xref: /qemu/hw/arm/mps2-tz.c (revision 3c6ef471ee67bf5a22a9e0ecfdc45ca7d2393216)
1 /*
2  * ARM V2M MPS2 board emulation, trustzone aware FPGA images
3  *
4  * Copyright (c) 2017 Linaro Limited
5  * Written by Peter Maydell
6  *
7  *  This program is free software; you can redistribute it and/or modify
8  *  it under the terms of the GNU General Public License version 2 or
9  *  (at your option) any later version.
10  */
11 
12 /* The MPS2 and MPS2+ dev boards are FPGA based (the 2+ has a bigger
13  * FPGA but is otherwise the same as the 2). Since the CPU itself
14  * and most of the devices are in the FPGA, the details of the board
15  * as seen by the guest depend significantly on the FPGA image.
16  * This source file covers the following FPGA images, for TrustZone cores:
17  *  "mps2-an505" -- Cortex-M33 as documented in ARM Application Note AN505
18  *  "mps2-an521" -- Dual Cortex-M33 as documented in Application Note AN521
19  *
20  * Links to the TRM for the board itself and to the various Application
21  * Notes which document the FPGA images can be found here:
22  * https://developer.arm.com/products/system-design/development-boards/fpga-prototyping-boards/mps2
23  *
24  * Board TRM:
25  * http://infocenter.arm.com/help/topic/com.arm.doc.100112_0200_06_en/versatile_express_cortex_m_prototyping_systems_v2m_mps2_and_v2m_mps2plus_technical_reference_100112_0200_06_en.pdf
26  * Application Note AN505:
27  * http://infocenter.arm.com/help/topic/com.arm.doc.dai0505b/index.html
28  * Application Note AN521:
29  * http://infocenter.arm.com/help/topic/com.arm.doc.dai0521c/index.html
30  *
31  * The AN505 defers to the Cortex-M33 processor ARMv8M IoT Kit FVP User Guide
32  * (ARM ECM0601256) for the details of some of the device layout:
33  *   http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ecm0601256/index.html
34  * Similarly, the AN521 uses the SSE-200, and the SSE-200 TRM defines
35  * most of the device layout:
36  *  http://infocenter.arm.com/help/topic/com.arm.doc.101104_0100_00_en/corelink_sse200_subsystem_for_embedded_technical_reference_manual_101104_0100_00_en.pdf
37  *
38  */
39 
40 #include "qemu/osdep.h"
41 #include "qemu/units.h"
42 #include "qemu/cutils.h"
43 #include "qapi/error.h"
44 #include "qemu/error-report.h"
45 #include "hw/arm/boot.h"
46 #include "hw/arm/armv7m.h"
47 #include "hw/or-irq.h"
48 #include "hw/boards.h"
49 #include "exec/address-spaces.h"
50 #include "sysemu/sysemu.h"
51 #include "hw/misc/unimp.h"
52 #include "hw/char/cmsdk-apb-uart.h"
53 #include "hw/timer/cmsdk-apb-timer.h"
54 #include "hw/misc/mps2-scc.h"
55 #include "hw/misc/mps2-fpgaio.h"
56 #include "hw/misc/tz-mpc.h"
57 #include "hw/misc/tz-msc.h"
58 #include "hw/arm/armsse.h"
59 #include "hw/dma/pl080.h"
60 #include "hw/ssi/pl022.h"
61 #include "hw/net/lan9118.h"
62 #include "net/net.h"
63 #include "hw/core/split-irq.h"
64 
65 #define MPS2TZ_NUMIRQ 92
66 
67 typedef enum MPS2TZFPGAType {
68     FPGA_AN505,
69     FPGA_AN521,
70 } MPS2TZFPGAType;
71 
72 typedef struct {
73     MachineClass parent;
74     MPS2TZFPGAType fpga_type;
75     uint32_t scc_id;
76     const char *armsse_type;
77 } MPS2TZMachineClass;
78 
79 typedef struct {
80     MachineState parent;
81 
82     ARMSSE iotkit;
83     MemoryRegion ssram[3];
84     MemoryRegion ssram1_m;
85     MPS2SCC scc;
86     MPS2FPGAIO fpgaio;
87     TZPPC ppc[5];
88     TZMPC ssram_mpc[3];
89     PL022State spi[5];
90     UnimplementedDeviceState i2c[4];
91     UnimplementedDeviceState i2s_audio;
92     UnimplementedDeviceState gpio[4];
93     UnimplementedDeviceState gfx;
94     PL080State dma[4];
95     TZMSC msc[4];
96     CMSDKAPBUART uart[5];
97     SplitIRQ sec_resp_splitter;
98     qemu_or_irq uart_irq_orgate;
99     DeviceState *lan9118;
100     SplitIRQ cpu_irq_splitter[MPS2TZ_NUMIRQ];
101 } MPS2TZMachineState;
102 
103 #define TYPE_MPS2TZ_MACHINE "mps2tz"
104 #define TYPE_MPS2TZ_AN505_MACHINE MACHINE_TYPE_NAME("mps2-an505")
105 #define TYPE_MPS2TZ_AN521_MACHINE MACHINE_TYPE_NAME("mps2-an521")
106 
107 #define MPS2TZ_MACHINE(obj) \
108     OBJECT_CHECK(MPS2TZMachineState, obj, TYPE_MPS2TZ_MACHINE)
109 #define MPS2TZ_MACHINE_GET_CLASS(obj) \
110     OBJECT_GET_CLASS(MPS2TZMachineClass, obj, TYPE_MPS2TZ_MACHINE)
111 #define MPS2TZ_MACHINE_CLASS(klass) \
112     OBJECT_CLASS_CHECK(MPS2TZMachineClass, klass, TYPE_MPS2TZ_MACHINE)
113 
114 /* Main SYSCLK frequency in Hz */
115 #define SYSCLK_FRQ 20000000
116 
117 /* Create an alias of an entire original MemoryRegion @orig
118  * located at @base in the memory map.
119  */
120 static void make_ram_alias(MemoryRegion *mr, const char *name,
121                            MemoryRegion *orig, hwaddr base)
122 {
123     memory_region_init_alias(mr, NULL, name, orig, 0,
124                              memory_region_size(orig));
125     memory_region_add_subregion(get_system_memory(), base, mr);
126 }
127 
128 static qemu_irq get_sse_irq_in(MPS2TZMachineState *mms, int irqno)
129 {
130     /* Return a qemu_irq which will signal IRQ n to all CPUs in the SSE. */
131     MPS2TZMachineClass *mmc = MPS2TZ_MACHINE_GET_CLASS(mms);
132 
133     assert(irqno < MPS2TZ_NUMIRQ);
134 
135     switch (mmc->fpga_type) {
136     case FPGA_AN505:
137         return qdev_get_gpio_in_named(DEVICE(&mms->iotkit), "EXP_IRQ", irqno);
138     case FPGA_AN521:
139         return qdev_get_gpio_in(DEVICE(&mms->cpu_irq_splitter[irqno]), 0);
140     default:
141         g_assert_not_reached();
142     }
143 }
144 
145 /* Most of the devices in the AN505 FPGA image sit behind
146  * Peripheral Protection Controllers. These data structures
147  * define the layout of which devices sit behind which PPCs.
148  * The devfn for each port is a function which creates, configures
149  * and initializes the device, returning the MemoryRegion which
150  * needs to be plugged into the downstream end of the PPC port.
151  */
152 typedef MemoryRegion *MakeDevFn(MPS2TZMachineState *mms, void *opaque,
153                                 const char *name, hwaddr size);
154 
155 typedef struct PPCPortInfo {
156     const char *name;
157     MakeDevFn *devfn;
158     void *opaque;
159     hwaddr addr;
160     hwaddr size;
161 } PPCPortInfo;
162 
163 typedef struct PPCInfo {
164     const char *name;
165     PPCPortInfo ports[TZ_NUM_PORTS];
166 } PPCInfo;
167 
168 static MemoryRegion *make_unimp_dev(MPS2TZMachineState *mms,
169                                        void *opaque,
170                                        const char *name, hwaddr size)
171 {
172     /* Initialize, configure and realize a TYPE_UNIMPLEMENTED_DEVICE,
173      * and return a pointer to its MemoryRegion.
174      */
175     UnimplementedDeviceState *uds = opaque;
176 
177     sysbus_init_child_obj(OBJECT(mms), name, uds, sizeof(*uds),
178                           TYPE_UNIMPLEMENTED_DEVICE);
179     qdev_prop_set_string(DEVICE(uds), "name", name);
180     qdev_prop_set_uint64(DEVICE(uds), "size", size);
181     object_property_set_bool(OBJECT(uds), true, "realized", &error_fatal);
182     return sysbus_mmio_get_region(SYS_BUS_DEVICE(uds), 0);
183 }
184 
185 static MemoryRegion *make_uart(MPS2TZMachineState *mms, void *opaque,
186                                const char *name, hwaddr size)
187 {
188     CMSDKAPBUART *uart = opaque;
189     int i = uart - &mms->uart[0];
190     int rxirqno = i * 2;
191     int txirqno = i * 2 + 1;
192     int combirqno = i + 10;
193     SysBusDevice *s;
194     DeviceState *orgate_dev = DEVICE(&mms->uart_irq_orgate);
195 
196     sysbus_init_child_obj(OBJECT(mms), name, uart, sizeof(*uart),
197                           TYPE_CMSDK_APB_UART);
198     qdev_prop_set_chr(DEVICE(uart), "chardev", serial_hd(i));
199     qdev_prop_set_uint32(DEVICE(uart), "pclk-frq", SYSCLK_FRQ);
200     object_property_set_bool(OBJECT(uart), true, "realized", &error_fatal);
201     s = SYS_BUS_DEVICE(uart);
202     sysbus_connect_irq(s, 0, get_sse_irq_in(mms, txirqno));
203     sysbus_connect_irq(s, 1, get_sse_irq_in(mms, rxirqno));
204     sysbus_connect_irq(s, 2, qdev_get_gpio_in(orgate_dev, i * 2));
205     sysbus_connect_irq(s, 3, qdev_get_gpio_in(orgate_dev, i * 2 + 1));
206     sysbus_connect_irq(s, 4, get_sse_irq_in(mms, combirqno));
207     return sysbus_mmio_get_region(SYS_BUS_DEVICE(uart), 0);
208 }
209 
210 static MemoryRegion *make_scc(MPS2TZMachineState *mms, void *opaque,
211                               const char *name, hwaddr size)
212 {
213     MPS2SCC *scc = opaque;
214     DeviceState *sccdev;
215     MPS2TZMachineClass *mmc = MPS2TZ_MACHINE_GET_CLASS(mms);
216 
217     sysbus_init_child_obj(OBJECT(mms), "scc", scc, sizeof(*scc),
218                           TYPE_MPS2_SCC);
219     sccdev = DEVICE(scc);
220     qdev_prop_set_uint32(sccdev, "scc-cfg4", 0x2);
221     qdev_prop_set_uint32(sccdev, "scc-aid", 0x00200008);
222     qdev_prop_set_uint32(sccdev, "scc-id", mmc->scc_id);
223     object_property_set_bool(OBJECT(scc), true, "realized", &error_fatal);
224     return sysbus_mmio_get_region(SYS_BUS_DEVICE(sccdev), 0);
225 }
226 
227 static MemoryRegion *make_fpgaio(MPS2TZMachineState *mms, void *opaque,
228                                  const char *name, hwaddr size)
229 {
230     MPS2FPGAIO *fpgaio = opaque;
231 
232     sysbus_init_child_obj(OBJECT(mms), "fpgaio", fpgaio, sizeof(*fpgaio),
233                           TYPE_MPS2_FPGAIO);
234     object_property_set_bool(OBJECT(fpgaio), true, "realized", &error_fatal);
235     return sysbus_mmio_get_region(SYS_BUS_DEVICE(fpgaio), 0);
236 }
237 
238 static MemoryRegion *make_eth_dev(MPS2TZMachineState *mms, void *opaque,
239                                   const char *name, hwaddr size)
240 {
241     SysBusDevice *s;
242     NICInfo *nd = &nd_table[0];
243 
244     /* In hardware this is a LAN9220; the LAN9118 is software compatible
245      * except that it doesn't support the checksum-offload feature.
246      */
247     qemu_check_nic_model(nd, "lan9118");
248     mms->lan9118 = qdev_new(TYPE_LAN9118);
249     qdev_set_nic_properties(mms->lan9118, nd);
250 
251     s = SYS_BUS_DEVICE(mms->lan9118);
252     sysbus_realize_and_unref(s, &error_fatal);
253     sysbus_connect_irq(s, 0, get_sse_irq_in(mms, 16));
254     return sysbus_mmio_get_region(s, 0);
255 }
256 
257 static MemoryRegion *make_mpc(MPS2TZMachineState *mms, void *opaque,
258                               const char *name, hwaddr size)
259 {
260     TZMPC *mpc = opaque;
261     int i = mpc - &mms->ssram_mpc[0];
262     MemoryRegion *ssram = &mms->ssram[i];
263     MemoryRegion *upstream;
264     char *mpcname = g_strdup_printf("%s-mpc", name);
265     static uint32_t ramsize[] = { 0x00400000, 0x00200000, 0x00200000 };
266     static uint32_t rambase[] = { 0x00000000, 0x28000000, 0x28200000 };
267 
268     memory_region_init_ram(ssram, NULL, name, ramsize[i], &error_fatal);
269 
270     sysbus_init_child_obj(OBJECT(mms), mpcname, mpc, sizeof(*mpc),
271                           TYPE_TZ_MPC);
272     object_property_set_link(OBJECT(mpc), OBJECT(ssram),
273                              "downstream", &error_fatal);
274     object_property_set_bool(OBJECT(mpc), true, "realized", &error_fatal);
275     /* Map the upstream end of the MPC into system memory */
276     upstream = sysbus_mmio_get_region(SYS_BUS_DEVICE(mpc), 1);
277     memory_region_add_subregion(get_system_memory(), rambase[i], upstream);
278     /* and connect its interrupt to the IoTKit */
279     qdev_connect_gpio_out_named(DEVICE(mpc), "irq", 0,
280                                 qdev_get_gpio_in_named(DEVICE(&mms->iotkit),
281                                                        "mpcexp_status", i));
282 
283     /* The first SSRAM is a special case as it has an alias; accesses to
284      * the alias region at 0x00400000 must also go to the MPC upstream.
285      */
286     if (i == 0) {
287         make_ram_alias(&mms->ssram1_m, "mps.ssram1_m", upstream, 0x00400000);
288     }
289 
290     g_free(mpcname);
291     /* Return the register interface MR for our caller to map behind the PPC */
292     return sysbus_mmio_get_region(SYS_BUS_DEVICE(mpc), 0);
293 }
294 
295 static MemoryRegion *make_dma(MPS2TZMachineState *mms, void *opaque,
296                               const char *name, hwaddr size)
297 {
298     PL080State *dma = opaque;
299     int i = dma - &mms->dma[0];
300     SysBusDevice *s;
301     char *mscname = g_strdup_printf("%s-msc", name);
302     TZMSC *msc = &mms->msc[i];
303     DeviceState *iotkitdev = DEVICE(&mms->iotkit);
304     MemoryRegion *msc_upstream;
305     MemoryRegion *msc_downstream;
306 
307     /*
308      * Each DMA device is a PL081 whose transaction master interface
309      * is guarded by a Master Security Controller. The downstream end of
310      * the MSC connects to the IoTKit AHB Slave Expansion port, so the
311      * DMA devices can see all devices and memory that the CPU does.
312      */
313     sysbus_init_child_obj(OBJECT(mms), mscname, msc, sizeof(*msc), TYPE_TZ_MSC);
314     msc_downstream = sysbus_mmio_get_region(SYS_BUS_DEVICE(&mms->iotkit), 0);
315     object_property_set_link(OBJECT(msc), OBJECT(msc_downstream),
316                              "downstream", &error_fatal);
317     object_property_set_link(OBJECT(msc), OBJECT(mms),
318                              "idau", &error_fatal);
319     object_property_set_bool(OBJECT(msc), true, "realized", &error_fatal);
320 
321     qdev_connect_gpio_out_named(DEVICE(msc), "irq", 0,
322                                 qdev_get_gpio_in_named(iotkitdev,
323                                                        "mscexp_status", i));
324     qdev_connect_gpio_out_named(iotkitdev, "mscexp_clear", i,
325                                 qdev_get_gpio_in_named(DEVICE(msc),
326                                                        "irq_clear", 0));
327     qdev_connect_gpio_out_named(iotkitdev, "mscexp_ns", i,
328                                 qdev_get_gpio_in_named(DEVICE(msc),
329                                                        "cfg_nonsec", 0));
330     qdev_connect_gpio_out(DEVICE(&mms->sec_resp_splitter),
331                           ARRAY_SIZE(mms->ppc) + i,
332                           qdev_get_gpio_in_named(DEVICE(msc),
333                                                  "cfg_sec_resp", 0));
334     msc_upstream = sysbus_mmio_get_region(SYS_BUS_DEVICE(msc), 0);
335 
336     sysbus_init_child_obj(OBJECT(mms), name, dma, sizeof(*dma), TYPE_PL081);
337     object_property_set_link(OBJECT(dma), OBJECT(msc_upstream),
338                              "downstream", &error_fatal);
339     object_property_set_bool(OBJECT(dma), true, "realized", &error_fatal);
340 
341     s = SYS_BUS_DEVICE(dma);
342     /* Wire up DMACINTR, DMACINTERR, DMACINTTC */
343     sysbus_connect_irq(s, 0, get_sse_irq_in(mms, 58 + i * 3));
344     sysbus_connect_irq(s, 1, get_sse_irq_in(mms, 56 + i * 3));
345     sysbus_connect_irq(s, 2, get_sse_irq_in(mms, 57 + i * 3));
346 
347     g_free(mscname);
348     return sysbus_mmio_get_region(s, 0);
349 }
350 
351 static MemoryRegion *make_spi(MPS2TZMachineState *mms, void *opaque,
352                               const char *name, hwaddr size)
353 {
354     /*
355      * The AN505 has five PL022 SPI controllers.
356      * One of these should have the LCD controller behind it; the others
357      * are connected only to the FPGA's "general purpose SPI connector"
358      * or "shield" expansion connectors.
359      * Note that if we do implement devices behind SPI, the chip select
360      * lines are set via the "MISC" register in the MPS2 FPGAIO device.
361      */
362     PL022State *spi = opaque;
363     int i = spi - &mms->spi[0];
364     SysBusDevice *s;
365 
366     sysbus_init_child_obj(OBJECT(mms), name, spi, sizeof(*spi), TYPE_PL022);
367     object_property_set_bool(OBJECT(spi), true, "realized", &error_fatal);
368     s = SYS_BUS_DEVICE(spi);
369     sysbus_connect_irq(s, 0, get_sse_irq_in(mms, 51 + i));
370     return sysbus_mmio_get_region(s, 0);
371 }
372 
373 static void mps2tz_common_init(MachineState *machine)
374 {
375     MPS2TZMachineState *mms = MPS2TZ_MACHINE(machine);
376     MPS2TZMachineClass *mmc = MPS2TZ_MACHINE_GET_CLASS(mms);
377     MachineClass *mc = MACHINE_GET_CLASS(machine);
378     MemoryRegion *system_memory = get_system_memory();
379     DeviceState *iotkitdev;
380     DeviceState *dev_splitter;
381     int i;
382 
383     if (strcmp(machine->cpu_type, mc->default_cpu_type) != 0) {
384         error_report("This board can only be used with CPU %s",
385                      mc->default_cpu_type);
386         exit(1);
387     }
388 
389     if (machine->ram_size != mc->default_ram_size) {
390         char *sz = size_to_str(mc->default_ram_size);
391         error_report("Invalid RAM size, should be %s", sz);
392         g_free(sz);
393         exit(EXIT_FAILURE);
394     }
395 
396     sysbus_init_child_obj(OBJECT(machine), TYPE_IOTKIT, &mms->iotkit,
397                           sizeof(mms->iotkit), mmc->armsse_type);
398     iotkitdev = DEVICE(&mms->iotkit);
399     object_property_set_link(OBJECT(&mms->iotkit), OBJECT(system_memory),
400                              "memory", &error_abort);
401     qdev_prop_set_uint32(iotkitdev, "EXP_NUMIRQ", MPS2TZ_NUMIRQ);
402     qdev_prop_set_uint32(iotkitdev, "MAINCLK", SYSCLK_FRQ);
403     object_property_set_bool(OBJECT(&mms->iotkit), true, "realized",
404                              &error_fatal);
405 
406     /*
407      * The AN521 needs us to create splitters to feed the IRQ inputs
408      * for each CPU in the SSE-200 from each device in the board.
409      */
410     if (mmc->fpga_type == FPGA_AN521) {
411         for (i = 0; i < MPS2TZ_NUMIRQ; i++) {
412             char *name = g_strdup_printf("mps2-irq-splitter%d", i);
413             SplitIRQ *splitter = &mms->cpu_irq_splitter[i];
414 
415             object_initialize_child_with_props(OBJECT(machine), name,
416                                                splitter, sizeof(*splitter),
417                                                TYPE_SPLIT_IRQ, &error_fatal,
418                                                NULL);
419             g_free(name);
420 
421             object_property_set_int(OBJECT(splitter), 2, "num-lines",
422                                     &error_fatal);
423             object_property_set_bool(OBJECT(splitter), true, "realized",
424                                      &error_fatal);
425             qdev_connect_gpio_out(DEVICE(splitter), 0,
426                                   qdev_get_gpio_in_named(DEVICE(&mms->iotkit),
427                                                          "EXP_IRQ", i));
428             qdev_connect_gpio_out(DEVICE(splitter), 1,
429                                   qdev_get_gpio_in_named(DEVICE(&mms->iotkit),
430                                                          "EXP_CPU1_IRQ", i));
431         }
432     }
433 
434     /* The sec_resp_cfg output from the IoTKit must be split into multiple
435      * lines, one for each of the PPCs we create here, plus one per MSC.
436      */
437     object_initialize_child(OBJECT(machine), "sec-resp-splitter",
438                             &mms->sec_resp_splitter, TYPE_SPLIT_IRQ);
439     object_property_set_int(OBJECT(&mms->sec_resp_splitter),
440                             ARRAY_SIZE(mms->ppc) + ARRAY_SIZE(mms->msc),
441                             "num-lines", &error_fatal);
442     object_property_set_bool(OBJECT(&mms->sec_resp_splitter), true,
443                              "realized", &error_fatal);
444     dev_splitter = DEVICE(&mms->sec_resp_splitter);
445     qdev_connect_gpio_out_named(iotkitdev, "sec_resp_cfg", 0,
446                                 qdev_get_gpio_in(dev_splitter, 0));
447 
448     /* The IoTKit sets up much of the memory layout, including
449      * the aliases between secure and non-secure regions in the
450      * address space. The FPGA itself contains:
451      *
452      * 0x00000000..0x003fffff  SSRAM1
453      * 0x00400000..0x007fffff  alias of SSRAM1
454      * 0x28000000..0x283fffff  4MB SSRAM2 + SSRAM3
455      * 0x40100000..0x4fffffff  AHB Master Expansion 1 interface devices
456      * 0x80000000..0x80ffffff  16MB PSRAM
457      */
458 
459     /* The FPGA images have an odd combination of different RAMs,
460      * because in hardware they are different implementations and
461      * connected to different buses, giving varying performance/size
462      * tradeoffs. For QEMU they're all just RAM, though. We arbitrarily
463      * call the 16MB our "system memory", as it's the largest lump.
464      */
465     memory_region_add_subregion(system_memory, 0x80000000, machine->ram);
466 
467     /* The overflow IRQs for all UARTs are ORed together.
468      * Tx, Rx and "combined" IRQs are sent to the NVIC separately.
469      * Create the OR gate for this.
470      */
471     object_initialize_child(OBJECT(mms), "uart-irq-orgate",
472                             &mms->uart_irq_orgate, TYPE_OR_IRQ);
473     object_property_set_int(OBJECT(&mms->uart_irq_orgate), 10, "num-lines",
474                             &error_fatal);
475     object_property_set_bool(OBJECT(&mms->uart_irq_orgate), true,
476                              "realized", &error_fatal);
477     qdev_connect_gpio_out(DEVICE(&mms->uart_irq_orgate), 0,
478                           get_sse_irq_in(mms, 15));
479 
480     /* Most of the devices in the FPGA are behind Peripheral Protection
481      * Controllers. The required order for initializing things is:
482      *  + initialize the PPC
483      *  + initialize, configure and realize downstream devices
484      *  + connect downstream device MemoryRegions to the PPC
485      *  + realize the PPC
486      *  + map the PPC's MemoryRegions to the places in the address map
487      *    where the downstream devices should appear
488      *  + wire up the PPC's control lines to the IoTKit object
489      */
490 
491     const PPCInfo ppcs[] = { {
492             .name = "apb_ppcexp0",
493             .ports = {
494                 { "ssram-0", make_mpc, &mms->ssram_mpc[0], 0x58007000, 0x1000 },
495                 { "ssram-1", make_mpc, &mms->ssram_mpc[1], 0x58008000, 0x1000 },
496                 { "ssram-2", make_mpc, &mms->ssram_mpc[2], 0x58009000, 0x1000 },
497             },
498         }, {
499             .name = "apb_ppcexp1",
500             .ports = {
501                 { "spi0", make_spi, &mms->spi[0], 0x40205000, 0x1000 },
502                 { "spi1", make_spi, &mms->spi[1], 0x40206000, 0x1000 },
503                 { "spi2", make_spi, &mms->spi[2], 0x40209000, 0x1000 },
504                 { "spi3", make_spi, &mms->spi[3], 0x4020a000, 0x1000 },
505                 { "spi4", make_spi, &mms->spi[4], 0x4020b000, 0x1000 },
506                 { "uart0", make_uart, &mms->uart[0], 0x40200000, 0x1000 },
507                 { "uart1", make_uart, &mms->uart[1], 0x40201000, 0x1000 },
508                 { "uart2", make_uart, &mms->uart[2], 0x40202000, 0x1000 },
509                 { "uart3", make_uart, &mms->uart[3], 0x40203000, 0x1000 },
510                 { "uart4", make_uart, &mms->uart[4], 0x40204000, 0x1000 },
511                 { "i2c0", make_unimp_dev, &mms->i2c[0], 0x40207000, 0x1000 },
512                 { "i2c1", make_unimp_dev, &mms->i2c[1], 0x40208000, 0x1000 },
513                 { "i2c2", make_unimp_dev, &mms->i2c[2], 0x4020c000, 0x1000 },
514                 { "i2c3", make_unimp_dev, &mms->i2c[3], 0x4020d000, 0x1000 },
515             },
516         }, {
517             .name = "apb_ppcexp2",
518             .ports = {
519                 { "scc", make_scc, &mms->scc, 0x40300000, 0x1000 },
520                 { "i2s-audio", make_unimp_dev, &mms->i2s_audio,
521                   0x40301000, 0x1000 },
522                 { "fpgaio", make_fpgaio, &mms->fpgaio, 0x40302000, 0x1000 },
523             },
524         }, {
525             .name = "ahb_ppcexp0",
526             .ports = {
527                 { "gfx", make_unimp_dev, &mms->gfx, 0x41000000, 0x140000 },
528                 { "gpio0", make_unimp_dev, &mms->gpio[0], 0x40100000, 0x1000 },
529                 { "gpio1", make_unimp_dev, &mms->gpio[1], 0x40101000, 0x1000 },
530                 { "gpio2", make_unimp_dev, &mms->gpio[2], 0x40102000, 0x1000 },
531                 { "gpio3", make_unimp_dev, &mms->gpio[3], 0x40103000, 0x1000 },
532                 { "eth", make_eth_dev, NULL, 0x42000000, 0x100000 },
533             },
534         }, {
535             .name = "ahb_ppcexp1",
536             .ports = {
537                 { "dma0", make_dma, &mms->dma[0], 0x40110000, 0x1000 },
538                 { "dma1", make_dma, &mms->dma[1], 0x40111000, 0x1000 },
539                 { "dma2", make_dma, &mms->dma[2], 0x40112000, 0x1000 },
540                 { "dma3", make_dma, &mms->dma[3], 0x40113000, 0x1000 },
541             },
542         },
543     };
544 
545     for (i = 0; i < ARRAY_SIZE(ppcs); i++) {
546         const PPCInfo *ppcinfo = &ppcs[i];
547         TZPPC *ppc = &mms->ppc[i];
548         DeviceState *ppcdev;
549         int port;
550         char *gpioname;
551 
552         sysbus_init_child_obj(OBJECT(machine), ppcinfo->name, ppc,
553                               sizeof(*ppc), TYPE_TZ_PPC);
554         ppcdev = DEVICE(ppc);
555 
556         for (port = 0; port < TZ_NUM_PORTS; port++) {
557             const PPCPortInfo *pinfo = &ppcinfo->ports[port];
558             MemoryRegion *mr;
559             char *portname;
560 
561             if (!pinfo->devfn) {
562                 continue;
563             }
564 
565             mr = pinfo->devfn(mms, pinfo->opaque, pinfo->name, pinfo->size);
566             portname = g_strdup_printf("port[%d]", port);
567             object_property_set_link(OBJECT(ppc), OBJECT(mr),
568                                      portname, &error_fatal);
569             g_free(portname);
570         }
571 
572         object_property_set_bool(OBJECT(ppc), true, "realized", &error_fatal);
573 
574         for (port = 0; port < TZ_NUM_PORTS; port++) {
575             const PPCPortInfo *pinfo = &ppcinfo->ports[port];
576 
577             if (!pinfo->devfn) {
578                 continue;
579             }
580             sysbus_mmio_map(SYS_BUS_DEVICE(ppc), port, pinfo->addr);
581 
582             gpioname = g_strdup_printf("%s_nonsec", ppcinfo->name);
583             qdev_connect_gpio_out_named(iotkitdev, gpioname, port,
584                                         qdev_get_gpio_in_named(ppcdev,
585                                                                "cfg_nonsec",
586                                                                port));
587             g_free(gpioname);
588             gpioname = g_strdup_printf("%s_ap", ppcinfo->name);
589             qdev_connect_gpio_out_named(iotkitdev, gpioname, port,
590                                         qdev_get_gpio_in_named(ppcdev,
591                                                                "cfg_ap", port));
592             g_free(gpioname);
593         }
594 
595         gpioname = g_strdup_printf("%s_irq_enable", ppcinfo->name);
596         qdev_connect_gpio_out_named(iotkitdev, gpioname, 0,
597                                     qdev_get_gpio_in_named(ppcdev,
598                                                            "irq_enable", 0));
599         g_free(gpioname);
600         gpioname = g_strdup_printf("%s_irq_clear", ppcinfo->name);
601         qdev_connect_gpio_out_named(iotkitdev, gpioname, 0,
602                                     qdev_get_gpio_in_named(ppcdev,
603                                                            "irq_clear", 0));
604         g_free(gpioname);
605         gpioname = g_strdup_printf("%s_irq_status", ppcinfo->name);
606         qdev_connect_gpio_out_named(ppcdev, "irq", 0,
607                                     qdev_get_gpio_in_named(iotkitdev,
608                                                            gpioname, 0));
609         g_free(gpioname);
610 
611         qdev_connect_gpio_out(dev_splitter, i,
612                               qdev_get_gpio_in_named(ppcdev,
613                                                      "cfg_sec_resp", 0));
614     }
615 
616     create_unimplemented_device("FPGA NS PC", 0x48007000, 0x1000);
617 
618     armv7m_load_kernel(ARM_CPU(first_cpu), machine->kernel_filename, 0x400000);
619 }
620 
621 static void mps2_tz_idau_check(IDAUInterface *ii, uint32_t address,
622                                int *iregion, bool *exempt, bool *ns, bool *nsc)
623 {
624     /*
625      * The MPS2 TZ FPGA images have IDAUs in them which are connected to
626      * the Master Security Controllers. Thes have the same logic as
627      * is used by the IoTKit for the IDAU connected to the CPU, except
628      * that MSCs don't care about the NSC attribute.
629      */
630     int region = extract32(address, 28, 4);
631 
632     *ns = !(region & 1);
633     *nsc = false;
634     /* 0xe0000000..0xe00fffff and 0xf0000000..0xf00fffff are exempt */
635     *exempt = (address & 0xeff00000) == 0xe0000000;
636     *iregion = region;
637 }
638 
639 static void mps2tz_class_init(ObjectClass *oc, void *data)
640 {
641     MachineClass *mc = MACHINE_CLASS(oc);
642     IDAUInterfaceClass *iic = IDAU_INTERFACE_CLASS(oc);
643 
644     mc->init = mps2tz_common_init;
645     iic->check = mps2_tz_idau_check;
646     mc->default_ram_size = 16 * MiB;
647     mc->default_ram_id = "mps.ram";
648 }
649 
650 static void mps2tz_an505_class_init(ObjectClass *oc, void *data)
651 {
652     MachineClass *mc = MACHINE_CLASS(oc);
653     MPS2TZMachineClass *mmc = MPS2TZ_MACHINE_CLASS(oc);
654 
655     mc->desc = "ARM MPS2 with AN505 FPGA image for Cortex-M33";
656     mc->default_cpus = 1;
657     mc->min_cpus = mc->default_cpus;
658     mc->max_cpus = mc->default_cpus;
659     mmc->fpga_type = FPGA_AN505;
660     mc->default_cpu_type = ARM_CPU_TYPE_NAME("cortex-m33");
661     mmc->scc_id = 0x41045050;
662     mmc->armsse_type = TYPE_IOTKIT;
663 }
664 
665 static void mps2tz_an521_class_init(ObjectClass *oc, void *data)
666 {
667     MachineClass *mc = MACHINE_CLASS(oc);
668     MPS2TZMachineClass *mmc = MPS2TZ_MACHINE_CLASS(oc);
669 
670     mc->desc = "ARM MPS2 with AN521 FPGA image for dual Cortex-M33";
671     mc->default_cpus = 2;
672     mc->min_cpus = mc->default_cpus;
673     mc->max_cpus = mc->default_cpus;
674     mmc->fpga_type = FPGA_AN521;
675     mc->default_cpu_type = ARM_CPU_TYPE_NAME("cortex-m33");
676     mmc->scc_id = 0x41045210;
677     mmc->armsse_type = TYPE_SSE200;
678 }
679 
680 static const TypeInfo mps2tz_info = {
681     .name = TYPE_MPS2TZ_MACHINE,
682     .parent = TYPE_MACHINE,
683     .abstract = true,
684     .instance_size = sizeof(MPS2TZMachineState),
685     .class_size = sizeof(MPS2TZMachineClass),
686     .class_init = mps2tz_class_init,
687     .interfaces = (InterfaceInfo[]) {
688         { TYPE_IDAU_INTERFACE },
689         { }
690     },
691 };
692 
693 static const TypeInfo mps2tz_an505_info = {
694     .name = TYPE_MPS2TZ_AN505_MACHINE,
695     .parent = TYPE_MPS2TZ_MACHINE,
696     .class_init = mps2tz_an505_class_init,
697 };
698 
699 static const TypeInfo mps2tz_an521_info = {
700     .name = TYPE_MPS2TZ_AN521_MACHINE,
701     .parent = TYPE_MPS2TZ_MACHINE,
702     .class_init = mps2tz_an521_class_init,
703 };
704 
705 static void mps2tz_machine_init(void)
706 {
707     type_register_static(&mps2tz_info);
708     type_register_static(&mps2tz_an505_info);
709     type_register_static(&mps2tz_an521_info);
710 }
711 
712 type_init(mps2tz_machine_init);
713