xref: /qemu/hw/arm/omap1.c (revision 3228d311ab1882f75b04d080d33a71fc7a0bcac5)
1 /*
2  * TI OMAP processors emulation.
3  *
4  * Copyright (C) 2006-2008 Andrzej Zaborowski  <balrog@zabor.org>
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License as
8  * published by the Free Software Foundation; either version 2 or
9  * (at your option) version 3 of the License.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License along
17  * with this program; if not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #include "qemu/osdep.h"
21 #include "qemu/log.h"
22 #include "qemu/error-report.h"
23 #include "qemu/main-loop.h"
24 #include "qapi/error.h"
25 #include "cpu.h"
26 #include "exec/address-spaces.h"
27 #include "hw/hw.h"
28 #include "hw/irq.h"
29 #include "hw/qdev-properties.h"
30 #include "hw/arm/boot.h"
31 #include "hw/arm/omap.h"
32 #include "hw/sd/sd.h"
33 #include "system/blockdev.h"
34 #include "system/system.h"
35 #include "hw/arm/soc_dma.h"
36 #include "system/qtest.h"
37 #include "system/reset.h"
38 #include "system/runstate.h"
39 #include "system/rtc.h"
40 #include "qemu/range.h"
41 #include "hw/sysbus.h"
42 #include "qemu/cutils.h"
43 #include "qemu/bcd.h"
44 #include "target/arm/cpu-qom.h"
45 #include "trace.h"
46 
47 static inline void omap_log_badwidth(const char *funcname, hwaddr addr, int sz)
48 {
49     qemu_log_mask(LOG_GUEST_ERROR, "%s: %d-bit register %#08" HWADDR_PRIx "\n",
50                   funcname, 8 * sz, addr);
51 }
52 
53 /* Should signal the TCMI/GPMC */
54 uint32_t omap_badwidth_read8(void *opaque, hwaddr addr)
55 {
56     uint8_t ret;
57 
58     omap_log_badwidth(__func__, addr, 1);
59     cpu_physical_memory_read(addr, &ret, 1);
60     return ret;
61 }
62 
63 void omap_badwidth_write8(void *opaque, hwaddr addr,
64                 uint32_t value)
65 {
66     uint8_t val8 = value;
67 
68     omap_log_badwidth(__func__, addr, 1);
69     cpu_physical_memory_write(addr, &val8, 1);
70 }
71 
72 uint32_t omap_badwidth_read16(void *opaque, hwaddr addr)
73 {
74     uint16_t ret;
75 
76     omap_log_badwidth(__func__, addr, 2);
77     cpu_physical_memory_read(addr, &ret, 2);
78     return ret;
79 }
80 
81 void omap_badwidth_write16(void *opaque, hwaddr addr,
82                 uint32_t value)
83 {
84     uint16_t val16 = value;
85 
86     omap_log_badwidth(__func__, addr, 2);
87     cpu_physical_memory_write(addr, &val16, 2);
88 }
89 
90 uint32_t omap_badwidth_read32(void *opaque, hwaddr addr)
91 {
92     uint32_t ret;
93 
94     omap_log_badwidth(__func__, addr, 4);
95     cpu_physical_memory_read(addr, &ret, 4);
96     return ret;
97 }
98 
99 void omap_badwidth_write32(void *opaque, hwaddr addr,
100                 uint32_t value)
101 {
102     omap_log_badwidth(__func__, addr, 4);
103     cpu_physical_memory_write(addr, &value, 4);
104 }
105 
106 /* MPU OS timers */
107 struct omap_mpu_timer_s {
108     MemoryRegion iomem;
109     qemu_irq irq;
110     omap_clk clk;
111     uint32_t val;
112     int64_t time;
113     QEMUTimer *timer;
114     QEMUBH *tick;
115     int64_t rate;
116     int it_ena;
117 
118     int enable;
119     int ptv;
120     int ar;
121     int st;
122     uint32_t reset_val;
123 };
124 
125 static inline uint32_t omap_timer_read(struct omap_mpu_timer_s *timer)
126 {
127     uint64_t distance = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) - timer->time;
128 
129     if (timer->st && timer->enable && timer->rate)
130         return timer->val - muldiv64(distance >> (timer->ptv + 1),
131                                      timer->rate, NANOSECONDS_PER_SECOND);
132     else
133         return timer->val;
134 }
135 
136 static inline void omap_timer_sync(struct omap_mpu_timer_s *timer)
137 {
138     timer->val = omap_timer_read(timer);
139     timer->time = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
140 }
141 
142 static inline void omap_timer_update(struct omap_mpu_timer_s *timer)
143 {
144     int64_t expires;
145 
146     if (timer->enable && timer->st && timer->rate) {
147         timer->val = timer->reset_val;	/* Should skip this on clk enable */
148         expires = muldiv64((uint64_t) timer->val << (timer->ptv + 1),
149                            NANOSECONDS_PER_SECOND, timer->rate);
150 
151         /* If timer expiry would be sooner than in about 1 ms and
152          * auto-reload isn't set, then fire immediately.  This is a hack
153          * to make systems like PalmOS run in acceptable time.  PalmOS
154          * sets the interval to a very low value and polls the status bit
155          * in a busy loop when it wants to sleep just a couple of CPU
156          * ticks.  */
157         if (expires > (NANOSECONDS_PER_SECOND >> 10) || timer->ar) {
158             timer_mod(timer->timer, timer->time + expires);
159         } else {
160             qemu_bh_schedule(timer->tick);
161         }
162     } else
163         timer_del(timer->timer);
164 }
165 
166 static void omap_timer_fire(void *opaque)
167 {
168     struct omap_mpu_timer_s *timer = opaque;
169 
170     if (!timer->ar) {
171         timer->val = 0;
172         timer->st = 0;
173     }
174 
175     if (timer->it_ena)
176         /* Edge-triggered irq */
177         qemu_irq_pulse(timer->irq);
178 }
179 
180 static void omap_timer_tick(void *opaque)
181 {
182     struct omap_mpu_timer_s *timer = opaque;
183 
184     omap_timer_sync(timer);
185     omap_timer_fire(timer);
186     omap_timer_update(timer);
187 }
188 
189 static void omap_timer_clk_update(void *opaque, int line, int on)
190 {
191     struct omap_mpu_timer_s *timer = opaque;
192 
193     omap_timer_sync(timer);
194     timer->rate = on ? omap_clk_getrate(timer->clk) : 0;
195     omap_timer_update(timer);
196 }
197 
198 static void omap_timer_clk_setup(struct omap_mpu_timer_s *timer)
199 {
200     omap_clk_adduser(timer->clk,
201                     qemu_allocate_irq(omap_timer_clk_update, timer, 0));
202     timer->rate = omap_clk_getrate(timer->clk);
203 }
204 
205 static uint64_t omap_mpu_timer_read(void *opaque, hwaddr addr,
206                                     unsigned size)
207 {
208     struct omap_mpu_timer_s *s = opaque;
209 
210     if (size != 4) {
211         return omap_badwidth_read32(opaque, addr);
212     }
213 
214     switch (addr) {
215     case 0x00:	/* CNTL_TIMER */
216         return (s->enable << 5) | (s->ptv << 2) | (s->ar << 1) | s->st;
217 
218     case 0x04:	/* LOAD_TIM */
219         break;
220 
221     case 0x08:	/* READ_TIM */
222         return omap_timer_read(s);
223     }
224 
225     OMAP_BAD_REG(addr);
226     return 0;
227 }
228 
229 static void omap_mpu_timer_write(void *opaque, hwaddr addr,
230                                  uint64_t value, unsigned size)
231 {
232     struct omap_mpu_timer_s *s = opaque;
233 
234     if (size != 4) {
235         omap_badwidth_write32(opaque, addr, value);
236         return;
237     }
238 
239     switch (addr) {
240     case 0x00:	/* CNTL_TIMER */
241         omap_timer_sync(s);
242         s->enable = (value >> 5) & 1;
243         s->ptv = (value >> 2) & 7;
244         s->ar = (value >> 1) & 1;
245         s->st = value & 1;
246         omap_timer_update(s);
247         return;
248 
249     case 0x04:	/* LOAD_TIM */
250         s->reset_val = value;
251         return;
252 
253     case 0x08:	/* READ_TIM */
254         OMAP_RO_REG(addr);
255         break;
256 
257     default:
258         OMAP_BAD_REG(addr);
259     }
260 }
261 
262 static const MemoryRegionOps omap_mpu_timer_ops = {
263     .read = omap_mpu_timer_read,
264     .write = omap_mpu_timer_write,
265     .endianness = DEVICE_LITTLE_ENDIAN,
266 };
267 
268 static void omap_mpu_timer_reset(struct omap_mpu_timer_s *s)
269 {
270     timer_del(s->timer);
271     s->enable = 0;
272     s->reset_val = 31337;
273     s->val = 0;
274     s->ptv = 0;
275     s->ar = 0;
276     s->st = 0;
277     s->it_ena = 1;
278 }
279 
280 static struct omap_mpu_timer_s *omap_mpu_timer_init(MemoryRegion *system_memory,
281                 hwaddr base,
282                 qemu_irq irq, omap_clk clk)
283 {
284     struct omap_mpu_timer_s *s = g_new0(struct omap_mpu_timer_s, 1);
285 
286     s->irq = irq;
287     s->clk = clk;
288     s->timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, omap_timer_tick, s);
289     s->tick = qemu_bh_new(omap_timer_fire, s);
290     omap_mpu_timer_reset(s);
291     omap_timer_clk_setup(s);
292 
293     memory_region_init_io(&s->iomem, NULL, &omap_mpu_timer_ops, s,
294                           "omap-mpu-timer", 0x100);
295 
296     memory_region_add_subregion(system_memory, base, &s->iomem);
297 
298     return s;
299 }
300 
301 /* Watchdog timer */
302 struct omap_watchdog_timer_s {
303     struct omap_mpu_timer_s timer;
304     MemoryRegion iomem;
305     uint8_t last_wr;
306     int mode;
307     int free;
308     int reset;
309 };
310 
311 static uint64_t omap_wd_timer_read(void *opaque, hwaddr addr,
312                                    unsigned size)
313 {
314     struct omap_watchdog_timer_s *s = opaque;
315 
316     if (size != 2) {
317         return omap_badwidth_read16(opaque, addr);
318     }
319 
320     switch (addr) {
321     case 0x00:	/* CNTL_TIMER */
322         return (s->timer.ptv << 9) | (s->timer.ar << 8) |
323                 (s->timer.st << 7) | (s->free << 1);
324 
325     case 0x04:	/* READ_TIMER */
326         return omap_timer_read(&s->timer);
327 
328     case 0x08:	/* TIMER_MODE */
329         return s->mode << 15;
330     }
331 
332     OMAP_BAD_REG(addr);
333     return 0;
334 }
335 
336 static void omap_wd_timer_write(void *opaque, hwaddr addr,
337                                 uint64_t value, unsigned size)
338 {
339     struct omap_watchdog_timer_s *s = opaque;
340 
341     if (size != 2) {
342         omap_badwidth_write16(opaque, addr, value);
343         return;
344     }
345 
346     switch (addr) {
347     case 0x00:	/* CNTL_TIMER */
348         omap_timer_sync(&s->timer);
349         s->timer.ptv = (value >> 9) & 7;
350         s->timer.ar = (value >> 8) & 1;
351         s->timer.st = (value >> 7) & 1;
352         s->free = (value >> 1) & 1;
353         omap_timer_update(&s->timer);
354         break;
355 
356     case 0x04:	/* LOAD_TIMER */
357         s->timer.reset_val = value & 0xffff;
358         break;
359 
360     case 0x08:	/* TIMER_MODE */
361         if (!s->mode && ((value >> 15) & 1))
362             omap_clk_get(s->timer.clk);
363         s->mode |= (value >> 15) & 1;
364         if (s->last_wr == 0xf5) {
365             if ((value & 0xff) == 0xa0) {
366                 if (s->mode) {
367                     s->mode = 0;
368                     omap_clk_put(s->timer.clk);
369                 }
370             } else {
371                 /* XXX: on T|E hardware somehow this has no effect,
372                  * on Zire 71 it works as specified.  */
373                 s->reset = 1;
374                 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
375             }
376         }
377         s->last_wr = value & 0xff;
378         break;
379 
380     default:
381         OMAP_BAD_REG(addr);
382     }
383 }
384 
385 static const MemoryRegionOps omap_wd_timer_ops = {
386     .read = omap_wd_timer_read,
387     .write = omap_wd_timer_write,
388     .endianness = DEVICE_NATIVE_ENDIAN,
389 };
390 
391 static void omap_wd_timer_reset(struct omap_watchdog_timer_s *s)
392 {
393     timer_del(s->timer.timer);
394     if (!s->mode)
395         omap_clk_get(s->timer.clk);
396     s->mode = 1;
397     s->free = 1;
398     s->reset = 0;
399     s->timer.enable = 1;
400     s->timer.it_ena = 1;
401     s->timer.reset_val = 0xffff;
402     s->timer.val = 0;
403     s->timer.st = 0;
404     s->timer.ptv = 0;
405     s->timer.ar = 0;
406     omap_timer_update(&s->timer);
407 }
408 
409 static struct omap_watchdog_timer_s *omap_wd_timer_init(MemoryRegion *memory,
410                 hwaddr base,
411                 qemu_irq irq, omap_clk clk)
412 {
413     struct omap_watchdog_timer_s *s = g_new0(struct omap_watchdog_timer_s, 1);
414 
415     s->timer.irq = irq;
416     s->timer.clk = clk;
417     s->timer.timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, omap_timer_tick, &s->timer);
418     omap_wd_timer_reset(s);
419     omap_timer_clk_setup(&s->timer);
420 
421     memory_region_init_io(&s->iomem, NULL, &omap_wd_timer_ops, s,
422                           "omap-wd-timer", 0x100);
423     memory_region_add_subregion(memory, base, &s->iomem);
424 
425     return s;
426 }
427 
428 /* 32-kHz timer */
429 struct omap_32khz_timer_s {
430     struct omap_mpu_timer_s timer;
431     MemoryRegion iomem;
432 };
433 
434 static uint64_t omap_os_timer_read(void *opaque, hwaddr addr,
435                                    unsigned size)
436 {
437     struct omap_32khz_timer_s *s = opaque;
438     int offset = addr & OMAP_MPUI_REG_MASK;
439 
440     if (size != 4) {
441         return omap_badwidth_read32(opaque, addr);
442     }
443 
444     switch (offset) {
445     case 0x00:	/* TVR */
446         return s->timer.reset_val;
447 
448     case 0x04:	/* TCR */
449         return omap_timer_read(&s->timer);
450 
451     case 0x08:	/* CR */
452         return (s->timer.ar << 3) | (s->timer.it_ena << 2) | s->timer.st;
453 
454     default:
455         break;
456     }
457     OMAP_BAD_REG(addr);
458     return 0;
459 }
460 
461 static void omap_os_timer_write(void *opaque, hwaddr addr,
462                                 uint64_t value, unsigned size)
463 {
464     struct omap_32khz_timer_s *s = opaque;
465     int offset = addr & OMAP_MPUI_REG_MASK;
466 
467     if (size != 4) {
468         omap_badwidth_write32(opaque, addr, value);
469         return;
470     }
471 
472     switch (offset) {
473     case 0x00:	/* TVR */
474         s->timer.reset_val = value & 0x00ffffff;
475         break;
476 
477     case 0x04:	/* TCR */
478         OMAP_RO_REG(addr);
479         break;
480 
481     case 0x08:	/* CR */
482         s->timer.ar = (value >> 3) & 1;
483         s->timer.it_ena = (value >> 2) & 1;
484         if (s->timer.st != (value & 1) || (value & 2)) {
485             omap_timer_sync(&s->timer);
486             s->timer.enable = value & 1;
487             s->timer.st = value & 1;
488             omap_timer_update(&s->timer);
489         }
490         break;
491 
492     default:
493         OMAP_BAD_REG(addr);
494     }
495 }
496 
497 static const MemoryRegionOps omap_os_timer_ops = {
498     .read = omap_os_timer_read,
499     .write = omap_os_timer_write,
500     .endianness = DEVICE_NATIVE_ENDIAN,
501 };
502 
503 static void omap_os_timer_reset(struct omap_32khz_timer_s *s)
504 {
505     timer_del(s->timer.timer);
506     s->timer.enable = 0;
507     s->timer.it_ena = 0;
508     s->timer.reset_val = 0x00ffffff;
509     s->timer.val = 0;
510     s->timer.st = 0;
511     s->timer.ptv = 0;
512     s->timer.ar = 1;
513 }
514 
515 static struct omap_32khz_timer_s *omap_os_timer_init(MemoryRegion *memory,
516                 hwaddr base,
517                 qemu_irq irq, omap_clk clk)
518 {
519     struct omap_32khz_timer_s *s = g_new0(struct omap_32khz_timer_s, 1);
520 
521     s->timer.irq = irq;
522     s->timer.clk = clk;
523     s->timer.timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, omap_timer_tick, &s->timer);
524     omap_os_timer_reset(s);
525     omap_timer_clk_setup(&s->timer);
526 
527     memory_region_init_io(&s->iomem, NULL, &omap_os_timer_ops, s,
528                           "omap-os-timer", 0x800);
529     memory_region_add_subregion(memory, base, &s->iomem);
530 
531     return s;
532 }
533 
534 /* Ultra Low-Power Device Module */
535 static uint64_t omap_ulpd_pm_read(void *opaque, hwaddr addr,
536                                   unsigned size)
537 {
538     struct omap_mpu_state_s *s = opaque;
539     uint16_t ret;
540 
541     if (size != 2) {
542         return omap_badwidth_read16(opaque, addr);
543     }
544 
545     switch (addr) {
546     case 0x14:	/* IT_STATUS */
547         ret = s->ulpd_pm_regs[addr >> 2];
548         s->ulpd_pm_regs[addr >> 2] = 0;
549         qemu_irq_lower(qdev_get_gpio_in(s->ih[1], OMAP_INT_GAUGE_32K));
550         return ret;
551 
552     case 0x18:	/* Reserved */
553     case 0x1c:	/* Reserved */
554     case 0x20:	/* Reserved */
555     case 0x28:	/* Reserved */
556     case 0x2c:	/* Reserved */
557         OMAP_BAD_REG(addr);
558         /* fall through */
559     case 0x00:	/* COUNTER_32_LSB */
560     case 0x04:	/* COUNTER_32_MSB */
561     case 0x08:	/* COUNTER_HIGH_FREQ_LSB */
562     case 0x0c:	/* COUNTER_HIGH_FREQ_MSB */
563     case 0x10:	/* GAUGING_CTRL */
564     case 0x24:	/* SETUP_ANALOG_CELL3_ULPD1 */
565     case 0x30:	/* CLOCK_CTRL */
566     case 0x34:	/* SOFT_REQ */
567     case 0x38:	/* COUNTER_32_FIQ */
568     case 0x3c:	/* DPLL_CTRL */
569     case 0x40:	/* STATUS_REQ */
570         /* XXX: check clk::usecount state for every clock */
571     case 0x48:	/* LOCL_TIME */
572     case 0x4c:	/* APLL_CTRL */
573     case 0x50:	/* POWER_CTRL */
574         return s->ulpd_pm_regs[addr >> 2];
575     }
576 
577     OMAP_BAD_REG(addr);
578     return 0;
579 }
580 
581 static inline void omap_ulpd_clk_update(struct omap_mpu_state_s *s,
582                 uint16_t diff, uint16_t value)
583 {
584     if (diff & (1 << 4))				/* USB_MCLK_EN */
585         omap_clk_onoff(omap_findclk(s, "usb_clk0"), (value >> 4) & 1);
586     if (diff & (1 << 5))				/* DIS_USB_PVCI_CLK */
587         omap_clk_onoff(omap_findclk(s, "usb_w2fc_ck"), (~value >> 5) & 1);
588 }
589 
590 static inline void omap_ulpd_req_update(struct omap_mpu_state_s *s,
591                 uint16_t diff, uint16_t value)
592 {
593     if (diff & (1 << 0))				/* SOFT_DPLL_REQ */
594         omap_clk_canidle(omap_findclk(s, "dpll4"), (~value >> 0) & 1);
595     if (diff & (1 << 1))				/* SOFT_COM_REQ */
596         omap_clk_canidle(omap_findclk(s, "com_mclk_out"), (~value >> 1) & 1);
597     if (diff & (1 << 2))				/* SOFT_SDW_REQ */
598         omap_clk_canidle(omap_findclk(s, "bt_mclk_out"), (~value >> 2) & 1);
599     if (diff & (1 << 3))				/* SOFT_USB_REQ */
600         omap_clk_canidle(omap_findclk(s, "usb_clk0"), (~value >> 3) & 1);
601 }
602 
603 static void omap_ulpd_pm_write(void *opaque, hwaddr addr,
604                                uint64_t value, unsigned size)
605 {
606     struct omap_mpu_state_s *s = opaque;
607     int64_t now, ticks;
608     int div, mult;
609     static const int bypass_div[4] = { 1, 2, 4, 4 };
610     uint16_t diff;
611 
612     if (size != 2) {
613         omap_badwidth_write16(opaque, addr, value);
614         return;
615     }
616 
617     switch (addr) {
618     case 0x00:	/* COUNTER_32_LSB */
619     case 0x04:	/* COUNTER_32_MSB */
620     case 0x08:	/* COUNTER_HIGH_FREQ_LSB */
621     case 0x0c:	/* COUNTER_HIGH_FREQ_MSB */
622     case 0x14:	/* IT_STATUS */
623     case 0x40:	/* STATUS_REQ */
624         OMAP_RO_REG(addr);
625         break;
626 
627     case 0x10:	/* GAUGING_CTRL */
628         /* Bits 0 and 1 seem to be confused in the OMAP 310 TRM */
629         if ((s->ulpd_pm_regs[addr >> 2] ^ value) & 1) {
630             now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
631 
632             if (value & 1)
633                 s->ulpd_gauge_start = now;
634             else {
635                 now -= s->ulpd_gauge_start;
636 
637                 /* 32-kHz ticks */
638                 ticks = muldiv64(now, 32768, NANOSECONDS_PER_SECOND);
639                 s->ulpd_pm_regs[0x00 >> 2] = (ticks >>  0) & 0xffff;
640                 s->ulpd_pm_regs[0x04 >> 2] = (ticks >> 16) & 0xffff;
641                 if (ticks >> 32)	/* OVERFLOW_32K */
642                     s->ulpd_pm_regs[0x14 >> 2] |= 1 << 2;
643 
644                 /* High frequency ticks */
645                 ticks = muldiv64(now, 12000000, NANOSECONDS_PER_SECOND);
646                 s->ulpd_pm_regs[0x08 >> 2] = (ticks >>  0) & 0xffff;
647                 s->ulpd_pm_regs[0x0c >> 2] = (ticks >> 16) & 0xffff;
648                 if (ticks >> 32)	/* OVERFLOW_HI_FREQ */
649                     s->ulpd_pm_regs[0x14 >> 2] |= 1 << 1;
650 
651                 s->ulpd_pm_regs[0x14 >> 2] |= 1 << 0;	/* IT_GAUGING */
652                 qemu_irq_raise(qdev_get_gpio_in(s->ih[1], OMAP_INT_GAUGE_32K));
653             }
654         }
655         s->ulpd_pm_regs[addr >> 2] = value;
656         break;
657 
658     case 0x18:	/* Reserved */
659     case 0x1c:	/* Reserved */
660     case 0x20:	/* Reserved */
661     case 0x28:	/* Reserved */
662     case 0x2c:	/* Reserved */
663         OMAP_BAD_REG(addr);
664         /* fall through */
665     case 0x24:	/* SETUP_ANALOG_CELL3_ULPD1 */
666     case 0x38:	/* COUNTER_32_FIQ */
667     case 0x48:	/* LOCL_TIME */
668     case 0x50:	/* POWER_CTRL */
669         s->ulpd_pm_regs[addr >> 2] = value;
670         break;
671 
672     case 0x30:	/* CLOCK_CTRL */
673         diff = s->ulpd_pm_regs[addr >> 2] ^ value;
674         s->ulpd_pm_regs[addr >> 2] = value & 0x3f;
675         omap_ulpd_clk_update(s, diff, value);
676         break;
677 
678     case 0x34:	/* SOFT_REQ */
679         diff = s->ulpd_pm_regs[addr >> 2] ^ value;
680         s->ulpd_pm_regs[addr >> 2] = value & 0x1f;
681         omap_ulpd_req_update(s, diff, value);
682         break;
683 
684     case 0x3c:	/* DPLL_CTRL */
685         /* XXX: OMAP310 TRM claims bit 3 is PLL_ENABLE, and bit 4 is
686          * omitted altogether, probably a typo.  */
687         /* This register has identical semantics with DPLL(1:3) control
688          * registers, see omap_dpll_write() */
689         diff = s->ulpd_pm_regs[addr >> 2] & value;
690         s->ulpd_pm_regs[addr >> 2] = value & 0x2fff;
691         if (diff & (0x3ff << 2)) {
692             if (value & (1 << 4)) {			/* PLL_ENABLE */
693                 div = ((value >> 5) & 3) + 1;		/* PLL_DIV */
694                 mult = MIN((value >> 7) & 0x1f, 1);	/* PLL_MULT */
695             } else {
696                 div = bypass_div[((value >> 2) & 3)];	/* BYPASS_DIV */
697                 mult = 1;
698             }
699             omap_clk_setrate(omap_findclk(s, "dpll4"), div, mult);
700         }
701 
702         /* Enter the desired mode.  */
703         s->ulpd_pm_regs[addr >> 2] =
704                 (s->ulpd_pm_regs[addr >> 2] & 0xfffe) |
705                 ((s->ulpd_pm_regs[addr >> 2] >> 4) & 1);
706 
707         /* Act as if the lock is restored.  */
708         s->ulpd_pm_regs[addr >> 2] |= 2;
709         break;
710 
711     case 0x4c:	/* APLL_CTRL */
712         diff = s->ulpd_pm_regs[addr >> 2] & value;
713         s->ulpd_pm_regs[addr >> 2] = value & 0xf;
714         if (diff & (1 << 0))				/* APLL_NDPLL_SWITCH */
715             omap_clk_reparent(omap_findclk(s, "ck_48m"), omap_findclk(s,
716                                     (value & (1 << 0)) ? "apll" : "dpll4"));
717         break;
718 
719     default:
720         OMAP_BAD_REG(addr);
721     }
722 }
723 
724 static const MemoryRegionOps omap_ulpd_pm_ops = {
725     .read = omap_ulpd_pm_read,
726     .write = omap_ulpd_pm_write,
727     .endianness = DEVICE_NATIVE_ENDIAN,
728 };
729 
730 static void omap_ulpd_pm_reset(struct omap_mpu_state_s *mpu)
731 {
732     mpu->ulpd_pm_regs[0x00 >> 2] = 0x0001;
733     mpu->ulpd_pm_regs[0x04 >> 2] = 0x0000;
734     mpu->ulpd_pm_regs[0x08 >> 2] = 0x0001;
735     mpu->ulpd_pm_regs[0x0c >> 2] = 0x0000;
736     mpu->ulpd_pm_regs[0x10 >> 2] = 0x0000;
737     mpu->ulpd_pm_regs[0x18 >> 2] = 0x01;
738     mpu->ulpd_pm_regs[0x1c >> 2] = 0x01;
739     mpu->ulpd_pm_regs[0x20 >> 2] = 0x01;
740     mpu->ulpd_pm_regs[0x24 >> 2] = 0x03ff;
741     mpu->ulpd_pm_regs[0x28 >> 2] = 0x01;
742     mpu->ulpd_pm_regs[0x2c >> 2] = 0x01;
743     omap_ulpd_clk_update(mpu, mpu->ulpd_pm_regs[0x30 >> 2], 0x0000);
744     mpu->ulpd_pm_regs[0x30 >> 2] = 0x0000;
745     omap_ulpd_req_update(mpu, mpu->ulpd_pm_regs[0x34 >> 2], 0x0000);
746     mpu->ulpd_pm_regs[0x34 >> 2] = 0x0000;
747     mpu->ulpd_pm_regs[0x38 >> 2] = 0x0001;
748     mpu->ulpd_pm_regs[0x3c >> 2] = 0x2211;
749     mpu->ulpd_pm_regs[0x40 >> 2] = 0x0000; /* FIXME: dump a real STATUS_REQ */
750     mpu->ulpd_pm_regs[0x48 >> 2] = 0x960;
751     mpu->ulpd_pm_regs[0x4c >> 2] = 0x08;
752     mpu->ulpd_pm_regs[0x50 >> 2] = 0x08;
753     omap_clk_setrate(omap_findclk(mpu, "dpll4"), 1, 4);
754     omap_clk_reparent(omap_findclk(mpu, "ck_48m"), omap_findclk(mpu, "dpll4"));
755 }
756 
757 static void omap_ulpd_pm_init(MemoryRegion *system_memory,
758                 hwaddr base,
759                 struct omap_mpu_state_s *mpu)
760 {
761     memory_region_init_io(&mpu->ulpd_pm_iomem, NULL, &omap_ulpd_pm_ops, mpu,
762                           "omap-ulpd-pm", 0x800);
763     memory_region_add_subregion(system_memory, base, &mpu->ulpd_pm_iomem);
764     omap_ulpd_pm_reset(mpu);
765 }
766 
767 /* OMAP Pin Configuration */
768 static uint64_t omap_pin_cfg_read(void *opaque, hwaddr addr,
769                                   unsigned size)
770 {
771     struct omap_mpu_state_s *s = opaque;
772 
773     if (size != 4) {
774         return omap_badwidth_read32(opaque, addr);
775     }
776 
777     switch (addr) {
778     case 0x00:	/* FUNC_MUX_CTRL_0 */
779     case 0x04:	/* FUNC_MUX_CTRL_1 */
780     case 0x08:	/* FUNC_MUX_CTRL_2 */
781         return s->func_mux_ctrl[addr >> 2];
782 
783     case 0x0c:	/* COMP_MODE_CTRL_0 */
784         return s->comp_mode_ctrl[0];
785 
786     case 0x10:	/* FUNC_MUX_CTRL_3 */
787     case 0x14:	/* FUNC_MUX_CTRL_4 */
788     case 0x18:	/* FUNC_MUX_CTRL_5 */
789     case 0x1c:	/* FUNC_MUX_CTRL_6 */
790     case 0x20:	/* FUNC_MUX_CTRL_7 */
791     case 0x24:	/* FUNC_MUX_CTRL_8 */
792     case 0x28:	/* FUNC_MUX_CTRL_9 */
793     case 0x2c:	/* FUNC_MUX_CTRL_A */
794     case 0x30:	/* FUNC_MUX_CTRL_B */
795     case 0x34:	/* FUNC_MUX_CTRL_C */
796     case 0x38:	/* FUNC_MUX_CTRL_D */
797         return s->func_mux_ctrl[(addr >> 2) - 1];
798 
799     case 0x40:	/* PULL_DWN_CTRL_0 */
800     case 0x44:	/* PULL_DWN_CTRL_1 */
801     case 0x48:	/* PULL_DWN_CTRL_2 */
802     case 0x4c:	/* PULL_DWN_CTRL_3 */
803         return s->pull_dwn_ctrl[(addr & 0xf) >> 2];
804 
805     case 0x50:	/* GATE_INH_CTRL_0 */
806         return s->gate_inh_ctrl[0];
807 
808     case 0x60:	/* VOLTAGE_CTRL_0 */
809         return s->voltage_ctrl[0];
810 
811     case 0x70:	/* TEST_DBG_CTRL_0 */
812         return s->test_dbg_ctrl[0];
813 
814     case 0x80:	/* MOD_CONF_CTRL_0 */
815         return s->mod_conf_ctrl[0];
816     }
817 
818     OMAP_BAD_REG(addr);
819     return 0;
820 }
821 
822 static inline void omap_pin_funcmux0_update(struct omap_mpu_state_s *s,
823                 uint32_t diff, uint32_t value)
824 {
825     if (s->compat1509) {
826         if (diff & (1 << 9))			/* BLUETOOTH */
827             omap_clk_onoff(omap_findclk(s, "bt_mclk_out"),
828                             (~value >> 9) & 1);
829         if (diff & (1 << 7))			/* USB.CLKO */
830             omap_clk_onoff(omap_findclk(s, "usb.clko"),
831                             (value >> 7) & 1);
832     }
833 }
834 
835 static inline void omap_pin_funcmux1_update(struct omap_mpu_state_s *s,
836                 uint32_t diff, uint32_t value)
837 {
838     if (s->compat1509) {
839         if (diff & (1U << 31)) {
840             /* MCBSP3_CLK_HIZ_DI */
841             omap_clk_onoff(omap_findclk(s, "mcbsp3.clkx"), (value >> 31) & 1);
842         }
843         if (diff & (1 << 1)) {
844             /* CLK32K */
845             omap_clk_onoff(omap_findclk(s, "clk32k_out"), (~value >> 1) & 1);
846         }
847     }
848 }
849 
850 static inline void omap_pin_modconf1_update(struct omap_mpu_state_s *s,
851                 uint32_t diff, uint32_t value)
852 {
853     if (diff & (1U << 31)) {
854         /* CONF_MOD_UART3_CLK_MODE_R */
855         omap_clk_reparent(omap_findclk(s, "uart3_ck"),
856                           omap_findclk(s, ((value >> 31) & 1) ?
857                                        "ck_48m" : "armper_ck"));
858     }
859     if (diff & (1 << 30))			/* CONF_MOD_UART2_CLK_MODE_R */
860          omap_clk_reparent(omap_findclk(s, "uart2_ck"),
861                          omap_findclk(s, ((value >> 30) & 1) ?
862                                  "ck_48m" : "armper_ck"));
863     if (diff & (1 << 29))			/* CONF_MOD_UART1_CLK_MODE_R */
864          omap_clk_reparent(omap_findclk(s, "uart1_ck"),
865                          omap_findclk(s, ((value >> 29) & 1) ?
866                                  "ck_48m" : "armper_ck"));
867     if (diff & (1 << 23))			/* CONF_MOD_MMC_SD_CLK_REQ_R */
868          omap_clk_reparent(omap_findclk(s, "mmc_ck"),
869                          omap_findclk(s, ((value >> 23) & 1) ?
870                                  "ck_48m" : "armper_ck"));
871     if (diff & (1 << 12))			/* CONF_MOD_COM_MCLK_12_48_S */
872          omap_clk_reparent(omap_findclk(s, "com_mclk_out"),
873                          omap_findclk(s, ((value >> 12) & 1) ?
874                                  "ck_48m" : "armper_ck"));
875     if (diff & (1 << 9))			/* CONF_MOD_USB_HOST_HHC_UHO */
876          omap_clk_onoff(omap_findclk(s, "usb_hhc_ck"), (value >> 9) & 1);
877 }
878 
879 static void omap_pin_cfg_write(void *opaque, hwaddr addr,
880                                uint64_t value, unsigned size)
881 {
882     struct omap_mpu_state_s *s = opaque;
883     uint32_t diff;
884 
885     if (size != 4) {
886         omap_badwidth_write32(opaque, addr, value);
887         return;
888     }
889 
890     switch (addr) {
891     case 0x00:	/* FUNC_MUX_CTRL_0 */
892         diff = s->func_mux_ctrl[addr >> 2] ^ value;
893         s->func_mux_ctrl[addr >> 2] = value;
894         omap_pin_funcmux0_update(s, diff, value);
895         return;
896 
897     case 0x04:	/* FUNC_MUX_CTRL_1 */
898         diff = s->func_mux_ctrl[addr >> 2] ^ value;
899         s->func_mux_ctrl[addr >> 2] = value;
900         omap_pin_funcmux1_update(s, diff, value);
901         return;
902 
903     case 0x08:	/* FUNC_MUX_CTRL_2 */
904         s->func_mux_ctrl[addr >> 2] = value;
905         return;
906 
907     case 0x0c:	/* COMP_MODE_CTRL_0 */
908         s->comp_mode_ctrl[0] = value;
909         s->compat1509 = (value != 0x0000eaef);
910         omap_pin_funcmux0_update(s, ~0, s->func_mux_ctrl[0]);
911         omap_pin_funcmux1_update(s, ~0, s->func_mux_ctrl[1]);
912         return;
913 
914     case 0x10:	/* FUNC_MUX_CTRL_3 */
915     case 0x14:	/* FUNC_MUX_CTRL_4 */
916     case 0x18:	/* FUNC_MUX_CTRL_5 */
917     case 0x1c:	/* FUNC_MUX_CTRL_6 */
918     case 0x20:	/* FUNC_MUX_CTRL_7 */
919     case 0x24:	/* FUNC_MUX_CTRL_8 */
920     case 0x28:	/* FUNC_MUX_CTRL_9 */
921     case 0x2c:	/* FUNC_MUX_CTRL_A */
922     case 0x30:	/* FUNC_MUX_CTRL_B */
923     case 0x34:	/* FUNC_MUX_CTRL_C */
924     case 0x38:	/* FUNC_MUX_CTRL_D */
925         s->func_mux_ctrl[(addr >> 2) - 1] = value;
926         return;
927 
928     case 0x40:	/* PULL_DWN_CTRL_0 */
929     case 0x44:	/* PULL_DWN_CTRL_1 */
930     case 0x48:	/* PULL_DWN_CTRL_2 */
931     case 0x4c:	/* PULL_DWN_CTRL_3 */
932         s->pull_dwn_ctrl[(addr & 0xf) >> 2] = value;
933         return;
934 
935     case 0x50:	/* GATE_INH_CTRL_0 */
936         s->gate_inh_ctrl[0] = value;
937         return;
938 
939     case 0x60:	/* VOLTAGE_CTRL_0 */
940         s->voltage_ctrl[0] = value;
941         return;
942 
943     case 0x70:	/* TEST_DBG_CTRL_0 */
944         s->test_dbg_ctrl[0] = value;
945         return;
946 
947     case 0x80:	/* MOD_CONF_CTRL_0 */
948         diff = s->mod_conf_ctrl[0] ^ value;
949         s->mod_conf_ctrl[0] = value;
950         omap_pin_modconf1_update(s, diff, value);
951         return;
952 
953     default:
954         OMAP_BAD_REG(addr);
955     }
956 }
957 
958 static const MemoryRegionOps omap_pin_cfg_ops = {
959     .read = omap_pin_cfg_read,
960     .write = omap_pin_cfg_write,
961     .endianness = DEVICE_NATIVE_ENDIAN,
962 };
963 
964 static void omap_pin_cfg_reset(struct omap_mpu_state_s *mpu)
965 {
966     /* Start in Compatibility Mode.  */
967     mpu->compat1509 = 1;
968     omap_pin_funcmux0_update(mpu, mpu->func_mux_ctrl[0], 0);
969     omap_pin_funcmux1_update(mpu, mpu->func_mux_ctrl[1], 0);
970     omap_pin_modconf1_update(mpu, mpu->mod_conf_ctrl[0], 0);
971     memset(mpu->func_mux_ctrl, 0, sizeof(mpu->func_mux_ctrl));
972     memset(mpu->comp_mode_ctrl, 0, sizeof(mpu->comp_mode_ctrl));
973     memset(mpu->pull_dwn_ctrl, 0, sizeof(mpu->pull_dwn_ctrl));
974     memset(mpu->gate_inh_ctrl, 0, sizeof(mpu->gate_inh_ctrl));
975     memset(mpu->voltage_ctrl, 0, sizeof(mpu->voltage_ctrl));
976     memset(mpu->test_dbg_ctrl, 0, sizeof(mpu->test_dbg_ctrl));
977     memset(mpu->mod_conf_ctrl, 0, sizeof(mpu->mod_conf_ctrl));
978 }
979 
980 static void omap_pin_cfg_init(MemoryRegion *system_memory,
981                 hwaddr base,
982                 struct omap_mpu_state_s *mpu)
983 {
984     memory_region_init_io(&mpu->pin_cfg_iomem, NULL, &omap_pin_cfg_ops, mpu,
985                           "omap-pin-cfg", 0x800);
986     memory_region_add_subregion(system_memory, base, &mpu->pin_cfg_iomem);
987     omap_pin_cfg_reset(mpu);
988 }
989 
990 /* Device Identification, Die Identification */
991 static uint64_t omap_id_read(void *opaque, hwaddr addr,
992                              unsigned size)
993 {
994     struct omap_mpu_state_s *s = opaque;
995 
996     if (size != 4) {
997         return omap_badwidth_read32(opaque, addr);
998     }
999 
1000     switch (addr) {
1001     case 0xfffe1800:	/* DIE_ID_LSB */
1002         return 0xc9581f0e;
1003     case 0xfffe1804:	/* DIE_ID_MSB */
1004         return 0xa8858bfa;
1005 
1006     case 0xfffe2000:	/* PRODUCT_ID_LSB */
1007         return 0x00aaaafc;
1008     case 0xfffe2004:	/* PRODUCT_ID_MSB */
1009         return 0xcafeb574;
1010 
1011     case 0xfffed400:	/* JTAG_ID_LSB */
1012         switch (s->mpu_model) {
1013         case omap310:
1014             return 0x03310315;
1015         case omap1510:
1016             return 0x03310115;
1017         default:
1018             hw_error("%s: bad mpu model\n", __func__);
1019         }
1020         break;
1021 
1022     case 0xfffed404:	/* JTAG_ID_MSB */
1023         switch (s->mpu_model) {
1024         case omap310:
1025             return 0xfb57402f;
1026         case omap1510:
1027             return 0xfb47002f;
1028         default:
1029             hw_error("%s: bad mpu model\n", __func__);
1030         }
1031         break;
1032     }
1033 
1034     OMAP_BAD_REG(addr);
1035     return 0;
1036 }
1037 
1038 static void omap_id_write(void *opaque, hwaddr addr,
1039                           uint64_t value, unsigned size)
1040 {
1041     if (size != 4) {
1042         omap_badwidth_write32(opaque, addr, value);
1043         return;
1044     }
1045 
1046     OMAP_BAD_REG(addr);
1047 }
1048 
1049 static const MemoryRegionOps omap_id_ops = {
1050     .read = omap_id_read,
1051     .write = omap_id_write,
1052     .endianness = DEVICE_NATIVE_ENDIAN,
1053 };
1054 
1055 static void omap_id_init(MemoryRegion *memory, struct omap_mpu_state_s *mpu)
1056 {
1057     memory_region_init_io(&mpu->id_iomem, NULL, &omap_id_ops, mpu,
1058                           "omap-id", 0x100000000ULL);
1059     memory_region_init_alias(&mpu->id_iomem_e18, NULL, "omap-id-e18", &mpu->id_iomem,
1060                              0xfffe1800, 0x800);
1061     memory_region_add_subregion(memory, 0xfffe1800, &mpu->id_iomem_e18);
1062     memory_region_init_alias(&mpu->id_iomem_ed4, NULL, "omap-id-ed4", &mpu->id_iomem,
1063                              0xfffed400, 0x100);
1064     memory_region_add_subregion(memory, 0xfffed400, &mpu->id_iomem_ed4);
1065     if (!cpu_is_omap15xx(mpu)) {
1066         memory_region_init_alias(&mpu->id_iomem_ed4, NULL, "omap-id-e20",
1067                                  &mpu->id_iomem, 0xfffe2000, 0x800);
1068         memory_region_add_subregion(memory, 0xfffe2000, &mpu->id_iomem_e20);
1069     }
1070 }
1071 
1072 /* MPUI Control (Dummy) */
1073 static uint64_t omap_mpui_read(void *opaque, hwaddr addr,
1074                                unsigned size)
1075 {
1076     struct omap_mpu_state_s *s = opaque;
1077 
1078     if (size != 4) {
1079         return omap_badwidth_read32(opaque, addr);
1080     }
1081 
1082     switch (addr) {
1083     case 0x00:	/* CTRL */
1084         return s->mpui_ctrl;
1085     case 0x04:	/* DEBUG_ADDR */
1086         return 0x01ffffff;
1087     case 0x08:	/* DEBUG_DATA */
1088         return 0xffffffff;
1089     case 0x0c:	/* DEBUG_FLAG */
1090         return 0x00000800;
1091     case 0x10:	/* STATUS */
1092         return 0x00000000;
1093 
1094     /* Not in OMAP310 */
1095     case 0x14:	/* DSP_STATUS */
1096     case 0x18:	/* DSP_BOOT_CONFIG */
1097         return 0x00000000;
1098     case 0x1c:	/* DSP_MPUI_CONFIG */
1099         return 0x0000ffff;
1100     }
1101 
1102     OMAP_BAD_REG(addr);
1103     return 0;
1104 }
1105 
1106 static void omap_mpui_write(void *opaque, hwaddr addr,
1107                             uint64_t value, unsigned size)
1108 {
1109     struct omap_mpu_state_s *s = opaque;
1110 
1111     if (size != 4) {
1112         omap_badwidth_write32(opaque, addr, value);
1113         return;
1114     }
1115 
1116     switch (addr) {
1117     case 0x00:	/* CTRL */
1118         s->mpui_ctrl = value & 0x007fffff;
1119         break;
1120 
1121     case 0x04:	/* DEBUG_ADDR */
1122     case 0x08:	/* DEBUG_DATA */
1123     case 0x0c:	/* DEBUG_FLAG */
1124     case 0x10:	/* STATUS */
1125     /* Not in OMAP310 */
1126     case 0x14:	/* DSP_STATUS */
1127         OMAP_RO_REG(addr);
1128         break;
1129     case 0x18:	/* DSP_BOOT_CONFIG */
1130     case 0x1c:	/* DSP_MPUI_CONFIG */
1131         break;
1132 
1133     default:
1134         OMAP_BAD_REG(addr);
1135     }
1136 }
1137 
1138 static const MemoryRegionOps omap_mpui_ops = {
1139     .read = omap_mpui_read,
1140     .write = omap_mpui_write,
1141     .endianness = DEVICE_NATIVE_ENDIAN,
1142 };
1143 
1144 static void omap_mpui_reset(struct omap_mpu_state_s *s)
1145 {
1146     s->mpui_ctrl = 0x0003ff1b;
1147 }
1148 
1149 static void omap_mpui_init(MemoryRegion *memory, hwaddr base,
1150                 struct omap_mpu_state_s *mpu)
1151 {
1152     memory_region_init_io(&mpu->mpui_iomem, NULL, &omap_mpui_ops, mpu,
1153                           "omap-mpui", 0x100);
1154     memory_region_add_subregion(memory, base, &mpu->mpui_iomem);
1155 
1156     omap_mpui_reset(mpu);
1157 }
1158 
1159 /* TIPB Bridges */
1160 struct omap_tipb_bridge_s {
1161     qemu_irq abort;
1162     MemoryRegion iomem;
1163 
1164     int width_intr;
1165     uint16_t control;
1166     uint16_t alloc;
1167     uint16_t buffer;
1168     uint16_t enh_control;
1169 };
1170 
1171 static uint64_t omap_tipb_bridge_read(void *opaque, hwaddr addr,
1172                                       unsigned size)
1173 {
1174     struct omap_tipb_bridge_s *s = opaque;
1175 
1176     if (size < 2) {
1177         return omap_badwidth_read16(opaque, addr);
1178     }
1179 
1180     switch (addr) {
1181     case 0x00:	/* TIPB_CNTL */
1182         return s->control;
1183     case 0x04:	/* TIPB_BUS_ALLOC */
1184         return s->alloc;
1185     case 0x08:	/* MPU_TIPB_CNTL */
1186         return s->buffer;
1187     case 0x0c:	/* ENHANCED_TIPB_CNTL */
1188         return s->enh_control;
1189     case 0x10:	/* ADDRESS_DBG */
1190     case 0x14:	/* DATA_DEBUG_LOW */
1191     case 0x18:	/* DATA_DEBUG_HIGH */
1192         return 0xffff;
1193     case 0x1c:	/* DEBUG_CNTR_SIG */
1194         return 0x00f8;
1195     }
1196 
1197     OMAP_BAD_REG(addr);
1198     return 0;
1199 }
1200 
1201 static void omap_tipb_bridge_write(void *opaque, hwaddr addr,
1202                                    uint64_t value, unsigned size)
1203 {
1204     struct omap_tipb_bridge_s *s = opaque;
1205 
1206     if (size < 2) {
1207         omap_badwidth_write16(opaque, addr, value);
1208         return;
1209     }
1210 
1211     switch (addr) {
1212     case 0x00:	/* TIPB_CNTL */
1213         s->control = value & 0xffff;
1214         break;
1215 
1216     case 0x04:	/* TIPB_BUS_ALLOC */
1217         s->alloc = value & 0x003f;
1218         break;
1219 
1220     case 0x08:	/* MPU_TIPB_CNTL */
1221         s->buffer = value & 0x0003;
1222         break;
1223 
1224     case 0x0c:	/* ENHANCED_TIPB_CNTL */
1225         s->width_intr = !(value & 2);
1226         s->enh_control = value & 0x000f;
1227         break;
1228 
1229     case 0x10:	/* ADDRESS_DBG */
1230     case 0x14:	/* DATA_DEBUG_LOW */
1231     case 0x18:	/* DATA_DEBUG_HIGH */
1232     case 0x1c:	/* DEBUG_CNTR_SIG */
1233         OMAP_RO_REG(addr);
1234         break;
1235 
1236     default:
1237         OMAP_BAD_REG(addr);
1238     }
1239 }
1240 
1241 static const MemoryRegionOps omap_tipb_bridge_ops = {
1242     .read = omap_tipb_bridge_read,
1243     .write = omap_tipb_bridge_write,
1244     .endianness = DEVICE_NATIVE_ENDIAN,
1245 };
1246 
1247 static void omap_tipb_bridge_reset(struct omap_tipb_bridge_s *s)
1248 {
1249     s->control = 0xffff;
1250     s->alloc = 0x0009;
1251     s->buffer = 0x0000;
1252     s->enh_control = 0x000f;
1253 }
1254 
1255 static struct omap_tipb_bridge_s *omap_tipb_bridge_init(
1256     MemoryRegion *memory, hwaddr base,
1257     qemu_irq abort_irq, omap_clk clk)
1258 {
1259     struct omap_tipb_bridge_s *s = g_new0(struct omap_tipb_bridge_s, 1);
1260 
1261     s->abort = abort_irq;
1262     omap_tipb_bridge_reset(s);
1263 
1264     memory_region_init_io(&s->iomem, NULL, &omap_tipb_bridge_ops, s,
1265                           "omap-tipb-bridge", 0x100);
1266     memory_region_add_subregion(memory, base, &s->iomem);
1267 
1268     return s;
1269 }
1270 
1271 /* Dummy Traffic Controller's Memory Interface */
1272 static uint64_t omap_tcmi_read(void *opaque, hwaddr addr,
1273                                unsigned size)
1274 {
1275     struct omap_mpu_state_s *s = opaque;
1276     uint32_t ret;
1277 
1278     if (size != 4) {
1279         return omap_badwidth_read32(opaque, addr);
1280     }
1281 
1282     switch (addr) {
1283     case 0x00:	/* IMIF_PRIO */
1284     case 0x04:	/* EMIFS_PRIO */
1285     case 0x08:	/* EMIFF_PRIO */
1286     case 0x0c:	/* EMIFS_CONFIG */
1287     case 0x10:	/* EMIFS_CS0_CONFIG */
1288     case 0x14:	/* EMIFS_CS1_CONFIG */
1289     case 0x18:	/* EMIFS_CS2_CONFIG */
1290     case 0x1c:	/* EMIFS_CS3_CONFIG */
1291     case 0x24:	/* EMIFF_MRS */
1292     case 0x28:	/* TIMEOUT1 */
1293     case 0x2c:	/* TIMEOUT2 */
1294     case 0x30:	/* TIMEOUT3 */
1295     case 0x3c:	/* EMIFF_SDRAM_CONFIG_2 */
1296     case 0x40:	/* EMIFS_CFG_DYN_WAIT */
1297         return s->tcmi_regs[addr >> 2];
1298 
1299     case 0x20:	/* EMIFF_SDRAM_CONFIG */
1300         ret = s->tcmi_regs[addr >> 2];
1301         s->tcmi_regs[addr >> 2] &= ~1; /* XXX: Clear SLRF on SDRAM access */
1302         /* XXX: We can try using the VGA_DIRTY flag for this */
1303         return ret;
1304     }
1305 
1306     OMAP_BAD_REG(addr);
1307     return 0;
1308 }
1309 
1310 static void omap_tcmi_write(void *opaque, hwaddr addr,
1311                             uint64_t value, unsigned size)
1312 {
1313     struct omap_mpu_state_s *s = opaque;
1314 
1315     if (size != 4) {
1316         omap_badwidth_write32(opaque, addr, value);
1317         return;
1318     }
1319 
1320     switch (addr) {
1321     case 0x00:	/* IMIF_PRIO */
1322     case 0x04:	/* EMIFS_PRIO */
1323     case 0x08:	/* EMIFF_PRIO */
1324     case 0x10:	/* EMIFS_CS0_CONFIG */
1325     case 0x14:	/* EMIFS_CS1_CONFIG */
1326     case 0x18:	/* EMIFS_CS2_CONFIG */
1327     case 0x1c:	/* EMIFS_CS3_CONFIG */
1328     case 0x20:	/* EMIFF_SDRAM_CONFIG */
1329     case 0x24:	/* EMIFF_MRS */
1330     case 0x28:	/* TIMEOUT1 */
1331     case 0x2c:	/* TIMEOUT2 */
1332     case 0x30:	/* TIMEOUT3 */
1333     case 0x3c:	/* EMIFF_SDRAM_CONFIG_2 */
1334     case 0x40:	/* EMIFS_CFG_DYN_WAIT */
1335         s->tcmi_regs[addr >> 2] = value;
1336         break;
1337     case 0x0c:	/* EMIFS_CONFIG */
1338         s->tcmi_regs[addr >> 2] = (value & 0xf) | (1 << 4);
1339         break;
1340 
1341     default:
1342         OMAP_BAD_REG(addr);
1343     }
1344 }
1345 
1346 static const MemoryRegionOps omap_tcmi_ops = {
1347     .read = omap_tcmi_read,
1348     .write = omap_tcmi_write,
1349     .endianness = DEVICE_NATIVE_ENDIAN,
1350 };
1351 
1352 static void omap_tcmi_reset(struct omap_mpu_state_s *mpu)
1353 {
1354     mpu->tcmi_regs[0x00 >> 2] = 0x00000000;
1355     mpu->tcmi_regs[0x04 >> 2] = 0x00000000;
1356     mpu->tcmi_regs[0x08 >> 2] = 0x00000000;
1357     mpu->tcmi_regs[0x0c >> 2] = 0x00000010;
1358     mpu->tcmi_regs[0x10 >> 2] = 0x0010fffb;
1359     mpu->tcmi_regs[0x14 >> 2] = 0x0010fffb;
1360     mpu->tcmi_regs[0x18 >> 2] = 0x0010fffb;
1361     mpu->tcmi_regs[0x1c >> 2] = 0x0010fffb;
1362     mpu->tcmi_regs[0x20 >> 2] = 0x00618800;
1363     mpu->tcmi_regs[0x24 >> 2] = 0x00000037;
1364     mpu->tcmi_regs[0x28 >> 2] = 0x00000000;
1365     mpu->tcmi_regs[0x2c >> 2] = 0x00000000;
1366     mpu->tcmi_regs[0x30 >> 2] = 0x00000000;
1367     mpu->tcmi_regs[0x3c >> 2] = 0x00000003;
1368     mpu->tcmi_regs[0x40 >> 2] = 0x00000000;
1369 }
1370 
1371 static void omap_tcmi_init(MemoryRegion *memory, hwaddr base,
1372                 struct omap_mpu_state_s *mpu)
1373 {
1374     memory_region_init_io(&mpu->tcmi_iomem, NULL, &omap_tcmi_ops, mpu,
1375                           "omap-tcmi", 0x100);
1376     memory_region_add_subregion(memory, base, &mpu->tcmi_iomem);
1377     omap_tcmi_reset(mpu);
1378 }
1379 
1380 /* Digital phase-locked loops control */
1381 struct dpll_ctl_s {
1382     MemoryRegion iomem;
1383     uint16_t mode;
1384     omap_clk dpll;
1385 };
1386 
1387 static uint64_t omap_dpll_read(void *opaque, hwaddr addr,
1388                                unsigned size)
1389 {
1390     struct dpll_ctl_s *s = opaque;
1391 
1392     if (size != 2) {
1393         return omap_badwidth_read16(opaque, addr);
1394     }
1395 
1396     if (addr == 0x00)	/* CTL_REG */
1397         return s->mode;
1398 
1399     OMAP_BAD_REG(addr);
1400     return 0;
1401 }
1402 
1403 static void omap_dpll_write(void *opaque, hwaddr addr,
1404                             uint64_t value, unsigned size)
1405 {
1406     struct dpll_ctl_s *s = opaque;
1407     uint16_t diff;
1408     static const int bypass_div[4] = { 1, 2, 4, 4 };
1409     int div, mult;
1410 
1411     if (size != 2) {
1412         omap_badwidth_write16(opaque, addr, value);
1413         return;
1414     }
1415 
1416     if (addr == 0x00) {	/* CTL_REG */
1417         /* See omap_ulpd_pm_write() too */
1418         diff = s->mode & value;
1419         s->mode = value & 0x2fff;
1420         if (diff & (0x3ff << 2)) {
1421             if (value & (1 << 4)) {			/* PLL_ENABLE */
1422                 div = ((value >> 5) & 3) + 1;		/* PLL_DIV */
1423                 mult = MIN((value >> 7) & 0x1f, 1);	/* PLL_MULT */
1424             } else {
1425                 div = bypass_div[((value >> 2) & 3)];	/* BYPASS_DIV */
1426                 mult = 1;
1427             }
1428             omap_clk_setrate(s->dpll, div, mult);
1429         }
1430 
1431         /* Enter the desired mode.  */
1432         s->mode = (s->mode & 0xfffe) | ((s->mode >> 4) & 1);
1433 
1434         /* Act as if the lock is restored.  */
1435         s->mode |= 2;
1436     } else {
1437         OMAP_BAD_REG(addr);
1438     }
1439 }
1440 
1441 static const MemoryRegionOps omap_dpll_ops = {
1442     .read = omap_dpll_read,
1443     .write = omap_dpll_write,
1444     .endianness = DEVICE_NATIVE_ENDIAN,
1445 };
1446 
1447 static void omap_dpll_reset(struct dpll_ctl_s *s)
1448 {
1449     s->mode = 0x2002;
1450     omap_clk_setrate(s->dpll, 1, 1);
1451 }
1452 
1453 static struct dpll_ctl_s  *omap_dpll_init(MemoryRegion *memory,
1454                            hwaddr base, omap_clk clk)
1455 {
1456     struct dpll_ctl_s *s = g_malloc0(sizeof(*s));
1457     memory_region_init_io(&s->iomem, NULL, &omap_dpll_ops, s, "omap-dpll", 0x100);
1458 
1459     s->dpll = clk;
1460     omap_dpll_reset(s);
1461 
1462     memory_region_add_subregion(memory, base, &s->iomem);
1463     return s;
1464 }
1465 
1466 /* MPU Clock/Reset/Power Mode Control */
1467 static uint64_t omap_clkm_read(void *opaque, hwaddr addr,
1468                                unsigned size)
1469 {
1470     struct omap_mpu_state_s *s = opaque;
1471 
1472     if (size != 2) {
1473         return omap_badwidth_read16(opaque, addr);
1474     }
1475 
1476     switch (addr) {
1477     case 0x00:	/* ARM_CKCTL */
1478         return s->clkm.arm_ckctl;
1479 
1480     case 0x04:	/* ARM_IDLECT1 */
1481         return s->clkm.arm_idlect1;
1482 
1483     case 0x08:	/* ARM_IDLECT2 */
1484         return s->clkm.arm_idlect2;
1485 
1486     case 0x0c:	/* ARM_EWUPCT */
1487         return s->clkm.arm_ewupct;
1488 
1489     case 0x10:	/* ARM_RSTCT1 */
1490         return s->clkm.arm_rstct1;
1491 
1492     case 0x14:	/* ARM_RSTCT2 */
1493         return s->clkm.arm_rstct2;
1494 
1495     case 0x18:	/* ARM_SYSST */
1496         return (s->clkm.clocking_scheme << 11) | s->clkm.cold_start;
1497 
1498     case 0x1c:	/* ARM_CKOUT1 */
1499         return s->clkm.arm_ckout1;
1500 
1501     case 0x20:	/* ARM_CKOUT2 */
1502         break;
1503     }
1504 
1505     OMAP_BAD_REG(addr);
1506     return 0;
1507 }
1508 
1509 static inline void omap_clkm_ckctl_update(struct omap_mpu_state_s *s,
1510                 uint16_t diff, uint16_t value)
1511 {
1512     omap_clk clk;
1513 
1514     if (diff & (1 << 14)) {				/* ARM_INTHCK_SEL */
1515         if (value & (1 << 14))
1516             /* Reserved */;
1517         else {
1518             clk = omap_findclk(s, "arminth_ck");
1519             omap_clk_reparent(clk, omap_findclk(s, "tc_ck"));
1520         }
1521     }
1522     if (diff & (1 << 12)) {				/* ARM_TIMXO */
1523         clk = omap_findclk(s, "armtim_ck");
1524         if (value & (1 << 12))
1525             omap_clk_reparent(clk, omap_findclk(s, "clkin"));
1526         else
1527             omap_clk_reparent(clk, omap_findclk(s, "ck_gen1"));
1528     }
1529     /* XXX: en_dspck */
1530     if (diff & (3 << 10)) {				/* DSPMMUDIV */
1531         clk = omap_findclk(s, "dspmmu_ck");
1532         omap_clk_setrate(clk, 1 << ((value >> 10) & 3), 1);
1533     }
1534     if (diff & (3 << 8)) {				/* TCDIV */
1535         clk = omap_findclk(s, "tc_ck");
1536         omap_clk_setrate(clk, 1 << ((value >> 8) & 3), 1);
1537     }
1538     if (diff & (3 << 6)) {				/* DSPDIV */
1539         clk = omap_findclk(s, "dsp_ck");
1540         omap_clk_setrate(clk, 1 << ((value >> 6) & 3), 1);
1541     }
1542     if (diff & (3 << 4)) {				/* ARMDIV */
1543         clk = omap_findclk(s, "arm_ck");
1544         omap_clk_setrate(clk, 1 << ((value >> 4) & 3), 1);
1545     }
1546     if (diff & (3 << 2)) {				/* LCDDIV */
1547         clk = omap_findclk(s, "lcd_ck");
1548         omap_clk_setrate(clk, 1 << ((value >> 2) & 3), 1);
1549     }
1550     if (diff & (3 << 0)) {				/* PERDIV */
1551         clk = omap_findclk(s, "armper_ck");
1552         omap_clk_setrate(clk, 1 << ((value >> 0) & 3), 1);
1553     }
1554 }
1555 
1556 static inline void omap_clkm_idlect1_update(struct omap_mpu_state_s *s,
1557                 uint16_t diff, uint16_t value)
1558 {
1559     omap_clk clk;
1560 
1561     if (value & (1 << 11)) {                            /* SETARM_IDLE */
1562         cpu_interrupt(CPU(s->cpu), CPU_INTERRUPT_HALT);
1563     }
1564     if (!(value & (1 << 10))) {                         /* WKUP_MODE */
1565         /* XXX: disable wakeup from IRQ */
1566         qemu_system_shutdown_request(SHUTDOWN_CAUSE_GUEST_SHUTDOWN);
1567     }
1568 
1569 #define SET_CANIDLE(clock, bit)				\
1570     if (diff & (1 << bit)) {				\
1571         clk = omap_findclk(s, clock);			\
1572         omap_clk_canidle(clk, (value >> bit) & 1);	\
1573     }
1574     SET_CANIDLE("mpuwd_ck", 0)				/* IDLWDT_ARM */
1575     SET_CANIDLE("armxor_ck", 1)				/* IDLXORP_ARM */
1576     SET_CANIDLE("mpuper_ck", 2)				/* IDLPER_ARM */
1577     SET_CANIDLE("lcd_ck", 3)				/* IDLLCD_ARM */
1578     SET_CANIDLE("lb_ck", 4)				/* IDLLB_ARM */
1579     SET_CANIDLE("hsab_ck", 5)				/* IDLHSAB_ARM */
1580     SET_CANIDLE("tipb_ck", 6)				/* IDLIF_ARM */
1581     SET_CANIDLE("dma_ck", 6)				/* IDLIF_ARM */
1582     SET_CANIDLE("tc_ck", 6)				/* IDLIF_ARM */
1583     SET_CANIDLE("dpll1", 7)				/* IDLDPLL_ARM */
1584     SET_CANIDLE("dpll2", 7)				/* IDLDPLL_ARM */
1585     SET_CANIDLE("dpll3", 7)				/* IDLDPLL_ARM */
1586     SET_CANIDLE("mpui_ck", 8)				/* IDLAPI_ARM */
1587     SET_CANIDLE("armtim_ck", 9)				/* IDLTIM_ARM */
1588 }
1589 
1590 static inline void omap_clkm_idlect2_update(struct omap_mpu_state_s *s,
1591                 uint16_t diff, uint16_t value)
1592 {
1593     omap_clk clk;
1594 
1595 #define SET_ONOFF(clock, bit)				\
1596     if (diff & (1 << bit)) {				\
1597         clk = omap_findclk(s, clock);			\
1598         omap_clk_onoff(clk, (value >> bit) & 1);	\
1599     }
1600     SET_ONOFF("mpuwd_ck", 0)				/* EN_WDTCK */
1601     SET_ONOFF("armxor_ck", 1)				/* EN_XORPCK */
1602     SET_ONOFF("mpuper_ck", 2)				/* EN_PERCK */
1603     SET_ONOFF("lcd_ck", 3)				/* EN_LCDCK */
1604     SET_ONOFF("lb_ck", 4)				/* EN_LBCK */
1605     SET_ONOFF("hsab_ck", 5)				/* EN_HSABCK */
1606     SET_ONOFF("mpui_ck", 6)				/* EN_APICK */
1607     SET_ONOFF("armtim_ck", 7)				/* EN_TIMCK */
1608     SET_CANIDLE("dma_ck", 8)				/* DMACK_REQ */
1609     SET_ONOFF("arm_gpio_ck", 9)				/* EN_GPIOCK */
1610     SET_ONOFF("lbfree_ck", 10)				/* EN_LBFREECK */
1611 }
1612 
1613 static inline void omap_clkm_ckout1_update(struct omap_mpu_state_s *s,
1614                 uint16_t diff, uint16_t value)
1615 {
1616     omap_clk clk;
1617 
1618     if (diff & (3 << 4)) {				/* TCLKOUT */
1619         clk = omap_findclk(s, "tclk_out");
1620         switch ((value >> 4) & 3) {
1621         case 1:
1622             omap_clk_reparent(clk, omap_findclk(s, "ck_gen3"));
1623             omap_clk_onoff(clk, 1);
1624             break;
1625         case 2:
1626             omap_clk_reparent(clk, omap_findclk(s, "tc_ck"));
1627             omap_clk_onoff(clk, 1);
1628             break;
1629         default:
1630             omap_clk_onoff(clk, 0);
1631         }
1632     }
1633     if (diff & (3 << 2)) {				/* DCLKOUT */
1634         clk = omap_findclk(s, "dclk_out");
1635         switch ((value >> 2) & 3) {
1636         case 0:
1637             omap_clk_reparent(clk, omap_findclk(s, "dspmmu_ck"));
1638             break;
1639         case 1:
1640             omap_clk_reparent(clk, omap_findclk(s, "ck_gen2"));
1641             break;
1642         case 2:
1643             omap_clk_reparent(clk, omap_findclk(s, "dsp_ck"));
1644             break;
1645         case 3:
1646             omap_clk_reparent(clk, omap_findclk(s, "ck_ref14"));
1647             break;
1648         }
1649     }
1650     if (diff & (3 << 0)) {				/* ACLKOUT */
1651         clk = omap_findclk(s, "aclk_out");
1652         switch ((value >> 0) & 3) {
1653         case 1:
1654             omap_clk_reparent(clk, omap_findclk(s, "ck_gen1"));
1655             omap_clk_onoff(clk, 1);
1656             break;
1657         case 2:
1658             omap_clk_reparent(clk, omap_findclk(s, "arm_ck"));
1659             omap_clk_onoff(clk, 1);
1660             break;
1661         case 3:
1662             omap_clk_reparent(clk, omap_findclk(s, "ck_ref14"));
1663             omap_clk_onoff(clk, 1);
1664             break;
1665         default:
1666             omap_clk_onoff(clk, 0);
1667         }
1668     }
1669 }
1670 
1671 static void omap_clkm_write(void *opaque, hwaddr addr,
1672                             uint64_t value, unsigned size)
1673 {
1674     struct omap_mpu_state_s *s = opaque;
1675     uint16_t diff;
1676     omap_clk clk;
1677     static const char *clkschemename[8] = {
1678         "fully synchronous", "fully asynchronous", "synchronous scalable",
1679         "mix mode 1", "mix mode 2", "bypass mode", "mix mode 3", "mix mode 4",
1680     };
1681 
1682     if (size != 2) {
1683         omap_badwidth_write16(opaque, addr, value);
1684         return;
1685     }
1686 
1687     switch (addr) {
1688     case 0x00:	/* ARM_CKCTL */
1689         diff = s->clkm.arm_ckctl ^ value;
1690         s->clkm.arm_ckctl = value & 0x7fff;
1691         omap_clkm_ckctl_update(s, diff, value);
1692         return;
1693 
1694     case 0x04:	/* ARM_IDLECT1 */
1695         diff = s->clkm.arm_idlect1 ^ value;
1696         s->clkm.arm_idlect1 = value & 0x0fff;
1697         omap_clkm_idlect1_update(s, diff, value);
1698         return;
1699 
1700     case 0x08:	/* ARM_IDLECT2 */
1701         diff = s->clkm.arm_idlect2 ^ value;
1702         s->clkm.arm_idlect2 = value & 0x07ff;
1703         omap_clkm_idlect2_update(s, diff, value);
1704         return;
1705 
1706     case 0x0c:	/* ARM_EWUPCT */
1707         s->clkm.arm_ewupct = value & 0x003f;
1708         return;
1709 
1710     case 0x10:	/* ARM_RSTCT1 */
1711         diff = s->clkm.arm_rstct1 ^ value;
1712         s->clkm.arm_rstct1 = value & 0x0007;
1713         if (value & 9) {
1714             qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
1715             s->clkm.cold_start = 0xa;
1716         }
1717         if (diff & ~value & 4) {				/* DSP_RST */
1718             omap_mpui_reset(s);
1719             omap_tipb_bridge_reset(s->private_tipb);
1720             omap_tipb_bridge_reset(s->public_tipb);
1721         }
1722         if (diff & 2) {						/* DSP_EN */
1723             clk = omap_findclk(s, "dsp_ck");
1724             omap_clk_canidle(clk, (~value >> 1) & 1);
1725         }
1726         return;
1727 
1728     case 0x14:	/* ARM_RSTCT2 */
1729         s->clkm.arm_rstct2 = value & 0x0001;
1730         return;
1731 
1732     case 0x18:	/* ARM_SYSST */
1733         if ((s->clkm.clocking_scheme ^ (value >> 11)) & 7) {
1734             s->clkm.clocking_scheme = (value >> 11) & 7;
1735             trace_omap1_pwl_clocking_scheme(
1736                    clkschemename[s->clkm.clocking_scheme]);
1737         }
1738         s->clkm.cold_start &= value & 0x3f;
1739         return;
1740 
1741     case 0x1c:	/* ARM_CKOUT1 */
1742         diff = s->clkm.arm_ckout1 ^ value;
1743         s->clkm.arm_ckout1 = value & 0x003f;
1744         omap_clkm_ckout1_update(s, diff, value);
1745         return;
1746 
1747     case 0x20:	/* ARM_CKOUT2 */
1748     default:
1749         OMAP_BAD_REG(addr);
1750     }
1751 }
1752 
1753 static const MemoryRegionOps omap_clkm_ops = {
1754     .read = omap_clkm_read,
1755     .write = omap_clkm_write,
1756     .endianness = DEVICE_NATIVE_ENDIAN,
1757 };
1758 
1759 static uint64_t omap_clkdsp_read(void *opaque, hwaddr addr,
1760                                  unsigned size)
1761 {
1762     struct omap_mpu_state_s *s = opaque;
1763     CPUState *cpu = CPU(s->cpu);
1764 
1765     if (size != 2) {
1766         return omap_badwidth_read16(opaque, addr);
1767     }
1768 
1769     switch (addr) {
1770     case 0x04:	/* DSP_IDLECT1 */
1771         return s->clkm.dsp_idlect1;
1772 
1773     case 0x08:	/* DSP_IDLECT2 */
1774         return s->clkm.dsp_idlect2;
1775 
1776     case 0x14:	/* DSP_RSTCT2 */
1777         return s->clkm.dsp_rstct2;
1778 
1779     case 0x18:	/* DSP_SYSST */
1780         return (s->clkm.clocking_scheme << 11) | s->clkm.cold_start |
1781                 (cpu->halted << 6);      /* Quite useless... */
1782     }
1783 
1784     OMAP_BAD_REG(addr);
1785     return 0;
1786 }
1787 
1788 static inline void omap_clkdsp_idlect1_update(struct omap_mpu_state_s *s,
1789                 uint16_t diff, uint16_t value)
1790 {
1791     omap_clk clk;
1792 
1793     SET_CANIDLE("dspxor_ck", 1);			/* IDLXORP_DSP */
1794 }
1795 
1796 static inline void omap_clkdsp_idlect2_update(struct omap_mpu_state_s *s,
1797                 uint16_t diff, uint16_t value)
1798 {
1799     omap_clk clk;
1800 
1801     SET_ONOFF("dspxor_ck", 1);				/* EN_XORPCK */
1802 }
1803 
1804 static void omap_clkdsp_write(void *opaque, hwaddr addr,
1805                               uint64_t value, unsigned size)
1806 {
1807     struct omap_mpu_state_s *s = opaque;
1808     uint16_t diff;
1809 
1810     if (size != 2) {
1811         omap_badwidth_write16(opaque, addr, value);
1812         return;
1813     }
1814 
1815     switch (addr) {
1816     case 0x04:	/* DSP_IDLECT1 */
1817         diff = s->clkm.dsp_idlect1 ^ value;
1818         s->clkm.dsp_idlect1 = value & 0x01f7;
1819         omap_clkdsp_idlect1_update(s, diff, value);
1820         break;
1821 
1822     case 0x08:	/* DSP_IDLECT2 */
1823         s->clkm.dsp_idlect2 = value & 0x0037;
1824         diff = s->clkm.dsp_idlect1 ^ value;
1825         omap_clkdsp_idlect2_update(s, diff, value);
1826         break;
1827 
1828     case 0x14:	/* DSP_RSTCT2 */
1829         s->clkm.dsp_rstct2 = value & 0x0001;
1830         break;
1831 
1832     case 0x18:	/* DSP_SYSST */
1833         s->clkm.cold_start &= value & 0x3f;
1834         break;
1835 
1836     default:
1837         OMAP_BAD_REG(addr);
1838     }
1839 }
1840 
1841 static const MemoryRegionOps omap_clkdsp_ops = {
1842     .read = omap_clkdsp_read,
1843     .write = omap_clkdsp_write,
1844     .endianness = DEVICE_NATIVE_ENDIAN,
1845 };
1846 
1847 static void omap_clkm_reset(struct omap_mpu_state_s *s)
1848 {
1849     if (s->wdt && s->wdt->reset)
1850         s->clkm.cold_start = 0x6;
1851     s->clkm.clocking_scheme = 0;
1852     omap_clkm_ckctl_update(s, ~0, 0x3000);
1853     s->clkm.arm_ckctl = 0x3000;
1854     omap_clkm_idlect1_update(s, s->clkm.arm_idlect1 ^ 0x0400, 0x0400);
1855     s->clkm.arm_idlect1 = 0x0400;
1856     omap_clkm_idlect2_update(s, s->clkm.arm_idlect2 ^ 0x0100, 0x0100);
1857     s->clkm.arm_idlect2 = 0x0100;
1858     s->clkm.arm_ewupct = 0x003f;
1859     s->clkm.arm_rstct1 = 0x0000;
1860     s->clkm.arm_rstct2 = 0x0000;
1861     s->clkm.arm_ckout1 = 0x0015;
1862     s->clkm.dpll1_mode = 0x2002;
1863     omap_clkdsp_idlect1_update(s, s->clkm.dsp_idlect1 ^ 0x0040, 0x0040);
1864     s->clkm.dsp_idlect1 = 0x0040;
1865     omap_clkdsp_idlect2_update(s, ~0, 0x0000);
1866     s->clkm.dsp_idlect2 = 0x0000;
1867     s->clkm.dsp_rstct2 = 0x0000;
1868 }
1869 
1870 static void omap_clkm_init(MemoryRegion *memory, hwaddr mpu_base,
1871                 hwaddr dsp_base, struct omap_mpu_state_s *s)
1872 {
1873     memory_region_init_io(&s->clkm_iomem, NULL, &omap_clkm_ops, s,
1874                           "omap-clkm", 0x100);
1875     memory_region_init_io(&s->clkdsp_iomem, NULL, &omap_clkdsp_ops, s,
1876                           "omap-clkdsp", 0x1000);
1877 
1878     s->clkm.arm_idlect1 = 0x03ff;
1879     s->clkm.arm_idlect2 = 0x0100;
1880     s->clkm.dsp_idlect1 = 0x0002;
1881     omap_clkm_reset(s);
1882     s->clkm.cold_start = 0x3a;
1883 
1884     memory_region_add_subregion(memory, mpu_base, &s->clkm_iomem);
1885     memory_region_add_subregion(memory, dsp_base, &s->clkdsp_iomem);
1886 }
1887 
1888 /* MPU I/O */
1889 struct omap_mpuio_s {
1890     qemu_irq irq;
1891     qemu_irq kbd_irq;
1892     qemu_irq *in;
1893     qemu_irq handler[16];
1894     qemu_irq wakeup;
1895     MemoryRegion iomem;
1896 
1897     uint16_t inputs;
1898     uint16_t outputs;
1899     uint16_t dir;
1900     uint16_t edge;
1901     uint16_t mask;
1902     uint16_t ints;
1903 
1904     uint16_t debounce;
1905     uint16_t latch;
1906     uint8_t event;
1907 
1908     uint8_t buttons[5];
1909     uint8_t row_latch;
1910     uint8_t cols;
1911     int kbd_mask;
1912     int clk;
1913 };
1914 
1915 static void omap_mpuio_set(void *opaque, int line, int level)
1916 {
1917     struct omap_mpuio_s *s = opaque;
1918     uint16_t prev = s->inputs;
1919 
1920     if (level)
1921         s->inputs |= 1 << line;
1922     else
1923         s->inputs &= ~(1 << line);
1924 
1925     if (((1 << line) & s->dir & ~s->mask) && s->clk) {
1926         if ((s->edge & s->inputs & ~prev) | (~s->edge & ~s->inputs & prev)) {
1927             s->ints |= 1 << line;
1928             qemu_irq_raise(s->irq);
1929             /* TODO: wakeup */
1930         }
1931         if ((s->event & (1 << 0)) &&		/* SET_GPIO_EVENT_MODE */
1932                 (s->event >> 1) == line)	/* PIN_SELECT */
1933             s->latch = s->inputs;
1934     }
1935 }
1936 
1937 static void omap_mpuio_kbd_update(struct omap_mpuio_s *s)
1938 {
1939     int i;
1940     uint8_t *row, rows = 0, cols = ~s->cols;
1941 
1942     for (row = s->buttons + 4, i = 1 << 4; i; row --, i >>= 1)
1943         if (*row & cols)
1944             rows |= i;
1945 
1946     qemu_set_irq(s->kbd_irq, rows && !s->kbd_mask && s->clk);
1947     s->row_latch = ~rows;
1948 }
1949 
1950 static uint64_t omap_mpuio_read(void *opaque, hwaddr addr,
1951                                 unsigned size)
1952 {
1953     struct omap_mpuio_s *s = opaque;
1954     int offset = addr & OMAP_MPUI_REG_MASK;
1955     uint16_t ret;
1956 
1957     if (size != 2) {
1958         return omap_badwidth_read16(opaque, addr);
1959     }
1960 
1961     switch (offset) {
1962     case 0x00:	/* INPUT_LATCH */
1963         return s->inputs;
1964 
1965     case 0x04:	/* OUTPUT_REG */
1966         return s->outputs;
1967 
1968     case 0x08:	/* IO_CNTL */
1969         return s->dir;
1970 
1971     case 0x10:	/* KBR_LATCH */
1972         return s->row_latch;
1973 
1974     case 0x14:	/* KBC_REG */
1975         return s->cols;
1976 
1977     case 0x18:	/* GPIO_EVENT_MODE_REG */
1978         return s->event;
1979 
1980     case 0x1c:	/* GPIO_INT_EDGE_REG */
1981         return s->edge;
1982 
1983     case 0x20:	/* KBD_INT */
1984         return (~s->row_latch & 0x1f) && !s->kbd_mask;
1985 
1986     case 0x24:	/* GPIO_INT */
1987         ret = s->ints;
1988         s->ints &= s->mask;
1989         if (ret)
1990             qemu_irq_lower(s->irq);
1991         return ret;
1992 
1993     case 0x28:	/* KBD_MASKIT */
1994         return s->kbd_mask;
1995 
1996     case 0x2c:	/* GPIO_MASKIT */
1997         return s->mask;
1998 
1999     case 0x30:	/* GPIO_DEBOUNCING_REG */
2000         return s->debounce;
2001 
2002     case 0x34:	/* GPIO_LATCH_REG */
2003         return s->latch;
2004     }
2005 
2006     OMAP_BAD_REG(addr);
2007     return 0;
2008 }
2009 
2010 static void omap_mpuio_write(void *opaque, hwaddr addr,
2011                              uint64_t value, unsigned size)
2012 {
2013     struct omap_mpuio_s *s = opaque;
2014     int offset = addr & OMAP_MPUI_REG_MASK;
2015     uint16_t diff;
2016     int ln;
2017 
2018     if (size != 2) {
2019         omap_badwidth_write16(opaque, addr, value);
2020         return;
2021     }
2022 
2023     switch (offset) {
2024     case 0x04:	/* OUTPUT_REG */
2025         diff = (s->outputs ^ value) & ~s->dir;
2026         s->outputs = value;
2027         while ((ln = ctz32(diff)) != 32) {
2028             if (s->handler[ln])
2029                 qemu_set_irq(s->handler[ln], (value >> ln) & 1);
2030             diff &= ~(1 << ln);
2031         }
2032         break;
2033 
2034     case 0x08:	/* IO_CNTL */
2035         diff = s->outputs & (s->dir ^ value);
2036         s->dir = value;
2037 
2038         value = s->outputs & ~s->dir;
2039         while ((ln = ctz32(diff)) != 32) {
2040             if (s->handler[ln])
2041                 qemu_set_irq(s->handler[ln], (value >> ln) & 1);
2042             diff &= ~(1 << ln);
2043         }
2044         break;
2045 
2046     case 0x14:	/* KBC_REG */
2047         s->cols = value;
2048         omap_mpuio_kbd_update(s);
2049         break;
2050 
2051     case 0x18:	/* GPIO_EVENT_MODE_REG */
2052         s->event = value & 0x1f;
2053         break;
2054 
2055     case 0x1c:	/* GPIO_INT_EDGE_REG */
2056         s->edge = value;
2057         break;
2058 
2059     case 0x28:	/* KBD_MASKIT */
2060         s->kbd_mask = value & 1;
2061         omap_mpuio_kbd_update(s);
2062         break;
2063 
2064     case 0x2c:	/* GPIO_MASKIT */
2065         s->mask = value;
2066         break;
2067 
2068     case 0x30:	/* GPIO_DEBOUNCING_REG */
2069         s->debounce = value & 0x1ff;
2070         break;
2071 
2072     case 0x00:	/* INPUT_LATCH */
2073     case 0x10:	/* KBR_LATCH */
2074     case 0x20:	/* KBD_INT */
2075     case 0x24:	/* GPIO_INT */
2076     case 0x34:	/* GPIO_LATCH_REG */
2077         OMAP_RO_REG(addr);
2078         return;
2079 
2080     default:
2081         OMAP_BAD_REG(addr);
2082         return;
2083     }
2084 }
2085 
2086 static const MemoryRegionOps omap_mpuio_ops  = {
2087     .read = omap_mpuio_read,
2088     .write = omap_mpuio_write,
2089     .endianness = DEVICE_NATIVE_ENDIAN,
2090 };
2091 
2092 static void omap_mpuio_reset(struct omap_mpuio_s *s)
2093 {
2094     s->inputs = 0;
2095     s->outputs = 0;
2096     s->dir = ~0;
2097     s->event = 0;
2098     s->edge = 0;
2099     s->kbd_mask = 0;
2100     s->mask = 0;
2101     s->debounce = 0;
2102     s->latch = 0;
2103     s->ints = 0;
2104     s->row_latch = 0x1f;
2105     s->clk = 1;
2106 }
2107 
2108 static void omap_mpuio_onoff(void *opaque, int line, int on)
2109 {
2110     struct omap_mpuio_s *s = opaque;
2111 
2112     s->clk = on;
2113     if (on)
2114         omap_mpuio_kbd_update(s);
2115 }
2116 
2117 static struct omap_mpuio_s *omap_mpuio_init(MemoryRegion *memory,
2118                 hwaddr base,
2119                 qemu_irq kbd_int, qemu_irq gpio_int, qemu_irq wakeup,
2120                 omap_clk clk)
2121 {
2122     struct omap_mpuio_s *s = g_new0(struct omap_mpuio_s, 1);
2123 
2124     s->irq = gpio_int;
2125     s->kbd_irq = kbd_int;
2126     s->wakeup = wakeup;
2127     s->in = qemu_allocate_irqs(omap_mpuio_set, s, 16);
2128     omap_mpuio_reset(s);
2129 
2130     memory_region_init_io(&s->iomem, NULL, &omap_mpuio_ops, s,
2131                           "omap-mpuio", 0x800);
2132     memory_region_add_subregion(memory, base, &s->iomem);
2133 
2134     omap_clk_adduser(clk, qemu_allocate_irq(omap_mpuio_onoff, s, 0));
2135 
2136     return s;
2137 }
2138 
2139 qemu_irq *omap_mpuio_in_get(struct omap_mpuio_s *s)
2140 {
2141     return s->in;
2142 }
2143 
2144 void omap_mpuio_out_set(struct omap_mpuio_s *s, int line, qemu_irq handler)
2145 {
2146     if (line >= 16 || line < 0)
2147         hw_error("%s: No GPIO line %i\n", __func__, line);
2148     s->handler[line] = handler;
2149 }
2150 
2151 void omap_mpuio_key(struct omap_mpuio_s *s, int row, int col, int down)
2152 {
2153     if (row >= 5 || row < 0)
2154         hw_error("%s: No key %i-%i\n", __func__, col, row);
2155 
2156     if (down)
2157         s->buttons[row] |= 1 << col;
2158     else
2159         s->buttons[row] &= ~(1 << col);
2160 
2161     omap_mpuio_kbd_update(s);
2162 }
2163 
2164 /* MicroWire Interface */
2165 struct omap_uwire_s {
2166     MemoryRegion iomem;
2167     qemu_irq txirq;
2168     qemu_irq rxirq;
2169     qemu_irq txdrq;
2170 
2171     uint16_t txbuf;
2172     uint16_t rxbuf;
2173     uint16_t control;
2174     uint16_t setup[5];
2175 };
2176 
2177 static void omap_uwire_transfer_start(struct omap_uwire_s *s)
2178 {
2179     int chipselect = (s->control >> 10) & 3;		/* INDEX */
2180 
2181     if ((s->control >> 5) & 0x1f) {			/* NB_BITS_WR */
2182         if (s->control & (1 << 12)) {       /* CS_CMD */
2183             qemu_log_mask(LOG_UNIMP, "uWireSlave TX CS:%d data:0x%04x\n",
2184                           chipselect,
2185                           s->txbuf >> (16 - ((s->control >> 5) & 0x1f)));
2186         }
2187         s->control &= ~(1 << 14);			/* CSRB */
2188         /* TODO: depending on s->setup[4] bits [1:0] assert an IRQ or
2189          * a DRQ.  When is the level IRQ supposed to be reset?  */
2190     }
2191 
2192     if ((s->control >> 0) & 0x1f) {			/* NB_BITS_RD */
2193         if (s->control & (1 << 12)) {       /* CS_CMD */
2194             qemu_log_mask(LOG_UNIMP, "uWireSlave RX CS:%d\n", chipselect);
2195         }
2196         s->control |= 1 << 15;				/* RDRB */
2197         /* TODO: depending on s->setup[4] bits [1:0] assert an IRQ or
2198          * a DRQ.  When is the level IRQ supposed to be reset?  */
2199     }
2200 }
2201 
2202 static uint64_t omap_uwire_read(void *opaque, hwaddr addr, unsigned size)
2203 {
2204     struct omap_uwire_s *s = opaque;
2205     int offset = addr & OMAP_MPUI_REG_MASK;
2206 
2207     if (size != 2) {
2208         return omap_badwidth_read16(opaque, addr);
2209     }
2210 
2211     switch (offset) {
2212     case 0x00:	/* RDR */
2213         s->control &= ~(1 << 15);			/* RDRB */
2214         return s->rxbuf;
2215 
2216     case 0x04:	/* CSR */
2217         return s->control;
2218 
2219     case 0x08:	/* SR1 */
2220         return s->setup[0];
2221     case 0x0c:	/* SR2 */
2222         return s->setup[1];
2223     case 0x10:	/* SR3 */
2224         return s->setup[2];
2225     case 0x14:	/* SR4 */
2226         return s->setup[3];
2227     case 0x18:	/* SR5 */
2228         return s->setup[4];
2229     }
2230 
2231     OMAP_BAD_REG(addr);
2232     return 0;
2233 }
2234 
2235 static void omap_uwire_write(void *opaque, hwaddr addr,
2236                              uint64_t value, unsigned size)
2237 {
2238     struct omap_uwire_s *s = opaque;
2239     int offset = addr & OMAP_MPUI_REG_MASK;
2240 
2241     if (size != 2) {
2242         omap_badwidth_write16(opaque, addr, value);
2243         return;
2244     }
2245 
2246     switch (offset) {
2247     case 0x00:	/* TDR */
2248         s->txbuf = value;				/* TD */
2249         if ((s->setup[4] & (1 << 2)) &&			/* AUTO_TX_EN */
2250                         ((s->setup[4] & (1 << 3)) ||	/* CS_TOGGLE_TX_EN */
2251                          (s->control & (1 << 12)))) {	/* CS_CMD */
2252             s->control |= 1 << 14;			/* CSRB */
2253             omap_uwire_transfer_start(s);
2254         }
2255         break;
2256 
2257     case 0x04:	/* CSR */
2258         s->control = value & 0x1fff;
2259         if (value & (1 << 13))				/* START */
2260             omap_uwire_transfer_start(s);
2261         break;
2262 
2263     case 0x08:	/* SR1 */
2264         s->setup[0] = value & 0x003f;
2265         break;
2266 
2267     case 0x0c:	/* SR2 */
2268         s->setup[1] = value & 0x0fc0;
2269         break;
2270 
2271     case 0x10:	/* SR3 */
2272         s->setup[2] = value & 0x0003;
2273         break;
2274 
2275     case 0x14:	/* SR4 */
2276         s->setup[3] = value & 0x0001;
2277         break;
2278 
2279     case 0x18:	/* SR5 */
2280         s->setup[4] = value & 0x000f;
2281         break;
2282 
2283     default:
2284         OMAP_BAD_REG(addr);
2285         return;
2286     }
2287 }
2288 
2289 static const MemoryRegionOps omap_uwire_ops = {
2290     .read = omap_uwire_read,
2291     .write = omap_uwire_write,
2292     .endianness = DEVICE_NATIVE_ENDIAN,
2293 };
2294 
2295 static void omap_uwire_reset(struct omap_uwire_s *s)
2296 {
2297     s->control = 0;
2298     s->setup[0] = 0;
2299     s->setup[1] = 0;
2300     s->setup[2] = 0;
2301     s->setup[3] = 0;
2302     s->setup[4] = 0;
2303 }
2304 
2305 static struct omap_uwire_s *omap_uwire_init(MemoryRegion *system_memory,
2306                                             hwaddr base,
2307                                             qemu_irq txirq, qemu_irq rxirq,
2308                                             qemu_irq dma,
2309                                             omap_clk clk)
2310 {
2311     struct omap_uwire_s *s = g_new0(struct omap_uwire_s, 1);
2312 
2313     s->txirq = txirq;
2314     s->rxirq = rxirq;
2315     s->txdrq = dma;
2316     omap_uwire_reset(s);
2317 
2318     memory_region_init_io(&s->iomem, NULL, &omap_uwire_ops, s, "omap-uwire", 0x800);
2319     memory_region_add_subregion(system_memory, base, &s->iomem);
2320 
2321     return s;
2322 }
2323 
2324 /* Pseudonoise Pulse-Width Light Modulator */
2325 struct omap_pwl_s {
2326     MemoryRegion iomem;
2327     uint8_t output;
2328     uint8_t level;
2329     uint8_t enable;
2330     int clk;
2331 };
2332 
2333 static void omap_pwl_update(struct omap_pwl_s *s)
2334 {
2335     int output = (s->clk && s->enable) ? s->level : 0;
2336 
2337     if (output != s->output) {
2338         s->output = output;
2339         trace_omap1_pwl_backlight(output);
2340     }
2341 }
2342 
2343 static uint64_t omap_pwl_read(void *opaque, hwaddr addr, unsigned size)
2344 {
2345     struct omap_pwl_s *s = opaque;
2346     int offset = addr & OMAP_MPUI_REG_MASK;
2347 
2348     if (size != 1) {
2349         return omap_badwidth_read8(opaque, addr);
2350     }
2351 
2352     switch (offset) {
2353     case 0x00:	/* PWL_LEVEL */
2354         return s->level;
2355     case 0x04:	/* PWL_CTRL */
2356         return s->enable;
2357     }
2358     OMAP_BAD_REG(addr);
2359     return 0;
2360 }
2361 
2362 static void omap_pwl_write(void *opaque, hwaddr addr,
2363                            uint64_t value, unsigned size)
2364 {
2365     struct omap_pwl_s *s = opaque;
2366     int offset = addr & OMAP_MPUI_REG_MASK;
2367 
2368     if (size != 1) {
2369         omap_badwidth_write8(opaque, addr, value);
2370         return;
2371     }
2372 
2373     switch (offset) {
2374     case 0x00:	/* PWL_LEVEL */
2375         s->level = value;
2376         omap_pwl_update(s);
2377         break;
2378     case 0x04:	/* PWL_CTRL */
2379         s->enable = value & 1;
2380         omap_pwl_update(s);
2381         break;
2382     default:
2383         OMAP_BAD_REG(addr);
2384         return;
2385     }
2386 }
2387 
2388 static const MemoryRegionOps omap_pwl_ops = {
2389     .read = omap_pwl_read,
2390     .write = omap_pwl_write,
2391     .endianness = DEVICE_NATIVE_ENDIAN,
2392 };
2393 
2394 static void omap_pwl_reset(struct omap_pwl_s *s)
2395 {
2396     s->output = 0;
2397     s->level = 0;
2398     s->enable = 0;
2399     s->clk = 1;
2400     omap_pwl_update(s);
2401 }
2402 
2403 static void omap_pwl_clk_update(void *opaque, int line, int on)
2404 {
2405     struct omap_pwl_s *s = opaque;
2406 
2407     s->clk = on;
2408     omap_pwl_update(s);
2409 }
2410 
2411 static struct omap_pwl_s *omap_pwl_init(MemoryRegion *system_memory,
2412                                         hwaddr base,
2413                                         omap_clk clk)
2414 {
2415     struct omap_pwl_s *s = g_malloc0(sizeof(*s));
2416 
2417     omap_pwl_reset(s);
2418 
2419     memory_region_init_io(&s->iomem, NULL, &omap_pwl_ops, s,
2420                           "omap-pwl", 0x800);
2421     memory_region_add_subregion(system_memory, base, &s->iomem);
2422 
2423     omap_clk_adduser(clk, qemu_allocate_irq(omap_pwl_clk_update, s, 0));
2424     return s;
2425 }
2426 
2427 /* Pulse-Width Tone module */
2428 struct omap_pwt_s {
2429     MemoryRegion iomem;
2430     uint8_t frc;
2431     uint8_t vrc;
2432     uint8_t gcr;
2433     omap_clk clk;
2434 };
2435 
2436 static uint64_t omap_pwt_read(void *opaque, hwaddr addr, unsigned size)
2437 {
2438     struct omap_pwt_s *s = opaque;
2439     int offset = addr & OMAP_MPUI_REG_MASK;
2440 
2441     if (size != 1) {
2442         return omap_badwidth_read8(opaque, addr);
2443     }
2444 
2445     switch (offset) {
2446     case 0x00:	/* FRC */
2447         return s->frc;
2448     case 0x04:	/* VCR */
2449         return s->vrc;
2450     case 0x08:	/* GCR */
2451         return s->gcr;
2452     }
2453     OMAP_BAD_REG(addr);
2454     return 0;
2455 }
2456 
2457 static void omap_pwt_write(void *opaque, hwaddr addr,
2458                            uint64_t value, unsigned size)
2459 {
2460     struct omap_pwt_s *s = opaque;
2461     int offset = addr & OMAP_MPUI_REG_MASK;
2462 
2463     if (size != 1) {
2464         omap_badwidth_write8(opaque, addr, value);
2465         return;
2466     }
2467 
2468     switch (offset) {
2469     case 0x00:	/* FRC */
2470         s->frc = value & 0x3f;
2471         break;
2472     case 0x04:	/* VRC */
2473         if ((value ^ s->vrc) & 1) {
2474             if (value & 1) {
2475                 trace_omap1_pwt_buzz(
2476                                 /* 1.5 MHz from a 12-MHz or 13-MHz PWT_CLK */
2477                                 ((omap_clk_getrate(s->clk) >> 3) /
2478                                  /* Pre-multiplexer divider */
2479                                  ((s->gcr & 2) ? 1 : 154) /
2480                                  /* Octave multiplexer */
2481                                  (2 << (value & 3)) *
2482                                  /* 101/107 divider */
2483                                  ((value & (1 << 2)) ? 101 : 107) *
2484                                  /*  49/55 divider */
2485                                  ((value & (1 << 3)) ?  49 : 55) *
2486                                  /*  50/63 divider */
2487                                  ((value & (1 << 4)) ?  50 : 63) *
2488                                  /*  80/127 divider */
2489                                  ((value & (1 << 5)) ?  80 : 127) /
2490                                  (107 * 55 * 63 * 127)));
2491             } else {
2492                 trace_omap1_pwt_silence();
2493             }
2494         }
2495         s->vrc = value & 0x7f;
2496         break;
2497     case 0x08:	/* GCR */
2498         s->gcr = value & 3;
2499         break;
2500     default:
2501         OMAP_BAD_REG(addr);
2502         return;
2503     }
2504 }
2505 
2506 static const MemoryRegionOps omap_pwt_ops = {
2507     .read =omap_pwt_read,
2508     .write = omap_pwt_write,
2509     .endianness = DEVICE_NATIVE_ENDIAN,
2510 };
2511 
2512 static void omap_pwt_reset(struct omap_pwt_s *s)
2513 {
2514     s->frc = 0;
2515     s->vrc = 0;
2516     s->gcr = 0;
2517 }
2518 
2519 static struct omap_pwt_s *omap_pwt_init(MemoryRegion *system_memory,
2520                                         hwaddr base,
2521                                         omap_clk clk)
2522 {
2523     struct omap_pwt_s *s = g_malloc0(sizeof(*s));
2524     s->clk = clk;
2525     omap_pwt_reset(s);
2526 
2527     memory_region_init_io(&s->iomem, NULL, &omap_pwt_ops, s,
2528                           "omap-pwt", 0x800);
2529     memory_region_add_subregion(system_memory, base, &s->iomem);
2530     return s;
2531 }
2532 
2533 /* Real-time Clock module */
2534 struct omap_rtc_s {
2535     MemoryRegion iomem;
2536     qemu_irq irq;
2537     qemu_irq alarm;
2538     QEMUTimer *clk;
2539 
2540     uint8_t interrupts;
2541     uint8_t status;
2542     int16_t comp_reg;
2543     int running;
2544     int pm_am;
2545     int auto_comp;
2546     int round;
2547     struct tm alarm_tm;
2548     time_t alarm_ti;
2549 
2550     struct tm current_tm;
2551     time_t ti;
2552     uint64_t tick;
2553 };
2554 
2555 static void omap_rtc_interrupts_update(struct omap_rtc_s *s)
2556 {
2557     /* s->alarm is level-triggered */
2558     qemu_set_irq(s->alarm, (s->status >> 6) & 1);
2559 }
2560 
2561 static void omap_rtc_alarm_update(struct omap_rtc_s *s)
2562 {
2563     s->alarm_ti = mktimegm(&s->alarm_tm);
2564     if (s->alarm_ti == -1) {
2565         qemu_log_mask(LOG_GUEST_ERROR, "%s: conversion failed\n", __func__);
2566     }
2567 }
2568 
2569 static uint64_t omap_rtc_read(void *opaque, hwaddr addr, unsigned size)
2570 {
2571     struct omap_rtc_s *s = opaque;
2572     int offset = addr & OMAP_MPUI_REG_MASK;
2573     uint8_t i;
2574 
2575     if (size != 1) {
2576         return omap_badwidth_read8(opaque, addr);
2577     }
2578 
2579     switch (offset) {
2580     case 0x00:	/* SECONDS_REG */
2581         return to_bcd(s->current_tm.tm_sec);
2582 
2583     case 0x04:	/* MINUTES_REG */
2584         return to_bcd(s->current_tm.tm_min);
2585 
2586     case 0x08:	/* HOURS_REG */
2587         if (s->pm_am)
2588             return ((s->current_tm.tm_hour > 11) << 7) |
2589                     to_bcd(((s->current_tm.tm_hour - 1) % 12) + 1);
2590         else
2591             return to_bcd(s->current_tm.tm_hour);
2592 
2593     case 0x0c:	/* DAYS_REG */
2594         return to_bcd(s->current_tm.tm_mday);
2595 
2596     case 0x10:	/* MONTHS_REG */
2597         return to_bcd(s->current_tm.tm_mon + 1);
2598 
2599     case 0x14:	/* YEARS_REG */
2600         return to_bcd(s->current_tm.tm_year % 100);
2601 
2602     case 0x18:	/* WEEK_REG */
2603         return s->current_tm.tm_wday;
2604 
2605     case 0x20:	/* ALARM_SECONDS_REG */
2606         return to_bcd(s->alarm_tm.tm_sec);
2607 
2608     case 0x24:	/* ALARM_MINUTES_REG */
2609         return to_bcd(s->alarm_tm.tm_min);
2610 
2611     case 0x28:	/* ALARM_HOURS_REG */
2612         if (s->pm_am)
2613             return ((s->alarm_tm.tm_hour > 11) << 7) |
2614                     to_bcd(((s->alarm_tm.tm_hour - 1) % 12) + 1);
2615         else
2616             return to_bcd(s->alarm_tm.tm_hour);
2617 
2618     case 0x2c:	/* ALARM_DAYS_REG */
2619         return to_bcd(s->alarm_tm.tm_mday);
2620 
2621     case 0x30:	/* ALARM_MONTHS_REG */
2622         return to_bcd(s->alarm_tm.tm_mon + 1);
2623 
2624     case 0x34:	/* ALARM_YEARS_REG */
2625         return to_bcd(s->alarm_tm.tm_year % 100);
2626 
2627     case 0x40:	/* RTC_CTRL_REG */
2628         return (s->pm_am << 3) | (s->auto_comp << 2) |
2629                 (s->round << 1) | s->running;
2630 
2631     case 0x44:	/* RTC_STATUS_REG */
2632         i = s->status;
2633         s->status &= ~0x3d;
2634         return i;
2635 
2636     case 0x48:	/* RTC_INTERRUPTS_REG */
2637         return s->interrupts;
2638 
2639     case 0x4c:	/* RTC_COMP_LSB_REG */
2640         return ((uint16_t) s->comp_reg) & 0xff;
2641 
2642     case 0x50:	/* RTC_COMP_MSB_REG */
2643         return ((uint16_t) s->comp_reg) >> 8;
2644     }
2645 
2646     OMAP_BAD_REG(addr);
2647     return 0;
2648 }
2649 
2650 static void omap_rtc_write(void *opaque, hwaddr addr,
2651                            uint64_t value, unsigned size)
2652 {
2653     struct omap_rtc_s *s = opaque;
2654     int offset = addr & OMAP_MPUI_REG_MASK;
2655     struct tm new_tm;
2656     time_t ti[2];
2657 
2658     if (size != 1) {
2659         omap_badwidth_write8(opaque, addr, value);
2660         return;
2661     }
2662 
2663     switch (offset) {
2664     case 0x00:	/* SECONDS_REG */
2665         s->ti -= s->current_tm.tm_sec;
2666         s->ti += from_bcd(value);
2667         return;
2668 
2669     case 0x04:	/* MINUTES_REG */
2670         s->ti -= s->current_tm.tm_min * 60;
2671         s->ti += from_bcd(value) * 60;
2672         return;
2673 
2674     case 0x08:	/* HOURS_REG */
2675         s->ti -= s->current_tm.tm_hour * 3600;
2676         if (s->pm_am) {
2677             s->ti += (from_bcd(value & 0x3f) & 12) * 3600;
2678             s->ti += ((value >> 7) & 1) * 43200;
2679         } else
2680             s->ti += from_bcd(value & 0x3f) * 3600;
2681         return;
2682 
2683     case 0x0c:	/* DAYS_REG */
2684         s->ti -= s->current_tm.tm_mday * 86400;
2685         s->ti += from_bcd(value) * 86400;
2686         return;
2687 
2688     case 0x10:	/* MONTHS_REG */
2689         memcpy(&new_tm, &s->current_tm, sizeof(new_tm));
2690         new_tm.tm_mon = from_bcd(value);
2691         ti[0] = mktimegm(&s->current_tm);
2692         ti[1] = mktimegm(&new_tm);
2693 
2694         if (ti[0] != -1 && ti[1] != -1) {
2695             s->ti -= ti[0];
2696             s->ti += ti[1];
2697         } else {
2698             /* A less accurate version */
2699             s->ti -= s->current_tm.tm_mon * 2592000;
2700             s->ti += from_bcd(value) * 2592000;
2701         }
2702         return;
2703 
2704     case 0x14:	/* YEARS_REG */
2705         memcpy(&new_tm, &s->current_tm, sizeof(new_tm));
2706         new_tm.tm_year += from_bcd(value) - (new_tm.tm_year % 100);
2707         ti[0] = mktimegm(&s->current_tm);
2708         ti[1] = mktimegm(&new_tm);
2709 
2710         if (ti[0] != -1 && ti[1] != -1) {
2711             s->ti -= ti[0];
2712             s->ti += ti[1];
2713         } else {
2714             /* A less accurate version */
2715             s->ti -= (time_t)(s->current_tm.tm_year % 100) * 31536000;
2716             s->ti += (time_t)from_bcd(value) * 31536000;
2717         }
2718         return;
2719 
2720     case 0x18:	/* WEEK_REG */
2721         return;	/* Ignored */
2722 
2723     case 0x20:	/* ALARM_SECONDS_REG */
2724         s->alarm_tm.tm_sec = from_bcd(value);
2725         omap_rtc_alarm_update(s);
2726         return;
2727 
2728     case 0x24:	/* ALARM_MINUTES_REG */
2729         s->alarm_tm.tm_min = from_bcd(value);
2730         omap_rtc_alarm_update(s);
2731         return;
2732 
2733     case 0x28:	/* ALARM_HOURS_REG */
2734         if (s->pm_am)
2735             s->alarm_tm.tm_hour =
2736                     ((from_bcd(value & 0x3f)) % 12) +
2737                     ((value >> 7) & 1) * 12;
2738         else
2739             s->alarm_tm.tm_hour = from_bcd(value);
2740         omap_rtc_alarm_update(s);
2741         return;
2742 
2743     case 0x2c:	/* ALARM_DAYS_REG */
2744         s->alarm_tm.tm_mday = from_bcd(value);
2745         omap_rtc_alarm_update(s);
2746         return;
2747 
2748     case 0x30:	/* ALARM_MONTHS_REG */
2749         s->alarm_tm.tm_mon = from_bcd(value);
2750         omap_rtc_alarm_update(s);
2751         return;
2752 
2753     case 0x34:	/* ALARM_YEARS_REG */
2754         s->alarm_tm.tm_year = from_bcd(value);
2755         omap_rtc_alarm_update(s);
2756         return;
2757 
2758     case 0x40:	/* RTC_CTRL_REG */
2759         s->pm_am = (value >> 3) & 1;
2760         s->auto_comp = (value >> 2) & 1;
2761         s->round = (value >> 1) & 1;
2762         s->running = value & 1;
2763         s->status &= 0xfd;
2764         s->status |= s->running << 1;
2765         return;
2766 
2767     case 0x44:	/* RTC_STATUS_REG */
2768         s->status &= ~((value & 0xc0) ^ 0x80);
2769         omap_rtc_interrupts_update(s);
2770         return;
2771 
2772     case 0x48:	/* RTC_INTERRUPTS_REG */
2773         s->interrupts = value;
2774         return;
2775 
2776     case 0x4c:	/* RTC_COMP_LSB_REG */
2777         s->comp_reg &= 0xff00;
2778         s->comp_reg |= 0x00ff & value;
2779         return;
2780 
2781     case 0x50:	/* RTC_COMP_MSB_REG */
2782         s->comp_reg &= 0x00ff;
2783         s->comp_reg |= 0xff00 & (value << 8);
2784         return;
2785 
2786     default:
2787         OMAP_BAD_REG(addr);
2788         return;
2789     }
2790 }
2791 
2792 static const MemoryRegionOps omap_rtc_ops = {
2793     .read = omap_rtc_read,
2794     .write = omap_rtc_write,
2795     .endianness = DEVICE_NATIVE_ENDIAN,
2796 };
2797 
2798 static void omap_rtc_tick(void *opaque)
2799 {
2800     struct omap_rtc_s *s = opaque;
2801 
2802     if (s->round) {
2803         /* Round to nearest full minute.  */
2804         if (s->current_tm.tm_sec < 30)
2805             s->ti -= s->current_tm.tm_sec;
2806         else
2807             s->ti += 60 - s->current_tm.tm_sec;
2808 
2809         s->round = 0;
2810     }
2811 
2812     localtime_r(&s->ti, &s->current_tm);
2813 
2814     if ((s->interrupts & 0x08) && s->ti == s->alarm_ti) {
2815         s->status |= 0x40;
2816         omap_rtc_interrupts_update(s);
2817     }
2818 
2819     if (s->interrupts & 0x04)
2820         switch (s->interrupts & 3) {
2821         case 0:
2822             s->status |= 0x04;
2823             qemu_irq_pulse(s->irq);
2824             break;
2825         case 1:
2826             if (s->current_tm.tm_sec)
2827                 break;
2828             s->status |= 0x08;
2829             qemu_irq_pulse(s->irq);
2830             break;
2831         case 2:
2832             if (s->current_tm.tm_sec || s->current_tm.tm_min)
2833                 break;
2834             s->status |= 0x10;
2835             qemu_irq_pulse(s->irq);
2836             break;
2837         case 3:
2838             if (s->current_tm.tm_sec ||
2839                             s->current_tm.tm_min || s->current_tm.tm_hour)
2840                 break;
2841             s->status |= 0x20;
2842             qemu_irq_pulse(s->irq);
2843             break;
2844         }
2845 
2846     /* Move on */
2847     if (s->running)
2848         s->ti ++;
2849     s->tick += 1000;
2850 
2851     /*
2852      * Every full hour add a rough approximation of the compensation
2853      * register to the 32kHz Timer (which drives the RTC) value.
2854      */
2855     if (s->auto_comp && !s->current_tm.tm_sec && !s->current_tm.tm_min)
2856         s->tick += s->comp_reg * 1000 / 32768;
2857 
2858     timer_mod(s->clk, s->tick);
2859 }
2860 
2861 static void omap_rtc_reset(struct omap_rtc_s *s)
2862 {
2863     struct tm tm;
2864 
2865     s->interrupts = 0;
2866     s->comp_reg = 0;
2867     s->running = 0;
2868     s->pm_am = 0;
2869     s->auto_comp = 0;
2870     s->round = 0;
2871     s->tick = qemu_clock_get_ms(rtc_clock);
2872     memset(&s->alarm_tm, 0, sizeof(s->alarm_tm));
2873     s->alarm_tm.tm_mday = 0x01;
2874     s->status = 1 << 7;
2875     qemu_get_timedate(&tm, 0);
2876     s->ti = mktimegm(&tm);
2877 
2878     omap_rtc_alarm_update(s);
2879     omap_rtc_tick(s);
2880 }
2881 
2882 static struct omap_rtc_s *omap_rtc_init(MemoryRegion *system_memory,
2883                                         hwaddr base,
2884                                         qemu_irq timerirq, qemu_irq alarmirq,
2885                                         omap_clk clk)
2886 {
2887     struct omap_rtc_s *s = g_new0(struct omap_rtc_s, 1);
2888 
2889     s->irq = timerirq;
2890     s->alarm = alarmirq;
2891     s->clk = timer_new_ms(rtc_clock, omap_rtc_tick, s);
2892 
2893     omap_rtc_reset(s);
2894 
2895     memory_region_init_io(&s->iomem, NULL, &omap_rtc_ops, s,
2896                           "omap-rtc", 0x800);
2897     memory_region_add_subregion(system_memory, base, &s->iomem);
2898 
2899     return s;
2900 }
2901 
2902 /* Multi-channel Buffered Serial Port interfaces */
2903 struct omap_mcbsp_s {
2904     MemoryRegion iomem;
2905     qemu_irq txirq;
2906     qemu_irq rxirq;
2907     qemu_irq txdrq;
2908     qemu_irq rxdrq;
2909 
2910     uint16_t spcr[2];
2911     uint16_t rcr[2];
2912     uint16_t xcr[2];
2913     uint16_t srgr[2];
2914     uint16_t mcr[2];
2915     uint16_t pcr;
2916     uint16_t rcer[8];
2917     uint16_t xcer[8];
2918     int tx_rate;
2919     int rx_rate;
2920     int tx_req;
2921     int rx_req;
2922 
2923     I2SCodec *codec;
2924     QEMUTimer *source_timer;
2925     QEMUTimer *sink_timer;
2926 };
2927 
2928 static void omap_mcbsp_intr_update(struct omap_mcbsp_s *s)
2929 {
2930     int irq;
2931 
2932     switch ((s->spcr[0] >> 4) & 3) {			/* RINTM */
2933     case 0:
2934         irq = (s->spcr[0] >> 1) & 1;			/* RRDY */
2935         break;
2936     case 3:
2937         irq = (s->spcr[0] >> 3) & 1;			/* RSYNCERR */
2938         break;
2939     default:
2940         irq = 0;
2941         break;
2942     }
2943 
2944     if (irq)
2945         qemu_irq_pulse(s->rxirq);
2946 
2947     switch ((s->spcr[1] >> 4) & 3) {			/* XINTM */
2948     case 0:
2949         irq = (s->spcr[1] >> 1) & 1;			/* XRDY */
2950         break;
2951     case 3:
2952         irq = (s->spcr[1] >> 3) & 1;			/* XSYNCERR */
2953         break;
2954     default:
2955         irq = 0;
2956         break;
2957     }
2958 
2959     if (irq)
2960         qemu_irq_pulse(s->txirq);
2961 }
2962 
2963 static void omap_mcbsp_rx_newdata(struct omap_mcbsp_s *s)
2964 {
2965     if ((s->spcr[0] >> 1) & 1)				/* RRDY */
2966         s->spcr[0] |= 1 << 2;				/* RFULL */
2967     s->spcr[0] |= 1 << 1;				/* RRDY */
2968     qemu_irq_raise(s->rxdrq);
2969     omap_mcbsp_intr_update(s);
2970 }
2971 
2972 static void omap_mcbsp_source_tick(void *opaque)
2973 {
2974     struct omap_mcbsp_s *s = opaque;
2975     static const int bps[8] = { 0, 1, 1, 2, 2, 2, -255, -255 };
2976 
2977     if (!s->rx_rate)
2978         return;
2979     if (s->rx_req) {
2980         qemu_log_mask(LOG_GUEST_ERROR, "%s: Rx FIFO overrun\n", __func__);
2981     }
2982 
2983     s->rx_req = s->rx_rate << bps[(s->rcr[0] >> 5) & 7];
2984 
2985     omap_mcbsp_rx_newdata(s);
2986     timer_mod(s->source_timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
2987                    NANOSECONDS_PER_SECOND);
2988 }
2989 
2990 static void omap_mcbsp_rx_start(struct omap_mcbsp_s *s)
2991 {
2992     if (!s->codec || !s->codec->rts)
2993         omap_mcbsp_source_tick(s);
2994     else if (s->codec->in.len) {
2995         s->rx_req = s->codec->in.len;
2996         omap_mcbsp_rx_newdata(s);
2997     }
2998 }
2999 
3000 static void omap_mcbsp_rx_stop(struct omap_mcbsp_s *s)
3001 {
3002     timer_del(s->source_timer);
3003 }
3004 
3005 static void omap_mcbsp_rx_done(struct omap_mcbsp_s *s)
3006 {
3007     s->spcr[0] &= ~(1 << 1);				/* RRDY */
3008     qemu_irq_lower(s->rxdrq);
3009     omap_mcbsp_intr_update(s);
3010 }
3011 
3012 static void omap_mcbsp_tx_newdata(struct omap_mcbsp_s *s)
3013 {
3014     s->spcr[1] |= 1 << 1;				/* XRDY */
3015     qemu_irq_raise(s->txdrq);
3016     omap_mcbsp_intr_update(s);
3017 }
3018 
3019 static void omap_mcbsp_sink_tick(void *opaque)
3020 {
3021     struct omap_mcbsp_s *s = opaque;
3022     static const int bps[8] = { 0, 1, 1, 2, 2, 2, -255, -255 };
3023 
3024     if (!s->tx_rate)
3025         return;
3026     if (s->tx_req) {
3027         qemu_log_mask(LOG_GUEST_ERROR, "%s: Tx FIFO underrun\n", __func__);
3028     }
3029 
3030     s->tx_req = s->tx_rate << bps[(s->xcr[0] >> 5) & 7];
3031 
3032     omap_mcbsp_tx_newdata(s);
3033     timer_mod(s->sink_timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
3034                    NANOSECONDS_PER_SECOND);
3035 }
3036 
3037 static void omap_mcbsp_tx_start(struct omap_mcbsp_s *s)
3038 {
3039     if (!s->codec || !s->codec->cts)
3040         omap_mcbsp_sink_tick(s);
3041     else if (s->codec->out.size) {
3042         s->tx_req = s->codec->out.size;
3043         omap_mcbsp_tx_newdata(s);
3044     }
3045 }
3046 
3047 static void omap_mcbsp_tx_done(struct omap_mcbsp_s *s)
3048 {
3049     s->spcr[1] &= ~(1 << 1);				/* XRDY */
3050     qemu_irq_lower(s->txdrq);
3051     omap_mcbsp_intr_update(s);
3052     if (s->codec && s->codec->cts)
3053         s->codec->tx_swallow(s->codec->opaque);
3054 }
3055 
3056 static void omap_mcbsp_tx_stop(struct omap_mcbsp_s *s)
3057 {
3058     s->tx_req = 0;
3059     omap_mcbsp_tx_done(s);
3060     timer_del(s->sink_timer);
3061 }
3062 
3063 static void omap_mcbsp_req_update(struct omap_mcbsp_s *s)
3064 {
3065     int prev_rx_rate, prev_tx_rate;
3066     int rx_rate = 0, tx_rate = 0;
3067     int cpu_rate = 1500000;	/* XXX */
3068 
3069     /* TODO: check CLKSTP bit */
3070     if (s->spcr[1] & (1 << 6)) {			/* GRST */
3071         if (s->spcr[0] & (1 << 0)) {			/* RRST */
3072             if ((s->srgr[1] & (1 << 13)) &&		/* CLKSM */
3073                             (s->pcr & (1 << 8))) {	/* CLKRM */
3074                 if (~s->pcr & (1 << 7))			/* SCLKME */
3075                     rx_rate = cpu_rate /
3076                             ((s->srgr[0] & 0xff) + 1);	/* CLKGDV */
3077             } else
3078                 if (s->codec)
3079                     rx_rate = s->codec->rx_rate;
3080         }
3081 
3082         if (s->spcr[1] & (1 << 0)) {			/* XRST */
3083             if ((s->srgr[1] & (1 << 13)) &&		/* CLKSM */
3084                             (s->pcr & (1 << 9))) {	/* CLKXM */
3085                 if (~s->pcr & (1 << 7))			/* SCLKME */
3086                     tx_rate = cpu_rate /
3087                             ((s->srgr[0] & 0xff) + 1);	/* CLKGDV */
3088             } else
3089                 if (s->codec)
3090                     tx_rate = s->codec->tx_rate;
3091         }
3092     }
3093     prev_tx_rate = s->tx_rate;
3094     prev_rx_rate = s->rx_rate;
3095     s->tx_rate = tx_rate;
3096     s->rx_rate = rx_rate;
3097 
3098     if (s->codec)
3099         s->codec->set_rate(s->codec->opaque, rx_rate, tx_rate);
3100 
3101     if (!prev_tx_rate && tx_rate)
3102         omap_mcbsp_tx_start(s);
3103     else if (s->tx_rate && !tx_rate)
3104         omap_mcbsp_tx_stop(s);
3105 
3106     if (!prev_rx_rate && rx_rate)
3107         omap_mcbsp_rx_start(s);
3108     else if (prev_tx_rate && !tx_rate)
3109         omap_mcbsp_rx_stop(s);
3110 }
3111 
3112 static uint64_t omap_mcbsp_read(void *opaque, hwaddr addr,
3113                                 unsigned size)
3114 {
3115     struct omap_mcbsp_s *s = opaque;
3116     int offset = addr & OMAP_MPUI_REG_MASK;
3117     uint16_t ret;
3118 
3119     if (size != 2) {
3120         return omap_badwidth_read16(opaque, addr);
3121     }
3122 
3123     switch (offset) {
3124     case 0x00:	/* DRR2 */
3125         if (((s->rcr[0] >> 5) & 7) < 3)			/* RWDLEN1 */
3126             return 0x0000;
3127         /* Fall through.  */
3128     case 0x02:	/* DRR1 */
3129         if (s->rx_req < 2) {
3130             qemu_log_mask(LOG_GUEST_ERROR, "%s: Rx FIFO underrun\n", __func__);
3131             omap_mcbsp_rx_done(s);
3132         } else {
3133             s->tx_req -= 2;
3134             if (s->codec && s->codec->in.len >= 2) {
3135                 ret = s->codec->in.fifo[s->codec->in.start ++] << 8;
3136                 ret |= s->codec->in.fifo[s->codec->in.start ++];
3137                 s->codec->in.len -= 2;
3138             } else
3139                 ret = 0x0000;
3140             if (!s->tx_req)
3141                 omap_mcbsp_rx_done(s);
3142             return ret;
3143         }
3144         return 0x0000;
3145 
3146     case 0x04:	/* DXR2 */
3147     case 0x06:	/* DXR1 */
3148         return 0x0000;
3149 
3150     case 0x08:	/* SPCR2 */
3151         return s->spcr[1];
3152     case 0x0a:	/* SPCR1 */
3153         return s->spcr[0];
3154     case 0x0c:	/* RCR2 */
3155         return s->rcr[1];
3156     case 0x0e:	/* RCR1 */
3157         return s->rcr[0];
3158     case 0x10:	/* XCR2 */
3159         return s->xcr[1];
3160     case 0x12:	/* XCR1 */
3161         return s->xcr[0];
3162     case 0x14:	/* SRGR2 */
3163         return s->srgr[1];
3164     case 0x16:	/* SRGR1 */
3165         return s->srgr[0];
3166     case 0x18:	/* MCR2 */
3167         return s->mcr[1];
3168     case 0x1a:	/* MCR1 */
3169         return s->mcr[0];
3170     case 0x1c:	/* RCERA */
3171         return s->rcer[0];
3172     case 0x1e:	/* RCERB */
3173         return s->rcer[1];
3174     case 0x20:	/* XCERA */
3175         return s->xcer[0];
3176     case 0x22:	/* XCERB */
3177         return s->xcer[1];
3178     case 0x24:	/* PCR0 */
3179         return s->pcr;
3180     case 0x26:	/* RCERC */
3181         return s->rcer[2];
3182     case 0x28:	/* RCERD */
3183         return s->rcer[3];
3184     case 0x2a:	/* XCERC */
3185         return s->xcer[2];
3186     case 0x2c:	/* XCERD */
3187         return s->xcer[3];
3188     case 0x2e:	/* RCERE */
3189         return s->rcer[4];
3190     case 0x30:	/* RCERF */
3191         return s->rcer[5];
3192     case 0x32:	/* XCERE */
3193         return s->xcer[4];
3194     case 0x34:	/* XCERF */
3195         return s->xcer[5];
3196     case 0x36:	/* RCERG */
3197         return s->rcer[6];
3198     case 0x38:	/* RCERH */
3199         return s->rcer[7];
3200     case 0x3a:	/* XCERG */
3201         return s->xcer[6];
3202     case 0x3c:	/* XCERH */
3203         return s->xcer[7];
3204     }
3205 
3206     OMAP_BAD_REG(addr);
3207     return 0;
3208 }
3209 
3210 static void omap_mcbsp_writeh(void *opaque, hwaddr addr,
3211                 uint32_t value)
3212 {
3213     struct omap_mcbsp_s *s = opaque;
3214     int offset = addr & OMAP_MPUI_REG_MASK;
3215 
3216     switch (offset) {
3217     case 0x00:	/* DRR2 */
3218     case 0x02:	/* DRR1 */
3219         OMAP_RO_REG(addr);
3220         return;
3221 
3222     case 0x04:	/* DXR2 */
3223         if (((s->xcr[0] >> 5) & 7) < 3)			/* XWDLEN1 */
3224             return;
3225         /* Fall through.  */
3226     case 0x06:	/* DXR1 */
3227         if (s->tx_req > 1) {
3228             s->tx_req -= 2;
3229             if (s->codec && s->codec->cts) {
3230                 s->codec->out.fifo[s->codec->out.len ++] = (value >> 8) & 0xff;
3231                 s->codec->out.fifo[s->codec->out.len ++] = (value >> 0) & 0xff;
3232             }
3233             if (s->tx_req < 2)
3234                 omap_mcbsp_tx_done(s);
3235         } else {
3236             qemu_log_mask(LOG_GUEST_ERROR, "%s: Tx FIFO overrun\n", __func__);
3237         }
3238         return;
3239 
3240     case 0x08:	/* SPCR2 */
3241         s->spcr[1] &= 0x0002;
3242         s->spcr[1] |= 0x03f9 & value;
3243         s->spcr[1] |= 0x0004 & (value << 2);		/* XEMPTY := XRST */
3244         if (~value & 1)					/* XRST */
3245             s->spcr[1] &= ~6;
3246         omap_mcbsp_req_update(s);
3247         return;
3248     case 0x0a:	/* SPCR1 */
3249         s->spcr[0] &= 0x0006;
3250         s->spcr[0] |= 0xf8f9 & value;
3251         if (value & (1 << 15)) {                        /* DLB */
3252             qemu_log_mask(LOG_UNIMP,
3253                           "%s: Digital Loopback mode enable attempt\n",
3254                           __func__);
3255         }
3256         if (~value & 1) {				/* RRST */
3257             s->spcr[0] &= ~6;
3258             s->rx_req = 0;
3259             omap_mcbsp_rx_done(s);
3260         }
3261         omap_mcbsp_req_update(s);
3262         return;
3263 
3264     case 0x0c:	/* RCR2 */
3265         s->rcr[1] = value & 0xffff;
3266         return;
3267     case 0x0e:	/* RCR1 */
3268         s->rcr[0] = value & 0x7fe0;
3269         return;
3270     case 0x10:	/* XCR2 */
3271         s->xcr[1] = value & 0xffff;
3272         return;
3273     case 0x12:	/* XCR1 */
3274         s->xcr[0] = value & 0x7fe0;
3275         return;
3276     case 0x14:	/* SRGR2 */
3277         s->srgr[1] = value & 0xffff;
3278         omap_mcbsp_req_update(s);
3279         return;
3280     case 0x16:	/* SRGR1 */
3281         s->srgr[0] = value & 0xffff;
3282         omap_mcbsp_req_update(s);
3283         return;
3284     case 0x18:	/* MCR2 */
3285         s->mcr[1] = value & 0x03e3;
3286         if (value & 3) {                                /* XMCM */
3287             qemu_log_mask(LOG_UNIMP,
3288                           "%s: Tx channel selection mode enable attempt\n",
3289                           __func__);
3290         }
3291         return;
3292     case 0x1a:	/* MCR1 */
3293         s->mcr[0] = value & 0x03e1;
3294         if (value & 1) {                                /* RMCM */
3295             qemu_log_mask(LOG_UNIMP,
3296                           "%s: Rx channel selection mode enable attempt\n",
3297                           __func__);
3298         }
3299         return;
3300     case 0x1c:	/* RCERA */
3301         s->rcer[0] = value & 0xffff;
3302         return;
3303     case 0x1e:	/* RCERB */
3304         s->rcer[1] = value & 0xffff;
3305         return;
3306     case 0x20:	/* XCERA */
3307         s->xcer[0] = value & 0xffff;
3308         return;
3309     case 0x22:	/* XCERB */
3310         s->xcer[1] = value & 0xffff;
3311         return;
3312     case 0x24:	/* PCR0 */
3313         s->pcr = value & 0x7faf;
3314         return;
3315     case 0x26:	/* RCERC */
3316         s->rcer[2] = value & 0xffff;
3317         return;
3318     case 0x28:	/* RCERD */
3319         s->rcer[3] = value & 0xffff;
3320         return;
3321     case 0x2a:	/* XCERC */
3322         s->xcer[2] = value & 0xffff;
3323         return;
3324     case 0x2c:	/* XCERD */
3325         s->xcer[3] = value & 0xffff;
3326         return;
3327     case 0x2e:	/* RCERE */
3328         s->rcer[4] = value & 0xffff;
3329         return;
3330     case 0x30:	/* RCERF */
3331         s->rcer[5] = value & 0xffff;
3332         return;
3333     case 0x32:	/* XCERE */
3334         s->xcer[4] = value & 0xffff;
3335         return;
3336     case 0x34:	/* XCERF */
3337         s->xcer[5] = value & 0xffff;
3338         return;
3339     case 0x36:	/* RCERG */
3340         s->rcer[6] = value & 0xffff;
3341         return;
3342     case 0x38:	/* RCERH */
3343         s->rcer[7] = value & 0xffff;
3344         return;
3345     case 0x3a:	/* XCERG */
3346         s->xcer[6] = value & 0xffff;
3347         return;
3348     case 0x3c:	/* XCERH */
3349         s->xcer[7] = value & 0xffff;
3350         return;
3351     }
3352 
3353     OMAP_BAD_REG(addr);
3354 }
3355 
3356 static void omap_mcbsp_writew(void *opaque, hwaddr addr,
3357                 uint32_t value)
3358 {
3359     struct omap_mcbsp_s *s = opaque;
3360     int offset = addr & OMAP_MPUI_REG_MASK;
3361 
3362     if (offset == 0x04) {				/* DXR */
3363         if (((s->xcr[0] >> 5) & 7) < 3)			/* XWDLEN1 */
3364             return;
3365         if (s->tx_req > 3) {
3366             s->tx_req -= 4;
3367             if (s->codec && s->codec->cts) {
3368                 s->codec->out.fifo[s->codec->out.len ++] =
3369                         (value >> 24) & 0xff;
3370                 s->codec->out.fifo[s->codec->out.len ++] =
3371                         (value >> 16) & 0xff;
3372                 s->codec->out.fifo[s->codec->out.len ++] =
3373                         (value >> 8) & 0xff;
3374                 s->codec->out.fifo[s->codec->out.len ++] =
3375                         (value >> 0) & 0xff;
3376             }
3377             if (s->tx_req < 4)
3378                 omap_mcbsp_tx_done(s);
3379         } else {
3380             qemu_log_mask(LOG_GUEST_ERROR, "%s: Tx FIFO overrun\n", __func__);
3381         }
3382         return;
3383     }
3384 
3385     omap_badwidth_write16(opaque, addr, value);
3386 }
3387 
3388 static void omap_mcbsp_write(void *opaque, hwaddr addr,
3389                              uint64_t value, unsigned size)
3390 {
3391     switch (size) {
3392     case 2:
3393         omap_mcbsp_writeh(opaque, addr, value);
3394         break;
3395     case 4:
3396         omap_mcbsp_writew(opaque, addr, value);
3397         break;
3398     default:
3399         omap_badwidth_write16(opaque, addr, value);
3400     }
3401 }
3402 
3403 static const MemoryRegionOps omap_mcbsp_ops = {
3404     .read = omap_mcbsp_read,
3405     .write = omap_mcbsp_write,
3406     .endianness = DEVICE_NATIVE_ENDIAN,
3407 };
3408 
3409 static void omap_mcbsp_reset(struct omap_mcbsp_s *s)
3410 {
3411     memset(&s->spcr, 0, sizeof(s->spcr));
3412     memset(&s->rcr, 0, sizeof(s->rcr));
3413     memset(&s->xcr, 0, sizeof(s->xcr));
3414     s->srgr[0] = 0x0001;
3415     s->srgr[1] = 0x2000;
3416     memset(&s->mcr, 0, sizeof(s->mcr));
3417     memset(&s->pcr, 0, sizeof(s->pcr));
3418     memset(&s->rcer, 0, sizeof(s->rcer));
3419     memset(&s->xcer, 0, sizeof(s->xcer));
3420     s->tx_req = 0;
3421     s->rx_req = 0;
3422     s->tx_rate = 0;
3423     s->rx_rate = 0;
3424     timer_del(s->source_timer);
3425     timer_del(s->sink_timer);
3426 }
3427 
3428 static struct omap_mcbsp_s *omap_mcbsp_init(MemoryRegion *system_memory,
3429                                             hwaddr base,
3430                                             qemu_irq txirq, qemu_irq rxirq,
3431                                             qemu_irq *dma, omap_clk clk)
3432 {
3433     struct omap_mcbsp_s *s = g_new0(struct omap_mcbsp_s, 1);
3434 
3435     s->txirq = txirq;
3436     s->rxirq = rxirq;
3437     s->txdrq = dma[0];
3438     s->rxdrq = dma[1];
3439     s->sink_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, omap_mcbsp_sink_tick, s);
3440     s->source_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, omap_mcbsp_source_tick, s);
3441     omap_mcbsp_reset(s);
3442 
3443     memory_region_init_io(&s->iomem, NULL, &omap_mcbsp_ops, s, "omap-mcbsp", 0x800);
3444     memory_region_add_subregion(system_memory, base, &s->iomem);
3445 
3446     return s;
3447 }
3448 
3449 static void omap_mcbsp_i2s_swallow(void *opaque, int line, int level)
3450 {
3451     struct omap_mcbsp_s *s = opaque;
3452 
3453     if (s->rx_rate) {
3454         s->rx_req = s->codec->in.len;
3455         omap_mcbsp_rx_newdata(s);
3456     }
3457 }
3458 
3459 static void omap_mcbsp_i2s_start(void *opaque, int line, int level)
3460 {
3461     struct omap_mcbsp_s *s = opaque;
3462 
3463     if (s->tx_rate) {
3464         s->tx_req = s->codec->out.size;
3465         omap_mcbsp_tx_newdata(s);
3466     }
3467 }
3468 
3469 void omap_mcbsp_i2s_attach(struct omap_mcbsp_s *s, I2SCodec *slave)
3470 {
3471     s->codec = slave;
3472     slave->rx_swallow = qemu_allocate_irq(omap_mcbsp_i2s_swallow, s, 0);
3473     slave->tx_start = qemu_allocate_irq(omap_mcbsp_i2s_start, s, 0);
3474 }
3475 
3476 /* LED Pulse Generators */
3477 struct omap_lpg_s {
3478     MemoryRegion iomem;
3479     QEMUTimer *tm;
3480 
3481     uint8_t control;
3482     uint8_t power;
3483     int64_t on;
3484     int64_t period;
3485     int clk;
3486     int cycle;
3487 };
3488 
3489 static void omap_lpg_tick(void *opaque)
3490 {
3491     struct omap_lpg_s *s = opaque;
3492 
3493     if (s->cycle)
3494         timer_mod(s->tm, qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL) + s->period - s->on);
3495     else
3496         timer_mod(s->tm, qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL) + s->on);
3497 
3498     s->cycle = !s->cycle;
3499     trace_omap1_lpg_led(s->cycle ? "on" : "off");
3500 }
3501 
3502 static void omap_lpg_update(struct omap_lpg_s *s)
3503 {
3504     int64_t on, period = 1, ticks = 1000;
3505     static const int per[8] = { 1, 2, 4, 8, 12, 16, 20, 24 };
3506 
3507     if (~s->control & (1 << 6))					/* LPGRES */
3508         on = 0;
3509     else if (s->control & (1 << 7))				/* PERM_ON */
3510         on = period;
3511     else {
3512         period = muldiv64(ticks, per[s->control & 7],		/* PERCTRL */
3513                         256 / 32);
3514         on = (s->clk && s->power) ? muldiv64(ticks,
3515                         per[(s->control >> 3) & 7], 256) : 0;	/* ONCTRL */
3516     }
3517 
3518     timer_del(s->tm);
3519     if (on == period && s->on < s->period) {
3520         trace_omap1_lpg_led("on");
3521     } else if (on == 0 && s->on) {
3522         trace_omap1_lpg_led("off");
3523     } else if (on && (on != s->on || period != s->period)) {
3524         s->cycle = 0;
3525         s->on = on;
3526         s->period = period;
3527         omap_lpg_tick(s);
3528         return;
3529     }
3530 
3531     s->on = on;
3532     s->period = period;
3533 }
3534 
3535 static void omap_lpg_reset(struct omap_lpg_s *s)
3536 {
3537     s->control = 0x00;
3538     s->power = 0x00;
3539     s->clk = 1;
3540     omap_lpg_update(s);
3541 }
3542 
3543 static uint64_t omap_lpg_read(void *opaque, hwaddr addr, unsigned size)
3544 {
3545     struct omap_lpg_s *s = opaque;
3546     int offset = addr & OMAP_MPUI_REG_MASK;
3547 
3548     if (size != 1) {
3549         return omap_badwidth_read8(opaque, addr);
3550     }
3551 
3552     switch (offset) {
3553     case 0x00:	/* LCR */
3554         return s->control;
3555 
3556     case 0x04:	/* PMR */
3557         return s->power;
3558     }
3559 
3560     OMAP_BAD_REG(addr);
3561     return 0;
3562 }
3563 
3564 static void omap_lpg_write(void *opaque, hwaddr addr,
3565                            uint64_t value, unsigned size)
3566 {
3567     struct omap_lpg_s *s = opaque;
3568     int offset = addr & OMAP_MPUI_REG_MASK;
3569 
3570     if (size != 1) {
3571         omap_badwidth_write8(opaque, addr, value);
3572         return;
3573     }
3574 
3575     switch (offset) {
3576     case 0x00:	/* LCR */
3577         if (~value & (1 << 6))					/* LPGRES */
3578             omap_lpg_reset(s);
3579         s->control = value & 0xff;
3580         omap_lpg_update(s);
3581         return;
3582 
3583     case 0x04:	/* PMR */
3584         s->power = value & 0x01;
3585         omap_lpg_update(s);
3586         return;
3587 
3588     default:
3589         OMAP_BAD_REG(addr);
3590         return;
3591     }
3592 }
3593 
3594 static const MemoryRegionOps omap_lpg_ops = {
3595     .read = omap_lpg_read,
3596     .write = omap_lpg_write,
3597     .endianness = DEVICE_NATIVE_ENDIAN,
3598 };
3599 
3600 static void omap_lpg_clk_update(void *opaque, int line, int on)
3601 {
3602     struct omap_lpg_s *s = opaque;
3603 
3604     s->clk = on;
3605     omap_lpg_update(s);
3606 }
3607 
3608 static struct omap_lpg_s *omap_lpg_init(MemoryRegion *system_memory,
3609                                         hwaddr base, omap_clk clk)
3610 {
3611     struct omap_lpg_s *s = g_new0(struct omap_lpg_s, 1);
3612 
3613     s->tm = timer_new_ms(QEMU_CLOCK_VIRTUAL, omap_lpg_tick, s);
3614 
3615     omap_lpg_reset(s);
3616 
3617     memory_region_init_io(&s->iomem, NULL, &omap_lpg_ops, s, "omap-lpg", 0x800);
3618     memory_region_add_subregion(system_memory, base, &s->iomem);
3619 
3620     omap_clk_adduser(clk, qemu_allocate_irq(omap_lpg_clk_update, s, 0));
3621 
3622     return s;
3623 }
3624 
3625 /* MPUI Peripheral Bridge configuration */
3626 static uint64_t omap_mpui_io_read(void *opaque, hwaddr addr,
3627                                   unsigned size)
3628 {
3629     if (size != 2) {
3630         return omap_badwidth_read16(opaque, addr);
3631     }
3632 
3633     if (addr == OMAP_MPUI_BASE)	/* CMR */
3634         return 0xfe4d;
3635 
3636     OMAP_BAD_REG(addr);
3637     return 0;
3638 }
3639 
3640 static void omap_mpui_io_write(void *opaque, hwaddr addr,
3641                                uint64_t value, unsigned size)
3642 {
3643     /* FIXME: infinite loop */
3644     omap_badwidth_write16(opaque, addr, value);
3645 }
3646 
3647 static const MemoryRegionOps omap_mpui_io_ops = {
3648     .read = omap_mpui_io_read,
3649     .write = omap_mpui_io_write,
3650     .endianness = DEVICE_NATIVE_ENDIAN,
3651 };
3652 
3653 static void omap_setup_mpui_io(MemoryRegion *system_memory,
3654                                struct omap_mpu_state_s *mpu)
3655 {
3656     memory_region_init_io(&mpu->mpui_io_iomem, NULL, &omap_mpui_io_ops, mpu,
3657                           "omap-mpui-io", 0x7fff);
3658     memory_region_add_subregion(system_memory, OMAP_MPUI_BASE,
3659                                 &mpu->mpui_io_iomem);
3660 }
3661 
3662 /* General chip reset */
3663 static void omap1_mpu_reset(void *opaque)
3664 {
3665     struct omap_mpu_state_s *mpu = opaque;
3666 
3667     omap_dma_reset(mpu->dma);
3668     omap_mpu_timer_reset(mpu->timer[0]);
3669     omap_mpu_timer_reset(mpu->timer[1]);
3670     omap_mpu_timer_reset(mpu->timer[2]);
3671     omap_wd_timer_reset(mpu->wdt);
3672     omap_os_timer_reset(mpu->os_timer);
3673     omap_lcdc_reset(mpu->lcd);
3674     omap_ulpd_pm_reset(mpu);
3675     omap_pin_cfg_reset(mpu);
3676     omap_mpui_reset(mpu);
3677     omap_tipb_bridge_reset(mpu->private_tipb);
3678     omap_tipb_bridge_reset(mpu->public_tipb);
3679     omap_dpll_reset(mpu->dpll[0]);
3680     omap_dpll_reset(mpu->dpll[1]);
3681     omap_dpll_reset(mpu->dpll[2]);
3682     omap_uart_reset(mpu->uart[0]);
3683     omap_uart_reset(mpu->uart[1]);
3684     omap_uart_reset(mpu->uart[2]);
3685     omap_mpuio_reset(mpu->mpuio);
3686     omap_uwire_reset(mpu->microwire);
3687     omap_pwl_reset(mpu->pwl);
3688     omap_pwt_reset(mpu->pwt);
3689     omap_rtc_reset(mpu->rtc);
3690     omap_mcbsp_reset(mpu->mcbsp1);
3691     omap_mcbsp_reset(mpu->mcbsp2);
3692     omap_mcbsp_reset(mpu->mcbsp3);
3693     omap_lpg_reset(mpu->led[0]);
3694     omap_lpg_reset(mpu->led[1]);
3695     omap_clkm_reset(mpu);
3696     cpu_reset(CPU(mpu->cpu));
3697 }
3698 
3699 static const struct omap_map_s {
3700     hwaddr phys_dsp;
3701     hwaddr phys_mpu;
3702     uint32_t size;
3703     const char *name;
3704 } omap15xx_dsp_mm[] = {
3705     /* Strobe 0 */
3706     { 0xe1010000, 0xfffb0000, 0x800, "UART1 BT" },		/* CS0 */
3707     { 0xe1010800, 0xfffb0800, 0x800, "UART2 COM" },		/* CS1 */
3708     { 0xe1011800, 0xfffb1800, 0x800, "McBSP1 audio" },		/* CS3 */
3709     { 0xe1012000, 0xfffb2000, 0x800, "MCSI2 communication" },	/* CS4 */
3710     { 0xe1012800, 0xfffb2800, 0x800, "MCSI1 BT u-Law" },	/* CS5 */
3711     { 0xe1013000, 0xfffb3000, 0x800, "uWire" },			/* CS6 */
3712     { 0xe1013800, 0xfffb3800, 0x800, "I^2C" },			/* CS7 */
3713     { 0xe1014000, 0xfffb4000, 0x800, "USB W2FC" },		/* CS8 */
3714     { 0xe1014800, 0xfffb4800, 0x800, "RTC" },			/* CS9 */
3715     { 0xe1015000, 0xfffb5000, 0x800, "MPUIO" },			/* CS10 */
3716     { 0xe1015800, 0xfffb5800, 0x800, "PWL" },			/* CS11 */
3717     { 0xe1016000, 0xfffb6000, 0x800, "PWT" },			/* CS12 */
3718     { 0xe1017000, 0xfffb7000, 0x800, "McBSP3" },		/* CS14 */
3719     { 0xe1017800, 0xfffb7800, 0x800, "MMC" },			/* CS15 */
3720     { 0xe1019000, 0xfffb9000, 0x800, "32-kHz timer" },		/* CS18 */
3721     { 0xe1019800, 0xfffb9800, 0x800, "UART3" },			/* CS19 */
3722     { 0xe101c800, 0xfffbc800, 0x800, "TIPB switches" },		/* CS25 */
3723     /* Strobe 1 */
3724     { 0xe101e000, 0xfffce000, 0x800, "GPIOs" },			/* CS28 */
3725 
3726     { 0 }
3727 };
3728 
3729 static void omap_setup_dsp_mapping(MemoryRegion *system_memory,
3730                                    const struct omap_map_s *map)
3731 {
3732     MemoryRegion *io;
3733 
3734     for (; map->phys_dsp; map ++) {
3735         io = g_new(MemoryRegion, 1);
3736         memory_region_init_alias(io, NULL, map->name,
3737                                  system_memory, map->phys_mpu, map->size);
3738         memory_region_add_subregion(system_memory, map->phys_dsp, io);
3739     }
3740 }
3741 
3742 void omap_mpu_wakeup(void *opaque, int irq, int req)
3743 {
3744     struct omap_mpu_state_s *mpu = opaque;
3745     CPUState *cpu = CPU(mpu->cpu);
3746 
3747     if (cpu->halted) {
3748         cpu_interrupt(cpu, CPU_INTERRUPT_EXITTB);
3749     }
3750 }
3751 
3752 static const struct dma_irq_map omap1_dma_irq_map[] = {
3753     { 0, OMAP_INT_DMA_CH0_6 },
3754     { 0, OMAP_INT_DMA_CH1_7 },
3755     { 0, OMAP_INT_DMA_CH2_8 },
3756     { 0, OMAP_INT_DMA_CH3 },
3757     { 0, OMAP_INT_DMA_CH4 },
3758     { 0, OMAP_INT_DMA_CH5 },
3759     { 1, OMAP_INT_1610_DMA_CH6 },
3760     { 1, OMAP_INT_1610_DMA_CH7 },
3761     { 1, OMAP_INT_1610_DMA_CH8 },
3762     { 1, OMAP_INT_1610_DMA_CH9 },
3763     { 1, OMAP_INT_1610_DMA_CH10 },
3764     { 1, OMAP_INT_1610_DMA_CH11 },
3765     { 1, OMAP_INT_1610_DMA_CH12 },
3766     { 1, OMAP_INT_1610_DMA_CH13 },
3767     { 1, OMAP_INT_1610_DMA_CH14 },
3768     { 1, OMAP_INT_1610_DMA_CH15 }
3769 };
3770 
3771 /* DMA ports for OMAP1 */
3772 static int omap_validate_emiff_addr(struct omap_mpu_state_s *s,
3773                 hwaddr addr)
3774 {
3775     return range_covers_byte(OMAP_EMIFF_BASE, s->sdram_size, addr);
3776 }
3777 
3778 static int omap_validate_emifs_addr(struct omap_mpu_state_s *s,
3779                 hwaddr addr)
3780 {
3781     return range_covers_byte(OMAP_EMIFS_BASE, OMAP_EMIFF_BASE - OMAP_EMIFS_BASE,
3782                              addr);
3783 }
3784 
3785 static int omap_validate_imif_addr(struct omap_mpu_state_s *s,
3786                 hwaddr addr)
3787 {
3788     return range_covers_byte(OMAP_IMIF_BASE, s->sram_size, addr);
3789 }
3790 
3791 static int omap_validate_tipb_addr(struct omap_mpu_state_s *s,
3792                 hwaddr addr)
3793 {
3794     return range_covers_byte(0xfffb0000, 0xffff0000 - 0xfffb0000, addr);
3795 }
3796 
3797 static int omap_validate_local_addr(struct omap_mpu_state_s *s,
3798                 hwaddr addr)
3799 {
3800     return range_covers_byte(OMAP_LOCALBUS_BASE, 0x1000000, addr);
3801 }
3802 
3803 static int omap_validate_tipb_mpui_addr(struct omap_mpu_state_s *s,
3804                 hwaddr addr)
3805 {
3806     return range_covers_byte(0xe1010000, 0xe1020004 - 0xe1010000, addr);
3807 }
3808 
3809 struct omap_mpu_state_s *omap310_mpu_init(MemoryRegion *dram,
3810                 const char *cpu_type)
3811 {
3812     int i;
3813     struct omap_mpu_state_s *s = g_new0(struct omap_mpu_state_s, 1);
3814     qemu_irq dma_irqs[6];
3815     DriveInfo *dinfo;
3816     SysBusDevice *busdev;
3817     MemoryRegion *system_memory = get_system_memory();
3818 
3819     /* Core */
3820     s->mpu_model = omap310;
3821     s->cpu = ARM_CPU(cpu_create(cpu_type));
3822     s->sdram_size = memory_region_size(dram);
3823     s->sram_size = OMAP15XX_SRAM_SIZE;
3824 
3825     s->wakeup = qemu_allocate_irq(omap_mpu_wakeup, s, 0);
3826 
3827     /* Clocks */
3828     omap_clk_init(s);
3829 
3830     /* Memory-mapped stuff */
3831     memory_region_init_ram(&s->imif_ram, NULL, "omap1.sram", s->sram_size,
3832                            &error_fatal);
3833     memory_region_add_subregion(system_memory, OMAP_IMIF_BASE, &s->imif_ram);
3834 
3835     omap_clkm_init(system_memory, 0xfffece00, 0xe1008000, s);
3836 
3837     s->ih[0] = qdev_new("omap-intc");
3838     qdev_prop_set_uint32(s->ih[0], "size", 0x100);
3839     omap_intc_set_iclk(OMAP_INTC(s->ih[0]), omap_findclk(s, "arminth_ck"));
3840     busdev = SYS_BUS_DEVICE(s->ih[0]);
3841     sysbus_realize_and_unref(busdev, &error_fatal);
3842     sysbus_connect_irq(busdev, 0,
3843                        qdev_get_gpio_in(DEVICE(s->cpu), ARM_CPU_IRQ));
3844     sysbus_connect_irq(busdev, 1,
3845                        qdev_get_gpio_in(DEVICE(s->cpu), ARM_CPU_FIQ));
3846     sysbus_mmio_map(busdev, 0, 0xfffecb00);
3847     s->ih[1] = qdev_new("omap-intc");
3848     qdev_prop_set_uint32(s->ih[1], "size", 0x800);
3849     omap_intc_set_iclk(OMAP_INTC(s->ih[1]), omap_findclk(s, "arminth_ck"));
3850     busdev = SYS_BUS_DEVICE(s->ih[1]);
3851     sysbus_realize_and_unref(busdev, &error_fatal);
3852     sysbus_connect_irq(busdev, 0,
3853                        qdev_get_gpio_in(s->ih[0], OMAP_INT_15XX_IH2_IRQ));
3854     /* The second interrupt controller's FIQ output is not wired up */
3855     sysbus_mmio_map(busdev, 0, 0xfffe0000);
3856 
3857     for (i = 0; i < 6; i++) {
3858         dma_irqs[i] = qdev_get_gpio_in(s->ih[omap1_dma_irq_map[i].ih],
3859                                        omap1_dma_irq_map[i].intr);
3860     }
3861     s->dma = omap_dma_init(0xfffed800, dma_irqs, system_memory,
3862                            qdev_get_gpio_in(s->ih[0], OMAP_INT_DMA_LCD),
3863                            s, omap_findclk(s, "dma_ck"), omap_dma_3_1);
3864 
3865     s->port[emiff    ].addr_valid = omap_validate_emiff_addr;
3866     s->port[emifs    ].addr_valid = omap_validate_emifs_addr;
3867     s->port[imif     ].addr_valid = omap_validate_imif_addr;
3868     s->port[tipb     ].addr_valid = omap_validate_tipb_addr;
3869     s->port[local    ].addr_valid = omap_validate_local_addr;
3870     s->port[tipb_mpui].addr_valid = omap_validate_tipb_mpui_addr;
3871 
3872     /* Register SDRAM and SRAM DMA ports for fast transfers.  */
3873     soc_dma_port_add_mem(s->dma, memory_region_get_ram_ptr(dram),
3874                          OMAP_EMIFF_BASE, s->sdram_size);
3875     soc_dma_port_add_mem(s->dma, memory_region_get_ram_ptr(&s->imif_ram),
3876                          OMAP_IMIF_BASE, s->sram_size);
3877 
3878     s->timer[0] = omap_mpu_timer_init(system_memory, 0xfffec500,
3879                     qdev_get_gpio_in(s->ih[0], OMAP_INT_TIMER1),
3880                     omap_findclk(s, "mputim_ck"));
3881     s->timer[1] = omap_mpu_timer_init(system_memory, 0xfffec600,
3882                     qdev_get_gpio_in(s->ih[0], OMAP_INT_TIMER2),
3883                     omap_findclk(s, "mputim_ck"));
3884     s->timer[2] = omap_mpu_timer_init(system_memory, 0xfffec700,
3885                     qdev_get_gpio_in(s->ih[0], OMAP_INT_TIMER3),
3886                     omap_findclk(s, "mputim_ck"));
3887 
3888     s->wdt = omap_wd_timer_init(system_memory, 0xfffec800,
3889                     qdev_get_gpio_in(s->ih[0], OMAP_INT_WD_TIMER),
3890                     omap_findclk(s, "armwdt_ck"));
3891 
3892     s->os_timer = omap_os_timer_init(system_memory, 0xfffb9000,
3893                     qdev_get_gpio_in(s->ih[1], OMAP_INT_OS_TIMER),
3894                     omap_findclk(s, "clk32-kHz"));
3895 
3896     s->lcd = omap_lcdc_init(system_memory, 0xfffec000,
3897                             qdev_get_gpio_in(s->ih[0], OMAP_INT_LCD_CTRL),
3898                             omap_dma_get_lcdch(s->dma),
3899                             omap_findclk(s, "lcd_ck"));
3900 
3901     omap_ulpd_pm_init(system_memory, 0xfffe0800, s);
3902     omap_pin_cfg_init(system_memory, 0xfffe1000, s);
3903     omap_id_init(system_memory, s);
3904 
3905     omap_mpui_init(system_memory, 0xfffec900, s);
3906 
3907     s->private_tipb = omap_tipb_bridge_init(system_memory, 0xfffeca00,
3908                     qdev_get_gpio_in(s->ih[0], OMAP_INT_BRIDGE_PRIV),
3909                     omap_findclk(s, "tipb_ck"));
3910     s->public_tipb = omap_tipb_bridge_init(system_memory, 0xfffed300,
3911                     qdev_get_gpio_in(s->ih[0], OMAP_INT_BRIDGE_PUB),
3912                     omap_findclk(s, "tipb_ck"));
3913 
3914     omap_tcmi_init(system_memory, 0xfffecc00, s);
3915 
3916     s->uart[0] = omap_uart_init(0xfffb0000,
3917                                 qdev_get_gpio_in(s->ih[1], OMAP_INT_UART1),
3918                     omap_findclk(s, "uart1_ck"),
3919                     omap_findclk(s, "uart1_ck"),
3920                     s->drq[OMAP_DMA_UART1_TX], s->drq[OMAP_DMA_UART1_RX],
3921                     "uart1",
3922                     serial_hd(0));
3923     s->uart[1] = omap_uart_init(0xfffb0800,
3924                                 qdev_get_gpio_in(s->ih[1], OMAP_INT_UART2),
3925                     omap_findclk(s, "uart2_ck"),
3926                     omap_findclk(s, "uart2_ck"),
3927                     s->drq[OMAP_DMA_UART2_TX], s->drq[OMAP_DMA_UART2_RX],
3928                     "uart2",
3929                     serial_hd(0) ? serial_hd(1) : NULL);
3930     s->uart[2] = omap_uart_init(0xfffb9800,
3931                                 qdev_get_gpio_in(s->ih[0], OMAP_INT_UART3),
3932                     omap_findclk(s, "uart3_ck"),
3933                     omap_findclk(s, "uart3_ck"),
3934                     s->drq[OMAP_DMA_UART3_TX], s->drq[OMAP_DMA_UART3_RX],
3935                     "uart3",
3936                     serial_hd(0) && serial_hd(1) ? serial_hd(2) : NULL);
3937 
3938     s->dpll[0] = omap_dpll_init(system_memory, 0xfffecf00,
3939                                 omap_findclk(s, "dpll1"));
3940     s->dpll[1] = omap_dpll_init(system_memory, 0xfffed000,
3941                                 omap_findclk(s, "dpll2"));
3942     s->dpll[2] = omap_dpll_init(system_memory, 0xfffed100,
3943                                 omap_findclk(s, "dpll3"));
3944 
3945     dinfo = drive_get(IF_SD, 0, 0);
3946     if (!dinfo && !qtest_enabled()) {
3947         warn_report("missing SecureDigital device");
3948     }
3949 
3950     s->mmc = qdev_new(TYPE_OMAP_MMC);
3951     sysbus_realize_and_unref(SYS_BUS_DEVICE(s->mmc), &error_fatal);
3952     omap_mmc_set_clk(s->mmc, omap_findclk(s, "mmc_ck"));
3953 
3954     memory_region_add_subregion(system_memory, 0xfffb7800,
3955                                 sysbus_mmio_get_region(SYS_BUS_DEVICE(s->mmc), 0));
3956     qdev_connect_gpio_out_named(s->mmc, "dma-tx", 0, s->drq[OMAP_DMA_MMC_TX]);
3957     qdev_connect_gpio_out_named(s->mmc, "dma-rx", 0, s->drq[OMAP_DMA_MMC_RX]);
3958     sysbus_connect_irq(SYS_BUS_DEVICE(s->mmc), 0,
3959                        qdev_get_gpio_in(s->ih[1], OMAP_INT_OQN));
3960 
3961     if (dinfo) {
3962         DeviceState *card = qdev_new(TYPE_SD_CARD);
3963         qdev_prop_set_drive_err(card, "drive", blk_by_legacy_dinfo(dinfo),
3964                                 &error_fatal);
3965         qdev_realize_and_unref(card, qdev_get_child_bus(s->mmc, "sd-bus"),
3966                                &error_fatal);
3967     }
3968 
3969     s->mpuio = omap_mpuio_init(system_memory, 0xfffb5000,
3970                                qdev_get_gpio_in(s->ih[1], OMAP_INT_KEYBOARD),
3971                                qdev_get_gpio_in(s->ih[1], OMAP_INT_MPUIO),
3972                                s->wakeup, omap_findclk(s, "clk32-kHz"));
3973 
3974     s->gpio = qdev_new("omap-gpio");
3975     qdev_prop_set_int32(s->gpio, "mpu_model", s->mpu_model);
3976     omap_gpio_set_clk(OMAP1_GPIO(s->gpio), omap_findclk(s, "arm_gpio_ck"));
3977     sysbus_realize_and_unref(SYS_BUS_DEVICE(s->gpio), &error_fatal);
3978     sysbus_connect_irq(SYS_BUS_DEVICE(s->gpio), 0,
3979                        qdev_get_gpio_in(s->ih[0], OMAP_INT_GPIO_BANK1));
3980     sysbus_mmio_map(SYS_BUS_DEVICE(s->gpio), 0, 0xfffce000);
3981 
3982     s->microwire = omap_uwire_init(system_memory, 0xfffb3000,
3983                                    qdev_get_gpio_in(s->ih[1], OMAP_INT_uWireTX),
3984                                    qdev_get_gpio_in(s->ih[1], OMAP_INT_uWireRX),
3985                     s->drq[OMAP_DMA_UWIRE_TX], omap_findclk(s, "mpuper_ck"));
3986 
3987     s->pwl = omap_pwl_init(system_memory, 0xfffb5800,
3988                            omap_findclk(s, "armxor_ck"));
3989     s->pwt = omap_pwt_init(system_memory, 0xfffb6000,
3990                            omap_findclk(s, "armxor_ck"));
3991 
3992     s->i2c[0] = qdev_new("omap_i2c");
3993     qdev_prop_set_uint8(s->i2c[0], "revision", 0x11);
3994     omap_i2c_set_fclk(OMAP_I2C(s->i2c[0]), omap_findclk(s, "mpuper_ck"));
3995     busdev = SYS_BUS_DEVICE(s->i2c[0]);
3996     sysbus_realize_and_unref(busdev, &error_fatal);
3997     sysbus_connect_irq(busdev, 0, qdev_get_gpio_in(s->ih[1], OMAP_INT_I2C));
3998     sysbus_connect_irq(busdev, 1, s->drq[OMAP_DMA_I2C_TX]);
3999     sysbus_connect_irq(busdev, 2, s->drq[OMAP_DMA_I2C_RX]);
4000     sysbus_mmio_map(busdev, 0, 0xfffb3800);
4001 
4002     s->rtc = omap_rtc_init(system_memory, 0xfffb4800,
4003                            qdev_get_gpio_in(s->ih[1], OMAP_INT_RTC_TIMER),
4004                            qdev_get_gpio_in(s->ih[1], OMAP_INT_RTC_ALARM),
4005                     omap_findclk(s, "clk32-kHz"));
4006 
4007     s->mcbsp1 = omap_mcbsp_init(system_memory, 0xfffb1800,
4008                                 qdev_get_gpio_in(s->ih[1], OMAP_INT_McBSP1TX),
4009                                 qdev_get_gpio_in(s->ih[1], OMAP_INT_McBSP1RX),
4010                     &s->drq[OMAP_DMA_MCBSP1_TX], omap_findclk(s, "dspxor_ck"));
4011     s->mcbsp2 = omap_mcbsp_init(system_memory, 0xfffb1000,
4012                                 qdev_get_gpio_in(s->ih[0],
4013                                                  OMAP_INT_310_McBSP2_TX),
4014                                 qdev_get_gpio_in(s->ih[0],
4015                                                  OMAP_INT_310_McBSP2_RX),
4016                     &s->drq[OMAP_DMA_MCBSP2_TX], omap_findclk(s, "mpuper_ck"));
4017     s->mcbsp3 = omap_mcbsp_init(system_memory, 0xfffb7000,
4018                                 qdev_get_gpio_in(s->ih[1], OMAP_INT_McBSP3TX),
4019                                 qdev_get_gpio_in(s->ih[1], OMAP_INT_McBSP3RX),
4020                     &s->drq[OMAP_DMA_MCBSP3_TX], omap_findclk(s, "dspxor_ck"));
4021 
4022     s->led[0] = omap_lpg_init(system_memory,
4023                               0xfffbd000, omap_findclk(s, "clk32-kHz"));
4024     s->led[1] = omap_lpg_init(system_memory,
4025                               0xfffbd800, omap_findclk(s, "clk32-kHz"));
4026 
4027     /* Register mappings not currently implemented:
4028      * MCSI2 Comm	fffb2000 - fffb27ff (not mapped on OMAP310)
4029      * MCSI1 Bluetooth	fffb2800 - fffb2fff (not mapped on OMAP310)
4030      * USB W2FC		fffb4000 - fffb47ff
4031      * Camera Interface	fffb6800 - fffb6fff
4032      * USB Host		fffba000 - fffba7ff
4033      * FAC		fffba800 - fffbafff
4034      * HDQ/1-Wire	fffbc000 - fffbc7ff
4035      * TIPB switches	fffbc800 - fffbcfff
4036      * Mailbox		fffcf000 - fffcf7ff
4037      * Local bus IF	fffec100 - fffec1ff
4038      * Local bus MMU	fffec200 - fffec2ff
4039      * DSP MMU		fffed200 - fffed2ff
4040      */
4041 
4042     omap_setup_dsp_mapping(system_memory, omap15xx_dsp_mm);
4043     omap_setup_mpui_io(system_memory, s);
4044 
4045     qemu_register_reset(omap1_mpu_reset, s);
4046 
4047     return s;
4048 }
4049