xref: /qemu/hw/arm/omap1.c (revision 513823e7521a09ed7ad1e32e6454bac3b2cbf52d)
1 /*
2  * TI OMAP processors emulation.
3  *
4  * Copyright (C) 2006-2008 Andrzej Zaborowski  <balrog@zabor.org>
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License as
8  * published by the Free Software Foundation; either version 2 or
9  * (at your option) version 3 of the License.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License along
17  * with this program; if not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #include "qemu/osdep.h"
21 #include "qemu/log.h"
22 #include "qemu/error-report.h"
23 #include "qemu/main-loop.h"
24 #include "qapi/error.h"
25 #include "cpu.h"
26 #include "exec/address-spaces.h"
27 #include "hw/hw.h"
28 #include "hw/irq.h"
29 #include "hw/qdev-properties.h"
30 #include "hw/arm/boot.h"
31 #include "hw/arm/omap.h"
32 #include "hw/sd/sd.h"
33 #include "system/blockdev.h"
34 #include "system/system.h"
35 #include "hw/arm/soc_dma.h"
36 #include "system/qtest.h"
37 #include "system/reset.h"
38 #include "system/runstate.h"
39 #include "system/rtc.h"
40 #include "qemu/range.h"
41 #include "hw/sysbus.h"
42 #include "qemu/cutils.h"
43 #include "qemu/bcd.h"
44 #include "target/arm/cpu-qom.h"
45 
46 static inline void omap_log_badwidth(const char *funcname, hwaddr addr, int sz)
47 {
48     qemu_log_mask(LOG_GUEST_ERROR, "%s: %d-bit register %#08" HWADDR_PRIx "\n",
49                   funcname, 8 * sz, addr);
50 }
51 
52 /* Should signal the TCMI/GPMC */
53 uint32_t omap_badwidth_read8(void *opaque, hwaddr addr)
54 {
55     uint8_t ret;
56 
57     omap_log_badwidth(__func__, addr, 1);
58     cpu_physical_memory_read(addr, &ret, 1);
59     return ret;
60 }
61 
62 void omap_badwidth_write8(void *opaque, hwaddr addr,
63                 uint32_t value)
64 {
65     uint8_t val8 = value;
66 
67     omap_log_badwidth(__func__, addr, 1);
68     cpu_physical_memory_write(addr, &val8, 1);
69 }
70 
71 uint32_t omap_badwidth_read16(void *opaque, hwaddr addr)
72 {
73     uint16_t ret;
74 
75     omap_log_badwidth(__func__, addr, 2);
76     cpu_physical_memory_read(addr, &ret, 2);
77     return ret;
78 }
79 
80 void omap_badwidth_write16(void *opaque, hwaddr addr,
81                 uint32_t value)
82 {
83     uint16_t val16 = value;
84 
85     omap_log_badwidth(__func__, addr, 2);
86     cpu_physical_memory_write(addr, &val16, 2);
87 }
88 
89 uint32_t omap_badwidth_read32(void *opaque, hwaddr addr)
90 {
91     uint32_t ret;
92 
93     omap_log_badwidth(__func__, addr, 4);
94     cpu_physical_memory_read(addr, &ret, 4);
95     return ret;
96 }
97 
98 void omap_badwidth_write32(void *opaque, hwaddr addr,
99                 uint32_t value)
100 {
101     omap_log_badwidth(__func__, addr, 4);
102     cpu_physical_memory_write(addr, &value, 4);
103 }
104 
105 /* MPU OS timers */
106 struct omap_mpu_timer_s {
107     MemoryRegion iomem;
108     qemu_irq irq;
109     omap_clk clk;
110     uint32_t val;
111     int64_t time;
112     QEMUTimer *timer;
113     QEMUBH *tick;
114     int64_t rate;
115     int it_ena;
116 
117     int enable;
118     int ptv;
119     int ar;
120     int st;
121     uint32_t reset_val;
122 };
123 
124 static inline uint32_t omap_timer_read(struct omap_mpu_timer_s *timer)
125 {
126     uint64_t distance = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) - timer->time;
127 
128     if (timer->st && timer->enable && timer->rate)
129         return timer->val - muldiv64(distance >> (timer->ptv + 1),
130                                      timer->rate, NANOSECONDS_PER_SECOND);
131     else
132         return timer->val;
133 }
134 
135 static inline void omap_timer_sync(struct omap_mpu_timer_s *timer)
136 {
137     timer->val = omap_timer_read(timer);
138     timer->time = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
139 }
140 
141 static inline void omap_timer_update(struct omap_mpu_timer_s *timer)
142 {
143     int64_t expires;
144 
145     if (timer->enable && timer->st && timer->rate) {
146         timer->val = timer->reset_val;	/* Should skip this on clk enable */
147         expires = muldiv64((uint64_t) timer->val << (timer->ptv + 1),
148                            NANOSECONDS_PER_SECOND, timer->rate);
149 
150         /* If timer expiry would be sooner than in about 1 ms and
151          * auto-reload isn't set, then fire immediately.  This is a hack
152          * to make systems like PalmOS run in acceptable time.  PalmOS
153          * sets the interval to a very low value and polls the status bit
154          * in a busy loop when it wants to sleep just a couple of CPU
155          * ticks.  */
156         if (expires > (NANOSECONDS_PER_SECOND >> 10) || timer->ar) {
157             timer_mod(timer->timer, timer->time + expires);
158         } else {
159             qemu_bh_schedule(timer->tick);
160         }
161     } else
162         timer_del(timer->timer);
163 }
164 
165 static void omap_timer_fire(void *opaque)
166 {
167     struct omap_mpu_timer_s *timer = opaque;
168 
169     if (!timer->ar) {
170         timer->val = 0;
171         timer->st = 0;
172     }
173 
174     if (timer->it_ena)
175         /* Edge-triggered irq */
176         qemu_irq_pulse(timer->irq);
177 }
178 
179 static void omap_timer_tick(void *opaque)
180 {
181     struct omap_mpu_timer_s *timer = opaque;
182 
183     omap_timer_sync(timer);
184     omap_timer_fire(timer);
185     omap_timer_update(timer);
186 }
187 
188 static void omap_timer_clk_update(void *opaque, int line, int on)
189 {
190     struct omap_mpu_timer_s *timer = opaque;
191 
192     omap_timer_sync(timer);
193     timer->rate = on ? omap_clk_getrate(timer->clk) : 0;
194     omap_timer_update(timer);
195 }
196 
197 static void omap_timer_clk_setup(struct omap_mpu_timer_s *timer)
198 {
199     omap_clk_adduser(timer->clk,
200                     qemu_allocate_irq(omap_timer_clk_update, timer, 0));
201     timer->rate = omap_clk_getrate(timer->clk);
202 }
203 
204 static uint64_t omap_mpu_timer_read(void *opaque, hwaddr addr,
205                                     unsigned size)
206 {
207     struct omap_mpu_timer_s *s = opaque;
208 
209     if (size != 4) {
210         return omap_badwidth_read32(opaque, addr);
211     }
212 
213     switch (addr) {
214     case 0x00:	/* CNTL_TIMER */
215         return (s->enable << 5) | (s->ptv << 2) | (s->ar << 1) | s->st;
216 
217     case 0x04:	/* LOAD_TIM */
218         break;
219 
220     case 0x08:	/* READ_TIM */
221         return omap_timer_read(s);
222     }
223 
224     OMAP_BAD_REG(addr);
225     return 0;
226 }
227 
228 static void omap_mpu_timer_write(void *opaque, hwaddr addr,
229                                  uint64_t value, unsigned size)
230 {
231     struct omap_mpu_timer_s *s = opaque;
232 
233     if (size != 4) {
234         omap_badwidth_write32(opaque, addr, value);
235         return;
236     }
237 
238     switch (addr) {
239     case 0x00:	/* CNTL_TIMER */
240         omap_timer_sync(s);
241         s->enable = (value >> 5) & 1;
242         s->ptv = (value >> 2) & 7;
243         s->ar = (value >> 1) & 1;
244         s->st = value & 1;
245         omap_timer_update(s);
246         return;
247 
248     case 0x04:	/* LOAD_TIM */
249         s->reset_val = value;
250         return;
251 
252     case 0x08:	/* READ_TIM */
253         OMAP_RO_REG(addr);
254         break;
255 
256     default:
257         OMAP_BAD_REG(addr);
258     }
259 }
260 
261 static const MemoryRegionOps omap_mpu_timer_ops = {
262     .read = omap_mpu_timer_read,
263     .write = omap_mpu_timer_write,
264     .endianness = DEVICE_LITTLE_ENDIAN,
265 };
266 
267 static void omap_mpu_timer_reset(struct omap_mpu_timer_s *s)
268 {
269     timer_del(s->timer);
270     s->enable = 0;
271     s->reset_val = 31337;
272     s->val = 0;
273     s->ptv = 0;
274     s->ar = 0;
275     s->st = 0;
276     s->it_ena = 1;
277 }
278 
279 static struct omap_mpu_timer_s *omap_mpu_timer_init(MemoryRegion *system_memory,
280                 hwaddr base,
281                 qemu_irq irq, omap_clk clk)
282 {
283     struct omap_mpu_timer_s *s = g_new0(struct omap_mpu_timer_s, 1);
284 
285     s->irq = irq;
286     s->clk = clk;
287     s->timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, omap_timer_tick, s);
288     s->tick = qemu_bh_new(omap_timer_fire, s);
289     omap_mpu_timer_reset(s);
290     omap_timer_clk_setup(s);
291 
292     memory_region_init_io(&s->iomem, NULL, &omap_mpu_timer_ops, s,
293                           "omap-mpu-timer", 0x100);
294 
295     memory_region_add_subregion(system_memory, base, &s->iomem);
296 
297     return s;
298 }
299 
300 /* Watchdog timer */
301 struct omap_watchdog_timer_s {
302     struct omap_mpu_timer_s timer;
303     MemoryRegion iomem;
304     uint8_t last_wr;
305     int mode;
306     int free;
307     int reset;
308 };
309 
310 static uint64_t omap_wd_timer_read(void *opaque, hwaddr addr,
311                                    unsigned size)
312 {
313     struct omap_watchdog_timer_s *s = opaque;
314 
315     if (size != 2) {
316         return omap_badwidth_read16(opaque, addr);
317     }
318 
319     switch (addr) {
320     case 0x00:	/* CNTL_TIMER */
321         return (s->timer.ptv << 9) | (s->timer.ar << 8) |
322                 (s->timer.st << 7) | (s->free << 1);
323 
324     case 0x04:	/* READ_TIMER */
325         return omap_timer_read(&s->timer);
326 
327     case 0x08:	/* TIMER_MODE */
328         return s->mode << 15;
329     }
330 
331     OMAP_BAD_REG(addr);
332     return 0;
333 }
334 
335 static void omap_wd_timer_write(void *opaque, hwaddr addr,
336                                 uint64_t value, unsigned size)
337 {
338     struct omap_watchdog_timer_s *s = opaque;
339 
340     if (size != 2) {
341         omap_badwidth_write16(opaque, addr, value);
342         return;
343     }
344 
345     switch (addr) {
346     case 0x00:	/* CNTL_TIMER */
347         omap_timer_sync(&s->timer);
348         s->timer.ptv = (value >> 9) & 7;
349         s->timer.ar = (value >> 8) & 1;
350         s->timer.st = (value >> 7) & 1;
351         s->free = (value >> 1) & 1;
352         omap_timer_update(&s->timer);
353         break;
354 
355     case 0x04:	/* LOAD_TIMER */
356         s->timer.reset_val = value & 0xffff;
357         break;
358 
359     case 0x08:	/* TIMER_MODE */
360         if (!s->mode && ((value >> 15) & 1))
361             omap_clk_get(s->timer.clk);
362         s->mode |= (value >> 15) & 1;
363         if (s->last_wr == 0xf5) {
364             if ((value & 0xff) == 0xa0) {
365                 if (s->mode) {
366                     s->mode = 0;
367                     omap_clk_put(s->timer.clk);
368                 }
369             } else {
370                 /* XXX: on T|E hardware somehow this has no effect,
371                  * on Zire 71 it works as specified.  */
372                 s->reset = 1;
373                 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
374             }
375         }
376         s->last_wr = value & 0xff;
377         break;
378 
379     default:
380         OMAP_BAD_REG(addr);
381     }
382 }
383 
384 static const MemoryRegionOps omap_wd_timer_ops = {
385     .read = omap_wd_timer_read,
386     .write = omap_wd_timer_write,
387     .endianness = DEVICE_NATIVE_ENDIAN,
388 };
389 
390 static void omap_wd_timer_reset(struct omap_watchdog_timer_s *s)
391 {
392     timer_del(s->timer.timer);
393     if (!s->mode)
394         omap_clk_get(s->timer.clk);
395     s->mode = 1;
396     s->free = 1;
397     s->reset = 0;
398     s->timer.enable = 1;
399     s->timer.it_ena = 1;
400     s->timer.reset_val = 0xffff;
401     s->timer.val = 0;
402     s->timer.st = 0;
403     s->timer.ptv = 0;
404     s->timer.ar = 0;
405     omap_timer_update(&s->timer);
406 }
407 
408 static struct omap_watchdog_timer_s *omap_wd_timer_init(MemoryRegion *memory,
409                 hwaddr base,
410                 qemu_irq irq, omap_clk clk)
411 {
412     struct omap_watchdog_timer_s *s = g_new0(struct omap_watchdog_timer_s, 1);
413 
414     s->timer.irq = irq;
415     s->timer.clk = clk;
416     s->timer.timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, omap_timer_tick, &s->timer);
417     omap_wd_timer_reset(s);
418     omap_timer_clk_setup(&s->timer);
419 
420     memory_region_init_io(&s->iomem, NULL, &omap_wd_timer_ops, s,
421                           "omap-wd-timer", 0x100);
422     memory_region_add_subregion(memory, base, &s->iomem);
423 
424     return s;
425 }
426 
427 /* 32-kHz timer */
428 struct omap_32khz_timer_s {
429     struct omap_mpu_timer_s timer;
430     MemoryRegion iomem;
431 };
432 
433 static uint64_t omap_os_timer_read(void *opaque, hwaddr addr,
434                                    unsigned size)
435 {
436     struct omap_32khz_timer_s *s = opaque;
437     int offset = addr & OMAP_MPUI_REG_MASK;
438 
439     if (size != 4) {
440         return omap_badwidth_read32(opaque, addr);
441     }
442 
443     switch (offset) {
444     case 0x00:	/* TVR */
445         return s->timer.reset_val;
446 
447     case 0x04:	/* TCR */
448         return omap_timer_read(&s->timer);
449 
450     case 0x08:	/* CR */
451         return (s->timer.ar << 3) | (s->timer.it_ena << 2) | s->timer.st;
452 
453     default:
454         break;
455     }
456     OMAP_BAD_REG(addr);
457     return 0;
458 }
459 
460 static void omap_os_timer_write(void *opaque, hwaddr addr,
461                                 uint64_t value, unsigned size)
462 {
463     struct omap_32khz_timer_s *s = opaque;
464     int offset = addr & OMAP_MPUI_REG_MASK;
465 
466     if (size != 4) {
467         omap_badwidth_write32(opaque, addr, value);
468         return;
469     }
470 
471     switch (offset) {
472     case 0x00:	/* TVR */
473         s->timer.reset_val = value & 0x00ffffff;
474         break;
475 
476     case 0x04:	/* TCR */
477         OMAP_RO_REG(addr);
478         break;
479 
480     case 0x08:	/* CR */
481         s->timer.ar = (value >> 3) & 1;
482         s->timer.it_ena = (value >> 2) & 1;
483         if (s->timer.st != (value & 1) || (value & 2)) {
484             omap_timer_sync(&s->timer);
485             s->timer.enable = value & 1;
486             s->timer.st = value & 1;
487             omap_timer_update(&s->timer);
488         }
489         break;
490 
491     default:
492         OMAP_BAD_REG(addr);
493     }
494 }
495 
496 static const MemoryRegionOps omap_os_timer_ops = {
497     .read = omap_os_timer_read,
498     .write = omap_os_timer_write,
499     .endianness = DEVICE_NATIVE_ENDIAN,
500 };
501 
502 static void omap_os_timer_reset(struct omap_32khz_timer_s *s)
503 {
504     timer_del(s->timer.timer);
505     s->timer.enable = 0;
506     s->timer.it_ena = 0;
507     s->timer.reset_val = 0x00ffffff;
508     s->timer.val = 0;
509     s->timer.st = 0;
510     s->timer.ptv = 0;
511     s->timer.ar = 1;
512 }
513 
514 static struct omap_32khz_timer_s *omap_os_timer_init(MemoryRegion *memory,
515                 hwaddr base,
516                 qemu_irq irq, omap_clk clk)
517 {
518     struct omap_32khz_timer_s *s = g_new0(struct omap_32khz_timer_s, 1);
519 
520     s->timer.irq = irq;
521     s->timer.clk = clk;
522     s->timer.timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, omap_timer_tick, &s->timer);
523     omap_os_timer_reset(s);
524     omap_timer_clk_setup(&s->timer);
525 
526     memory_region_init_io(&s->iomem, NULL, &omap_os_timer_ops, s,
527                           "omap-os-timer", 0x800);
528     memory_region_add_subregion(memory, base, &s->iomem);
529 
530     return s;
531 }
532 
533 /* Ultra Low-Power Device Module */
534 static uint64_t omap_ulpd_pm_read(void *opaque, hwaddr addr,
535                                   unsigned size)
536 {
537     struct omap_mpu_state_s *s = opaque;
538     uint16_t ret;
539 
540     if (size != 2) {
541         return omap_badwidth_read16(opaque, addr);
542     }
543 
544     switch (addr) {
545     case 0x14:	/* IT_STATUS */
546         ret = s->ulpd_pm_regs[addr >> 2];
547         s->ulpd_pm_regs[addr >> 2] = 0;
548         qemu_irq_lower(qdev_get_gpio_in(s->ih[1], OMAP_INT_GAUGE_32K));
549         return ret;
550 
551     case 0x18:	/* Reserved */
552     case 0x1c:	/* Reserved */
553     case 0x20:	/* Reserved */
554     case 0x28:	/* Reserved */
555     case 0x2c:	/* Reserved */
556         OMAP_BAD_REG(addr);
557         /* fall through */
558     case 0x00:	/* COUNTER_32_LSB */
559     case 0x04:	/* COUNTER_32_MSB */
560     case 0x08:	/* COUNTER_HIGH_FREQ_LSB */
561     case 0x0c:	/* COUNTER_HIGH_FREQ_MSB */
562     case 0x10:	/* GAUGING_CTRL */
563     case 0x24:	/* SETUP_ANALOG_CELL3_ULPD1 */
564     case 0x30:	/* CLOCK_CTRL */
565     case 0x34:	/* SOFT_REQ */
566     case 0x38:	/* COUNTER_32_FIQ */
567     case 0x3c:	/* DPLL_CTRL */
568     case 0x40:	/* STATUS_REQ */
569         /* XXX: check clk::usecount state for every clock */
570     case 0x48:	/* LOCL_TIME */
571     case 0x4c:	/* APLL_CTRL */
572     case 0x50:	/* POWER_CTRL */
573         return s->ulpd_pm_regs[addr >> 2];
574     }
575 
576     OMAP_BAD_REG(addr);
577     return 0;
578 }
579 
580 static inline void omap_ulpd_clk_update(struct omap_mpu_state_s *s,
581                 uint16_t diff, uint16_t value)
582 {
583     if (diff & (1 << 4))				/* USB_MCLK_EN */
584         omap_clk_onoff(omap_findclk(s, "usb_clk0"), (value >> 4) & 1);
585     if (diff & (1 << 5))				/* DIS_USB_PVCI_CLK */
586         omap_clk_onoff(omap_findclk(s, "usb_w2fc_ck"), (~value >> 5) & 1);
587 }
588 
589 static inline void omap_ulpd_req_update(struct omap_mpu_state_s *s,
590                 uint16_t diff, uint16_t value)
591 {
592     if (diff & (1 << 0))				/* SOFT_DPLL_REQ */
593         omap_clk_canidle(omap_findclk(s, "dpll4"), (~value >> 0) & 1);
594     if (diff & (1 << 1))				/* SOFT_COM_REQ */
595         omap_clk_canidle(omap_findclk(s, "com_mclk_out"), (~value >> 1) & 1);
596     if (diff & (1 << 2))				/* SOFT_SDW_REQ */
597         omap_clk_canidle(omap_findclk(s, "bt_mclk_out"), (~value >> 2) & 1);
598     if (diff & (1 << 3))				/* SOFT_USB_REQ */
599         omap_clk_canidle(omap_findclk(s, "usb_clk0"), (~value >> 3) & 1);
600 }
601 
602 static void omap_ulpd_pm_write(void *opaque, hwaddr addr,
603                                uint64_t value, unsigned size)
604 {
605     struct omap_mpu_state_s *s = opaque;
606     int64_t now, ticks;
607     int div, mult;
608     static const int bypass_div[4] = { 1, 2, 4, 4 };
609     uint16_t diff;
610 
611     if (size != 2) {
612         omap_badwidth_write16(opaque, addr, value);
613         return;
614     }
615 
616     switch (addr) {
617     case 0x00:	/* COUNTER_32_LSB */
618     case 0x04:	/* COUNTER_32_MSB */
619     case 0x08:	/* COUNTER_HIGH_FREQ_LSB */
620     case 0x0c:	/* COUNTER_HIGH_FREQ_MSB */
621     case 0x14:	/* IT_STATUS */
622     case 0x40:	/* STATUS_REQ */
623         OMAP_RO_REG(addr);
624         break;
625 
626     case 0x10:	/* GAUGING_CTRL */
627         /* Bits 0 and 1 seem to be confused in the OMAP 310 TRM */
628         if ((s->ulpd_pm_regs[addr >> 2] ^ value) & 1) {
629             now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
630 
631             if (value & 1)
632                 s->ulpd_gauge_start = now;
633             else {
634                 now -= s->ulpd_gauge_start;
635 
636                 /* 32-kHz ticks */
637                 ticks = muldiv64(now, 32768, NANOSECONDS_PER_SECOND);
638                 s->ulpd_pm_regs[0x00 >> 2] = (ticks >>  0) & 0xffff;
639                 s->ulpd_pm_regs[0x04 >> 2] = (ticks >> 16) & 0xffff;
640                 if (ticks >> 32)	/* OVERFLOW_32K */
641                     s->ulpd_pm_regs[0x14 >> 2] |= 1 << 2;
642 
643                 /* High frequency ticks */
644                 ticks = muldiv64(now, 12000000, NANOSECONDS_PER_SECOND);
645                 s->ulpd_pm_regs[0x08 >> 2] = (ticks >>  0) & 0xffff;
646                 s->ulpd_pm_regs[0x0c >> 2] = (ticks >> 16) & 0xffff;
647                 if (ticks >> 32)	/* OVERFLOW_HI_FREQ */
648                     s->ulpd_pm_regs[0x14 >> 2] |= 1 << 1;
649 
650                 s->ulpd_pm_regs[0x14 >> 2] |= 1 << 0;	/* IT_GAUGING */
651                 qemu_irq_raise(qdev_get_gpio_in(s->ih[1], OMAP_INT_GAUGE_32K));
652             }
653         }
654         s->ulpd_pm_regs[addr >> 2] = value;
655         break;
656 
657     case 0x18:	/* Reserved */
658     case 0x1c:	/* Reserved */
659     case 0x20:	/* Reserved */
660     case 0x28:	/* Reserved */
661     case 0x2c:	/* Reserved */
662         OMAP_BAD_REG(addr);
663         /* fall through */
664     case 0x24:	/* SETUP_ANALOG_CELL3_ULPD1 */
665     case 0x38:	/* COUNTER_32_FIQ */
666     case 0x48:	/* LOCL_TIME */
667     case 0x50:	/* POWER_CTRL */
668         s->ulpd_pm_regs[addr >> 2] = value;
669         break;
670 
671     case 0x30:	/* CLOCK_CTRL */
672         diff = s->ulpd_pm_regs[addr >> 2] ^ value;
673         s->ulpd_pm_regs[addr >> 2] = value & 0x3f;
674         omap_ulpd_clk_update(s, diff, value);
675         break;
676 
677     case 0x34:	/* SOFT_REQ */
678         diff = s->ulpd_pm_regs[addr >> 2] ^ value;
679         s->ulpd_pm_regs[addr >> 2] = value & 0x1f;
680         omap_ulpd_req_update(s, diff, value);
681         break;
682 
683     case 0x3c:	/* DPLL_CTRL */
684         /* XXX: OMAP310 TRM claims bit 3 is PLL_ENABLE, and bit 4 is
685          * omitted altogether, probably a typo.  */
686         /* This register has identical semantics with DPLL(1:3) control
687          * registers, see omap_dpll_write() */
688         diff = s->ulpd_pm_regs[addr >> 2] & value;
689         s->ulpd_pm_regs[addr >> 2] = value & 0x2fff;
690         if (diff & (0x3ff << 2)) {
691             if (value & (1 << 4)) {			/* PLL_ENABLE */
692                 div = ((value >> 5) & 3) + 1;		/* PLL_DIV */
693                 mult = MIN((value >> 7) & 0x1f, 1);	/* PLL_MULT */
694             } else {
695                 div = bypass_div[((value >> 2) & 3)];	/* BYPASS_DIV */
696                 mult = 1;
697             }
698             omap_clk_setrate(omap_findclk(s, "dpll4"), div, mult);
699         }
700 
701         /* Enter the desired mode.  */
702         s->ulpd_pm_regs[addr >> 2] =
703                 (s->ulpd_pm_regs[addr >> 2] & 0xfffe) |
704                 ((s->ulpd_pm_regs[addr >> 2] >> 4) & 1);
705 
706         /* Act as if the lock is restored.  */
707         s->ulpd_pm_regs[addr >> 2] |= 2;
708         break;
709 
710     case 0x4c:	/* APLL_CTRL */
711         diff = s->ulpd_pm_regs[addr >> 2] & value;
712         s->ulpd_pm_regs[addr >> 2] = value & 0xf;
713         if (diff & (1 << 0))				/* APLL_NDPLL_SWITCH */
714             omap_clk_reparent(omap_findclk(s, "ck_48m"), omap_findclk(s,
715                                     (value & (1 << 0)) ? "apll" : "dpll4"));
716         break;
717 
718     default:
719         OMAP_BAD_REG(addr);
720     }
721 }
722 
723 static const MemoryRegionOps omap_ulpd_pm_ops = {
724     .read = omap_ulpd_pm_read,
725     .write = omap_ulpd_pm_write,
726     .endianness = DEVICE_NATIVE_ENDIAN,
727 };
728 
729 static void omap_ulpd_pm_reset(struct omap_mpu_state_s *mpu)
730 {
731     mpu->ulpd_pm_regs[0x00 >> 2] = 0x0001;
732     mpu->ulpd_pm_regs[0x04 >> 2] = 0x0000;
733     mpu->ulpd_pm_regs[0x08 >> 2] = 0x0001;
734     mpu->ulpd_pm_regs[0x0c >> 2] = 0x0000;
735     mpu->ulpd_pm_regs[0x10 >> 2] = 0x0000;
736     mpu->ulpd_pm_regs[0x18 >> 2] = 0x01;
737     mpu->ulpd_pm_regs[0x1c >> 2] = 0x01;
738     mpu->ulpd_pm_regs[0x20 >> 2] = 0x01;
739     mpu->ulpd_pm_regs[0x24 >> 2] = 0x03ff;
740     mpu->ulpd_pm_regs[0x28 >> 2] = 0x01;
741     mpu->ulpd_pm_regs[0x2c >> 2] = 0x01;
742     omap_ulpd_clk_update(mpu, mpu->ulpd_pm_regs[0x30 >> 2], 0x0000);
743     mpu->ulpd_pm_regs[0x30 >> 2] = 0x0000;
744     omap_ulpd_req_update(mpu, mpu->ulpd_pm_regs[0x34 >> 2], 0x0000);
745     mpu->ulpd_pm_regs[0x34 >> 2] = 0x0000;
746     mpu->ulpd_pm_regs[0x38 >> 2] = 0x0001;
747     mpu->ulpd_pm_regs[0x3c >> 2] = 0x2211;
748     mpu->ulpd_pm_regs[0x40 >> 2] = 0x0000; /* FIXME: dump a real STATUS_REQ */
749     mpu->ulpd_pm_regs[0x48 >> 2] = 0x960;
750     mpu->ulpd_pm_regs[0x4c >> 2] = 0x08;
751     mpu->ulpd_pm_regs[0x50 >> 2] = 0x08;
752     omap_clk_setrate(omap_findclk(mpu, "dpll4"), 1, 4);
753     omap_clk_reparent(omap_findclk(mpu, "ck_48m"), omap_findclk(mpu, "dpll4"));
754 }
755 
756 static void omap_ulpd_pm_init(MemoryRegion *system_memory,
757                 hwaddr base,
758                 struct omap_mpu_state_s *mpu)
759 {
760     memory_region_init_io(&mpu->ulpd_pm_iomem, NULL, &omap_ulpd_pm_ops, mpu,
761                           "omap-ulpd-pm", 0x800);
762     memory_region_add_subregion(system_memory, base, &mpu->ulpd_pm_iomem);
763     omap_ulpd_pm_reset(mpu);
764 }
765 
766 /* OMAP Pin Configuration */
767 static uint64_t omap_pin_cfg_read(void *opaque, hwaddr addr,
768                                   unsigned size)
769 {
770     struct omap_mpu_state_s *s = opaque;
771 
772     if (size != 4) {
773         return omap_badwidth_read32(opaque, addr);
774     }
775 
776     switch (addr) {
777     case 0x00:	/* FUNC_MUX_CTRL_0 */
778     case 0x04:	/* FUNC_MUX_CTRL_1 */
779     case 0x08:	/* FUNC_MUX_CTRL_2 */
780         return s->func_mux_ctrl[addr >> 2];
781 
782     case 0x0c:	/* COMP_MODE_CTRL_0 */
783         return s->comp_mode_ctrl[0];
784 
785     case 0x10:	/* FUNC_MUX_CTRL_3 */
786     case 0x14:	/* FUNC_MUX_CTRL_4 */
787     case 0x18:	/* FUNC_MUX_CTRL_5 */
788     case 0x1c:	/* FUNC_MUX_CTRL_6 */
789     case 0x20:	/* FUNC_MUX_CTRL_7 */
790     case 0x24:	/* FUNC_MUX_CTRL_8 */
791     case 0x28:	/* FUNC_MUX_CTRL_9 */
792     case 0x2c:	/* FUNC_MUX_CTRL_A */
793     case 0x30:	/* FUNC_MUX_CTRL_B */
794     case 0x34:	/* FUNC_MUX_CTRL_C */
795     case 0x38:	/* FUNC_MUX_CTRL_D */
796         return s->func_mux_ctrl[(addr >> 2) - 1];
797 
798     case 0x40:	/* PULL_DWN_CTRL_0 */
799     case 0x44:	/* PULL_DWN_CTRL_1 */
800     case 0x48:	/* PULL_DWN_CTRL_2 */
801     case 0x4c:	/* PULL_DWN_CTRL_3 */
802         return s->pull_dwn_ctrl[(addr & 0xf) >> 2];
803 
804     case 0x50:	/* GATE_INH_CTRL_0 */
805         return s->gate_inh_ctrl[0];
806 
807     case 0x60:	/* VOLTAGE_CTRL_0 */
808         return s->voltage_ctrl[0];
809 
810     case 0x70:	/* TEST_DBG_CTRL_0 */
811         return s->test_dbg_ctrl[0];
812 
813     case 0x80:	/* MOD_CONF_CTRL_0 */
814         return s->mod_conf_ctrl[0];
815     }
816 
817     OMAP_BAD_REG(addr);
818     return 0;
819 }
820 
821 static inline void omap_pin_funcmux0_update(struct omap_mpu_state_s *s,
822                 uint32_t diff, uint32_t value)
823 {
824     if (s->compat1509) {
825         if (diff & (1 << 9))			/* BLUETOOTH */
826             omap_clk_onoff(omap_findclk(s, "bt_mclk_out"),
827                             (~value >> 9) & 1);
828         if (diff & (1 << 7))			/* USB.CLKO */
829             omap_clk_onoff(omap_findclk(s, "usb.clko"),
830                             (value >> 7) & 1);
831     }
832 }
833 
834 static inline void omap_pin_funcmux1_update(struct omap_mpu_state_s *s,
835                 uint32_t diff, uint32_t value)
836 {
837     if (s->compat1509) {
838         if (diff & (1U << 31)) {
839             /* MCBSP3_CLK_HIZ_DI */
840             omap_clk_onoff(omap_findclk(s, "mcbsp3.clkx"), (value >> 31) & 1);
841         }
842         if (diff & (1 << 1)) {
843             /* CLK32K */
844             omap_clk_onoff(omap_findclk(s, "clk32k_out"), (~value >> 1) & 1);
845         }
846     }
847 }
848 
849 static inline void omap_pin_modconf1_update(struct omap_mpu_state_s *s,
850                 uint32_t diff, uint32_t value)
851 {
852     if (diff & (1U << 31)) {
853         /* CONF_MOD_UART3_CLK_MODE_R */
854         omap_clk_reparent(omap_findclk(s, "uart3_ck"),
855                           omap_findclk(s, ((value >> 31) & 1) ?
856                                        "ck_48m" : "armper_ck"));
857     }
858     if (diff & (1 << 30))			/* CONF_MOD_UART2_CLK_MODE_R */
859          omap_clk_reparent(omap_findclk(s, "uart2_ck"),
860                          omap_findclk(s, ((value >> 30) & 1) ?
861                                  "ck_48m" : "armper_ck"));
862     if (diff & (1 << 29))			/* CONF_MOD_UART1_CLK_MODE_R */
863          omap_clk_reparent(omap_findclk(s, "uart1_ck"),
864                          omap_findclk(s, ((value >> 29) & 1) ?
865                                  "ck_48m" : "armper_ck"));
866     if (diff & (1 << 23))			/* CONF_MOD_MMC_SD_CLK_REQ_R */
867          omap_clk_reparent(omap_findclk(s, "mmc_ck"),
868                          omap_findclk(s, ((value >> 23) & 1) ?
869                                  "ck_48m" : "armper_ck"));
870     if (diff & (1 << 12))			/* CONF_MOD_COM_MCLK_12_48_S */
871          omap_clk_reparent(omap_findclk(s, "com_mclk_out"),
872                          omap_findclk(s, ((value >> 12) & 1) ?
873                                  "ck_48m" : "armper_ck"));
874     if (diff & (1 << 9))			/* CONF_MOD_USB_HOST_HHC_UHO */
875          omap_clk_onoff(omap_findclk(s, "usb_hhc_ck"), (value >> 9) & 1);
876 }
877 
878 static void omap_pin_cfg_write(void *opaque, hwaddr addr,
879                                uint64_t value, unsigned size)
880 {
881     struct omap_mpu_state_s *s = opaque;
882     uint32_t diff;
883 
884     if (size != 4) {
885         omap_badwidth_write32(opaque, addr, value);
886         return;
887     }
888 
889     switch (addr) {
890     case 0x00:	/* FUNC_MUX_CTRL_0 */
891         diff = s->func_mux_ctrl[addr >> 2] ^ value;
892         s->func_mux_ctrl[addr >> 2] = value;
893         omap_pin_funcmux0_update(s, diff, value);
894         return;
895 
896     case 0x04:	/* FUNC_MUX_CTRL_1 */
897         diff = s->func_mux_ctrl[addr >> 2] ^ value;
898         s->func_mux_ctrl[addr >> 2] = value;
899         omap_pin_funcmux1_update(s, diff, value);
900         return;
901 
902     case 0x08:	/* FUNC_MUX_CTRL_2 */
903         s->func_mux_ctrl[addr >> 2] = value;
904         return;
905 
906     case 0x0c:	/* COMP_MODE_CTRL_0 */
907         s->comp_mode_ctrl[0] = value;
908         s->compat1509 = (value != 0x0000eaef);
909         omap_pin_funcmux0_update(s, ~0, s->func_mux_ctrl[0]);
910         omap_pin_funcmux1_update(s, ~0, s->func_mux_ctrl[1]);
911         return;
912 
913     case 0x10:	/* FUNC_MUX_CTRL_3 */
914     case 0x14:	/* FUNC_MUX_CTRL_4 */
915     case 0x18:	/* FUNC_MUX_CTRL_5 */
916     case 0x1c:	/* FUNC_MUX_CTRL_6 */
917     case 0x20:	/* FUNC_MUX_CTRL_7 */
918     case 0x24:	/* FUNC_MUX_CTRL_8 */
919     case 0x28:	/* FUNC_MUX_CTRL_9 */
920     case 0x2c:	/* FUNC_MUX_CTRL_A */
921     case 0x30:	/* FUNC_MUX_CTRL_B */
922     case 0x34:	/* FUNC_MUX_CTRL_C */
923     case 0x38:	/* FUNC_MUX_CTRL_D */
924         s->func_mux_ctrl[(addr >> 2) - 1] = value;
925         return;
926 
927     case 0x40:	/* PULL_DWN_CTRL_0 */
928     case 0x44:	/* PULL_DWN_CTRL_1 */
929     case 0x48:	/* PULL_DWN_CTRL_2 */
930     case 0x4c:	/* PULL_DWN_CTRL_3 */
931         s->pull_dwn_ctrl[(addr & 0xf) >> 2] = value;
932         return;
933 
934     case 0x50:	/* GATE_INH_CTRL_0 */
935         s->gate_inh_ctrl[0] = value;
936         return;
937 
938     case 0x60:	/* VOLTAGE_CTRL_0 */
939         s->voltage_ctrl[0] = value;
940         return;
941 
942     case 0x70:	/* TEST_DBG_CTRL_0 */
943         s->test_dbg_ctrl[0] = value;
944         return;
945 
946     case 0x80:	/* MOD_CONF_CTRL_0 */
947         diff = s->mod_conf_ctrl[0] ^ value;
948         s->mod_conf_ctrl[0] = value;
949         omap_pin_modconf1_update(s, diff, value);
950         return;
951 
952     default:
953         OMAP_BAD_REG(addr);
954     }
955 }
956 
957 static const MemoryRegionOps omap_pin_cfg_ops = {
958     .read = omap_pin_cfg_read,
959     .write = omap_pin_cfg_write,
960     .endianness = DEVICE_NATIVE_ENDIAN,
961 };
962 
963 static void omap_pin_cfg_reset(struct omap_mpu_state_s *mpu)
964 {
965     /* Start in Compatibility Mode.  */
966     mpu->compat1509 = 1;
967     omap_pin_funcmux0_update(mpu, mpu->func_mux_ctrl[0], 0);
968     omap_pin_funcmux1_update(mpu, mpu->func_mux_ctrl[1], 0);
969     omap_pin_modconf1_update(mpu, mpu->mod_conf_ctrl[0], 0);
970     memset(mpu->func_mux_ctrl, 0, sizeof(mpu->func_mux_ctrl));
971     memset(mpu->comp_mode_ctrl, 0, sizeof(mpu->comp_mode_ctrl));
972     memset(mpu->pull_dwn_ctrl, 0, sizeof(mpu->pull_dwn_ctrl));
973     memset(mpu->gate_inh_ctrl, 0, sizeof(mpu->gate_inh_ctrl));
974     memset(mpu->voltage_ctrl, 0, sizeof(mpu->voltage_ctrl));
975     memset(mpu->test_dbg_ctrl, 0, sizeof(mpu->test_dbg_ctrl));
976     memset(mpu->mod_conf_ctrl, 0, sizeof(mpu->mod_conf_ctrl));
977 }
978 
979 static void omap_pin_cfg_init(MemoryRegion *system_memory,
980                 hwaddr base,
981                 struct omap_mpu_state_s *mpu)
982 {
983     memory_region_init_io(&mpu->pin_cfg_iomem, NULL, &omap_pin_cfg_ops, mpu,
984                           "omap-pin-cfg", 0x800);
985     memory_region_add_subregion(system_memory, base, &mpu->pin_cfg_iomem);
986     omap_pin_cfg_reset(mpu);
987 }
988 
989 /* Device Identification, Die Identification */
990 static uint64_t omap_id_read(void *opaque, hwaddr addr,
991                              unsigned size)
992 {
993     struct omap_mpu_state_s *s = opaque;
994 
995     if (size != 4) {
996         return omap_badwidth_read32(opaque, addr);
997     }
998 
999     switch (addr) {
1000     case 0xfffe1800:	/* DIE_ID_LSB */
1001         return 0xc9581f0e;
1002     case 0xfffe1804:	/* DIE_ID_MSB */
1003         return 0xa8858bfa;
1004 
1005     case 0xfffe2000:	/* PRODUCT_ID_LSB */
1006         return 0x00aaaafc;
1007     case 0xfffe2004:	/* PRODUCT_ID_MSB */
1008         return 0xcafeb574;
1009 
1010     case 0xfffed400:	/* JTAG_ID_LSB */
1011         switch (s->mpu_model) {
1012         case omap310:
1013             return 0x03310315;
1014         case omap1510:
1015             return 0x03310115;
1016         default:
1017             hw_error("%s: bad mpu model\n", __func__);
1018         }
1019         break;
1020 
1021     case 0xfffed404:	/* JTAG_ID_MSB */
1022         switch (s->mpu_model) {
1023         case omap310:
1024             return 0xfb57402f;
1025         case omap1510:
1026             return 0xfb47002f;
1027         default:
1028             hw_error("%s: bad mpu model\n", __func__);
1029         }
1030         break;
1031     }
1032 
1033     OMAP_BAD_REG(addr);
1034     return 0;
1035 }
1036 
1037 static void omap_id_write(void *opaque, hwaddr addr,
1038                           uint64_t value, unsigned size)
1039 {
1040     if (size != 4) {
1041         omap_badwidth_write32(opaque, addr, value);
1042         return;
1043     }
1044 
1045     OMAP_BAD_REG(addr);
1046 }
1047 
1048 static const MemoryRegionOps omap_id_ops = {
1049     .read = omap_id_read,
1050     .write = omap_id_write,
1051     .endianness = DEVICE_NATIVE_ENDIAN,
1052 };
1053 
1054 static void omap_id_init(MemoryRegion *memory, struct omap_mpu_state_s *mpu)
1055 {
1056     memory_region_init_io(&mpu->id_iomem, NULL, &omap_id_ops, mpu,
1057                           "omap-id", 0x100000000ULL);
1058     memory_region_init_alias(&mpu->id_iomem_e18, NULL, "omap-id-e18", &mpu->id_iomem,
1059                              0xfffe1800, 0x800);
1060     memory_region_add_subregion(memory, 0xfffe1800, &mpu->id_iomem_e18);
1061     memory_region_init_alias(&mpu->id_iomem_ed4, NULL, "omap-id-ed4", &mpu->id_iomem,
1062                              0xfffed400, 0x100);
1063     memory_region_add_subregion(memory, 0xfffed400, &mpu->id_iomem_ed4);
1064     if (!cpu_is_omap15xx(mpu)) {
1065         memory_region_init_alias(&mpu->id_iomem_ed4, NULL, "omap-id-e20",
1066                                  &mpu->id_iomem, 0xfffe2000, 0x800);
1067         memory_region_add_subregion(memory, 0xfffe2000, &mpu->id_iomem_e20);
1068     }
1069 }
1070 
1071 /* MPUI Control (Dummy) */
1072 static uint64_t omap_mpui_read(void *opaque, hwaddr addr,
1073                                unsigned size)
1074 {
1075     struct omap_mpu_state_s *s = opaque;
1076 
1077     if (size != 4) {
1078         return omap_badwidth_read32(opaque, addr);
1079     }
1080 
1081     switch (addr) {
1082     case 0x00:	/* CTRL */
1083         return s->mpui_ctrl;
1084     case 0x04:	/* DEBUG_ADDR */
1085         return 0x01ffffff;
1086     case 0x08:	/* DEBUG_DATA */
1087         return 0xffffffff;
1088     case 0x0c:	/* DEBUG_FLAG */
1089         return 0x00000800;
1090     case 0x10:	/* STATUS */
1091         return 0x00000000;
1092 
1093     /* Not in OMAP310 */
1094     case 0x14:	/* DSP_STATUS */
1095     case 0x18:	/* DSP_BOOT_CONFIG */
1096         return 0x00000000;
1097     case 0x1c:	/* DSP_MPUI_CONFIG */
1098         return 0x0000ffff;
1099     }
1100 
1101     OMAP_BAD_REG(addr);
1102     return 0;
1103 }
1104 
1105 static void omap_mpui_write(void *opaque, hwaddr addr,
1106                             uint64_t value, unsigned size)
1107 {
1108     struct omap_mpu_state_s *s = opaque;
1109 
1110     if (size != 4) {
1111         omap_badwidth_write32(opaque, addr, value);
1112         return;
1113     }
1114 
1115     switch (addr) {
1116     case 0x00:	/* CTRL */
1117         s->mpui_ctrl = value & 0x007fffff;
1118         break;
1119 
1120     case 0x04:	/* DEBUG_ADDR */
1121     case 0x08:	/* DEBUG_DATA */
1122     case 0x0c:	/* DEBUG_FLAG */
1123     case 0x10:	/* STATUS */
1124     /* Not in OMAP310 */
1125     case 0x14:	/* DSP_STATUS */
1126         OMAP_RO_REG(addr);
1127         break;
1128     case 0x18:	/* DSP_BOOT_CONFIG */
1129     case 0x1c:	/* DSP_MPUI_CONFIG */
1130         break;
1131 
1132     default:
1133         OMAP_BAD_REG(addr);
1134     }
1135 }
1136 
1137 static const MemoryRegionOps omap_mpui_ops = {
1138     .read = omap_mpui_read,
1139     .write = omap_mpui_write,
1140     .endianness = DEVICE_NATIVE_ENDIAN,
1141 };
1142 
1143 static void omap_mpui_reset(struct omap_mpu_state_s *s)
1144 {
1145     s->mpui_ctrl = 0x0003ff1b;
1146 }
1147 
1148 static void omap_mpui_init(MemoryRegion *memory, hwaddr base,
1149                 struct omap_mpu_state_s *mpu)
1150 {
1151     memory_region_init_io(&mpu->mpui_iomem, NULL, &omap_mpui_ops, mpu,
1152                           "omap-mpui", 0x100);
1153     memory_region_add_subregion(memory, base, &mpu->mpui_iomem);
1154 
1155     omap_mpui_reset(mpu);
1156 }
1157 
1158 /* TIPB Bridges */
1159 struct omap_tipb_bridge_s {
1160     qemu_irq abort;
1161     MemoryRegion iomem;
1162 
1163     int width_intr;
1164     uint16_t control;
1165     uint16_t alloc;
1166     uint16_t buffer;
1167     uint16_t enh_control;
1168 };
1169 
1170 static uint64_t omap_tipb_bridge_read(void *opaque, hwaddr addr,
1171                                       unsigned size)
1172 {
1173     struct omap_tipb_bridge_s *s = opaque;
1174 
1175     if (size < 2) {
1176         return omap_badwidth_read16(opaque, addr);
1177     }
1178 
1179     switch (addr) {
1180     case 0x00:	/* TIPB_CNTL */
1181         return s->control;
1182     case 0x04:	/* TIPB_BUS_ALLOC */
1183         return s->alloc;
1184     case 0x08:	/* MPU_TIPB_CNTL */
1185         return s->buffer;
1186     case 0x0c:	/* ENHANCED_TIPB_CNTL */
1187         return s->enh_control;
1188     case 0x10:	/* ADDRESS_DBG */
1189     case 0x14:	/* DATA_DEBUG_LOW */
1190     case 0x18:	/* DATA_DEBUG_HIGH */
1191         return 0xffff;
1192     case 0x1c:	/* DEBUG_CNTR_SIG */
1193         return 0x00f8;
1194     }
1195 
1196     OMAP_BAD_REG(addr);
1197     return 0;
1198 }
1199 
1200 static void omap_tipb_bridge_write(void *opaque, hwaddr addr,
1201                                    uint64_t value, unsigned size)
1202 {
1203     struct omap_tipb_bridge_s *s = opaque;
1204 
1205     if (size < 2) {
1206         omap_badwidth_write16(opaque, addr, value);
1207         return;
1208     }
1209 
1210     switch (addr) {
1211     case 0x00:	/* TIPB_CNTL */
1212         s->control = value & 0xffff;
1213         break;
1214 
1215     case 0x04:	/* TIPB_BUS_ALLOC */
1216         s->alloc = value & 0x003f;
1217         break;
1218 
1219     case 0x08:	/* MPU_TIPB_CNTL */
1220         s->buffer = value & 0x0003;
1221         break;
1222 
1223     case 0x0c:	/* ENHANCED_TIPB_CNTL */
1224         s->width_intr = !(value & 2);
1225         s->enh_control = value & 0x000f;
1226         break;
1227 
1228     case 0x10:	/* ADDRESS_DBG */
1229     case 0x14:	/* DATA_DEBUG_LOW */
1230     case 0x18:	/* DATA_DEBUG_HIGH */
1231     case 0x1c:	/* DEBUG_CNTR_SIG */
1232         OMAP_RO_REG(addr);
1233         break;
1234 
1235     default:
1236         OMAP_BAD_REG(addr);
1237     }
1238 }
1239 
1240 static const MemoryRegionOps omap_tipb_bridge_ops = {
1241     .read = omap_tipb_bridge_read,
1242     .write = omap_tipb_bridge_write,
1243     .endianness = DEVICE_NATIVE_ENDIAN,
1244 };
1245 
1246 static void omap_tipb_bridge_reset(struct omap_tipb_bridge_s *s)
1247 {
1248     s->control = 0xffff;
1249     s->alloc = 0x0009;
1250     s->buffer = 0x0000;
1251     s->enh_control = 0x000f;
1252 }
1253 
1254 static struct omap_tipb_bridge_s *omap_tipb_bridge_init(
1255     MemoryRegion *memory, hwaddr base,
1256     qemu_irq abort_irq, omap_clk clk)
1257 {
1258     struct omap_tipb_bridge_s *s = g_new0(struct omap_tipb_bridge_s, 1);
1259 
1260     s->abort = abort_irq;
1261     omap_tipb_bridge_reset(s);
1262 
1263     memory_region_init_io(&s->iomem, NULL, &omap_tipb_bridge_ops, s,
1264                           "omap-tipb-bridge", 0x100);
1265     memory_region_add_subregion(memory, base, &s->iomem);
1266 
1267     return s;
1268 }
1269 
1270 /* Dummy Traffic Controller's Memory Interface */
1271 static uint64_t omap_tcmi_read(void *opaque, hwaddr addr,
1272                                unsigned size)
1273 {
1274     struct omap_mpu_state_s *s = opaque;
1275     uint32_t ret;
1276 
1277     if (size != 4) {
1278         return omap_badwidth_read32(opaque, addr);
1279     }
1280 
1281     switch (addr) {
1282     case 0x00:	/* IMIF_PRIO */
1283     case 0x04:	/* EMIFS_PRIO */
1284     case 0x08:	/* EMIFF_PRIO */
1285     case 0x0c:	/* EMIFS_CONFIG */
1286     case 0x10:	/* EMIFS_CS0_CONFIG */
1287     case 0x14:	/* EMIFS_CS1_CONFIG */
1288     case 0x18:	/* EMIFS_CS2_CONFIG */
1289     case 0x1c:	/* EMIFS_CS3_CONFIG */
1290     case 0x24:	/* EMIFF_MRS */
1291     case 0x28:	/* TIMEOUT1 */
1292     case 0x2c:	/* TIMEOUT2 */
1293     case 0x30:	/* TIMEOUT3 */
1294     case 0x3c:	/* EMIFF_SDRAM_CONFIG_2 */
1295     case 0x40:	/* EMIFS_CFG_DYN_WAIT */
1296         return s->tcmi_regs[addr >> 2];
1297 
1298     case 0x20:	/* EMIFF_SDRAM_CONFIG */
1299         ret = s->tcmi_regs[addr >> 2];
1300         s->tcmi_regs[addr >> 2] &= ~1; /* XXX: Clear SLRF on SDRAM access */
1301         /* XXX: We can try using the VGA_DIRTY flag for this */
1302         return ret;
1303     }
1304 
1305     OMAP_BAD_REG(addr);
1306     return 0;
1307 }
1308 
1309 static void omap_tcmi_write(void *opaque, hwaddr addr,
1310                             uint64_t value, unsigned size)
1311 {
1312     struct omap_mpu_state_s *s = opaque;
1313 
1314     if (size != 4) {
1315         omap_badwidth_write32(opaque, addr, value);
1316         return;
1317     }
1318 
1319     switch (addr) {
1320     case 0x00:	/* IMIF_PRIO */
1321     case 0x04:	/* EMIFS_PRIO */
1322     case 0x08:	/* EMIFF_PRIO */
1323     case 0x10:	/* EMIFS_CS0_CONFIG */
1324     case 0x14:	/* EMIFS_CS1_CONFIG */
1325     case 0x18:	/* EMIFS_CS2_CONFIG */
1326     case 0x1c:	/* EMIFS_CS3_CONFIG */
1327     case 0x20:	/* EMIFF_SDRAM_CONFIG */
1328     case 0x24:	/* EMIFF_MRS */
1329     case 0x28:	/* TIMEOUT1 */
1330     case 0x2c:	/* TIMEOUT2 */
1331     case 0x30:	/* TIMEOUT3 */
1332     case 0x3c:	/* EMIFF_SDRAM_CONFIG_2 */
1333     case 0x40:	/* EMIFS_CFG_DYN_WAIT */
1334         s->tcmi_regs[addr >> 2] = value;
1335         break;
1336     case 0x0c:	/* EMIFS_CONFIG */
1337         s->tcmi_regs[addr >> 2] = (value & 0xf) | (1 << 4);
1338         break;
1339 
1340     default:
1341         OMAP_BAD_REG(addr);
1342     }
1343 }
1344 
1345 static const MemoryRegionOps omap_tcmi_ops = {
1346     .read = omap_tcmi_read,
1347     .write = omap_tcmi_write,
1348     .endianness = DEVICE_NATIVE_ENDIAN,
1349 };
1350 
1351 static void omap_tcmi_reset(struct omap_mpu_state_s *mpu)
1352 {
1353     mpu->tcmi_regs[0x00 >> 2] = 0x00000000;
1354     mpu->tcmi_regs[0x04 >> 2] = 0x00000000;
1355     mpu->tcmi_regs[0x08 >> 2] = 0x00000000;
1356     mpu->tcmi_regs[0x0c >> 2] = 0x00000010;
1357     mpu->tcmi_regs[0x10 >> 2] = 0x0010fffb;
1358     mpu->tcmi_regs[0x14 >> 2] = 0x0010fffb;
1359     mpu->tcmi_regs[0x18 >> 2] = 0x0010fffb;
1360     mpu->tcmi_regs[0x1c >> 2] = 0x0010fffb;
1361     mpu->tcmi_regs[0x20 >> 2] = 0x00618800;
1362     mpu->tcmi_regs[0x24 >> 2] = 0x00000037;
1363     mpu->tcmi_regs[0x28 >> 2] = 0x00000000;
1364     mpu->tcmi_regs[0x2c >> 2] = 0x00000000;
1365     mpu->tcmi_regs[0x30 >> 2] = 0x00000000;
1366     mpu->tcmi_regs[0x3c >> 2] = 0x00000003;
1367     mpu->tcmi_regs[0x40 >> 2] = 0x00000000;
1368 }
1369 
1370 static void omap_tcmi_init(MemoryRegion *memory, hwaddr base,
1371                 struct omap_mpu_state_s *mpu)
1372 {
1373     memory_region_init_io(&mpu->tcmi_iomem, NULL, &omap_tcmi_ops, mpu,
1374                           "omap-tcmi", 0x100);
1375     memory_region_add_subregion(memory, base, &mpu->tcmi_iomem);
1376     omap_tcmi_reset(mpu);
1377 }
1378 
1379 /* Digital phase-locked loops control */
1380 struct dpll_ctl_s {
1381     MemoryRegion iomem;
1382     uint16_t mode;
1383     omap_clk dpll;
1384 };
1385 
1386 static uint64_t omap_dpll_read(void *opaque, hwaddr addr,
1387                                unsigned size)
1388 {
1389     struct dpll_ctl_s *s = opaque;
1390 
1391     if (size != 2) {
1392         return omap_badwidth_read16(opaque, addr);
1393     }
1394 
1395     if (addr == 0x00)	/* CTL_REG */
1396         return s->mode;
1397 
1398     OMAP_BAD_REG(addr);
1399     return 0;
1400 }
1401 
1402 static void omap_dpll_write(void *opaque, hwaddr addr,
1403                             uint64_t value, unsigned size)
1404 {
1405     struct dpll_ctl_s *s = opaque;
1406     uint16_t diff;
1407     static const int bypass_div[4] = { 1, 2, 4, 4 };
1408     int div, mult;
1409 
1410     if (size != 2) {
1411         omap_badwidth_write16(opaque, addr, value);
1412         return;
1413     }
1414 
1415     if (addr == 0x00) {	/* CTL_REG */
1416         /* See omap_ulpd_pm_write() too */
1417         diff = s->mode & value;
1418         s->mode = value & 0x2fff;
1419         if (diff & (0x3ff << 2)) {
1420             if (value & (1 << 4)) {			/* PLL_ENABLE */
1421                 div = ((value >> 5) & 3) + 1;		/* PLL_DIV */
1422                 mult = MIN((value >> 7) & 0x1f, 1);	/* PLL_MULT */
1423             } else {
1424                 div = bypass_div[((value >> 2) & 3)];	/* BYPASS_DIV */
1425                 mult = 1;
1426             }
1427             omap_clk_setrate(s->dpll, div, mult);
1428         }
1429 
1430         /* Enter the desired mode.  */
1431         s->mode = (s->mode & 0xfffe) | ((s->mode >> 4) & 1);
1432 
1433         /* Act as if the lock is restored.  */
1434         s->mode |= 2;
1435     } else {
1436         OMAP_BAD_REG(addr);
1437     }
1438 }
1439 
1440 static const MemoryRegionOps omap_dpll_ops = {
1441     .read = omap_dpll_read,
1442     .write = omap_dpll_write,
1443     .endianness = DEVICE_NATIVE_ENDIAN,
1444 };
1445 
1446 static void omap_dpll_reset(struct dpll_ctl_s *s)
1447 {
1448     s->mode = 0x2002;
1449     omap_clk_setrate(s->dpll, 1, 1);
1450 }
1451 
1452 static struct dpll_ctl_s  *omap_dpll_init(MemoryRegion *memory,
1453                            hwaddr base, omap_clk clk)
1454 {
1455     struct dpll_ctl_s *s = g_malloc0(sizeof(*s));
1456     memory_region_init_io(&s->iomem, NULL, &omap_dpll_ops, s, "omap-dpll", 0x100);
1457 
1458     s->dpll = clk;
1459     omap_dpll_reset(s);
1460 
1461     memory_region_add_subregion(memory, base, &s->iomem);
1462     return s;
1463 }
1464 
1465 /* MPU Clock/Reset/Power Mode Control */
1466 static uint64_t omap_clkm_read(void *opaque, hwaddr addr,
1467                                unsigned size)
1468 {
1469     struct omap_mpu_state_s *s = opaque;
1470 
1471     if (size != 2) {
1472         return omap_badwidth_read16(opaque, addr);
1473     }
1474 
1475     switch (addr) {
1476     case 0x00:	/* ARM_CKCTL */
1477         return s->clkm.arm_ckctl;
1478 
1479     case 0x04:	/* ARM_IDLECT1 */
1480         return s->clkm.arm_idlect1;
1481 
1482     case 0x08:	/* ARM_IDLECT2 */
1483         return s->clkm.arm_idlect2;
1484 
1485     case 0x0c:	/* ARM_EWUPCT */
1486         return s->clkm.arm_ewupct;
1487 
1488     case 0x10:	/* ARM_RSTCT1 */
1489         return s->clkm.arm_rstct1;
1490 
1491     case 0x14:	/* ARM_RSTCT2 */
1492         return s->clkm.arm_rstct2;
1493 
1494     case 0x18:	/* ARM_SYSST */
1495         return (s->clkm.clocking_scheme << 11) | s->clkm.cold_start;
1496 
1497     case 0x1c:	/* ARM_CKOUT1 */
1498         return s->clkm.arm_ckout1;
1499 
1500     case 0x20:	/* ARM_CKOUT2 */
1501         break;
1502     }
1503 
1504     OMAP_BAD_REG(addr);
1505     return 0;
1506 }
1507 
1508 static inline void omap_clkm_ckctl_update(struct omap_mpu_state_s *s,
1509                 uint16_t diff, uint16_t value)
1510 {
1511     omap_clk clk;
1512 
1513     if (diff & (1 << 14)) {				/* ARM_INTHCK_SEL */
1514         if (value & (1 << 14))
1515             /* Reserved */;
1516         else {
1517             clk = omap_findclk(s, "arminth_ck");
1518             omap_clk_reparent(clk, omap_findclk(s, "tc_ck"));
1519         }
1520     }
1521     if (diff & (1 << 12)) {				/* ARM_TIMXO */
1522         clk = omap_findclk(s, "armtim_ck");
1523         if (value & (1 << 12))
1524             omap_clk_reparent(clk, omap_findclk(s, "clkin"));
1525         else
1526             omap_clk_reparent(clk, omap_findclk(s, "ck_gen1"));
1527     }
1528     /* XXX: en_dspck */
1529     if (diff & (3 << 10)) {				/* DSPMMUDIV */
1530         clk = omap_findclk(s, "dspmmu_ck");
1531         omap_clk_setrate(clk, 1 << ((value >> 10) & 3), 1);
1532     }
1533     if (diff & (3 << 8)) {				/* TCDIV */
1534         clk = omap_findclk(s, "tc_ck");
1535         omap_clk_setrate(clk, 1 << ((value >> 8) & 3), 1);
1536     }
1537     if (diff & (3 << 6)) {				/* DSPDIV */
1538         clk = omap_findclk(s, "dsp_ck");
1539         omap_clk_setrate(clk, 1 << ((value >> 6) & 3), 1);
1540     }
1541     if (diff & (3 << 4)) {				/* ARMDIV */
1542         clk = omap_findclk(s, "arm_ck");
1543         omap_clk_setrate(clk, 1 << ((value >> 4) & 3), 1);
1544     }
1545     if (diff & (3 << 2)) {				/* LCDDIV */
1546         clk = omap_findclk(s, "lcd_ck");
1547         omap_clk_setrate(clk, 1 << ((value >> 2) & 3), 1);
1548     }
1549     if (diff & (3 << 0)) {				/* PERDIV */
1550         clk = omap_findclk(s, "armper_ck");
1551         omap_clk_setrate(clk, 1 << ((value >> 0) & 3), 1);
1552     }
1553 }
1554 
1555 static inline void omap_clkm_idlect1_update(struct omap_mpu_state_s *s,
1556                 uint16_t diff, uint16_t value)
1557 {
1558     omap_clk clk;
1559 
1560     if (value & (1 << 11)) {                            /* SETARM_IDLE */
1561         cpu_interrupt(CPU(s->cpu), CPU_INTERRUPT_HALT);
1562     }
1563     if (!(value & (1 << 10))) {                         /* WKUP_MODE */
1564         /* XXX: disable wakeup from IRQ */
1565         qemu_system_shutdown_request(SHUTDOWN_CAUSE_GUEST_SHUTDOWN);
1566     }
1567 
1568 #define SET_CANIDLE(clock, bit)				\
1569     if (diff & (1 << bit)) {				\
1570         clk = omap_findclk(s, clock);			\
1571         omap_clk_canidle(clk, (value >> bit) & 1);	\
1572     }
1573     SET_CANIDLE("mpuwd_ck", 0)				/* IDLWDT_ARM */
1574     SET_CANIDLE("armxor_ck", 1)				/* IDLXORP_ARM */
1575     SET_CANIDLE("mpuper_ck", 2)				/* IDLPER_ARM */
1576     SET_CANIDLE("lcd_ck", 3)				/* IDLLCD_ARM */
1577     SET_CANIDLE("lb_ck", 4)				/* IDLLB_ARM */
1578     SET_CANIDLE("hsab_ck", 5)				/* IDLHSAB_ARM */
1579     SET_CANIDLE("tipb_ck", 6)				/* IDLIF_ARM */
1580     SET_CANIDLE("dma_ck", 6)				/* IDLIF_ARM */
1581     SET_CANIDLE("tc_ck", 6)				/* IDLIF_ARM */
1582     SET_CANIDLE("dpll1", 7)				/* IDLDPLL_ARM */
1583     SET_CANIDLE("dpll2", 7)				/* IDLDPLL_ARM */
1584     SET_CANIDLE("dpll3", 7)				/* IDLDPLL_ARM */
1585     SET_CANIDLE("mpui_ck", 8)				/* IDLAPI_ARM */
1586     SET_CANIDLE("armtim_ck", 9)				/* IDLTIM_ARM */
1587 }
1588 
1589 static inline void omap_clkm_idlect2_update(struct omap_mpu_state_s *s,
1590                 uint16_t diff, uint16_t value)
1591 {
1592     omap_clk clk;
1593 
1594 #define SET_ONOFF(clock, bit)				\
1595     if (diff & (1 << bit)) {				\
1596         clk = omap_findclk(s, clock);			\
1597         omap_clk_onoff(clk, (value >> bit) & 1);	\
1598     }
1599     SET_ONOFF("mpuwd_ck", 0)				/* EN_WDTCK */
1600     SET_ONOFF("armxor_ck", 1)				/* EN_XORPCK */
1601     SET_ONOFF("mpuper_ck", 2)				/* EN_PERCK */
1602     SET_ONOFF("lcd_ck", 3)				/* EN_LCDCK */
1603     SET_ONOFF("lb_ck", 4)				/* EN_LBCK */
1604     SET_ONOFF("hsab_ck", 5)				/* EN_HSABCK */
1605     SET_ONOFF("mpui_ck", 6)				/* EN_APICK */
1606     SET_ONOFF("armtim_ck", 7)				/* EN_TIMCK */
1607     SET_CANIDLE("dma_ck", 8)				/* DMACK_REQ */
1608     SET_ONOFF("arm_gpio_ck", 9)				/* EN_GPIOCK */
1609     SET_ONOFF("lbfree_ck", 10)				/* EN_LBFREECK */
1610 }
1611 
1612 static inline void omap_clkm_ckout1_update(struct omap_mpu_state_s *s,
1613                 uint16_t diff, uint16_t value)
1614 {
1615     omap_clk clk;
1616 
1617     if (diff & (3 << 4)) {				/* TCLKOUT */
1618         clk = omap_findclk(s, "tclk_out");
1619         switch ((value >> 4) & 3) {
1620         case 1:
1621             omap_clk_reparent(clk, omap_findclk(s, "ck_gen3"));
1622             omap_clk_onoff(clk, 1);
1623             break;
1624         case 2:
1625             omap_clk_reparent(clk, omap_findclk(s, "tc_ck"));
1626             omap_clk_onoff(clk, 1);
1627             break;
1628         default:
1629             omap_clk_onoff(clk, 0);
1630         }
1631     }
1632     if (diff & (3 << 2)) {				/* DCLKOUT */
1633         clk = omap_findclk(s, "dclk_out");
1634         switch ((value >> 2) & 3) {
1635         case 0:
1636             omap_clk_reparent(clk, omap_findclk(s, "dspmmu_ck"));
1637             break;
1638         case 1:
1639             omap_clk_reparent(clk, omap_findclk(s, "ck_gen2"));
1640             break;
1641         case 2:
1642             omap_clk_reparent(clk, omap_findclk(s, "dsp_ck"));
1643             break;
1644         case 3:
1645             omap_clk_reparent(clk, omap_findclk(s, "ck_ref14"));
1646             break;
1647         }
1648     }
1649     if (diff & (3 << 0)) {				/* ACLKOUT */
1650         clk = omap_findclk(s, "aclk_out");
1651         switch ((value >> 0) & 3) {
1652         case 1:
1653             omap_clk_reparent(clk, omap_findclk(s, "ck_gen1"));
1654             omap_clk_onoff(clk, 1);
1655             break;
1656         case 2:
1657             omap_clk_reparent(clk, omap_findclk(s, "arm_ck"));
1658             omap_clk_onoff(clk, 1);
1659             break;
1660         case 3:
1661             omap_clk_reparent(clk, omap_findclk(s, "ck_ref14"));
1662             omap_clk_onoff(clk, 1);
1663             break;
1664         default:
1665             omap_clk_onoff(clk, 0);
1666         }
1667     }
1668 }
1669 
1670 static void omap_clkm_write(void *opaque, hwaddr addr,
1671                             uint64_t value, unsigned size)
1672 {
1673     struct omap_mpu_state_s *s = opaque;
1674     uint16_t diff;
1675     omap_clk clk;
1676     static const char *clkschemename[8] = {
1677         "fully synchronous", "fully asynchronous", "synchronous scalable",
1678         "mix mode 1", "mix mode 2", "bypass mode", "mix mode 3", "mix mode 4",
1679     };
1680 
1681     if (size != 2) {
1682         omap_badwidth_write16(opaque, addr, value);
1683         return;
1684     }
1685 
1686     switch (addr) {
1687     case 0x00:	/* ARM_CKCTL */
1688         diff = s->clkm.arm_ckctl ^ value;
1689         s->clkm.arm_ckctl = value & 0x7fff;
1690         omap_clkm_ckctl_update(s, diff, value);
1691         return;
1692 
1693     case 0x04:	/* ARM_IDLECT1 */
1694         diff = s->clkm.arm_idlect1 ^ value;
1695         s->clkm.arm_idlect1 = value & 0x0fff;
1696         omap_clkm_idlect1_update(s, diff, value);
1697         return;
1698 
1699     case 0x08:	/* ARM_IDLECT2 */
1700         diff = s->clkm.arm_idlect2 ^ value;
1701         s->clkm.arm_idlect2 = value & 0x07ff;
1702         omap_clkm_idlect2_update(s, diff, value);
1703         return;
1704 
1705     case 0x0c:	/* ARM_EWUPCT */
1706         s->clkm.arm_ewupct = value & 0x003f;
1707         return;
1708 
1709     case 0x10:	/* ARM_RSTCT1 */
1710         diff = s->clkm.arm_rstct1 ^ value;
1711         s->clkm.arm_rstct1 = value & 0x0007;
1712         if (value & 9) {
1713             qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
1714             s->clkm.cold_start = 0xa;
1715         }
1716         if (diff & ~value & 4) {				/* DSP_RST */
1717             omap_mpui_reset(s);
1718             omap_tipb_bridge_reset(s->private_tipb);
1719             omap_tipb_bridge_reset(s->public_tipb);
1720         }
1721         if (diff & 2) {						/* DSP_EN */
1722             clk = omap_findclk(s, "dsp_ck");
1723             omap_clk_canidle(clk, (~value >> 1) & 1);
1724         }
1725         return;
1726 
1727     case 0x14:	/* ARM_RSTCT2 */
1728         s->clkm.arm_rstct2 = value & 0x0001;
1729         return;
1730 
1731     case 0x18:	/* ARM_SYSST */
1732         if ((s->clkm.clocking_scheme ^ (value >> 11)) & 7) {
1733             s->clkm.clocking_scheme = (value >> 11) & 7;
1734             printf("%s: clocking scheme set to %s\n", __func__,
1735                    clkschemename[s->clkm.clocking_scheme]);
1736         }
1737         s->clkm.cold_start &= value & 0x3f;
1738         return;
1739 
1740     case 0x1c:	/* ARM_CKOUT1 */
1741         diff = s->clkm.arm_ckout1 ^ value;
1742         s->clkm.arm_ckout1 = value & 0x003f;
1743         omap_clkm_ckout1_update(s, diff, value);
1744         return;
1745 
1746     case 0x20:	/* ARM_CKOUT2 */
1747     default:
1748         OMAP_BAD_REG(addr);
1749     }
1750 }
1751 
1752 static const MemoryRegionOps omap_clkm_ops = {
1753     .read = omap_clkm_read,
1754     .write = omap_clkm_write,
1755     .endianness = DEVICE_NATIVE_ENDIAN,
1756 };
1757 
1758 static uint64_t omap_clkdsp_read(void *opaque, hwaddr addr,
1759                                  unsigned size)
1760 {
1761     struct omap_mpu_state_s *s = opaque;
1762     CPUState *cpu = CPU(s->cpu);
1763 
1764     if (size != 2) {
1765         return omap_badwidth_read16(opaque, addr);
1766     }
1767 
1768     switch (addr) {
1769     case 0x04:	/* DSP_IDLECT1 */
1770         return s->clkm.dsp_idlect1;
1771 
1772     case 0x08:	/* DSP_IDLECT2 */
1773         return s->clkm.dsp_idlect2;
1774 
1775     case 0x14:	/* DSP_RSTCT2 */
1776         return s->clkm.dsp_rstct2;
1777 
1778     case 0x18:	/* DSP_SYSST */
1779         return (s->clkm.clocking_scheme << 11) | s->clkm.cold_start |
1780                 (cpu->halted << 6);      /* Quite useless... */
1781     }
1782 
1783     OMAP_BAD_REG(addr);
1784     return 0;
1785 }
1786 
1787 static inline void omap_clkdsp_idlect1_update(struct omap_mpu_state_s *s,
1788                 uint16_t diff, uint16_t value)
1789 {
1790     omap_clk clk;
1791 
1792     SET_CANIDLE("dspxor_ck", 1);			/* IDLXORP_DSP */
1793 }
1794 
1795 static inline void omap_clkdsp_idlect2_update(struct omap_mpu_state_s *s,
1796                 uint16_t diff, uint16_t value)
1797 {
1798     omap_clk clk;
1799 
1800     SET_ONOFF("dspxor_ck", 1);				/* EN_XORPCK */
1801 }
1802 
1803 static void omap_clkdsp_write(void *opaque, hwaddr addr,
1804                               uint64_t value, unsigned size)
1805 {
1806     struct omap_mpu_state_s *s = opaque;
1807     uint16_t diff;
1808 
1809     if (size != 2) {
1810         omap_badwidth_write16(opaque, addr, value);
1811         return;
1812     }
1813 
1814     switch (addr) {
1815     case 0x04:	/* DSP_IDLECT1 */
1816         diff = s->clkm.dsp_idlect1 ^ value;
1817         s->clkm.dsp_idlect1 = value & 0x01f7;
1818         omap_clkdsp_idlect1_update(s, diff, value);
1819         break;
1820 
1821     case 0x08:	/* DSP_IDLECT2 */
1822         s->clkm.dsp_idlect2 = value & 0x0037;
1823         diff = s->clkm.dsp_idlect1 ^ value;
1824         omap_clkdsp_idlect2_update(s, diff, value);
1825         break;
1826 
1827     case 0x14:	/* DSP_RSTCT2 */
1828         s->clkm.dsp_rstct2 = value & 0x0001;
1829         break;
1830 
1831     case 0x18:	/* DSP_SYSST */
1832         s->clkm.cold_start &= value & 0x3f;
1833         break;
1834 
1835     default:
1836         OMAP_BAD_REG(addr);
1837     }
1838 }
1839 
1840 static const MemoryRegionOps omap_clkdsp_ops = {
1841     .read = omap_clkdsp_read,
1842     .write = omap_clkdsp_write,
1843     .endianness = DEVICE_NATIVE_ENDIAN,
1844 };
1845 
1846 static void omap_clkm_reset(struct omap_mpu_state_s *s)
1847 {
1848     if (s->wdt && s->wdt->reset)
1849         s->clkm.cold_start = 0x6;
1850     s->clkm.clocking_scheme = 0;
1851     omap_clkm_ckctl_update(s, ~0, 0x3000);
1852     s->clkm.arm_ckctl = 0x3000;
1853     omap_clkm_idlect1_update(s, s->clkm.arm_idlect1 ^ 0x0400, 0x0400);
1854     s->clkm.arm_idlect1 = 0x0400;
1855     omap_clkm_idlect2_update(s, s->clkm.arm_idlect2 ^ 0x0100, 0x0100);
1856     s->clkm.arm_idlect2 = 0x0100;
1857     s->clkm.arm_ewupct = 0x003f;
1858     s->clkm.arm_rstct1 = 0x0000;
1859     s->clkm.arm_rstct2 = 0x0000;
1860     s->clkm.arm_ckout1 = 0x0015;
1861     s->clkm.dpll1_mode = 0x2002;
1862     omap_clkdsp_idlect1_update(s, s->clkm.dsp_idlect1 ^ 0x0040, 0x0040);
1863     s->clkm.dsp_idlect1 = 0x0040;
1864     omap_clkdsp_idlect2_update(s, ~0, 0x0000);
1865     s->clkm.dsp_idlect2 = 0x0000;
1866     s->clkm.dsp_rstct2 = 0x0000;
1867 }
1868 
1869 static void omap_clkm_init(MemoryRegion *memory, hwaddr mpu_base,
1870                 hwaddr dsp_base, struct omap_mpu_state_s *s)
1871 {
1872     memory_region_init_io(&s->clkm_iomem, NULL, &omap_clkm_ops, s,
1873                           "omap-clkm", 0x100);
1874     memory_region_init_io(&s->clkdsp_iomem, NULL, &omap_clkdsp_ops, s,
1875                           "omap-clkdsp", 0x1000);
1876 
1877     s->clkm.arm_idlect1 = 0x03ff;
1878     s->clkm.arm_idlect2 = 0x0100;
1879     s->clkm.dsp_idlect1 = 0x0002;
1880     omap_clkm_reset(s);
1881     s->clkm.cold_start = 0x3a;
1882 
1883     memory_region_add_subregion(memory, mpu_base, &s->clkm_iomem);
1884     memory_region_add_subregion(memory, dsp_base, &s->clkdsp_iomem);
1885 }
1886 
1887 /* MPU I/O */
1888 struct omap_mpuio_s {
1889     qemu_irq irq;
1890     qemu_irq kbd_irq;
1891     qemu_irq *in;
1892     qemu_irq handler[16];
1893     qemu_irq wakeup;
1894     MemoryRegion iomem;
1895 
1896     uint16_t inputs;
1897     uint16_t outputs;
1898     uint16_t dir;
1899     uint16_t edge;
1900     uint16_t mask;
1901     uint16_t ints;
1902 
1903     uint16_t debounce;
1904     uint16_t latch;
1905     uint8_t event;
1906 
1907     uint8_t buttons[5];
1908     uint8_t row_latch;
1909     uint8_t cols;
1910     int kbd_mask;
1911     int clk;
1912 };
1913 
1914 static void omap_mpuio_set(void *opaque, int line, int level)
1915 {
1916     struct omap_mpuio_s *s = opaque;
1917     uint16_t prev = s->inputs;
1918 
1919     if (level)
1920         s->inputs |= 1 << line;
1921     else
1922         s->inputs &= ~(1 << line);
1923 
1924     if (((1 << line) & s->dir & ~s->mask) && s->clk) {
1925         if ((s->edge & s->inputs & ~prev) | (~s->edge & ~s->inputs & prev)) {
1926             s->ints |= 1 << line;
1927             qemu_irq_raise(s->irq);
1928             /* TODO: wakeup */
1929         }
1930         if ((s->event & (1 << 0)) &&		/* SET_GPIO_EVENT_MODE */
1931                 (s->event >> 1) == line)	/* PIN_SELECT */
1932             s->latch = s->inputs;
1933     }
1934 }
1935 
1936 static void omap_mpuio_kbd_update(struct omap_mpuio_s *s)
1937 {
1938     int i;
1939     uint8_t *row, rows = 0, cols = ~s->cols;
1940 
1941     for (row = s->buttons + 4, i = 1 << 4; i; row --, i >>= 1)
1942         if (*row & cols)
1943             rows |= i;
1944 
1945     qemu_set_irq(s->kbd_irq, rows && !s->kbd_mask && s->clk);
1946     s->row_latch = ~rows;
1947 }
1948 
1949 static uint64_t omap_mpuio_read(void *opaque, hwaddr addr,
1950                                 unsigned size)
1951 {
1952     struct omap_mpuio_s *s = opaque;
1953     int offset = addr & OMAP_MPUI_REG_MASK;
1954     uint16_t ret;
1955 
1956     if (size != 2) {
1957         return omap_badwidth_read16(opaque, addr);
1958     }
1959 
1960     switch (offset) {
1961     case 0x00:	/* INPUT_LATCH */
1962         return s->inputs;
1963 
1964     case 0x04:	/* OUTPUT_REG */
1965         return s->outputs;
1966 
1967     case 0x08:	/* IO_CNTL */
1968         return s->dir;
1969 
1970     case 0x10:	/* KBR_LATCH */
1971         return s->row_latch;
1972 
1973     case 0x14:	/* KBC_REG */
1974         return s->cols;
1975 
1976     case 0x18:	/* GPIO_EVENT_MODE_REG */
1977         return s->event;
1978 
1979     case 0x1c:	/* GPIO_INT_EDGE_REG */
1980         return s->edge;
1981 
1982     case 0x20:	/* KBD_INT */
1983         return (~s->row_latch & 0x1f) && !s->kbd_mask;
1984 
1985     case 0x24:	/* GPIO_INT */
1986         ret = s->ints;
1987         s->ints &= s->mask;
1988         if (ret)
1989             qemu_irq_lower(s->irq);
1990         return ret;
1991 
1992     case 0x28:	/* KBD_MASKIT */
1993         return s->kbd_mask;
1994 
1995     case 0x2c:	/* GPIO_MASKIT */
1996         return s->mask;
1997 
1998     case 0x30:	/* GPIO_DEBOUNCING_REG */
1999         return s->debounce;
2000 
2001     case 0x34:	/* GPIO_LATCH_REG */
2002         return s->latch;
2003     }
2004 
2005     OMAP_BAD_REG(addr);
2006     return 0;
2007 }
2008 
2009 static void omap_mpuio_write(void *opaque, hwaddr addr,
2010                              uint64_t value, unsigned size)
2011 {
2012     struct omap_mpuio_s *s = opaque;
2013     int offset = addr & OMAP_MPUI_REG_MASK;
2014     uint16_t diff;
2015     int ln;
2016 
2017     if (size != 2) {
2018         omap_badwidth_write16(opaque, addr, value);
2019         return;
2020     }
2021 
2022     switch (offset) {
2023     case 0x04:	/* OUTPUT_REG */
2024         diff = (s->outputs ^ value) & ~s->dir;
2025         s->outputs = value;
2026         while ((ln = ctz32(diff)) != 32) {
2027             if (s->handler[ln])
2028                 qemu_set_irq(s->handler[ln], (value >> ln) & 1);
2029             diff &= ~(1 << ln);
2030         }
2031         break;
2032 
2033     case 0x08:	/* IO_CNTL */
2034         diff = s->outputs & (s->dir ^ value);
2035         s->dir = value;
2036 
2037         value = s->outputs & ~s->dir;
2038         while ((ln = ctz32(diff)) != 32) {
2039             if (s->handler[ln])
2040                 qemu_set_irq(s->handler[ln], (value >> ln) & 1);
2041             diff &= ~(1 << ln);
2042         }
2043         break;
2044 
2045     case 0x14:	/* KBC_REG */
2046         s->cols = value;
2047         omap_mpuio_kbd_update(s);
2048         break;
2049 
2050     case 0x18:	/* GPIO_EVENT_MODE_REG */
2051         s->event = value & 0x1f;
2052         break;
2053 
2054     case 0x1c:	/* GPIO_INT_EDGE_REG */
2055         s->edge = value;
2056         break;
2057 
2058     case 0x28:	/* KBD_MASKIT */
2059         s->kbd_mask = value & 1;
2060         omap_mpuio_kbd_update(s);
2061         break;
2062 
2063     case 0x2c:	/* GPIO_MASKIT */
2064         s->mask = value;
2065         break;
2066 
2067     case 0x30:	/* GPIO_DEBOUNCING_REG */
2068         s->debounce = value & 0x1ff;
2069         break;
2070 
2071     case 0x00:	/* INPUT_LATCH */
2072     case 0x10:	/* KBR_LATCH */
2073     case 0x20:	/* KBD_INT */
2074     case 0x24:	/* GPIO_INT */
2075     case 0x34:	/* GPIO_LATCH_REG */
2076         OMAP_RO_REG(addr);
2077         return;
2078 
2079     default:
2080         OMAP_BAD_REG(addr);
2081         return;
2082     }
2083 }
2084 
2085 static const MemoryRegionOps omap_mpuio_ops  = {
2086     .read = omap_mpuio_read,
2087     .write = omap_mpuio_write,
2088     .endianness = DEVICE_NATIVE_ENDIAN,
2089 };
2090 
2091 static void omap_mpuio_reset(struct omap_mpuio_s *s)
2092 {
2093     s->inputs = 0;
2094     s->outputs = 0;
2095     s->dir = ~0;
2096     s->event = 0;
2097     s->edge = 0;
2098     s->kbd_mask = 0;
2099     s->mask = 0;
2100     s->debounce = 0;
2101     s->latch = 0;
2102     s->ints = 0;
2103     s->row_latch = 0x1f;
2104     s->clk = 1;
2105 }
2106 
2107 static void omap_mpuio_onoff(void *opaque, int line, int on)
2108 {
2109     struct omap_mpuio_s *s = opaque;
2110 
2111     s->clk = on;
2112     if (on)
2113         omap_mpuio_kbd_update(s);
2114 }
2115 
2116 static struct omap_mpuio_s *omap_mpuio_init(MemoryRegion *memory,
2117                 hwaddr base,
2118                 qemu_irq kbd_int, qemu_irq gpio_int, qemu_irq wakeup,
2119                 omap_clk clk)
2120 {
2121     struct omap_mpuio_s *s = g_new0(struct omap_mpuio_s, 1);
2122 
2123     s->irq = gpio_int;
2124     s->kbd_irq = kbd_int;
2125     s->wakeup = wakeup;
2126     s->in = qemu_allocate_irqs(omap_mpuio_set, s, 16);
2127     omap_mpuio_reset(s);
2128 
2129     memory_region_init_io(&s->iomem, NULL, &omap_mpuio_ops, s,
2130                           "omap-mpuio", 0x800);
2131     memory_region_add_subregion(memory, base, &s->iomem);
2132 
2133     omap_clk_adduser(clk, qemu_allocate_irq(omap_mpuio_onoff, s, 0));
2134 
2135     return s;
2136 }
2137 
2138 qemu_irq *omap_mpuio_in_get(struct omap_mpuio_s *s)
2139 {
2140     return s->in;
2141 }
2142 
2143 void omap_mpuio_out_set(struct omap_mpuio_s *s, int line, qemu_irq handler)
2144 {
2145     if (line >= 16 || line < 0)
2146         hw_error("%s: No GPIO line %i\n", __func__, line);
2147     s->handler[line] = handler;
2148 }
2149 
2150 void omap_mpuio_key(struct omap_mpuio_s *s, int row, int col, int down)
2151 {
2152     if (row >= 5 || row < 0)
2153         hw_error("%s: No key %i-%i\n", __func__, col, row);
2154 
2155     if (down)
2156         s->buttons[row] |= 1 << col;
2157     else
2158         s->buttons[row] &= ~(1 << col);
2159 
2160     omap_mpuio_kbd_update(s);
2161 }
2162 
2163 /* MicroWire Interface */
2164 struct omap_uwire_s {
2165     MemoryRegion iomem;
2166     qemu_irq txirq;
2167     qemu_irq rxirq;
2168     qemu_irq txdrq;
2169 
2170     uint16_t txbuf;
2171     uint16_t rxbuf;
2172     uint16_t control;
2173     uint16_t setup[5];
2174 };
2175 
2176 static void omap_uwire_transfer_start(struct omap_uwire_s *s)
2177 {
2178     int chipselect = (s->control >> 10) & 3;		/* INDEX */
2179 
2180     if ((s->control >> 5) & 0x1f) {			/* NB_BITS_WR */
2181         if (s->control & (1 << 12)) {       /* CS_CMD */
2182             qemu_log_mask(LOG_UNIMP, "uWireSlave TX CS:%d data:0x%04x\n",
2183                           chipselect,
2184                           s->txbuf >> (16 - ((s->control >> 5) & 0x1f)));
2185         }
2186         s->control &= ~(1 << 14);			/* CSRB */
2187         /* TODO: depending on s->setup[4] bits [1:0] assert an IRQ or
2188          * a DRQ.  When is the level IRQ supposed to be reset?  */
2189     }
2190 
2191     if ((s->control >> 0) & 0x1f) {			/* NB_BITS_RD */
2192         if (s->control & (1 << 12)) {       /* CS_CMD */
2193             qemu_log_mask(LOG_UNIMP, "uWireSlave RX CS:%d\n", chipselect);
2194         }
2195         s->control |= 1 << 15;				/* RDRB */
2196         /* TODO: depending on s->setup[4] bits [1:0] assert an IRQ or
2197          * a DRQ.  When is the level IRQ supposed to be reset?  */
2198     }
2199 }
2200 
2201 static uint64_t omap_uwire_read(void *opaque, hwaddr addr, unsigned size)
2202 {
2203     struct omap_uwire_s *s = opaque;
2204     int offset = addr & OMAP_MPUI_REG_MASK;
2205 
2206     if (size != 2) {
2207         return omap_badwidth_read16(opaque, addr);
2208     }
2209 
2210     switch (offset) {
2211     case 0x00:	/* RDR */
2212         s->control &= ~(1 << 15);			/* RDRB */
2213         return s->rxbuf;
2214 
2215     case 0x04:	/* CSR */
2216         return s->control;
2217 
2218     case 0x08:	/* SR1 */
2219         return s->setup[0];
2220     case 0x0c:	/* SR2 */
2221         return s->setup[1];
2222     case 0x10:	/* SR3 */
2223         return s->setup[2];
2224     case 0x14:	/* SR4 */
2225         return s->setup[3];
2226     case 0x18:	/* SR5 */
2227         return s->setup[4];
2228     }
2229 
2230     OMAP_BAD_REG(addr);
2231     return 0;
2232 }
2233 
2234 static void omap_uwire_write(void *opaque, hwaddr addr,
2235                              uint64_t value, unsigned size)
2236 {
2237     struct omap_uwire_s *s = opaque;
2238     int offset = addr & OMAP_MPUI_REG_MASK;
2239 
2240     if (size != 2) {
2241         omap_badwidth_write16(opaque, addr, value);
2242         return;
2243     }
2244 
2245     switch (offset) {
2246     case 0x00:	/* TDR */
2247         s->txbuf = value;				/* TD */
2248         if ((s->setup[4] & (1 << 2)) &&			/* AUTO_TX_EN */
2249                         ((s->setup[4] & (1 << 3)) ||	/* CS_TOGGLE_TX_EN */
2250                          (s->control & (1 << 12)))) {	/* CS_CMD */
2251             s->control |= 1 << 14;			/* CSRB */
2252             omap_uwire_transfer_start(s);
2253         }
2254         break;
2255 
2256     case 0x04:	/* CSR */
2257         s->control = value & 0x1fff;
2258         if (value & (1 << 13))				/* START */
2259             omap_uwire_transfer_start(s);
2260         break;
2261 
2262     case 0x08:	/* SR1 */
2263         s->setup[0] = value & 0x003f;
2264         break;
2265 
2266     case 0x0c:	/* SR2 */
2267         s->setup[1] = value & 0x0fc0;
2268         break;
2269 
2270     case 0x10:	/* SR3 */
2271         s->setup[2] = value & 0x0003;
2272         break;
2273 
2274     case 0x14:	/* SR4 */
2275         s->setup[3] = value & 0x0001;
2276         break;
2277 
2278     case 0x18:	/* SR5 */
2279         s->setup[4] = value & 0x000f;
2280         break;
2281 
2282     default:
2283         OMAP_BAD_REG(addr);
2284         return;
2285     }
2286 }
2287 
2288 static const MemoryRegionOps omap_uwire_ops = {
2289     .read = omap_uwire_read,
2290     .write = omap_uwire_write,
2291     .endianness = DEVICE_NATIVE_ENDIAN,
2292 };
2293 
2294 static void omap_uwire_reset(struct omap_uwire_s *s)
2295 {
2296     s->control = 0;
2297     s->setup[0] = 0;
2298     s->setup[1] = 0;
2299     s->setup[2] = 0;
2300     s->setup[3] = 0;
2301     s->setup[4] = 0;
2302 }
2303 
2304 static struct omap_uwire_s *omap_uwire_init(MemoryRegion *system_memory,
2305                                             hwaddr base,
2306                                             qemu_irq txirq, qemu_irq rxirq,
2307                                             qemu_irq dma,
2308                                             omap_clk clk)
2309 {
2310     struct omap_uwire_s *s = g_new0(struct omap_uwire_s, 1);
2311 
2312     s->txirq = txirq;
2313     s->rxirq = rxirq;
2314     s->txdrq = dma;
2315     omap_uwire_reset(s);
2316 
2317     memory_region_init_io(&s->iomem, NULL, &omap_uwire_ops, s, "omap-uwire", 0x800);
2318     memory_region_add_subregion(system_memory, base, &s->iomem);
2319 
2320     return s;
2321 }
2322 
2323 /* Pseudonoise Pulse-Width Light Modulator */
2324 struct omap_pwl_s {
2325     MemoryRegion iomem;
2326     uint8_t output;
2327     uint8_t level;
2328     uint8_t enable;
2329     int clk;
2330 };
2331 
2332 static void omap_pwl_update(struct omap_pwl_s *s)
2333 {
2334     int output = (s->clk && s->enable) ? s->level : 0;
2335 
2336     if (output != s->output) {
2337         s->output = output;
2338         printf("%s: Backlight now at %i/256\n", __func__, output);
2339     }
2340 }
2341 
2342 static uint64_t omap_pwl_read(void *opaque, hwaddr addr, unsigned size)
2343 {
2344     struct omap_pwl_s *s = opaque;
2345     int offset = addr & OMAP_MPUI_REG_MASK;
2346 
2347     if (size != 1) {
2348         return omap_badwidth_read8(opaque, addr);
2349     }
2350 
2351     switch (offset) {
2352     case 0x00:	/* PWL_LEVEL */
2353         return s->level;
2354     case 0x04:	/* PWL_CTRL */
2355         return s->enable;
2356     }
2357     OMAP_BAD_REG(addr);
2358     return 0;
2359 }
2360 
2361 static void omap_pwl_write(void *opaque, hwaddr addr,
2362                            uint64_t value, unsigned size)
2363 {
2364     struct omap_pwl_s *s = opaque;
2365     int offset = addr & OMAP_MPUI_REG_MASK;
2366 
2367     if (size != 1) {
2368         omap_badwidth_write8(opaque, addr, value);
2369         return;
2370     }
2371 
2372     switch (offset) {
2373     case 0x00:	/* PWL_LEVEL */
2374         s->level = value;
2375         omap_pwl_update(s);
2376         break;
2377     case 0x04:	/* PWL_CTRL */
2378         s->enable = value & 1;
2379         omap_pwl_update(s);
2380         break;
2381     default:
2382         OMAP_BAD_REG(addr);
2383         return;
2384     }
2385 }
2386 
2387 static const MemoryRegionOps omap_pwl_ops = {
2388     .read = omap_pwl_read,
2389     .write = omap_pwl_write,
2390     .endianness = DEVICE_NATIVE_ENDIAN,
2391 };
2392 
2393 static void omap_pwl_reset(struct omap_pwl_s *s)
2394 {
2395     s->output = 0;
2396     s->level = 0;
2397     s->enable = 0;
2398     s->clk = 1;
2399     omap_pwl_update(s);
2400 }
2401 
2402 static void omap_pwl_clk_update(void *opaque, int line, int on)
2403 {
2404     struct omap_pwl_s *s = opaque;
2405 
2406     s->clk = on;
2407     omap_pwl_update(s);
2408 }
2409 
2410 static struct omap_pwl_s *omap_pwl_init(MemoryRegion *system_memory,
2411                                         hwaddr base,
2412                                         omap_clk clk)
2413 {
2414     struct omap_pwl_s *s = g_malloc0(sizeof(*s));
2415 
2416     omap_pwl_reset(s);
2417 
2418     memory_region_init_io(&s->iomem, NULL, &omap_pwl_ops, s,
2419                           "omap-pwl", 0x800);
2420     memory_region_add_subregion(system_memory, base, &s->iomem);
2421 
2422     omap_clk_adduser(clk, qemu_allocate_irq(omap_pwl_clk_update, s, 0));
2423     return s;
2424 }
2425 
2426 /* Pulse-Width Tone module */
2427 struct omap_pwt_s {
2428     MemoryRegion iomem;
2429     uint8_t frc;
2430     uint8_t vrc;
2431     uint8_t gcr;
2432     omap_clk clk;
2433 };
2434 
2435 static uint64_t omap_pwt_read(void *opaque, hwaddr addr, unsigned size)
2436 {
2437     struct omap_pwt_s *s = opaque;
2438     int offset = addr & OMAP_MPUI_REG_MASK;
2439 
2440     if (size != 1) {
2441         return omap_badwidth_read8(opaque, addr);
2442     }
2443 
2444     switch (offset) {
2445     case 0x00:	/* FRC */
2446         return s->frc;
2447     case 0x04:	/* VCR */
2448         return s->vrc;
2449     case 0x08:	/* GCR */
2450         return s->gcr;
2451     }
2452     OMAP_BAD_REG(addr);
2453     return 0;
2454 }
2455 
2456 static void omap_pwt_write(void *opaque, hwaddr addr,
2457                            uint64_t value, unsigned size)
2458 {
2459     struct omap_pwt_s *s = opaque;
2460     int offset = addr & OMAP_MPUI_REG_MASK;
2461 
2462     if (size != 1) {
2463         omap_badwidth_write8(opaque, addr, value);
2464         return;
2465     }
2466 
2467     switch (offset) {
2468     case 0x00:	/* FRC */
2469         s->frc = value & 0x3f;
2470         break;
2471     case 0x04:	/* VRC */
2472         if ((value ^ s->vrc) & 1) {
2473             if (value & 1)
2474                 printf("%s: %iHz buzz on\n", __func__, (int)
2475                                 /* 1.5 MHz from a 12-MHz or 13-MHz PWT_CLK */
2476                                 ((omap_clk_getrate(s->clk) >> 3) /
2477                                  /* Pre-multiplexer divider */
2478                                  ((s->gcr & 2) ? 1 : 154) /
2479                                  /* Octave multiplexer */
2480                                  (2 << (value & 3)) *
2481                                  /* 101/107 divider */
2482                                  ((value & (1 << 2)) ? 101 : 107) *
2483                                  /*  49/55 divider */
2484                                  ((value & (1 << 3)) ?  49 : 55) *
2485                                  /*  50/63 divider */
2486                                  ((value & (1 << 4)) ?  50 : 63) *
2487                                  /*  80/127 divider */
2488                                  ((value & (1 << 5)) ?  80 : 127) /
2489                                  (107 * 55 * 63 * 127)));
2490             else
2491                 printf("%s: silence!\n", __func__);
2492         }
2493         s->vrc = value & 0x7f;
2494         break;
2495     case 0x08:	/* GCR */
2496         s->gcr = value & 3;
2497         break;
2498     default:
2499         OMAP_BAD_REG(addr);
2500         return;
2501     }
2502 }
2503 
2504 static const MemoryRegionOps omap_pwt_ops = {
2505     .read =omap_pwt_read,
2506     .write = omap_pwt_write,
2507     .endianness = DEVICE_NATIVE_ENDIAN,
2508 };
2509 
2510 static void omap_pwt_reset(struct omap_pwt_s *s)
2511 {
2512     s->frc = 0;
2513     s->vrc = 0;
2514     s->gcr = 0;
2515 }
2516 
2517 static struct omap_pwt_s *omap_pwt_init(MemoryRegion *system_memory,
2518                                         hwaddr base,
2519                                         omap_clk clk)
2520 {
2521     struct omap_pwt_s *s = g_malloc0(sizeof(*s));
2522     s->clk = clk;
2523     omap_pwt_reset(s);
2524 
2525     memory_region_init_io(&s->iomem, NULL, &omap_pwt_ops, s,
2526                           "omap-pwt", 0x800);
2527     memory_region_add_subregion(system_memory, base, &s->iomem);
2528     return s;
2529 }
2530 
2531 /* Real-time Clock module */
2532 struct omap_rtc_s {
2533     MemoryRegion iomem;
2534     qemu_irq irq;
2535     qemu_irq alarm;
2536     QEMUTimer *clk;
2537 
2538     uint8_t interrupts;
2539     uint8_t status;
2540     int16_t comp_reg;
2541     int running;
2542     int pm_am;
2543     int auto_comp;
2544     int round;
2545     struct tm alarm_tm;
2546     time_t alarm_ti;
2547 
2548     struct tm current_tm;
2549     time_t ti;
2550     uint64_t tick;
2551 };
2552 
2553 static void omap_rtc_interrupts_update(struct omap_rtc_s *s)
2554 {
2555     /* s->alarm is level-triggered */
2556     qemu_set_irq(s->alarm, (s->status >> 6) & 1);
2557 }
2558 
2559 static void omap_rtc_alarm_update(struct omap_rtc_s *s)
2560 {
2561     s->alarm_ti = mktimegm(&s->alarm_tm);
2562     if (s->alarm_ti == -1)
2563         printf("%s: conversion failed\n", __func__);
2564 }
2565 
2566 static uint64_t omap_rtc_read(void *opaque, hwaddr addr, unsigned size)
2567 {
2568     struct omap_rtc_s *s = opaque;
2569     int offset = addr & OMAP_MPUI_REG_MASK;
2570     uint8_t i;
2571 
2572     if (size != 1) {
2573         return omap_badwidth_read8(opaque, addr);
2574     }
2575 
2576     switch (offset) {
2577     case 0x00:	/* SECONDS_REG */
2578         return to_bcd(s->current_tm.tm_sec);
2579 
2580     case 0x04:	/* MINUTES_REG */
2581         return to_bcd(s->current_tm.tm_min);
2582 
2583     case 0x08:	/* HOURS_REG */
2584         if (s->pm_am)
2585             return ((s->current_tm.tm_hour > 11) << 7) |
2586                     to_bcd(((s->current_tm.tm_hour - 1) % 12) + 1);
2587         else
2588             return to_bcd(s->current_tm.tm_hour);
2589 
2590     case 0x0c:	/* DAYS_REG */
2591         return to_bcd(s->current_tm.tm_mday);
2592 
2593     case 0x10:	/* MONTHS_REG */
2594         return to_bcd(s->current_tm.tm_mon + 1);
2595 
2596     case 0x14:	/* YEARS_REG */
2597         return to_bcd(s->current_tm.tm_year % 100);
2598 
2599     case 0x18:	/* WEEK_REG */
2600         return s->current_tm.tm_wday;
2601 
2602     case 0x20:	/* ALARM_SECONDS_REG */
2603         return to_bcd(s->alarm_tm.tm_sec);
2604 
2605     case 0x24:	/* ALARM_MINUTES_REG */
2606         return to_bcd(s->alarm_tm.tm_min);
2607 
2608     case 0x28:	/* ALARM_HOURS_REG */
2609         if (s->pm_am)
2610             return ((s->alarm_tm.tm_hour > 11) << 7) |
2611                     to_bcd(((s->alarm_tm.tm_hour - 1) % 12) + 1);
2612         else
2613             return to_bcd(s->alarm_tm.tm_hour);
2614 
2615     case 0x2c:	/* ALARM_DAYS_REG */
2616         return to_bcd(s->alarm_tm.tm_mday);
2617 
2618     case 0x30:	/* ALARM_MONTHS_REG */
2619         return to_bcd(s->alarm_tm.tm_mon + 1);
2620 
2621     case 0x34:	/* ALARM_YEARS_REG */
2622         return to_bcd(s->alarm_tm.tm_year % 100);
2623 
2624     case 0x40:	/* RTC_CTRL_REG */
2625         return (s->pm_am << 3) | (s->auto_comp << 2) |
2626                 (s->round << 1) | s->running;
2627 
2628     case 0x44:	/* RTC_STATUS_REG */
2629         i = s->status;
2630         s->status &= ~0x3d;
2631         return i;
2632 
2633     case 0x48:	/* RTC_INTERRUPTS_REG */
2634         return s->interrupts;
2635 
2636     case 0x4c:	/* RTC_COMP_LSB_REG */
2637         return ((uint16_t) s->comp_reg) & 0xff;
2638 
2639     case 0x50:	/* RTC_COMP_MSB_REG */
2640         return ((uint16_t) s->comp_reg) >> 8;
2641     }
2642 
2643     OMAP_BAD_REG(addr);
2644     return 0;
2645 }
2646 
2647 static void omap_rtc_write(void *opaque, hwaddr addr,
2648                            uint64_t value, unsigned size)
2649 {
2650     struct omap_rtc_s *s = opaque;
2651     int offset = addr & OMAP_MPUI_REG_MASK;
2652     struct tm new_tm;
2653     time_t ti[2];
2654 
2655     if (size != 1) {
2656         omap_badwidth_write8(opaque, addr, value);
2657         return;
2658     }
2659 
2660     switch (offset) {
2661     case 0x00:	/* SECONDS_REG */
2662 #ifdef ALMDEBUG
2663         printf("RTC SEC_REG <-- %02x\n", value);
2664 #endif
2665         s->ti -= s->current_tm.tm_sec;
2666         s->ti += from_bcd(value);
2667         return;
2668 
2669     case 0x04:	/* MINUTES_REG */
2670 #ifdef ALMDEBUG
2671         printf("RTC MIN_REG <-- %02x\n", value);
2672 #endif
2673         s->ti -= s->current_tm.tm_min * 60;
2674         s->ti += from_bcd(value) * 60;
2675         return;
2676 
2677     case 0x08:	/* HOURS_REG */
2678 #ifdef ALMDEBUG
2679         printf("RTC HRS_REG <-- %02x\n", value);
2680 #endif
2681         s->ti -= s->current_tm.tm_hour * 3600;
2682         if (s->pm_am) {
2683             s->ti += (from_bcd(value & 0x3f) & 12) * 3600;
2684             s->ti += ((value >> 7) & 1) * 43200;
2685         } else
2686             s->ti += from_bcd(value & 0x3f) * 3600;
2687         return;
2688 
2689     case 0x0c:	/* DAYS_REG */
2690 #ifdef ALMDEBUG
2691         printf("RTC DAY_REG <-- %02x\n", value);
2692 #endif
2693         s->ti -= s->current_tm.tm_mday * 86400;
2694         s->ti += from_bcd(value) * 86400;
2695         return;
2696 
2697     case 0x10:	/* MONTHS_REG */
2698 #ifdef ALMDEBUG
2699         printf("RTC MTH_REG <-- %02x\n", value);
2700 #endif
2701         memcpy(&new_tm, &s->current_tm, sizeof(new_tm));
2702         new_tm.tm_mon = from_bcd(value);
2703         ti[0] = mktimegm(&s->current_tm);
2704         ti[1] = mktimegm(&new_tm);
2705 
2706         if (ti[0] != -1 && ti[1] != -1) {
2707             s->ti -= ti[0];
2708             s->ti += ti[1];
2709         } else {
2710             /* A less accurate version */
2711             s->ti -= s->current_tm.tm_mon * 2592000;
2712             s->ti += from_bcd(value) * 2592000;
2713         }
2714         return;
2715 
2716     case 0x14:	/* YEARS_REG */
2717 #ifdef ALMDEBUG
2718         printf("RTC YRS_REG <-- %02x\n", value);
2719 #endif
2720         memcpy(&new_tm, &s->current_tm, sizeof(new_tm));
2721         new_tm.tm_year += from_bcd(value) - (new_tm.tm_year % 100);
2722         ti[0] = mktimegm(&s->current_tm);
2723         ti[1] = mktimegm(&new_tm);
2724 
2725         if (ti[0] != -1 && ti[1] != -1) {
2726             s->ti -= ti[0];
2727             s->ti += ti[1];
2728         } else {
2729             /* A less accurate version */
2730             s->ti -= (time_t)(s->current_tm.tm_year % 100) * 31536000;
2731             s->ti += (time_t)from_bcd(value) * 31536000;
2732         }
2733         return;
2734 
2735     case 0x18:	/* WEEK_REG */
2736         return;	/* Ignored */
2737 
2738     case 0x20:	/* ALARM_SECONDS_REG */
2739 #ifdef ALMDEBUG
2740         printf("ALM SEC_REG <-- %02x\n", value);
2741 #endif
2742         s->alarm_tm.tm_sec = from_bcd(value);
2743         omap_rtc_alarm_update(s);
2744         return;
2745 
2746     case 0x24:	/* ALARM_MINUTES_REG */
2747 #ifdef ALMDEBUG
2748         printf("ALM MIN_REG <-- %02x\n", value);
2749 #endif
2750         s->alarm_tm.tm_min = from_bcd(value);
2751         omap_rtc_alarm_update(s);
2752         return;
2753 
2754     case 0x28:	/* ALARM_HOURS_REG */
2755 #ifdef ALMDEBUG
2756         printf("ALM HRS_REG <-- %02x\n", value);
2757 #endif
2758         if (s->pm_am)
2759             s->alarm_tm.tm_hour =
2760                     ((from_bcd(value & 0x3f)) % 12) +
2761                     ((value >> 7) & 1) * 12;
2762         else
2763             s->alarm_tm.tm_hour = from_bcd(value);
2764         omap_rtc_alarm_update(s);
2765         return;
2766 
2767     case 0x2c:	/* ALARM_DAYS_REG */
2768 #ifdef ALMDEBUG
2769         printf("ALM DAY_REG <-- %02x\n", value);
2770 #endif
2771         s->alarm_tm.tm_mday = from_bcd(value);
2772         omap_rtc_alarm_update(s);
2773         return;
2774 
2775     case 0x30:	/* ALARM_MONTHS_REG */
2776 #ifdef ALMDEBUG
2777         printf("ALM MON_REG <-- %02x\n", value);
2778 #endif
2779         s->alarm_tm.tm_mon = from_bcd(value);
2780         omap_rtc_alarm_update(s);
2781         return;
2782 
2783     case 0x34:	/* ALARM_YEARS_REG */
2784 #ifdef ALMDEBUG
2785         printf("ALM YRS_REG <-- %02x\n", value);
2786 #endif
2787         s->alarm_tm.tm_year = from_bcd(value);
2788         omap_rtc_alarm_update(s);
2789         return;
2790 
2791     case 0x40:	/* RTC_CTRL_REG */
2792 #ifdef ALMDEBUG
2793         printf("RTC CONTROL <-- %02x\n", value);
2794 #endif
2795         s->pm_am = (value >> 3) & 1;
2796         s->auto_comp = (value >> 2) & 1;
2797         s->round = (value >> 1) & 1;
2798         s->running = value & 1;
2799         s->status &= 0xfd;
2800         s->status |= s->running << 1;
2801         return;
2802 
2803     case 0x44:	/* RTC_STATUS_REG */
2804 #ifdef ALMDEBUG
2805         printf("RTC STATUSL <-- %02x\n", value);
2806 #endif
2807         s->status &= ~((value & 0xc0) ^ 0x80);
2808         omap_rtc_interrupts_update(s);
2809         return;
2810 
2811     case 0x48:	/* RTC_INTERRUPTS_REG */
2812 #ifdef ALMDEBUG
2813         printf("RTC INTRS <-- %02x\n", value);
2814 #endif
2815         s->interrupts = value;
2816         return;
2817 
2818     case 0x4c:	/* RTC_COMP_LSB_REG */
2819 #ifdef ALMDEBUG
2820         printf("RTC COMPLSB <-- %02x\n", value);
2821 #endif
2822         s->comp_reg &= 0xff00;
2823         s->comp_reg |= 0x00ff & value;
2824         return;
2825 
2826     case 0x50:	/* RTC_COMP_MSB_REG */
2827 #ifdef ALMDEBUG
2828         printf("RTC COMPMSB <-- %02x\n", value);
2829 #endif
2830         s->comp_reg &= 0x00ff;
2831         s->comp_reg |= 0xff00 & (value << 8);
2832         return;
2833 
2834     default:
2835         OMAP_BAD_REG(addr);
2836         return;
2837     }
2838 }
2839 
2840 static const MemoryRegionOps omap_rtc_ops = {
2841     .read = omap_rtc_read,
2842     .write = omap_rtc_write,
2843     .endianness = DEVICE_NATIVE_ENDIAN,
2844 };
2845 
2846 static void omap_rtc_tick(void *opaque)
2847 {
2848     struct omap_rtc_s *s = opaque;
2849 
2850     if (s->round) {
2851         /* Round to nearest full minute.  */
2852         if (s->current_tm.tm_sec < 30)
2853             s->ti -= s->current_tm.tm_sec;
2854         else
2855             s->ti += 60 - s->current_tm.tm_sec;
2856 
2857         s->round = 0;
2858     }
2859 
2860     localtime_r(&s->ti, &s->current_tm);
2861 
2862     if ((s->interrupts & 0x08) && s->ti == s->alarm_ti) {
2863         s->status |= 0x40;
2864         omap_rtc_interrupts_update(s);
2865     }
2866 
2867     if (s->interrupts & 0x04)
2868         switch (s->interrupts & 3) {
2869         case 0:
2870             s->status |= 0x04;
2871             qemu_irq_pulse(s->irq);
2872             break;
2873         case 1:
2874             if (s->current_tm.tm_sec)
2875                 break;
2876             s->status |= 0x08;
2877             qemu_irq_pulse(s->irq);
2878             break;
2879         case 2:
2880             if (s->current_tm.tm_sec || s->current_tm.tm_min)
2881                 break;
2882             s->status |= 0x10;
2883             qemu_irq_pulse(s->irq);
2884             break;
2885         case 3:
2886             if (s->current_tm.tm_sec ||
2887                             s->current_tm.tm_min || s->current_tm.tm_hour)
2888                 break;
2889             s->status |= 0x20;
2890             qemu_irq_pulse(s->irq);
2891             break;
2892         }
2893 
2894     /* Move on */
2895     if (s->running)
2896         s->ti ++;
2897     s->tick += 1000;
2898 
2899     /*
2900      * Every full hour add a rough approximation of the compensation
2901      * register to the 32kHz Timer (which drives the RTC) value.
2902      */
2903     if (s->auto_comp && !s->current_tm.tm_sec && !s->current_tm.tm_min)
2904         s->tick += s->comp_reg * 1000 / 32768;
2905 
2906     timer_mod(s->clk, s->tick);
2907 }
2908 
2909 static void omap_rtc_reset(struct omap_rtc_s *s)
2910 {
2911     struct tm tm;
2912 
2913     s->interrupts = 0;
2914     s->comp_reg = 0;
2915     s->running = 0;
2916     s->pm_am = 0;
2917     s->auto_comp = 0;
2918     s->round = 0;
2919     s->tick = qemu_clock_get_ms(rtc_clock);
2920     memset(&s->alarm_tm, 0, sizeof(s->alarm_tm));
2921     s->alarm_tm.tm_mday = 0x01;
2922     s->status = 1 << 7;
2923     qemu_get_timedate(&tm, 0);
2924     s->ti = mktimegm(&tm);
2925 
2926     omap_rtc_alarm_update(s);
2927     omap_rtc_tick(s);
2928 }
2929 
2930 static struct omap_rtc_s *omap_rtc_init(MemoryRegion *system_memory,
2931                                         hwaddr base,
2932                                         qemu_irq timerirq, qemu_irq alarmirq,
2933                                         omap_clk clk)
2934 {
2935     struct omap_rtc_s *s = g_new0(struct omap_rtc_s, 1);
2936 
2937     s->irq = timerirq;
2938     s->alarm = alarmirq;
2939     s->clk = timer_new_ms(rtc_clock, omap_rtc_tick, s);
2940 
2941     omap_rtc_reset(s);
2942 
2943     memory_region_init_io(&s->iomem, NULL, &omap_rtc_ops, s,
2944                           "omap-rtc", 0x800);
2945     memory_region_add_subregion(system_memory, base, &s->iomem);
2946 
2947     return s;
2948 }
2949 
2950 /* Multi-channel Buffered Serial Port interfaces */
2951 struct omap_mcbsp_s {
2952     MemoryRegion iomem;
2953     qemu_irq txirq;
2954     qemu_irq rxirq;
2955     qemu_irq txdrq;
2956     qemu_irq rxdrq;
2957 
2958     uint16_t spcr[2];
2959     uint16_t rcr[2];
2960     uint16_t xcr[2];
2961     uint16_t srgr[2];
2962     uint16_t mcr[2];
2963     uint16_t pcr;
2964     uint16_t rcer[8];
2965     uint16_t xcer[8];
2966     int tx_rate;
2967     int rx_rate;
2968     int tx_req;
2969     int rx_req;
2970 
2971     I2SCodec *codec;
2972     QEMUTimer *source_timer;
2973     QEMUTimer *sink_timer;
2974 };
2975 
2976 static void omap_mcbsp_intr_update(struct omap_mcbsp_s *s)
2977 {
2978     int irq;
2979 
2980     switch ((s->spcr[0] >> 4) & 3) {			/* RINTM */
2981     case 0:
2982         irq = (s->spcr[0] >> 1) & 1;			/* RRDY */
2983         break;
2984     case 3:
2985         irq = (s->spcr[0] >> 3) & 1;			/* RSYNCERR */
2986         break;
2987     default:
2988         irq = 0;
2989         break;
2990     }
2991 
2992     if (irq)
2993         qemu_irq_pulse(s->rxirq);
2994 
2995     switch ((s->spcr[1] >> 4) & 3) {			/* XINTM */
2996     case 0:
2997         irq = (s->spcr[1] >> 1) & 1;			/* XRDY */
2998         break;
2999     case 3:
3000         irq = (s->spcr[1] >> 3) & 1;			/* XSYNCERR */
3001         break;
3002     default:
3003         irq = 0;
3004         break;
3005     }
3006 
3007     if (irq)
3008         qemu_irq_pulse(s->txirq);
3009 }
3010 
3011 static void omap_mcbsp_rx_newdata(struct omap_mcbsp_s *s)
3012 {
3013     if ((s->spcr[0] >> 1) & 1)				/* RRDY */
3014         s->spcr[0] |= 1 << 2;				/* RFULL */
3015     s->spcr[0] |= 1 << 1;				/* RRDY */
3016     qemu_irq_raise(s->rxdrq);
3017     omap_mcbsp_intr_update(s);
3018 }
3019 
3020 static void omap_mcbsp_source_tick(void *opaque)
3021 {
3022     struct omap_mcbsp_s *s = opaque;
3023     static const int bps[8] = { 0, 1, 1, 2, 2, 2, -255, -255 };
3024 
3025     if (!s->rx_rate)
3026         return;
3027     if (s->rx_req)
3028         printf("%s: Rx FIFO overrun\n", __func__);
3029 
3030     s->rx_req = s->rx_rate << bps[(s->rcr[0] >> 5) & 7];
3031 
3032     omap_mcbsp_rx_newdata(s);
3033     timer_mod(s->source_timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
3034                    NANOSECONDS_PER_SECOND);
3035 }
3036 
3037 static void omap_mcbsp_rx_start(struct omap_mcbsp_s *s)
3038 {
3039     if (!s->codec || !s->codec->rts)
3040         omap_mcbsp_source_tick(s);
3041     else if (s->codec->in.len) {
3042         s->rx_req = s->codec->in.len;
3043         omap_mcbsp_rx_newdata(s);
3044     }
3045 }
3046 
3047 static void omap_mcbsp_rx_stop(struct omap_mcbsp_s *s)
3048 {
3049     timer_del(s->source_timer);
3050 }
3051 
3052 static void omap_mcbsp_rx_done(struct omap_mcbsp_s *s)
3053 {
3054     s->spcr[0] &= ~(1 << 1);				/* RRDY */
3055     qemu_irq_lower(s->rxdrq);
3056     omap_mcbsp_intr_update(s);
3057 }
3058 
3059 static void omap_mcbsp_tx_newdata(struct omap_mcbsp_s *s)
3060 {
3061     s->spcr[1] |= 1 << 1;				/* XRDY */
3062     qemu_irq_raise(s->txdrq);
3063     omap_mcbsp_intr_update(s);
3064 }
3065 
3066 static void omap_mcbsp_sink_tick(void *opaque)
3067 {
3068     struct omap_mcbsp_s *s = opaque;
3069     static const int bps[8] = { 0, 1, 1, 2, 2, 2, -255, -255 };
3070 
3071     if (!s->tx_rate)
3072         return;
3073     if (s->tx_req)
3074         printf("%s: Tx FIFO underrun\n", __func__);
3075 
3076     s->tx_req = s->tx_rate << bps[(s->xcr[0] >> 5) & 7];
3077 
3078     omap_mcbsp_tx_newdata(s);
3079     timer_mod(s->sink_timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
3080                    NANOSECONDS_PER_SECOND);
3081 }
3082 
3083 static void omap_mcbsp_tx_start(struct omap_mcbsp_s *s)
3084 {
3085     if (!s->codec || !s->codec->cts)
3086         omap_mcbsp_sink_tick(s);
3087     else if (s->codec->out.size) {
3088         s->tx_req = s->codec->out.size;
3089         omap_mcbsp_tx_newdata(s);
3090     }
3091 }
3092 
3093 static void omap_mcbsp_tx_done(struct omap_mcbsp_s *s)
3094 {
3095     s->spcr[1] &= ~(1 << 1);				/* XRDY */
3096     qemu_irq_lower(s->txdrq);
3097     omap_mcbsp_intr_update(s);
3098     if (s->codec && s->codec->cts)
3099         s->codec->tx_swallow(s->codec->opaque);
3100 }
3101 
3102 static void omap_mcbsp_tx_stop(struct omap_mcbsp_s *s)
3103 {
3104     s->tx_req = 0;
3105     omap_mcbsp_tx_done(s);
3106     timer_del(s->sink_timer);
3107 }
3108 
3109 static void omap_mcbsp_req_update(struct omap_mcbsp_s *s)
3110 {
3111     int prev_rx_rate, prev_tx_rate;
3112     int rx_rate = 0, tx_rate = 0;
3113     int cpu_rate = 1500000;	/* XXX */
3114 
3115     /* TODO: check CLKSTP bit */
3116     if (s->spcr[1] & (1 << 6)) {			/* GRST */
3117         if (s->spcr[0] & (1 << 0)) {			/* RRST */
3118             if ((s->srgr[1] & (1 << 13)) &&		/* CLKSM */
3119                             (s->pcr & (1 << 8))) {	/* CLKRM */
3120                 if (~s->pcr & (1 << 7))			/* SCLKME */
3121                     rx_rate = cpu_rate /
3122                             ((s->srgr[0] & 0xff) + 1);	/* CLKGDV */
3123             } else
3124                 if (s->codec)
3125                     rx_rate = s->codec->rx_rate;
3126         }
3127 
3128         if (s->spcr[1] & (1 << 0)) {			/* XRST */
3129             if ((s->srgr[1] & (1 << 13)) &&		/* CLKSM */
3130                             (s->pcr & (1 << 9))) {	/* CLKXM */
3131                 if (~s->pcr & (1 << 7))			/* SCLKME */
3132                     tx_rate = cpu_rate /
3133                             ((s->srgr[0] & 0xff) + 1);	/* CLKGDV */
3134             } else
3135                 if (s->codec)
3136                     tx_rate = s->codec->tx_rate;
3137         }
3138     }
3139     prev_tx_rate = s->tx_rate;
3140     prev_rx_rate = s->rx_rate;
3141     s->tx_rate = tx_rate;
3142     s->rx_rate = rx_rate;
3143 
3144     if (s->codec)
3145         s->codec->set_rate(s->codec->opaque, rx_rate, tx_rate);
3146 
3147     if (!prev_tx_rate && tx_rate)
3148         omap_mcbsp_tx_start(s);
3149     else if (s->tx_rate && !tx_rate)
3150         omap_mcbsp_tx_stop(s);
3151 
3152     if (!prev_rx_rate && rx_rate)
3153         omap_mcbsp_rx_start(s);
3154     else if (prev_tx_rate && !tx_rate)
3155         omap_mcbsp_rx_stop(s);
3156 }
3157 
3158 static uint64_t omap_mcbsp_read(void *opaque, hwaddr addr,
3159                                 unsigned size)
3160 {
3161     struct omap_mcbsp_s *s = opaque;
3162     int offset = addr & OMAP_MPUI_REG_MASK;
3163     uint16_t ret;
3164 
3165     if (size != 2) {
3166         return omap_badwidth_read16(opaque, addr);
3167     }
3168 
3169     switch (offset) {
3170     case 0x00:	/* DRR2 */
3171         if (((s->rcr[0] >> 5) & 7) < 3)			/* RWDLEN1 */
3172             return 0x0000;
3173         /* Fall through.  */
3174     case 0x02:	/* DRR1 */
3175         if (s->rx_req < 2) {
3176             printf("%s: Rx FIFO underrun\n", __func__);
3177             omap_mcbsp_rx_done(s);
3178         } else {
3179             s->tx_req -= 2;
3180             if (s->codec && s->codec->in.len >= 2) {
3181                 ret = s->codec->in.fifo[s->codec->in.start ++] << 8;
3182                 ret |= s->codec->in.fifo[s->codec->in.start ++];
3183                 s->codec->in.len -= 2;
3184             } else
3185                 ret = 0x0000;
3186             if (!s->tx_req)
3187                 omap_mcbsp_rx_done(s);
3188             return ret;
3189         }
3190         return 0x0000;
3191 
3192     case 0x04:	/* DXR2 */
3193     case 0x06:	/* DXR1 */
3194         return 0x0000;
3195 
3196     case 0x08:	/* SPCR2 */
3197         return s->spcr[1];
3198     case 0x0a:	/* SPCR1 */
3199         return s->spcr[0];
3200     case 0x0c:	/* RCR2 */
3201         return s->rcr[1];
3202     case 0x0e:	/* RCR1 */
3203         return s->rcr[0];
3204     case 0x10:	/* XCR2 */
3205         return s->xcr[1];
3206     case 0x12:	/* XCR1 */
3207         return s->xcr[0];
3208     case 0x14:	/* SRGR2 */
3209         return s->srgr[1];
3210     case 0x16:	/* SRGR1 */
3211         return s->srgr[0];
3212     case 0x18:	/* MCR2 */
3213         return s->mcr[1];
3214     case 0x1a:	/* MCR1 */
3215         return s->mcr[0];
3216     case 0x1c:	/* RCERA */
3217         return s->rcer[0];
3218     case 0x1e:	/* RCERB */
3219         return s->rcer[1];
3220     case 0x20:	/* XCERA */
3221         return s->xcer[0];
3222     case 0x22:	/* XCERB */
3223         return s->xcer[1];
3224     case 0x24:	/* PCR0 */
3225         return s->pcr;
3226     case 0x26:	/* RCERC */
3227         return s->rcer[2];
3228     case 0x28:	/* RCERD */
3229         return s->rcer[3];
3230     case 0x2a:	/* XCERC */
3231         return s->xcer[2];
3232     case 0x2c:	/* XCERD */
3233         return s->xcer[3];
3234     case 0x2e:	/* RCERE */
3235         return s->rcer[4];
3236     case 0x30:	/* RCERF */
3237         return s->rcer[5];
3238     case 0x32:	/* XCERE */
3239         return s->xcer[4];
3240     case 0x34:	/* XCERF */
3241         return s->xcer[5];
3242     case 0x36:	/* RCERG */
3243         return s->rcer[6];
3244     case 0x38:	/* RCERH */
3245         return s->rcer[7];
3246     case 0x3a:	/* XCERG */
3247         return s->xcer[6];
3248     case 0x3c:	/* XCERH */
3249         return s->xcer[7];
3250     }
3251 
3252     OMAP_BAD_REG(addr);
3253     return 0;
3254 }
3255 
3256 static void omap_mcbsp_writeh(void *opaque, hwaddr addr,
3257                 uint32_t value)
3258 {
3259     struct omap_mcbsp_s *s = opaque;
3260     int offset = addr & OMAP_MPUI_REG_MASK;
3261 
3262     switch (offset) {
3263     case 0x00:	/* DRR2 */
3264     case 0x02:	/* DRR1 */
3265         OMAP_RO_REG(addr);
3266         return;
3267 
3268     case 0x04:	/* DXR2 */
3269         if (((s->xcr[0] >> 5) & 7) < 3)			/* XWDLEN1 */
3270             return;
3271         /* Fall through.  */
3272     case 0x06:	/* DXR1 */
3273         if (s->tx_req > 1) {
3274             s->tx_req -= 2;
3275             if (s->codec && s->codec->cts) {
3276                 s->codec->out.fifo[s->codec->out.len ++] = (value >> 8) & 0xff;
3277                 s->codec->out.fifo[s->codec->out.len ++] = (value >> 0) & 0xff;
3278             }
3279             if (s->tx_req < 2)
3280                 omap_mcbsp_tx_done(s);
3281         } else
3282             printf("%s: Tx FIFO overrun\n", __func__);
3283         return;
3284 
3285     case 0x08:	/* SPCR2 */
3286         s->spcr[1] &= 0x0002;
3287         s->spcr[1] |= 0x03f9 & value;
3288         s->spcr[1] |= 0x0004 & (value << 2);		/* XEMPTY := XRST */
3289         if (~value & 1)					/* XRST */
3290             s->spcr[1] &= ~6;
3291         omap_mcbsp_req_update(s);
3292         return;
3293     case 0x0a:	/* SPCR1 */
3294         s->spcr[0] &= 0x0006;
3295         s->spcr[0] |= 0xf8f9 & value;
3296         if (value & (1 << 15))				/* DLB */
3297             printf("%s: Digital Loopback mode enable attempt\n", __func__);
3298         if (~value & 1) {				/* RRST */
3299             s->spcr[0] &= ~6;
3300             s->rx_req = 0;
3301             omap_mcbsp_rx_done(s);
3302         }
3303         omap_mcbsp_req_update(s);
3304         return;
3305 
3306     case 0x0c:	/* RCR2 */
3307         s->rcr[1] = value & 0xffff;
3308         return;
3309     case 0x0e:	/* RCR1 */
3310         s->rcr[0] = value & 0x7fe0;
3311         return;
3312     case 0x10:	/* XCR2 */
3313         s->xcr[1] = value & 0xffff;
3314         return;
3315     case 0x12:	/* XCR1 */
3316         s->xcr[0] = value & 0x7fe0;
3317         return;
3318     case 0x14:	/* SRGR2 */
3319         s->srgr[1] = value & 0xffff;
3320         omap_mcbsp_req_update(s);
3321         return;
3322     case 0x16:	/* SRGR1 */
3323         s->srgr[0] = value & 0xffff;
3324         omap_mcbsp_req_update(s);
3325         return;
3326     case 0x18:	/* MCR2 */
3327         s->mcr[1] = value & 0x03e3;
3328         if (value & 3)					/* XMCM */
3329             printf("%s: Tx channel selection mode enable attempt\n", __func__);
3330         return;
3331     case 0x1a:	/* MCR1 */
3332         s->mcr[0] = value & 0x03e1;
3333         if (value & 1)					/* RMCM */
3334             printf("%s: Rx channel selection mode enable attempt\n", __func__);
3335         return;
3336     case 0x1c:	/* RCERA */
3337         s->rcer[0] = value & 0xffff;
3338         return;
3339     case 0x1e:	/* RCERB */
3340         s->rcer[1] = value & 0xffff;
3341         return;
3342     case 0x20:	/* XCERA */
3343         s->xcer[0] = value & 0xffff;
3344         return;
3345     case 0x22:	/* XCERB */
3346         s->xcer[1] = value & 0xffff;
3347         return;
3348     case 0x24:	/* PCR0 */
3349         s->pcr = value & 0x7faf;
3350         return;
3351     case 0x26:	/* RCERC */
3352         s->rcer[2] = value & 0xffff;
3353         return;
3354     case 0x28:	/* RCERD */
3355         s->rcer[3] = value & 0xffff;
3356         return;
3357     case 0x2a:	/* XCERC */
3358         s->xcer[2] = value & 0xffff;
3359         return;
3360     case 0x2c:	/* XCERD */
3361         s->xcer[3] = value & 0xffff;
3362         return;
3363     case 0x2e:	/* RCERE */
3364         s->rcer[4] = value & 0xffff;
3365         return;
3366     case 0x30:	/* RCERF */
3367         s->rcer[5] = value & 0xffff;
3368         return;
3369     case 0x32:	/* XCERE */
3370         s->xcer[4] = value & 0xffff;
3371         return;
3372     case 0x34:	/* XCERF */
3373         s->xcer[5] = value & 0xffff;
3374         return;
3375     case 0x36:	/* RCERG */
3376         s->rcer[6] = value & 0xffff;
3377         return;
3378     case 0x38:	/* RCERH */
3379         s->rcer[7] = value & 0xffff;
3380         return;
3381     case 0x3a:	/* XCERG */
3382         s->xcer[6] = value & 0xffff;
3383         return;
3384     case 0x3c:	/* XCERH */
3385         s->xcer[7] = value & 0xffff;
3386         return;
3387     }
3388 
3389     OMAP_BAD_REG(addr);
3390 }
3391 
3392 static void omap_mcbsp_writew(void *opaque, hwaddr addr,
3393                 uint32_t value)
3394 {
3395     struct omap_mcbsp_s *s = opaque;
3396     int offset = addr & OMAP_MPUI_REG_MASK;
3397 
3398     if (offset == 0x04) {				/* DXR */
3399         if (((s->xcr[0] >> 5) & 7) < 3)			/* XWDLEN1 */
3400             return;
3401         if (s->tx_req > 3) {
3402             s->tx_req -= 4;
3403             if (s->codec && s->codec->cts) {
3404                 s->codec->out.fifo[s->codec->out.len ++] =
3405                         (value >> 24) & 0xff;
3406                 s->codec->out.fifo[s->codec->out.len ++] =
3407                         (value >> 16) & 0xff;
3408                 s->codec->out.fifo[s->codec->out.len ++] =
3409                         (value >> 8) & 0xff;
3410                 s->codec->out.fifo[s->codec->out.len ++] =
3411                         (value >> 0) & 0xff;
3412             }
3413             if (s->tx_req < 4)
3414                 omap_mcbsp_tx_done(s);
3415         } else
3416             printf("%s: Tx FIFO overrun\n", __func__);
3417         return;
3418     }
3419 
3420     omap_badwidth_write16(opaque, addr, value);
3421 }
3422 
3423 static void omap_mcbsp_write(void *opaque, hwaddr addr,
3424                              uint64_t value, unsigned size)
3425 {
3426     switch (size) {
3427     case 2:
3428         omap_mcbsp_writeh(opaque, addr, value);
3429         break;
3430     case 4:
3431         omap_mcbsp_writew(opaque, addr, value);
3432         break;
3433     default:
3434         omap_badwidth_write16(opaque, addr, value);
3435     }
3436 }
3437 
3438 static const MemoryRegionOps omap_mcbsp_ops = {
3439     .read = omap_mcbsp_read,
3440     .write = omap_mcbsp_write,
3441     .endianness = DEVICE_NATIVE_ENDIAN,
3442 };
3443 
3444 static void omap_mcbsp_reset(struct omap_mcbsp_s *s)
3445 {
3446     memset(&s->spcr, 0, sizeof(s->spcr));
3447     memset(&s->rcr, 0, sizeof(s->rcr));
3448     memset(&s->xcr, 0, sizeof(s->xcr));
3449     s->srgr[0] = 0x0001;
3450     s->srgr[1] = 0x2000;
3451     memset(&s->mcr, 0, sizeof(s->mcr));
3452     memset(&s->pcr, 0, sizeof(s->pcr));
3453     memset(&s->rcer, 0, sizeof(s->rcer));
3454     memset(&s->xcer, 0, sizeof(s->xcer));
3455     s->tx_req = 0;
3456     s->rx_req = 0;
3457     s->tx_rate = 0;
3458     s->rx_rate = 0;
3459     timer_del(s->source_timer);
3460     timer_del(s->sink_timer);
3461 }
3462 
3463 static struct omap_mcbsp_s *omap_mcbsp_init(MemoryRegion *system_memory,
3464                                             hwaddr base,
3465                                             qemu_irq txirq, qemu_irq rxirq,
3466                                             qemu_irq *dma, omap_clk clk)
3467 {
3468     struct omap_mcbsp_s *s = g_new0(struct omap_mcbsp_s, 1);
3469 
3470     s->txirq = txirq;
3471     s->rxirq = rxirq;
3472     s->txdrq = dma[0];
3473     s->rxdrq = dma[1];
3474     s->sink_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, omap_mcbsp_sink_tick, s);
3475     s->source_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, omap_mcbsp_source_tick, s);
3476     omap_mcbsp_reset(s);
3477 
3478     memory_region_init_io(&s->iomem, NULL, &omap_mcbsp_ops, s, "omap-mcbsp", 0x800);
3479     memory_region_add_subregion(system_memory, base, &s->iomem);
3480 
3481     return s;
3482 }
3483 
3484 static void omap_mcbsp_i2s_swallow(void *opaque, int line, int level)
3485 {
3486     struct omap_mcbsp_s *s = opaque;
3487 
3488     if (s->rx_rate) {
3489         s->rx_req = s->codec->in.len;
3490         omap_mcbsp_rx_newdata(s);
3491     }
3492 }
3493 
3494 static void omap_mcbsp_i2s_start(void *opaque, int line, int level)
3495 {
3496     struct omap_mcbsp_s *s = opaque;
3497 
3498     if (s->tx_rate) {
3499         s->tx_req = s->codec->out.size;
3500         omap_mcbsp_tx_newdata(s);
3501     }
3502 }
3503 
3504 void omap_mcbsp_i2s_attach(struct omap_mcbsp_s *s, I2SCodec *slave)
3505 {
3506     s->codec = slave;
3507     slave->rx_swallow = qemu_allocate_irq(omap_mcbsp_i2s_swallow, s, 0);
3508     slave->tx_start = qemu_allocate_irq(omap_mcbsp_i2s_start, s, 0);
3509 }
3510 
3511 /* LED Pulse Generators */
3512 struct omap_lpg_s {
3513     MemoryRegion iomem;
3514     QEMUTimer *tm;
3515 
3516     uint8_t control;
3517     uint8_t power;
3518     int64_t on;
3519     int64_t period;
3520     int clk;
3521     int cycle;
3522 };
3523 
3524 static void omap_lpg_tick(void *opaque)
3525 {
3526     struct omap_lpg_s *s = opaque;
3527 
3528     if (s->cycle)
3529         timer_mod(s->tm, qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL) + s->period - s->on);
3530     else
3531         timer_mod(s->tm, qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL) + s->on);
3532 
3533     s->cycle = !s->cycle;
3534     printf("%s: LED is %s\n", __func__, s->cycle ? "on" : "off");
3535 }
3536 
3537 static void omap_lpg_update(struct omap_lpg_s *s)
3538 {
3539     int64_t on, period = 1, ticks = 1000;
3540     static const int per[8] = { 1, 2, 4, 8, 12, 16, 20, 24 };
3541 
3542     if (~s->control & (1 << 6))					/* LPGRES */
3543         on = 0;
3544     else if (s->control & (1 << 7))				/* PERM_ON */
3545         on = period;
3546     else {
3547         period = muldiv64(ticks, per[s->control & 7],		/* PERCTRL */
3548                         256 / 32);
3549         on = (s->clk && s->power) ? muldiv64(ticks,
3550                         per[(s->control >> 3) & 7], 256) : 0;	/* ONCTRL */
3551     }
3552 
3553     timer_del(s->tm);
3554     if (on == period && s->on < s->period)
3555         printf("%s: LED is on\n", __func__);
3556     else if (on == 0 && s->on)
3557         printf("%s: LED is off\n", __func__);
3558     else if (on && (on != s->on || period != s->period)) {
3559         s->cycle = 0;
3560         s->on = on;
3561         s->period = period;
3562         omap_lpg_tick(s);
3563         return;
3564     }
3565 
3566     s->on = on;
3567     s->period = period;
3568 }
3569 
3570 static void omap_lpg_reset(struct omap_lpg_s *s)
3571 {
3572     s->control = 0x00;
3573     s->power = 0x00;
3574     s->clk = 1;
3575     omap_lpg_update(s);
3576 }
3577 
3578 static uint64_t omap_lpg_read(void *opaque, hwaddr addr, unsigned size)
3579 {
3580     struct omap_lpg_s *s = opaque;
3581     int offset = addr & OMAP_MPUI_REG_MASK;
3582 
3583     if (size != 1) {
3584         return omap_badwidth_read8(opaque, addr);
3585     }
3586 
3587     switch (offset) {
3588     case 0x00:	/* LCR */
3589         return s->control;
3590 
3591     case 0x04:	/* PMR */
3592         return s->power;
3593     }
3594 
3595     OMAP_BAD_REG(addr);
3596     return 0;
3597 }
3598 
3599 static void omap_lpg_write(void *opaque, hwaddr addr,
3600                            uint64_t value, unsigned size)
3601 {
3602     struct omap_lpg_s *s = opaque;
3603     int offset = addr & OMAP_MPUI_REG_MASK;
3604 
3605     if (size != 1) {
3606         omap_badwidth_write8(opaque, addr, value);
3607         return;
3608     }
3609 
3610     switch (offset) {
3611     case 0x00:	/* LCR */
3612         if (~value & (1 << 6))					/* LPGRES */
3613             omap_lpg_reset(s);
3614         s->control = value & 0xff;
3615         omap_lpg_update(s);
3616         return;
3617 
3618     case 0x04:	/* PMR */
3619         s->power = value & 0x01;
3620         omap_lpg_update(s);
3621         return;
3622 
3623     default:
3624         OMAP_BAD_REG(addr);
3625         return;
3626     }
3627 }
3628 
3629 static const MemoryRegionOps omap_lpg_ops = {
3630     .read = omap_lpg_read,
3631     .write = omap_lpg_write,
3632     .endianness = DEVICE_NATIVE_ENDIAN,
3633 };
3634 
3635 static void omap_lpg_clk_update(void *opaque, int line, int on)
3636 {
3637     struct omap_lpg_s *s = opaque;
3638 
3639     s->clk = on;
3640     omap_lpg_update(s);
3641 }
3642 
3643 static struct omap_lpg_s *omap_lpg_init(MemoryRegion *system_memory,
3644                                         hwaddr base, omap_clk clk)
3645 {
3646     struct omap_lpg_s *s = g_new0(struct omap_lpg_s, 1);
3647 
3648     s->tm = timer_new_ms(QEMU_CLOCK_VIRTUAL, omap_lpg_tick, s);
3649 
3650     omap_lpg_reset(s);
3651 
3652     memory_region_init_io(&s->iomem, NULL, &omap_lpg_ops, s, "omap-lpg", 0x800);
3653     memory_region_add_subregion(system_memory, base, &s->iomem);
3654 
3655     omap_clk_adduser(clk, qemu_allocate_irq(omap_lpg_clk_update, s, 0));
3656 
3657     return s;
3658 }
3659 
3660 /* MPUI Peripheral Bridge configuration */
3661 static uint64_t omap_mpui_io_read(void *opaque, hwaddr addr,
3662                                   unsigned size)
3663 {
3664     if (size != 2) {
3665         return omap_badwidth_read16(opaque, addr);
3666     }
3667 
3668     if (addr == OMAP_MPUI_BASE)	/* CMR */
3669         return 0xfe4d;
3670 
3671     OMAP_BAD_REG(addr);
3672     return 0;
3673 }
3674 
3675 static void omap_mpui_io_write(void *opaque, hwaddr addr,
3676                                uint64_t value, unsigned size)
3677 {
3678     /* FIXME: infinite loop */
3679     omap_badwidth_write16(opaque, addr, value);
3680 }
3681 
3682 static const MemoryRegionOps omap_mpui_io_ops = {
3683     .read = omap_mpui_io_read,
3684     .write = omap_mpui_io_write,
3685     .endianness = DEVICE_NATIVE_ENDIAN,
3686 };
3687 
3688 static void omap_setup_mpui_io(MemoryRegion *system_memory,
3689                                struct omap_mpu_state_s *mpu)
3690 {
3691     memory_region_init_io(&mpu->mpui_io_iomem, NULL, &omap_mpui_io_ops, mpu,
3692                           "omap-mpui-io", 0x7fff);
3693     memory_region_add_subregion(system_memory, OMAP_MPUI_BASE,
3694                                 &mpu->mpui_io_iomem);
3695 }
3696 
3697 /* General chip reset */
3698 static void omap1_mpu_reset(void *opaque)
3699 {
3700     struct omap_mpu_state_s *mpu = opaque;
3701 
3702     omap_dma_reset(mpu->dma);
3703     omap_mpu_timer_reset(mpu->timer[0]);
3704     omap_mpu_timer_reset(mpu->timer[1]);
3705     omap_mpu_timer_reset(mpu->timer[2]);
3706     omap_wd_timer_reset(mpu->wdt);
3707     omap_os_timer_reset(mpu->os_timer);
3708     omap_lcdc_reset(mpu->lcd);
3709     omap_ulpd_pm_reset(mpu);
3710     omap_pin_cfg_reset(mpu);
3711     omap_mpui_reset(mpu);
3712     omap_tipb_bridge_reset(mpu->private_tipb);
3713     omap_tipb_bridge_reset(mpu->public_tipb);
3714     omap_dpll_reset(mpu->dpll[0]);
3715     omap_dpll_reset(mpu->dpll[1]);
3716     omap_dpll_reset(mpu->dpll[2]);
3717     omap_uart_reset(mpu->uart[0]);
3718     omap_uart_reset(mpu->uart[1]);
3719     omap_uart_reset(mpu->uart[2]);
3720     omap_mpuio_reset(mpu->mpuio);
3721     omap_uwire_reset(mpu->microwire);
3722     omap_pwl_reset(mpu->pwl);
3723     omap_pwt_reset(mpu->pwt);
3724     omap_rtc_reset(mpu->rtc);
3725     omap_mcbsp_reset(mpu->mcbsp1);
3726     omap_mcbsp_reset(mpu->mcbsp2);
3727     omap_mcbsp_reset(mpu->mcbsp3);
3728     omap_lpg_reset(mpu->led[0]);
3729     omap_lpg_reset(mpu->led[1]);
3730     omap_clkm_reset(mpu);
3731     cpu_reset(CPU(mpu->cpu));
3732 }
3733 
3734 static const struct omap_map_s {
3735     hwaddr phys_dsp;
3736     hwaddr phys_mpu;
3737     uint32_t size;
3738     const char *name;
3739 } omap15xx_dsp_mm[] = {
3740     /* Strobe 0 */
3741     { 0xe1010000, 0xfffb0000, 0x800, "UART1 BT" },		/* CS0 */
3742     { 0xe1010800, 0xfffb0800, 0x800, "UART2 COM" },		/* CS1 */
3743     { 0xe1011800, 0xfffb1800, 0x800, "McBSP1 audio" },		/* CS3 */
3744     { 0xe1012000, 0xfffb2000, 0x800, "MCSI2 communication" },	/* CS4 */
3745     { 0xe1012800, 0xfffb2800, 0x800, "MCSI1 BT u-Law" },	/* CS5 */
3746     { 0xe1013000, 0xfffb3000, 0x800, "uWire" },			/* CS6 */
3747     { 0xe1013800, 0xfffb3800, 0x800, "I^2C" },			/* CS7 */
3748     { 0xe1014000, 0xfffb4000, 0x800, "USB W2FC" },		/* CS8 */
3749     { 0xe1014800, 0xfffb4800, 0x800, "RTC" },			/* CS9 */
3750     { 0xe1015000, 0xfffb5000, 0x800, "MPUIO" },			/* CS10 */
3751     { 0xe1015800, 0xfffb5800, 0x800, "PWL" },			/* CS11 */
3752     { 0xe1016000, 0xfffb6000, 0x800, "PWT" },			/* CS12 */
3753     { 0xe1017000, 0xfffb7000, 0x800, "McBSP3" },		/* CS14 */
3754     { 0xe1017800, 0xfffb7800, 0x800, "MMC" },			/* CS15 */
3755     { 0xe1019000, 0xfffb9000, 0x800, "32-kHz timer" },		/* CS18 */
3756     { 0xe1019800, 0xfffb9800, 0x800, "UART3" },			/* CS19 */
3757     { 0xe101c800, 0xfffbc800, 0x800, "TIPB switches" },		/* CS25 */
3758     /* Strobe 1 */
3759     { 0xe101e000, 0xfffce000, 0x800, "GPIOs" },			/* CS28 */
3760 
3761     { 0 }
3762 };
3763 
3764 static void omap_setup_dsp_mapping(MemoryRegion *system_memory,
3765                                    const struct omap_map_s *map)
3766 {
3767     MemoryRegion *io;
3768 
3769     for (; map->phys_dsp; map ++) {
3770         io = g_new(MemoryRegion, 1);
3771         memory_region_init_alias(io, NULL, map->name,
3772                                  system_memory, map->phys_mpu, map->size);
3773         memory_region_add_subregion(system_memory, map->phys_dsp, io);
3774     }
3775 }
3776 
3777 void omap_mpu_wakeup(void *opaque, int irq, int req)
3778 {
3779     struct omap_mpu_state_s *mpu = opaque;
3780     CPUState *cpu = CPU(mpu->cpu);
3781 
3782     if (cpu->halted) {
3783         cpu_interrupt(cpu, CPU_INTERRUPT_EXITTB);
3784     }
3785 }
3786 
3787 static const struct dma_irq_map omap1_dma_irq_map[] = {
3788     { 0, OMAP_INT_DMA_CH0_6 },
3789     { 0, OMAP_INT_DMA_CH1_7 },
3790     { 0, OMAP_INT_DMA_CH2_8 },
3791     { 0, OMAP_INT_DMA_CH3 },
3792     { 0, OMAP_INT_DMA_CH4 },
3793     { 0, OMAP_INT_DMA_CH5 },
3794     { 1, OMAP_INT_1610_DMA_CH6 },
3795     { 1, OMAP_INT_1610_DMA_CH7 },
3796     { 1, OMAP_INT_1610_DMA_CH8 },
3797     { 1, OMAP_INT_1610_DMA_CH9 },
3798     { 1, OMAP_INT_1610_DMA_CH10 },
3799     { 1, OMAP_INT_1610_DMA_CH11 },
3800     { 1, OMAP_INT_1610_DMA_CH12 },
3801     { 1, OMAP_INT_1610_DMA_CH13 },
3802     { 1, OMAP_INT_1610_DMA_CH14 },
3803     { 1, OMAP_INT_1610_DMA_CH15 }
3804 };
3805 
3806 /* DMA ports for OMAP1 */
3807 static int omap_validate_emiff_addr(struct omap_mpu_state_s *s,
3808                 hwaddr addr)
3809 {
3810     return range_covers_byte(OMAP_EMIFF_BASE, s->sdram_size, addr);
3811 }
3812 
3813 static int omap_validate_emifs_addr(struct omap_mpu_state_s *s,
3814                 hwaddr addr)
3815 {
3816     return range_covers_byte(OMAP_EMIFS_BASE, OMAP_EMIFF_BASE - OMAP_EMIFS_BASE,
3817                              addr);
3818 }
3819 
3820 static int omap_validate_imif_addr(struct omap_mpu_state_s *s,
3821                 hwaddr addr)
3822 {
3823     return range_covers_byte(OMAP_IMIF_BASE, s->sram_size, addr);
3824 }
3825 
3826 static int omap_validate_tipb_addr(struct omap_mpu_state_s *s,
3827                 hwaddr addr)
3828 {
3829     return range_covers_byte(0xfffb0000, 0xffff0000 - 0xfffb0000, addr);
3830 }
3831 
3832 static int omap_validate_local_addr(struct omap_mpu_state_s *s,
3833                 hwaddr addr)
3834 {
3835     return range_covers_byte(OMAP_LOCALBUS_BASE, 0x1000000, addr);
3836 }
3837 
3838 static int omap_validate_tipb_mpui_addr(struct omap_mpu_state_s *s,
3839                 hwaddr addr)
3840 {
3841     return range_covers_byte(0xe1010000, 0xe1020004 - 0xe1010000, addr);
3842 }
3843 
3844 struct omap_mpu_state_s *omap310_mpu_init(MemoryRegion *dram,
3845                 const char *cpu_type)
3846 {
3847     int i;
3848     struct omap_mpu_state_s *s = g_new0(struct omap_mpu_state_s, 1);
3849     qemu_irq dma_irqs[6];
3850     DriveInfo *dinfo;
3851     SysBusDevice *busdev;
3852     MemoryRegion *system_memory = get_system_memory();
3853 
3854     /* Core */
3855     s->mpu_model = omap310;
3856     s->cpu = ARM_CPU(cpu_create(cpu_type));
3857     s->sdram_size = memory_region_size(dram);
3858     s->sram_size = OMAP15XX_SRAM_SIZE;
3859 
3860     s->wakeup = qemu_allocate_irq(omap_mpu_wakeup, s, 0);
3861 
3862     /* Clocks */
3863     omap_clk_init(s);
3864 
3865     /* Memory-mapped stuff */
3866     memory_region_init_ram(&s->imif_ram, NULL, "omap1.sram", s->sram_size,
3867                            &error_fatal);
3868     memory_region_add_subregion(system_memory, OMAP_IMIF_BASE, &s->imif_ram);
3869 
3870     omap_clkm_init(system_memory, 0xfffece00, 0xe1008000, s);
3871 
3872     s->ih[0] = qdev_new("omap-intc");
3873     qdev_prop_set_uint32(s->ih[0], "size", 0x100);
3874     omap_intc_set_iclk(OMAP_INTC(s->ih[0]), omap_findclk(s, "arminth_ck"));
3875     busdev = SYS_BUS_DEVICE(s->ih[0]);
3876     sysbus_realize_and_unref(busdev, &error_fatal);
3877     sysbus_connect_irq(busdev, 0,
3878                        qdev_get_gpio_in(DEVICE(s->cpu), ARM_CPU_IRQ));
3879     sysbus_connect_irq(busdev, 1,
3880                        qdev_get_gpio_in(DEVICE(s->cpu), ARM_CPU_FIQ));
3881     sysbus_mmio_map(busdev, 0, 0xfffecb00);
3882     s->ih[1] = qdev_new("omap-intc");
3883     qdev_prop_set_uint32(s->ih[1], "size", 0x800);
3884     omap_intc_set_iclk(OMAP_INTC(s->ih[1]), omap_findclk(s, "arminth_ck"));
3885     busdev = SYS_BUS_DEVICE(s->ih[1]);
3886     sysbus_realize_and_unref(busdev, &error_fatal);
3887     sysbus_connect_irq(busdev, 0,
3888                        qdev_get_gpio_in(s->ih[0], OMAP_INT_15XX_IH2_IRQ));
3889     /* The second interrupt controller's FIQ output is not wired up */
3890     sysbus_mmio_map(busdev, 0, 0xfffe0000);
3891 
3892     for (i = 0; i < 6; i++) {
3893         dma_irqs[i] = qdev_get_gpio_in(s->ih[omap1_dma_irq_map[i].ih],
3894                                        omap1_dma_irq_map[i].intr);
3895     }
3896     s->dma = omap_dma_init(0xfffed800, dma_irqs, system_memory,
3897                            qdev_get_gpio_in(s->ih[0], OMAP_INT_DMA_LCD),
3898                            s, omap_findclk(s, "dma_ck"), omap_dma_3_1);
3899 
3900     s->port[emiff    ].addr_valid = omap_validate_emiff_addr;
3901     s->port[emifs    ].addr_valid = omap_validate_emifs_addr;
3902     s->port[imif     ].addr_valid = omap_validate_imif_addr;
3903     s->port[tipb     ].addr_valid = omap_validate_tipb_addr;
3904     s->port[local    ].addr_valid = omap_validate_local_addr;
3905     s->port[tipb_mpui].addr_valid = omap_validate_tipb_mpui_addr;
3906 
3907     /* Register SDRAM and SRAM DMA ports for fast transfers.  */
3908     soc_dma_port_add_mem(s->dma, memory_region_get_ram_ptr(dram),
3909                          OMAP_EMIFF_BASE, s->sdram_size);
3910     soc_dma_port_add_mem(s->dma, memory_region_get_ram_ptr(&s->imif_ram),
3911                          OMAP_IMIF_BASE, s->sram_size);
3912 
3913     s->timer[0] = omap_mpu_timer_init(system_memory, 0xfffec500,
3914                     qdev_get_gpio_in(s->ih[0], OMAP_INT_TIMER1),
3915                     omap_findclk(s, "mputim_ck"));
3916     s->timer[1] = omap_mpu_timer_init(system_memory, 0xfffec600,
3917                     qdev_get_gpio_in(s->ih[0], OMAP_INT_TIMER2),
3918                     omap_findclk(s, "mputim_ck"));
3919     s->timer[2] = omap_mpu_timer_init(system_memory, 0xfffec700,
3920                     qdev_get_gpio_in(s->ih[0], OMAP_INT_TIMER3),
3921                     omap_findclk(s, "mputim_ck"));
3922 
3923     s->wdt = omap_wd_timer_init(system_memory, 0xfffec800,
3924                     qdev_get_gpio_in(s->ih[0], OMAP_INT_WD_TIMER),
3925                     omap_findclk(s, "armwdt_ck"));
3926 
3927     s->os_timer = omap_os_timer_init(system_memory, 0xfffb9000,
3928                     qdev_get_gpio_in(s->ih[1], OMAP_INT_OS_TIMER),
3929                     omap_findclk(s, "clk32-kHz"));
3930 
3931     s->lcd = omap_lcdc_init(system_memory, 0xfffec000,
3932                             qdev_get_gpio_in(s->ih[0], OMAP_INT_LCD_CTRL),
3933                             omap_dma_get_lcdch(s->dma),
3934                             omap_findclk(s, "lcd_ck"));
3935 
3936     omap_ulpd_pm_init(system_memory, 0xfffe0800, s);
3937     omap_pin_cfg_init(system_memory, 0xfffe1000, s);
3938     omap_id_init(system_memory, s);
3939 
3940     omap_mpui_init(system_memory, 0xfffec900, s);
3941 
3942     s->private_tipb = omap_tipb_bridge_init(system_memory, 0xfffeca00,
3943                     qdev_get_gpio_in(s->ih[0], OMAP_INT_BRIDGE_PRIV),
3944                     omap_findclk(s, "tipb_ck"));
3945     s->public_tipb = omap_tipb_bridge_init(system_memory, 0xfffed300,
3946                     qdev_get_gpio_in(s->ih[0], OMAP_INT_BRIDGE_PUB),
3947                     omap_findclk(s, "tipb_ck"));
3948 
3949     omap_tcmi_init(system_memory, 0xfffecc00, s);
3950 
3951     s->uart[0] = omap_uart_init(0xfffb0000,
3952                                 qdev_get_gpio_in(s->ih[1], OMAP_INT_UART1),
3953                     omap_findclk(s, "uart1_ck"),
3954                     omap_findclk(s, "uart1_ck"),
3955                     s->drq[OMAP_DMA_UART1_TX], s->drq[OMAP_DMA_UART1_RX],
3956                     "uart1",
3957                     serial_hd(0));
3958     s->uart[1] = omap_uart_init(0xfffb0800,
3959                                 qdev_get_gpio_in(s->ih[1], OMAP_INT_UART2),
3960                     omap_findclk(s, "uart2_ck"),
3961                     omap_findclk(s, "uart2_ck"),
3962                     s->drq[OMAP_DMA_UART2_TX], s->drq[OMAP_DMA_UART2_RX],
3963                     "uart2",
3964                     serial_hd(0) ? serial_hd(1) : NULL);
3965     s->uart[2] = omap_uart_init(0xfffb9800,
3966                                 qdev_get_gpio_in(s->ih[0], OMAP_INT_UART3),
3967                     omap_findclk(s, "uart3_ck"),
3968                     omap_findclk(s, "uart3_ck"),
3969                     s->drq[OMAP_DMA_UART3_TX], s->drq[OMAP_DMA_UART3_RX],
3970                     "uart3",
3971                     serial_hd(0) && serial_hd(1) ? serial_hd(2) : NULL);
3972 
3973     s->dpll[0] = omap_dpll_init(system_memory, 0xfffecf00,
3974                                 omap_findclk(s, "dpll1"));
3975     s->dpll[1] = omap_dpll_init(system_memory, 0xfffed000,
3976                                 omap_findclk(s, "dpll2"));
3977     s->dpll[2] = omap_dpll_init(system_memory, 0xfffed100,
3978                                 omap_findclk(s, "dpll3"));
3979 
3980     dinfo = drive_get(IF_SD, 0, 0);
3981     if (!dinfo && !qtest_enabled()) {
3982         warn_report("missing SecureDigital device");
3983     }
3984 
3985     s->mmc = qdev_new(TYPE_OMAP_MMC);
3986     sysbus_realize_and_unref(SYS_BUS_DEVICE(s->mmc), &error_fatal);
3987     omap_mmc_set_clk(s->mmc, omap_findclk(s, "mmc_ck"));
3988 
3989     memory_region_add_subregion(system_memory, 0xfffb7800,
3990                                 sysbus_mmio_get_region(SYS_BUS_DEVICE(s->mmc), 0));
3991     qdev_connect_gpio_out_named(s->mmc, "dma-tx", 0, s->drq[OMAP_DMA_MMC_TX]);
3992     qdev_connect_gpio_out_named(s->mmc, "dma-rx", 0, s->drq[OMAP_DMA_MMC_RX]);
3993     sysbus_connect_irq(SYS_BUS_DEVICE(s->mmc), 0,
3994                        qdev_get_gpio_in(s->ih[1], OMAP_INT_OQN));
3995 
3996     if (dinfo) {
3997         DeviceState *card = qdev_new(TYPE_SD_CARD);
3998         qdev_prop_set_drive_err(card, "drive", blk_by_legacy_dinfo(dinfo),
3999                                 &error_fatal);
4000         qdev_realize_and_unref(card, qdev_get_child_bus(s->mmc, "sd-bus"),
4001                                &error_fatal);
4002     }
4003 
4004     s->mpuio = omap_mpuio_init(system_memory, 0xfffb5000,
4005                                qdev_get_gpio_in(s->ih[1], OMAP_INT_KEYBOARD),
4006                                qdev_get_gpio_in(s->ih[1], OMAP_INT_MPUIO),
4007                                s->wakeup, omap_findclk(s, "clk32-kHz"));
4008 
4009     s->gpio = qdev_new("omap-gpio");
4010     qdev_prop_set_int32(s->gpio, "mpu_model", s->mpu_model);
4011     omap_gpio_set_clk(OMAP1_GPIO(s->gpio), omap_findclk(s, "arm_gpio_ck"));
4012     sysbus_realize_and_unref(SYS_BUS_DEVICE(s->gpio), &error_fatal);
4013     sysbus_connect_irq(SYS_BUS_DEVICE(s->gpio), 0,
4014                        qdev_get_gpio_in(s->ih[0], OMAP_INT_GPIO_BANK1));
4015     sysbus_mmio_map(SYS_BUS_DEVICE(s->gpio), 0, 0xfffce000);
4016 
4017     s->microwire = omap_uwire_init(system_memory, 0xfffb3000,
4018                                    qdev_get_gpio_in(s->ih[1], OMAP_INT_uWireTX),
4019                                    qdev_get_gpio_in(s->ih[1], OMAP_INT_uWireRX),
4020                     s->drq[OMAP_DMA_UWIRE_TX], omap_findclk(s, "mpuper_ck"));
4021 
4022     s->pwl = omap_pwl_init(system_memory, 0xfffb5800,
4023                            omap_findclk(s, "armxor_ck"));
4024     s->pwt = omap_pwt_init(system_memory, 0xfffb6000,
4025                            omap_findclk(s, "armxor_ck"));
4026 
4027     s->i2c[0] = qdev_new("omap_i2c");
4028     qdev_prop_set_uint8(s->i2c[0], "revision", 0x11);
4029     omap_i2c_set_fclk(OMAP_I2C(s->i2c[0]), omap_findclk(s, "mpuper_ck"));
4030     busdev = SYS_BUS_DEVICE(s->i2c[0]);
4031     sysbus_realize_and_unref(busdev, &error_fatal);
4032     sysbus_connect_irq(busdev, 0, qdev_get_gpio_in(s->ih[1], OMAP_INT_I2C));
4033     sysbus_connect_irq(busdev, 1, s->drq[OMAP_DMA_I2C_TX]);
4034     sysbus_connect_irq(busdev, 2, s->drq[OMAP_DMA_I2C_RX]);
4035     sysbus_mmio_map(busdev, 0, 0xfffb3800);
4036 
4037     s->rtc = omap_rtc_init(system_memory, 0xfffb4800,
4038                            qdev_get_gpio_in(s->ih[1], OMAP_INT_RTC_TIMER),
4039                            qdev_get_gpio_in(s->ih[1], OMAP_INT_RTC_ALARM),
4040                     omap_findclk(s, "clk32-kHz"));
4041 
4042     s->mcbsp1 = omap_mcbsp_init(system_memory, 0xfffb1800,
4043                                 qdev_get_gpio_in(s->ih[1], OMAP_INT_McBSP1TX),
4044                                 qdev_get_gpio_in(s->ih[1], OMAP_INT_McBSP1RX),
4045                     &s->drq[OMAP_DMA_MCBSP1_TX], omap_findclk(s, "dspxor_ck"));
4046     s->mcbsp2 = omap_mcbsp_init(system_memory, 0xfffb1000,
4047                                 qdev_get_gpio_in(s->ih[0],
4048                                                  OMAP_INT_310_McBSP2_TX),
4049                                 qdev_get_gpio_in(s->ih[0],
4050                                                  OMAP_INT_310_McBSP2_RX),
4051                     &s->drq[OMAP_DMA_MCBSP2_TX], omap_findclk(s, "mpuper_ck"));
4052     s->mcbsp3 = omap_mcbsp_init(system_memory, 0xfffb7000,
4053                                 qdev_get_gpio_in(s->ih[1], OMAP_INT_McBSP3TX),
4054                                 qdev_get_gpio_in(s->ih[1], OMAP_INT_McBSP3RX),
4055                     &s->drq[OMAP_DMA_MCBSP3_TX], omap_findclk(s, "dspxor_ck"));
4056 
4057     s->led[0] = omap_lpg_init(system_memory,
4058                               0xfffbd000, omap_findclk(s, "clk32-kHz"));
4059     s->led[1] = omap_lpg_init(system_memory,
4060                               0xfffbd800, omap_findclk(s, "clk32-kHz"));
4061 
4062     /* Register mappings not currently implemented:
4063      * MCSI2 Comm	fffb2000 - fffb27ff (not mapped on OMAP310)
4064      * MCSI1 Bluetooth	fffb2800 - fffb2fff (not mapped on OMAP310)
4065      * USB W2FC		fffb4000 - fffb47ff
4066      * Camera Interface	fffb6800 - fffb6fff
4067      * USB Host		fffba000 - fffba7ff
4068      * FAC		fffba800 - fffbafff
4069      * HDQ/1-Wire	fffbc000 - fffbc7ff
4070      * TIPB switches	fffbc800 - fffbcfff
4071      * Mailbox		fffcf000 - fffcf7ff
4072      * Local bus IF	fffec100 - fffec1ff
4073      * Local bus MMU	fffec200 - fffec2ff
4074      * DSP MMU		fffed200 - fffed2ff
4075      */
4076 
4077     omap_setup_dsp_mapping(system_memory, omap15xx_dsp_mm);
4078     omap_setup_mpui_io(system_memory, s);
4079 
4080     qemu_register_reset(omap1_mpu_reset, s);
4081 
4082     return s;
4083 }
4084