32_t dc3;
393     uint32_t dc4;
394 };
395 
396 static void ssys_update(ssys_state *s)
397 {
398   qemu_set_irq(s->irq, (s->int_status & s->int_mask) != 0);
399 }
400 
401 static uint32_t pllcfg_sandstorm[16] = {
402     0x31c0, /* 1 Mhz */
403     0x1ae0, /* 1.8432 Mhz */
404     0x18c0, /* 2 Mhz */
405     0xd573, /* 2.4576 Mhz */
406     0x37a6, /* 3.57954 Mhz */
407     0x1ae2, /* 3.6864 Mhz */
408     0x0c40, /* 4 Mhz */
409     0x98bc, /* 4.906 Mhz */
410     0x935b, /* 4.9152 Mhz */
411     0x09c0, /* 5 Mhz */
412     0x4dee, /* 5.12 Mhz */
413     0x0c41, /* 6 Mhz */
414     0x75db, /* 6.144 Mhz */
415     0x1ae6, /* 7.3728 Mhz */
416     0x0600, /* 8 Mhz */
417     0x585b /* 8.192 Mhz */
418 };
419 
420 static uint32_t pllcfg_fury[16] = {
421     0x3200, /* 1 Mhz */
422     0x1b20, /* 1.8432 Mhz */
423     0x1900, /* 2 Mhz */
424     0xf42b, /* 2.4576 Mhz */
425     0x37e3, /* 3.57954 Mhz */
426     0x1b21, /* 3.6864 Mhz */
427     0x0c80, /* 4 Mhz */
428     0x98ee, /* 4.906 Mhz */
429     0xd5b4, /* 4.9152 Mhz */
430     0x0a00, /* 5 Mhz */
431     0x4e27, /* 5.12 Mhz */
432     0x1902, /* 6 Mhz */
433     0xec1c, /* 6.144 Mhz */
434     0x1b23, /* 7.3728 Mhz */
435     0x0640, /* 8 Mhz */
436     0xb11c /* 8.192 Mhz */
437 };
438 
439 #define DID0_VER_MASK        0x70000000
440 #define DID0_VER_0           0x00000000
441 #define DID0_VER_1           0x10000000
442 
443 #define DID0_CLASS_MASK      0x00FF0000
444 #define DID0_CLASS_SANDSTORM 0x00000000
445 #define DID0_CLASS_FURY      0x00010000
446 
447 static int ssys_board_class(const ssys_state *s)
448 {
449     uint32_t did0 = s->did0;
450     switch (did0 & DID0_VER_MASK) {
451     case DID0_VER_0:
452         return DID0_CLASS_SANDSTORM;
453     case DID0_VER_1:
454         switch (did0 & DID0_CLASS_MASK) {
455         case DID0_CLASS_SANDSTORM:
456         case DID0_CLASS_FURY:
457             return did0 & DID0_CLASS_MASK;
458         }
459         /* for unknown classes, fall through */
460     default:
461         /* This can only happen if the hardwired constant did0 value
462          * in this board's stellaris_board_info struct is wrong.
463          */
464         g_assert_not_reached();
465     }
466 }
467 
468 static uint64_t ssys_read(void *opaque, hwaddr offset,
469                           unsigned size)
470 {
471     ssys_state *s = (ssys_state *)opaque;
472 
473     switch (offset) {
474     case 0x000: /* DID0 */
475         return s->did0;
476     case 0x004: /* DID1 */
477         return s->did1;
478     case 0x008: /* DC0 */
479         return s->dc0;
480     case 0x010: /* DC1 */
481         return s->dc1;
482     case 0x014: /* DC2 */
483         return s->dc2;
484     case 0x018: /* DC3 */
485         return s->dc3;
486     case 0x01c: /* DC4 */
487         return s->dc4;
488     case 0x030: /* PBORCTL */
489         return s->pborctl;
490     case 0x034: /* LDOPCTL */
491         return s->ldopctl;
492     case 0x040: /* SRCR0 */
493         return 0;
494     case 0x044: /* SRCR1 */
495         return 0;
496     case 0x048: /* SRCR2 */
497         return 0;
498     case 0x050: /* RIS */
499         return s->int_status;
500     case 0x054: /* IMC */
501         return s->int_mask;
502     case 0x058: /* MISC */
503         return s->int_status & s->int_mask;
504     case 0x05c: /* RESC */
505         return s->resc;
506     case 0x060: /* RCC */
507         return s->rcc;
508     case 0x064: /* PLLCFG */
509         {
510             int xtal;
511             xtal = (s->rcc >> 6) & 0xf;
512             switch (ssys_board_class(s)) {
513             case DID0_CLASS_FURY:
514                 return pllcfg_fury[xtal];
515             case DID0_CLASS_SANDSTORM:
516                 return pllcfg_sandstorm[xtal];
517             default:
518                 g_assert_not_reached();
519             }
520         }
521     case 0x070: /* RCC2 */
522         return s->rcc2;
523     case 0x100: /* RCGC0 */
524         return s->rcgc[0];
525     case 0x104: /* RCGC1 */
526         return s->rcgc[1];
527     case 0x108: /* RCGC2 */
528         return s->rcgc[2];
529     case 0x110: /* SCGC0 */
530         return s->scgc[0];
531     case 0x114: /* SCGC1 */
532         return s->scgc[1];
533     case 0x118: /* SCGC2 */
534         return s->scgc[2];
535     case 0x120: /* DCGC0 */
536         return s->dcgc[0];
537     case 0x124: /* DCGC1 */
538         return s->dcgc[1];
539     case 0x128: /* DCGC2 */
540         return s->dcgc[2];
541     case 0x150: /* CLKVCLR */
542         return s->clkvclr;
543     case 0x160: /* LDOARST */
544         return s->ldoarst;
545     case 0x1e0: /* USER0 */
546         return s->user0;
547     case 0x1e4: /* USER1 */
548         return s->user1;
549     default:
550         qemu_log_mask(LOG_GUEST_ERROR,
551                       "SSYS: read at bad offset 0x%x\n", (int)offset);
552         return 0;
553     }
554 }
555 
556 static bool ssys_use_rcc2(ssys_state *s)
557 {
558     return (s->rcc2 >> 31) & 0x1;
559 }
560 
561 /*
562  * Calculate the system clock period. We only want to propagate
563  * this change to the rest of the system if we're not being called
564  * from migration post-load.
565  */
566 static void ssys_calculate_system_clock(ssys_state *s, bool propagate_clock)
567 {
568     /*
569      * SYSDIV field specifies divisor: 0 == /1, 1 == /2, etc.  Input
570      * clock is 200MHz, which is a period of 5 ns. Dividing the clock
571      * frequency by X is the same as multiplying the period by X.
572      */
573     if (ssys_use_rcc2(s)) {
574         system_clock_scale = 5 * (((s->rcc2 >> 23) & 0x3f) + 1);
575     } else {
576         system_clock_scale = 5 * (((s->rcc >> 23) & 0xf) + 1);
577     }
578     clock_set_ns(s->sysclk, system_clock_scale);
579     if (propagate_clock) {
580         clock_propagate(s->sysclk);
581     }
582 }
583 
584 static void ssys_write(void *opaque, hwaddr offset,
585                        uint64_t value, unsigned size)
586 {
587     ssys_state *s = (ssys_state *)opaque;
588 
589     switch (offset) {
590     case 0x030: /* PBORCTL */
591         s->pborctl = value & 0xffff;
592         break;
593     case 0x034: /* LDOPCTL */
594         s->ldopctl = value & 0x1f;
595         break;
596     case 0x040: /* SRCR0 */
597     case 0x044: /* SRCR1 */
598     case 0x048: /* SRCR2 */
599         qemu_log_mask(LOG_UNIMP, "Peripheral reset not implemented\n");
600         break;
601     case 0x054: /* IMC */
602         s->int_mask = value & 0x7f;
603         break;
604     case 0x058: /* MISC */
605         s->int_status &= ~value;
606         break;
607     case 0x05c: /* RESC */
608         s->resc = value & 0x3f;
609         break;
610     case 0x060: /* RCC */
611         if ((s->rcc & (1 << 13)) != 0 && (value & (1 << 13)) == 0) {
612             /* PLL enable.  */
613             s->int_status |= (1 << 6);
614         }
615         s->rcc = value;
616         ssys_calculate_system_clock(s, true);
617         break;
618     case 0x070: /* RCC2 */
619         if (ssys_board_class(s) == DID0_CLASS_SANDSTORM) {
620             break;
621         }
622 
623         if ((s->rcc2 & (1 << 13)) != 0 && (value & (1 << 13)) == 0) {
624             /* PLL enable.  */
625             s->int_status |= (1 << 6);
626         }
627         s->rcc2 = value;
628         ssys_calculate_system_clock(s, true);
629         break;
630     case 0x100: /* RCGC0 */
631         s->rcgc[0] = value;
632         break;
633     case 0x104: /* RCGC1 */
634         s->rcgc[1] = value;
635         break;
636     case 0x108: /* RCGC2 */
637         s->rcgc[2] = value;
638         break;
639     case 0x110: /* SCGC0 */
640         s->scgc[0] = value;
641         break;
642     case 0x114: /* SCGC1 */
643         s->scgc[1] = value;
644         break;
645     case 0x118: /* SCGC2 */
646         s->scgc[2] = value;
647         break;
648     case 0x120: /* DCGC0 */
649         s->dcgc[0] = value;
650         break;
651     case 0x124: /* DCGC1 */
652         s->dcgc[1] = value;
653         break;
654     case 0x128: /* DCGC2 */
655         s->dcgc[2] = value;
656         break;
657     case 0x150: /* CLKVCLR */
658         s->clkvclr = value;
659         break;
660     case 0x160: /* LDOARST */
661         s->ldoarst = value;
662         break;
663     default:
664         qemu_log_mask(LOG_GUEST_ERROR,
665                       "SSYS: write at bad offset 0x%x\n", (int)offset);
666     }
667     ssys_update(s);
668 }
669 
670 static const MemoryRegionOps ssys_ops = {
671     .read = ssys_read,
672     .write = ssys_write,
673     .endianness = DEVICE_NATIVE_ENDIAN,
674 };
675 
676 static void stellaris_sys_reset_enter(Object *obj, ResetType type)
677 {
678     ssys_state *s = STELLARIS_SYS(obj);
679 
680     s->pborctl = 0x7ffd;
681     s->rcc = 0x078e3ac0;
682 
683     if (ssys_board_class(s) == DID0_CLASS_SANDSTORM) {
684         s->rcc2 = 0;
685     } else {
686         s->rcc2 = 0x07802810;
687     }
688     s->rcgc[0] = 1;
689     s->scgc[0] = 1;
690     s->dcgc[0] = 1;
691 }
692 
693 static void stellaris_sys_reset_hold(Object *obj)
694 {
695     ssys_state *s = STELLARIS_SYS(obj);
696 
697     /* OK to propagate clocks from the hold phase */
698     ssys_calculate_system_clock(s, true);
699 }
700 
701 static void stellaris_sys_reset_exit(Object *obj)
702 {
703 }
704 
705 static int stellaris_sys_post_load(void *opaque, int version_id)
706 {
707     ssys_state *s = opaque;
708 
709     ssys_calculate_system_clock(s, false);
710 
711     return 0;
712 }
713 
714 static const VMStateDescription vmstate_stellaris_sys = {
715     .name = "stellaris_sys",
716     .version_id = 2,
717     .minimum_version_id = 1,
718     .post_load = stellaris_sys_post_load,
719     .fields = (VMStateField[]) {
720         VMSTATE_UINT32(pborctl, ssys_state),
721         VMSTATE_UINT32(ldopctl, ssys_state),
722         VMSTATE_UINT32(int_mask, ssys_state),
723         VMSTATE_UINT32(int_status, ssys_state),
724         VMSTATE_UINT32(resc, ssys_state),
725         VMSTATE_UINT32(rcc, ssys_state),
726         VMSTATE_UINT32_V(rcc2, ssys_state, 2),
727         VMSTATE_UINT32_ARRAY(rcgc, ssys_state, 3),
728         VMSTATE_UINT32_ARRAY(scgc, ssys_state, 3),
729         VMSTATE_UINT32_ARRAY(dcgc, ssys_state, 3),
730         VMSTATE_UINT32(clkvclr, ssys_state),
731         VMSTATE_UINT32(ldoarst, ssys_state),
732         /* No field for sysclk -- handled in post-load instead */
733         VMSTATE_END_OF_LIST()
734     }
735 };
736 
737 static Property stellaris_sys_properties[] = {
738     DEFINE_PROP_UINT32("user0", ssys_state, user0, 0),
739     DEFINE_PROP_UINT32("user1", ssys_state, user1, 0),
740     DEFINE_PROP_UINT32("did0", ssys_state, did0, 0),
741     DEFINE_PROP_UINT32("did1", ssys_state, did1, 0),
742     DEFINE_PROP_UINT32("dc0", ssys_state, dc0, 0),
743     DEFINE_PROP_UINT32("dc1", ssys_state, dc1, 0),
744     DEFINE_PROP_UINT32("dc2", ssys_state, dc2, 0),
745     DEFINE_PROP_UINT32("dc3", ssys_state, dc3, 0),
746     DEFINE_PROP_UINT32("dc4", ssys_state, dc4, 0),
747     DEFINE_PROP_END_OF_LIST()
748 };
749 
750 static void stellaris_sys_instance_init(Object *obj)
751 {
752     ssys_state *s = STELLARIS_SYS(obj);
753     SysBusDevice *sbd = SYS_BUS_DEVICE(s);
754 
755     memory_region_init_io(&s->iomem, obj, &ssys_ops, s, "ssys", 0x00001000);
756     sysbus_init_mmio(sbd, &s->iomem);
757     sysbus_init_irq(sbd, &s->irq);
758     s->sysclk = qdev_init_clock_out(DEVICE(s), "SYSCLK");
759 }
760 
761 /* I2C controller.  */
762 
763 #define TYPE_STELLARIS_I2C "stellaris-i2c"
764 OBJECT_DECLARE_SIMPLE_TYPE(stellaris_i2c_state, STELLARIS_I2C)
765 
766 struct stellaris_i2c_state {
767     SysBusDevice parent_obj;
768 
769     I2CBus *bus;
770     qemu_irq irq;
771     MemoryRegion iomem;
772     uint32_t msa;
773     uint32_t mcs;
774     uint32_t mdr;
775     uint32_t mtpr;
776     uint32_t mimr;
777     uint32_t mris;
778     uint32_t mcr;
779 };
780 
781 #define STELLARIS_I2C_MCS_BUSY    0x01
782 #define STELLARIS_I2C_MCS_ERROR   0x02
783 #define STELLARIS_I2C_MCS_ADRACK  0x04
784 #define STELLARIS_I2C_MCS_DATACK  0x08
785 #define STELLARIS_I2C_MCS_ARBLST  0x10
786 #define STELLARIS_I2C_MCS_IDLE    0x20
787 #define STELLARIS_I2C_MCS_BUSBSY  0x40
788 
789 static uint64_t stellaris_i2c_read(void *opaque, hwaddr offset,
790                                    unsigned size)
791 {
792     stellaris_i2c_state *s = (stellaris_i2c_state *)opaque;
793 
794     switch (offset) {
795     case 0x00: /* MSA */
796         return s->msa;
797     case 0x04: /* MCS */
798         /* We don't emulate timing, so the controller is never busy.  */
799         return s->mcs | STELLARIS_I2C_MCS_IDLE;
800     case 0x08: /* MDR */
801         return s->mdr;
802     case 0x0c: /* MTPR */
803         return s->mtpr;
804     case 0x10: /* MIMR */
805         return s->mimr;
806     case 0x14: /* MRIS */
807         return s->mris;
808     case 0x18: /* MMIS */
809         return s->mris & s->mimr;
810     case 0x20: /* MCR */
811         return s->mcr;
812     default:
813         qemu_log_mask(LOG_GUEST_ERROR,
814                       "stellaris_i2c: read at bad offset 0x%x\n", (int)offset);
815         return 0;
816     }
817 }
818 
819 static void stellaris_i2c_update(stellaris_i2c_state *s)
820 {
821     int level;
822 
823     level = (s->mris & s->mimr) != 0;
824     qemu_set_irq(s->irq, level);
825 }
826 
827 static void stellaris_i2c_write(void *opaque, hwaddr offset,
828                                 uint64_t value, unsigned size)
829 {
830     stellaris_i2c_state *s = (stellaris_i2c_state *)opaque;
831 
832     switch (offset) {
833     case 0x00: /* MSA */
834         s->msa = value & 0xff;
835         break;
836     case 0x04: /* MCS */
837         if ((s->mcr & 0x10) == 0) {
838             /* Disabled.  Do nothing.  */
839             break;
840         }
841         /* Grab the bus if this is starting a transfer.  */
842         if ((value & 2) && (s->mcs & STELLARIS_I2C_MCS_BUSBSY) == 0) {
843             if (i2c_start_transfer(s->bus, s->msa >> 1, s->msa & 1)) {
844                 s->mcs |= STELLARIS_I2C_MCS_ARBLST;
845             } else {
846                 s->mcs &= ~STELLARIS_I2C_MCS_ARBLST;
847                 s->mcs |= STELLARIS_I2C_MCS_BUSBSY;
848             }
849         }
850         /* If we don't have the bus then indicate an error.  */
851         if (!i2c_bus_busy(s->bus)
852                 || (s->mcs & STELLARIS_I2C_MCS_BUSBSY) == 0) {
853             s->mcs |= STELLARIS_I2C_MCS_ERROR;
854             break;
855         }
856         s->mcs &= ~STELLARIS_I2C_MCS_ERROR;
857         if (value & 1) {
858             /* Transfer a byte.  */
859             /* TODO: Handle errors.  */
860             if (s->msa & 1) {
861                 /* Recv */
862                 s->mdr = i2c_recv(s->bus);
863             } else {
864                 /* Send */
865                 i2c_send(s->bus, s->mdr);
866             }
867             /* Raise an interrupt.  */
868             s->mris |= 1;
869         }
870         if (value & 4) {
871             /* Finish transfer.  */
872             i2c_end_transfer(s->bus);
873             s->mcs &= ~STELLARIS_I2C_MCS_BUSBSY;
874         }
875         break;
876     case 0x08: /* MDR */
877         s->mdr = value & 0xff;
878         break;
879     case 0x0c: /* MTPR */
880         s->mtpr = value & 0xff;
881         break;
882     case 0x10: /* MIMR */
883         s->mimr = 1;
884         break;
885     case 0x1c: /* MICR */
886         s->mris &= ~value;
887         break;
888     case 0x20: /* MCR */
889         if (value & 1) {
890             qemu_log_mask(LOG_UNIMP,
891                           "stellaris_i2c: Loopback not implemented\n");
892         }
893         if (value & 0x20) {
894             qemu_log_mask(LOG_UNIMP,
895                           "stellaris_i2c: Slave mode not implemented\n");
896         }
897         s->mcr = value & 0x31;
898         break;
899     default:
900         qemu_log_mask(LOG_GUEST_ERROR,
901                       "stellaris_i2c: write at bad offset 0x%x\n", (int)offset);
902     }
903     stellaris_i2c_update(s);
904 }
905 
906 static void stellaris_i2c_reset(stellaris_i2c_state *s)
907 {
908     if (s->mcs & STELLARIS_I2C_MCS_BUSBSY)
909         i2c_end_transfer(s->bus);
910 
911     s->msa = 0;
912     s->mcs = 0;
913     s->mdr = 0;
914     s->mtpr = 1;
915     s->mimr = 0;
916     s->mris = 0;
917     s->mcr = 0;
918     stellaris_i2c_update(s);
919 }
920 
921 static const MemoryRegionOps stellaris_i2c_ops = {
922     .read = stellaris_i2c_read,
923     .write = stellaris_i2c_write,
924     .endianness = DEVICE_NATIVE_ENDIAN,
925 };
926 
927 static const VMStateDescription vmstate_stellaris_i2c = {
928     .name = "stellaris_i2c",
929     .version_id = 1,
930     .minimum_version_id = 1,
931     .fields = (VMStateField[]) {
932         VMSTATE_UINT32(msa, stellaris_i2c_state),
933         VMSTATE_UINT32(mcs, stellaris_i2c_state),
934         VMSTATE_UINT32(mdr, stellaris_i2c_state),
935         VMSTATE_UINT32(mtpr, stellaris_i2c_state),
936         VMSTATE_UINT32(mimr, stellaris_i2c_state),
937         VMSTATE_UINT32(mris, stellaris_i2c_state),
938         VMSTATE_UINT32(mcr, stellaris_i2c_state),
939         VMSTATE_END_OF_LIST()
940     }
941 };
942 
943 static void stellaris_i2c_init(Object *obj)
944 {
945     DeviceState *dev = DEVICE(obj);
946     stellaris_i2c_state *s = STELLARIS_I2C(obj);
947     SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
948     I2CBus *bus;
949 
950     sysbus_init_irq(sbd, &s->irq);
951     bus = i2c_init_bus(dev, "i2c");
952     s->bus = bus;
953 
954     memory_region_init_io(&s->iomem, obj, &stellaris_i2c_ops, s,
955                           "i2c", 0x1000);
956     sysbus_init_mmio(sbd, &s->iomem);
957     /* ??? For now we only implement the master interface.  */
958     stellaris_i2c_reset(s);
959 }
960 
961 /* Analogue to Digital Converter.  This is only partially implemented,
962    enough for applications that use a combined ADC and timer tick.  */
963 
964 #define STELLARIS_ADC_EM_CONTROLLER 0
965 #define STELLARIS_ADC_EM_COMP       1
966 #define STELLARIS_ADC_EM_EXTERNAL   4
967 #define STELLARIS_ADC_EM_TIMER      5
968 #define STELLARIS_ADC_EM_PWM0       6
969 #define STELLARIS_ADC_EM_PWM1       7
970 #define STELLARIS_ADC_EM_PWM2       8
971 
972 #define STELLARIS_ADC_FIFO_EMPTY    0x0100
973 #define STELLARIS_ADC_FIFO_FULL     0x1000
974 
975 #define TYPE_STELLARIS_ADC "stellaris-adc"
976 typedef struct StellarisADCState stellaris_adc_state;
977 DECLARE_INSTANCE_CHECKER(stellaris_adc_state, STELLARIS_ADC,
978                          TYPE_STELLARIS_ADC)
979 
980 struct StellarisADCState {
981     SysBusDevice parent_obj;
982 
983     MemoryRegion iomem;
984     uint32_t actss;
985     uint32_t ris;
986     uint32_t im;
987     uint32_t emux;
988     uint32_t ostat;
989     uint32_t ustat;
990     uint32_t sspri;
991     uint32_t sac;
992     struct {
993         uint32_t state;
994         uint32_t data[16];
995     } fifo[4];
996     uint32_t ssmux[4];
997     uint32_t ssctl[4];
998     uint32_t noise;
999     qemu_irq irq[4];
1000 };
1001 
1002 static uint32_t stellaris_adc_fifo_read(stellaris_adc_state *s, int n)
1003 {
1004     int tail;
1005 
1006     tail = s->fifo[n].state & 0xf;
1007     if (s->fifo[n].state & STELLARIS_ADC_FIFO_EMPTY) {
1008         s->ustat |= 1 << n;
1009     } else {
1010         s->fifo[n].state = (s->fifo[n].state & ~0xf) | ((tail + 1) & 0xf);
1011         s->fifo[n].state &= ~STELLARIS_ADC_FIFO_FULL;
1012         if (tail + 1 == ((s->fifo[n].state >> 4) & 0xf))
1013             s->fifo[n].state |= STELLARIS_ADC_FIFO_EMPTY;
1014     }
1015     return s->fifo[n].data[tail];
1016 }
1017 
1018 static void stellaris_adc_fifo_write(stellaris_adc_state *s, int n,
1019                                      uint32_t value)
1020 {
1021     int head;
1022 
1023     /* TODO: Real hardware has limited size FIFOs.  We have a full 16 entry
1024        FIFO fir each sequencer.  */
1025     head = (s->fifo[n].state >> 4) & 0xf;
1026     if (s->fifo[n].state & STELLARIS_ADC_FIFO_FULL) {
1027         s->ostat |= 1 << n;
1028         return;
1029     }
1030     s->fifo[n].data[head] = value;
1031     head = (head + 1) & 0xf;
1032     s->fifo[n].state &= ~STELLARIS_ADC_FIFO_EMPTY;
1033     s->fifo[n].state = (s->fifo[n].state & ~0xf0) | (head << 4);
1034     if ((s->fifo[n].state & 0xf) == head)
1035         s->fifo[n].state |= STELLARIS_ADC_FIFO_FULL;
1036 }
1037 
1038 static void stellaris_adc_update(stellaris_adc_state *s)
1039 {
1040     int level;
1041     int n;
1042 
1043     for (n = 0; n < 4; n++) {
1044         level = (s->ris & s->im & (1 << n)) != 0;
1045         qemu_set_irq(s->irq[n], level);
1046     }
1047 }
1048 
1049 static void stellaris_adc_trigger(void *opaque, int irq, int level)
1050 {
1051     stellaris_adc_state *s = (stellaris_adc_state *)opaque;
1052     int n;
1053 
1054     for (n = 0; n < 4; n++) {
1055         if ((s->actss & (1 << n)) == 0) {
1056             continue;
1057         }
1058 
1059         if (((s->emux >> (n * 4)) & 0xff) != 5) {
1060             continue;
1061         }
1062 
1063         /* Some applications use the ADC as a random number source, so introduce
1064            some variation into the signal.  */
1065         s->noise = s->noise * 314159 + 1;
1066         /* ??? actual inputs not implemented.  Return an arbitrary value.  */
1067         stellaris_adc_fifo_write(s, n, 0x200 + ((s->noise >> 16) & 7));
1068         s->ris |= (1 << n);
1069         stellaris_adc_update(s);
1070     }
1071 }
1072 
1073 static void stellaris_adc_reset(stellaris_adc_state *s)
1074 {
1075     int n;
1076 
1077     for (n = 0; n < 4; n++) {
1078         s->ssmux[n] = 0;
1079         s->ssctl[n] = 0;
1080         s->fifo[n].state = STELLARIS_ADC_FIFO_EMPTY;
1081     }
1082 }
1083 
1084 static uint64_t stellaris_adc_read(void *opaque, hwaddr offset,
1085                                    unsigned size)
1086 {
1087     stellaris_adc_state *s = (stellaris_adc_state *)opaque;
1088 
1089     /* TODO: Implement this.  */
1090     if (offset >= 0x40 && offset < 0xc0) {
1091         int n;
1092         n = (offset - 0x40) >> 5;
1093         switch (offset & 0x1f) {
1094         case 0x00: /* SSMUX */
1095             return s->ssmux[n];
1096         case 0x04: /* SSCTL */
1097             return s->ssctl[n];
1098         case 0x08: /* SSFIFO */
1099             return stellaris_adc_fifo_read(s, n);
1100         case 0x0c: /* SSFSTAT */
1101             return s->fifo[n].state;
1102         default:
1103             break;
1104         }
1105     }
1106     switch (offset) {
1107     case 0x00: /* ACTSS */
1108         return s->actss;
1109     case 0x04: /* RIS */
1110         return s->ris;
1111     case 0x08: /* IM */
1112         return s->im;
1113     case 0x0c: /* ISC */
1114         return s->ris & s->im;
1115     case 0x10: /* OSTAT */
1116         return s->ostat;
1117     case 0x14: /* EMUX */
1118         return s->emux;
1119     case 0x18: /* USTAT */
1120         return s->ustat;
1121     case 0x20: /* SSPRI */
1122         return s->sspri;
1123     case 0x30: /* SAC */
1124         return s->sac;
1125     default:
1126         qemu_log_mask(LOG_GUEST_ERROR,
1127                       "stellaris_adc: read at bad offset 0x%x\n", (int)offset);
1128         return 0;
1129     }
1130 }
1131 
1132 static void stellaris_adc_write(void *opaque, hwaddr offset,
1133                                 uint64_t value, unsigned size)
1134 {
1135     stellaris_adc_state *s = (stellaris_adc_state *)opaque;
1136 
1137     /* TODO: Implement this.  */
1138     if (offset >= 0x40 && offset < 0xc0) {
1139         int n;
1140         n = (offset - 0x40) >> 5;
1141         switch (offset & 0x1f) {
1142         case 0x00: /* SSMUX */
1143             s->ssmux[n] = value & 0x33333333;
1144             return;
1145         case 0x04: /* SSCTL */
1146             if (value != 6) {
1147                 qemu_log_mask(LOG_UNIMP,
1148                               "ADC: Unimplemented sequence %" PRIx64 "\n",
1149                               value);
1150             }
1151             s->ssctl[n] = value;
1152             return;
1153         default:
1154             break;
1155         }
1156     }
1157     switch (offset) {
1158     case 0x00: /* ACTSS */
1159         s->actss = value & 0xf;
1160         break;
1161     case 0x08: /* IM */
1162         s->im = value;
1163         break;
1164     case 0x0c: /* ISC */
1165         s->ris &= ~value;
1166         break;
1167     case 0x10: /* OSTAT */
1168         s->ostat &= ~value;
1169         break;
1170     case 0x14: /* EMUX */
1171         s->emux = value;
1172         break;
1173     case 0x18: /* USTAT */
1174         s->ustat &= ~value;
1175         break;
1176     case 0x20: /* SSPRI */
1177         s->sspri = value;
1178         break;
1179     case 0x28: /* PSSI */
1180         qemu_log_mask(LOG_UNIMP, "ADC: sample initiate unimplemented\n");
1181         break;
1182     case 0x30: /* SAC */
1183         s->sac = value;
1184         break;
1185     default:
1186         qemu_log_mask(LOG_GUEST_ERROR,
1187                       "stellaris_adc: write at bad offset 0x%x\n", (int)offset);
1188     }
1189     stellaris_adc_update(s);
1190 }
1191 
1192 static const MemoryRegionOps stellaris_adc_ops = {
1193     .read = stellaris_adc_read,
1194     .write = stellaris_adc_write,
1195     .endianness = DEVICE_NATIVE_ENDIAN,
1196 };
1197 
1198 static const VMStateDescription vmstate_stellaris_adc = {
1199     .name = "stellaris_adc",
1200     .version_id = 1,
1201     .minimum_version_id = 1,
1202     .fields = (VMStateField[]) {
1203         VMSTATE_UINT32(actss, stellaris_adc_state),
1204         VMSTATE_UINT32(ris, stellaris_adc_state),
1205         VMSTATE_UINT32(im, stellaris_adc_state),
1206         VMSTATE_UINT32(emux, stellaris_adc_state),
1207         VMSTATE_UINT32(ostat, stellaris_adc_state),
1208         VMSTATE_UINT32(ustat, stellaris_adc_state),
1209         VMSTATE_UINT32(sspri, stellaris_adc_state),
1210         VMSTATE_UINT32(sac, stellaris_adc_state),
1211         VMSTATE_UINT32(fifo[0].state, stellaris_adc_state),
1212         VMSTATE_UINT32_ARRAY(fifo[0].data, stellaris_adc_state, 16),
1213         VMSTATE_UINT32(ssmux[0], stellaris_adc_state),
1214         VMSTATE_UINT32(ssctl[0], stellaris_adc_state),
1215         VMSTATE_UINT32(fifo[1].state, stellaris_adc_state),
1216         VMSTATE_UINT32_ARRAY(fifo[1].data, stellaris_adc_state, 16),
1217         VMSTATE_UINT32(ssmux[1], stellaris_adc_state),
1218         VMSTATE_UINT32(ssctl[1], stellaris_adc_state),
1219         VMSTATE_UINT32(fifo[2].state, stellaris_adc_state),
1220         VMSTATE_UINT32_ARRAY(fifo[2].data, stellaris_adc_state, 16),
1221         VMSTATE_UINT32(ssmux[2], stellaris_adc_state),
1222         VMSTATE_UINT32(ssctl[2], stellaris_adc_state),
1223         VMSTATE_UINT32(fifo[3].state, stellaris_adc_state),
1224         VMSTATE_UINT32_ARRAY(fifo[3].data, stellaris_adc_state, 16),
1225         VMSTATE_UINT32(ssmux[3], stellaris_adc_state),
1226         VMSTATE_UINT32(ssctl[3], stellaris_adc_state),
1227         VMSTATE_UINT32(noise, stellaris_adc_state),
1228         VMSTATE_END_OF_LIST()
1229     }
1230 };
1231 
1232 static void stellaris_adc_init(Object *obj)
1233 {
1234     DeviceState *dev = DEVICE(obj);
1235     stellaris_adc_state *s = STELLARIS_ADC(obj);
1236     SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
1237     int n;
1238 
1239     for (n = 0; n < 4; n++) {
1240         sysbus_init_irq(sbd, &s->irq[n]);
1241     }
1242 
1243     memory_region_init_io(&s->iomem, obj, &stellaris_adc_ops, s,
1244                           "adc", 0x1000);
1245     sysbus_init_mmio(sbd, &s->iomem);
1246     stellaris_adc_reset(s);
1247     qdev_init_gpio_in(dev, stellaris_adc_trigger, 1);
1248 }
1249 
1250 /* Board init.  */
1251 static stellaris_board_info stellaris_boards[] = {
1252   { "LM3S811EVB",
1253     0,
1254     0x0032000e,
1255     0x001f001f, /* dc0 */
1256     0x001132bf,
1257     0x01071013,
1258     0x3f0f01ff,
1259     0x0000001f,
1260     BP_OLED_I2C
1261   },
1262   { "LM3S6965EVB",
1263     0x10010002,
1264     0x1073402e,
1265     0x00ff007f, /* dc0 */
1266     0x001133ff,
1267     0x030f5317,
1268     0x0f0f87ff,
1269     0x5000007f,
1270     BP_OLED_SSI | BP_GAMEPAD
1271   }
1272 };
1273 
1274 static void stellaris_init(MachineState *ms, stellaris_board_info *board)
1275 {
1276     static const int uart_irq[] = {5, 6, 33, 34};
1277     static const int timer_irq[] = {19, 21, 23, 35};
1278     static const uint32_t gpio_addr[7] =
1279       { 0x40004000, 0x40005000, 0x40006000, 0x40007000,
1280         0x40024000, 0x40025000, 0x40026000};
1281     static const int gpio_irq[7] = {0, 1, 2, 3, 4, 30, 31};
1282 
1283     /* Memory map of SoC devices, from
1284      * Stellaris LM3S6965 Microcontroller Data Sheet (rev I)
1285      * http://www.ti.com/lit/ds/symlink/lm3s6965.pdf
1286      *
1287      * 40000000 wdtimer
1288      * 40002000 i2c (unimplemented)
1289      * 40004000 GPIO
1290      * 40005000 GPIO
1291      * 40006000 GPIO
1292      * 40007000 GPIO
1293      * 40008000 SSI
1294      * 4000c000 UART
1295      * 4000d000 UART
1296      * 4000e000 UART
1297      * 40020000 i2c
1298      * 40021000 i2c (unimplemented)
1299      * 40024000 GPIO
1300      * 40025000 GPIO
1301      * 40026000 GPIO
1302      * 40028000 PWM (unimplemented)
1303      * 4002c000 QEI (unimplemented)
1304      * 4002d000 QEI (unimplemented)
1305      * 40030000 gptimer
1306      * 40031000 gptimer
1307      * 40032000 gptimer
1308      * 40033000 gptimer
1309      * 40038000 ADC
1310      * 4003c000 analogue comparator (unimplemented)
1311      * 40048000 ethernet
1312      * 400fc000 hibernation module (unimplemented)
1313      * 400fd000 flash memory control (unimplemented)
1314      * 400fe000 system control
1315      */
1316 
1317     DeviceState *gpio_dev[7], *nvic;
1318     qemu_irq gpio_in[7][8];
1319     qemu_irq gpio_out[7][8];
1320     qemu_irq adc;
1321     int sram_size;
1322     int flash_size;
1323     I2CBus *i2c;
1324     DeviceState *dev;
1325     DeviceState *ssys_dev;
1326     int i;
1327     int j;
1328     const uint8_t *macaddr;
1329 
1330     MemoryRegion *sram = g_new(MemoryRegion, 1);
1331     MemoryRegion *flash = g_new(MemoryRegion, 1);
1332     MemoryRegion *system_memory = get_system_memory();
1333 
1334     flash_size = (((board->dc0 & 0xffff) + 1) << 1) * 1024;
1335     sram_size = ((board->dc0 >> 18) + 1) * 1024;
1336 
1337     /* Flash programming is done via the SCU, so pretend it is ROM.  */
1338     memory_region_init_rom(flash, NULL, "stellaris.flash", flash_size,
1339                            &error_fatal);
1340     memory_region_add_subregion(system_memory, 0, flash);
1341 
1342     memory_region_init_ram(sram, NULL, "stellaris.sram", sram_size,
1343                            &error_fatal);
1344     memory_region_add_subregion(system_memory, 0x20000000, sram);
1345 
1346     /*
1347      * Create the system-registers object early, because we will
1348      * need its sysclk output.
1349      */
1350     ssys_dev = qdev_new(TYPE_STELLARIS_SYS);
1351     /* Most devices come preprogrammed with a MAC address in the user data. */
1352     macaddr = nd_table[0].macaddr.a;
1353     qdev_prop_set_uint32(ssys_dev, "user0",
1354                          macaddr[0] | (macaddr[1] << 8) | (macaddr[2] << 16));
1355     qdev_prop_set_uint32(ssys_dev, "user1",
1356                          macaddr[3] | (macaddr[4] << 8) | (macaddr[5] << 16));
1357     qdev_prop_set_uint32(ssys_dev, "did0", board->did0);
1358     qdev_prop_set_uint32(ssys_dev, "did1", board->did1);
1359     qdev_prop_set_uint32(ssys_dev, "dc0", board->dc0);
1360     qdev_prop_set_uint32(ssys_dev, "dc1", board->dc1);
1361     qdev_prop_set_uint32(ssys_dev, "dc2", board->dc2);
1362     qdev_prop_set_uint32(ssys_dev, "dc3", board->dc3);
1363     qdev_prop_set_uint32(ssys_dev, "dc4", board->dc4);
1364     sysbus_realize_and_unref(SYS_BUS_DEVICE(ssys_dev), &error_fatal);
1365 
1366     nvic = qdev_new(TYPE_ARMV7M);
1367     qdev_prop_set_uint32(nvic, "num-irq", NUM_IRQ_LINES);
1368     qdev_prop_set_string(nvic, "cpu-type", ms->cpu_type);
1369     qdev_prop_set_bit(nvic, "enable-bitband", true);
1370     qdev_connect_clock_in(nvic, "cpuclk",
1371                           qdev_get_clock_out(ssys_dev, "SYSCLK"));
1372     /* This SoC does not connect the systick reference clock */
1373     object_property_set_link(OBJECT(nvic), "memory",
1374                              OBJECT(get_system_memory()), &error_abort);
1375     /* This will exit with an error if the user passed us a bad cpu_type */
1376     sysbus_realize_and_unref(SYS_BUS_DEVICE(nvic), &error_fatal);
1377 
1378     /* Now we can wire up the IRQ and MMIO of the system registers */
1379     sysbus_mmio_map(SYS_BUS_DEVICE(ssys_dev), 0, 0x400fe000);
1380     sysbus_connect_irq(SYS_BUS_DEVICE(ssys_dev), 0, qdev_get_gpio_in(nvic, 28));
1381 
1382     if (board->dc1 & (1 << 16)) {
1383         dev = sysbus_create_varargs(TYPE_STELLARIS_ADC, 0x40038000,
1384                                     qdev_get_gpio_in(nvic, 14),
1385                                     qdev_get_gpio_in(nvic, 15),
1386                                     qdev_get_gpio_in(nvic, 16),
1387                                     qdev_get_gpio_in(nvic, 17),
1388                                     NULL);
1389         adc = qdev_get_gpio_in(dev, 0);
1390     } else {
1391         adc = NULL;
1392     }
1393     for (i = 0; i < 4; i++) {
1394         if (board->dc2 & (0x10000 << i)) {
1395             dev = sysbus_create_simple(TYPE_STELLARIS_GPTM,
1396                                        0x40030000 + i * 0x1000,
1397                                        qdev_get_gpio_in(nvic, timer_irq[i]));
1398             /* TODO: This is incorrect, but we get away with it because
1399                the ADC output is only ever pulsed.  */
1400             qdev_connect_gpio_out(dev, 0, adc);
1401         }
1402     }
1403 
1404     if (board->dc1 & (1 << 3)) { /* watchdog present */
1405         dev = qdev_new(TYPE_LUMINARY_WATCHDOG);
1406 
1407         qdev_connect_clock_in(dev, "WDOGCLK",
1408                               qdev_get_clock_out(ssys_dev, "SYSCLK"));
1409 
1410         sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
1411         sysbus_mmio_map(SYS_BUS_DEVICE(dev),
1412                         0,
1413                         0x40000000u);
1414         sysbus_connect_irq(SYS_BUS_DEVICE(dev),
1415                            0,
1416                            qdev_get_gpio_in(nvic, 18));
1417     }
1418 
1419 
1420     for (i = 0; i < 7; i++) {
1421         if (board->dc4 & (1 << i)) {
1422             gpio_dev[i] = sysbus_create_simple("pl061_luminary", gpio_addr[i],
1423                                                qdev_get_gpio_in(nvic,
1424                                                                 gpio_irq[i]));
1425             for (j = 0; j < 8; j++) {
1426                 gpio_in[i][j] = qdev_get_gpio_in(gpio_dev[i], j);
1427                 gpio_out[i][j] = NULL;
1428             }
1429         }
1430     }
1431 
1432     if (board->dc2 & (1 << 12)) {
1433         dev = sysbus_create_simple(TYPE_STELLARIS_I2C, 0x40020000,
1434                                    qdev_get_gpio_in(nvic, 8));
1435         i2c = (I2CBus *)qdev_get_child_bus(dev, "i2c");
1436         if (board->peripherals & BP_OLED_I2C) {
1437             i2c_slave_create_simple(i2c, "ssd0303", 0x3d);
1438         }
1439     }
1440 
1441     for (i = 0; i < 4; i++) {
1442         if (board->dc2 & (1 << i)) {
1443             pl011_luminary_create(0x4000c000 + i * 0x1000,
1444                                   qdev_get_gpio_in(nvic, uart_irq[i]),
1445                                   serial_hd(i));
1446         }
1447     }
1448     if (board->dc2 & (1 << 4)) {
1449         dev = sysbus_create_simple("pl022", 0x40008000,
1450                                    qdev_get_gpio_in(nvic, 7));
1451         if (board->peripherals & BP_OLED_SSI) {
1452             void *bus;
1453             DeviceState *sddev;
1454             DeviceState *ssddev;
1455 
1456             /*
1457              * Some boards have both an OLED controller and SD card connected to
1458              * the same SSI port, with the SD card chip select connected to a
1459              * GPIO pin.  Technically the OLED chip select is connected to the
1460              * SSI Fss pin.  We do not bother emulating that as both devices
1461              * should never be selected simultaneously, and our OLED controller
1462              * ignores stray 0xff commands that occur when deselecting the SD
1463              * card.
1464              *
1465              * The h/w wiring is:
1466              *  - GPIO pin D0 is wired to the active-low SD card chip select
1467              *  - GPIO pin A3 is wired to the active-low OLED chip select
1468              *  - The SoC wiring of the PL061 "auxiliary function" for A3 is
1469              *    SSI0Fss ("frame signal"), which is an output from the SoC's
1470              *    SSI controller. The SSI controller takes SSI0Fss low when it
1471              *    transmits a frame, so it can work as a chip-select signal.
1472              *  - GPIO A4 is aux-function SSI0Rx, and wired to the SD card Tx
1473              *    (the OLED never sends data to the CPU, so no wiring needed)
1474              *  - GPIO A5 is aux-function SSI0Tx, and wired to the SD card Rx
1475              *    and the OLED display-data-in
1476              *  - GPIO A2 is aux-function SSI0Clk, wired to SD card and OLED
1477              *    serial-clock input
1478              * So a guest that wants to use the OLED can configure the PL061
1479              * to make pins A2, A3, A5 aux-function, so they are connected
1480              * directly to the SSI controller. When the SSI controller sends
1481              * data it asserts SSI0Fss which selects the OLED.
1482              * A guest that wants to use the SD card configures A2, A4 and A5
1483              * as aux-function, but leaves A3 as a software-controlled GPIO
1484              * line. It asserts the SD card chip-select by using the PL061
1485              * to control pin D0, and lets the SSI controller handle Clk, Tx
1486              * and Rx. (The SSI controller asserts Fss during tx cycles as
1487              * usual, but because A3 is not set to aux-function this is not
1488              * forwarded to the OLED, and so the OLED stays unselected.)
1489              *
1490              * The QEMU implementation instead is:
1491              *  - GPIO pin D0 is wired to the active-low SD card chip select,
1492              *    and also to the OLED chip-select which is implemented
1493              *    as *active-high*
1494              *  - SSI controller signals go to the devices regardless of
1495              *    whether the guest programs A2, A4, A5 as aux-function or not
1496              *
1497              * The problem with this implementation is if the guest doesn't
1498              * care about the SD card and only uses the OLED. In that case it
1499              * may choose never to do anything with D0 (leaving it in its
1500              * default floating state, which reliably leaves the card disabled
1501              * because an SD card has a pullup on CS within the card itself),
1502              * and only set up A2, A3, A5. This for us would mean the OLED
1503              * never gets the chip-select assert it needs. We work around
1504              * this with a manual raise of D0 here (despite board creation
1505              * code being the wrong place to raise IRQ lines) to put the OLED
1506              * into an initially selected state.
1507              *
1508              * In theory the right way to model this would be:
1509              *  - Implement aux-function support in the PL061, with an
1510              *    extra set of AFIN and AFOUT GPIO lines (set up so that
1511              *    if a GPIO line is in auxfn mode the main GPIO in and out
1512              *    track the AFIN and AFOUT lines)
1513              *  - Wire the AFOUT for D0 up to either a line from the
1514              *    SSI controller that's pulled low around every transmit,
1515              *    or at least to an always-0 line here on the board
1516              *  - Make the ssd0323 OLED controller chipselect active-low
1517              */
1518             bus = qdev_get_child_bus(dev, "ssi");
1519 
1520             sddev = ssi_create_peripheral(bus, "ssi-sd");
1521             ssddev = ssi_create_peripheral(bus, "ssd0323");
1522             gpio_out[GPIO_D][0] = qemu_irq_split(
1523                     qdev_get_gpio_in_named(sddev, SSI_GPIO_CS, 0),
1524                     qdev_get_gpio_in_named(ssddev, SSI_GPIO_CS, 0));
1525             gpio_out[GPIO_C][7] = qdev_get_gpio_in(ssddev, 0);
1526 
1527             /* Make sure the select pin is high.  */
1528             qemu_irq_raise(gpio_out[GPIO_D][0]);
1529         }
1530     }
1531     if (board->dc4 & (1 << 28)) {
1532         DeviceState *enet;
1533 
1534         qemu_check_nic_model(&nd_table[0], "stellaris");
1535 
1536         enet = qdev_new("stellaris_enet");
1537         qdev_set_nic_properties(enet, &nd_table[0]);
1538         sysbus_realize_and_unref(SYS_BUS_DEVICE(enet), &error_fatal);
1539         sysbus_mmio_map(SYS_BUS_DEVICE(enet), 0, 0x40048000);
1540         sysbus_connect_irq(SYS_BUS_DEVICE(enet), 0, qdev_get_gpio_in(nvic, 42));
1541     }
1542     if (board->peripherals & BP_GAMEPAD) {
1543         qemu_irq gpad_irq[5];
1544         static const int gpad_keycode[5] = { 0xc8, 0xd0, 0xcb, 0xcd, 0x1d };
1545 
1546         gpad_irq[0] = qemu_irq_invert(gpio_in[GPIO_E][0]); /* up */
1547         gpad_irq[1] = qemu_irq_invert(gpio_in[GPIO_E][1]); /* down */
1548         gpad_irq[2] = qemu_irq_invert(gpio_in[GPIO_E][2]); /* left */
1549         gpad_irq[3] = qemu_irq_invert(gpio_in[GPIO_E][3]); /* right */
1550         gpad_irq[4] = qemu_irq_invert(gpio_in[GPIO_F][1]); /* select */
1551 
1552         stellaris_gamepad_init(5, gpad_irq, gpad_keycode);
1553     }
1554     for (i = 0; i < 7; i++) {
1555         if (board->dc4 & (1 << i)) {
1556             for (j = 0; j < 8; j++) {
1557                 if (gpio_out[i][j]) {
1558                     qdev_connect_gpio_out(gpio_dev[i], j, gpio_out[i][j]);
1559                 }
1560             }
1561         }
1562     }
1563 
1564     /* Add dummy regions for the devices we don't implement yet,
1565      * so guest accesses don't cause unlogged crashes.
1566      */
1567     create_unimplemented_device("i2c-0", 0x40002000, 0x1000);
1568     create_unimplemented_device("i2c-2", 0x40021000, 0x1000);
1569     create_unimplemented_device("PWM", 0x40028000, 0x1000);
1570     create_unimplemented_device("QEI-0", 0x4002c000, 0x1000);
1571     create_unimplemented_device("QEI-1", 0x4002d000, 0x1000);
1572     create_unimplemented_device("analogue-comparator", 0x4003c000, 0x1000);
1573     create_unimplemented_device("hibernation", 0x400fc000, 0x1000);
1574     create_unimplemented_device("flash-control", 0x400fd000, 0x1000);
1575 
1576     armv7m_load_kernel(ARM_CPU(first_cpu), ms->kernel_filename, flash_size);
1577 }
1578 
1579 /* FIXME: Figure out how to generate these from stellaris_boards.  */
1580 static void lm3s811evb_init(MachineState *machine)
1581 {
1582     stellaris_init(machine, &stellaris_boards[0]);
1583 }
1584 
1585 static void lm3s6965evb_init(MachineState *machine)
1586 {
1587     stellaris_init(machine, &stellaris_boards[1]);
1588 }
1589 
1590 static void lm3s811evb_class_init(ObjectClass *oc, void *data)
1591 {
1592     MachineClass *mc = MACHINE_CLASS(oc);
1593 
1594     mc->desc = "Stellaris LM3S811EVB (Cortex-M3)";
1595     mc->init = lm3s811evb_init;
1596     mc->ignore_memory_transaction_failures = true;
1597     mc->default_cpu_type = ARM_CPU_TYPE_NAME("cortex-m3");
1598 }
1599 
1600 static const TypeInfo lm3s811evb_type = {
1601     .name = MACHINE_TYPE_NAME("lm3s811evb"),
1602     .parent = TYPE_MACHINE,
1603     .class_init = lm3s811evb_class_init,
1604 };
1605 
1606 static void lm3s6965evb_class_init(ObjectClass *oc, void *data)
1607 {
1608     MachineClass *mc = MACHINE_CLASS(oc);
1609 
1610     mc->desc = "Stellaris LM3S6965EVB (Cortex-M3)";
1611     mc->init = lm3s6965evb_init;
1612     mc->ignore_memory_transaction_failures = true;
1613     mc->default_cpu_type = ARM_CPU_TYPE_NAME("cortex-m3");
1614 }
1615 
1616 static const TypeInfo lm3s6965evb_type = {
1617     .name = MACHINE_TYPE_NAME("lm3s6965evb"),
1618     .parent = TYPE_MACHINE,
1619     .class_init = lm3s6965evb_class_init,
1620 };
1621 
1622 static void stellaris_machine_init(void)
1623 {
1624     type_register_static(&lm3s811evb_type);
1625     type_register_static(&lm3s6965evb_type);
1626 }
1627 
1628 type_init(stellaris_machine_init)
1629 
1630 static void stellaris_i2c_class_init(ObjectClass *klass, void *data)
1631 {
1632     DeviceClass *dc = DEVICE_CLASS(klass);
1633 
1634     dc->vmsd = &vmstate_stellaris_i2c;
1635 }
1636 
1637 static const TypeInfo stellaris_i2c_info = {
1638     .name          = TYPE_STELLARIS_I2C,
1639     .parent        = TYPE_SYS_BUS_DEVICE,
1640     .instance_size = sizeof(stellaris_i2c_state),
1641     .instance_init = stellaris_i2c_init,
1642     .class_init    = stellaris_i2c_class_init,
1643 };
1644 
1645 static void stellaris_gptm_class_init(ObjectClass *klass, void *data)
1646 {
1647     DeviceClass *dc = DEVICE_CLASS(klass);
1648 
1649     dc->vmsd = &vmstate_stellaris_gptm;
1650     dc->realize = stellaris_gptm_realize;
1651 }
1652 
1653 static const TypeInfo stellaris_gptm_info = {
1654     .name          = TYPE_STELLARIS_GPTM,
1655     .parent        = TYPE_SYS_BUS_DEVICE,
1656     .instance_size = sizeof(gptm_state),
1657     .instance_init = stellaris_gptm_init,
1658     .class_init    = stellaris_gptm_class_init,
1659 };
1660 
1661 static void stellaris_adc_class_init(ObjectClass *klass, void *data)
1662 {
1663     DeviceClass *dc = DEVICE_CLASS(klass);
1664 
1665     dc->vmsd = &vmstate_stellaris_adc;
1666 }
1667 
1668 static const TypeInfo stellaris_adc_info = {
1669     .name          = TYPE_STELLARIS_ADC,
1670     .parent        = TYPE_SYS_BUS_DEVICE,
1671     .instance_size = sizeof(stellaris_adc_state),
1672     .instance_init = stellaris_adc_init,
1673     .class_init    = stellaris_adc_class_init,
1674 };
1675 
1676 static void stellaris_sys_class_init(ObjectClass *klass, void *data)
1677 {
1678     DeviceClass *dc = DEVICE_CLASS(klass);
1679     ResettableClass *rc = RESETTABLE_CLASS(klass);
1680 
1681     dc->vmsd = &vmstate_stellaris_sys;
1682     rc->phases.enter = stellaris_sys_reset_enter;
1683     rc->phases.hold = stellaris_sys_reset_hold;
1684     rc->phases.exit = stellaris_sys_reset_exit;
1685     device_class_set_props(dc, stellaris_sys_properties);
1686 }
1687 
1688 static const TypeInfo stellaris_sys_info = {
1689     .name = TYPE_STELLARIS_SYS,
1690     .parent = TYPE_SYS_BUS_DEVICE,
1691     .instance_size = sizeof(ssys_state),
1692     .instance_init = stellaris_sys_instance_init,
1693     .class_init = stellaris_sys_class_init,
1694 };
1695 
1696 static void stellaris_register_types(void)
1697 {
1698     type_register_static(&stellaris_i2c_info);
1699     type_register_static(&stellaris_gptm_info);
1700     type_register_static(&stellaris_adc_info);
1701     type_register_static(&stellaris_sys_info);
1702 }
1703 
1704 type_init(stellaris_register_types)
1705