xref: /qemu/hw/arm/mps2-tz.c (revision 28e56f05fc688917cf35c39c0ba97afb7f1ab0f3)
1 /*
2  * ARM V2M MPS2 board emulation, trustzone aware FPGA images
3  *
4  * Copyright (c) 2017 Linaro Limited
5  * Written by Peter Maydell
6  *
7  *  This program is free software; you can redistribute it and/or modify
8  *  it under the terms of the GNU General Public License version 2 or
9  *  (at your option) any later version.
10  */
11 
12 /* The MPS2 and MPS2+ dev boards are FPGA based (the 2+ has a bigger
13  * FPGA but is otherwise the same as the 2). Since the CPU itself
14  * and most of the devices are in the FPGA, the details of the board
15  * as seen by the guest depend significantly on the FPGA image.
16  * This source file covers the following FPGA images, for TrustZone cores:
17  *  "mps2-an505" -- Cortex-M33 as documented in ARM Application Note AN505
18  *
19  * Links to the TRM for the board itself and to the various Application
20  * Notes which document the FPGA images can be found here:
21  * https://developer.arm.com/products/system-design/development-boards/fpga-prototyping-boards/mps2
22  *
23  * Board TRM:
24  * http://infocenter.arm.com/help/topic/com.arm.doc.100112_0200_06_en/versatile_express_cortex_m_prototyping_systems_v2m_mps2_and_v2m_mps2plus_technical_reference_100112_0200_06_en.pdf
25  * Application Note AN505:
26  * http://infocenter.arm.com/help/topic/com.arm.doc.dai0505b/index.html
27  *
28  * The AN505 defers to the Cortex-M33 processor ARMv8M IoT Kit FVP User Guide
29  * (ARM ECM0601256) for the details of some of the device layout:
30  *   http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ecm0601256/index.html
31  */
32 
33 #include "qemu/osdep.h"
34 #include "qapi/error.h"
35 #include "qemu/error-report.h"
36 #include "hw/arm/arm.h"
37 #include "hw/arm/armv7m.h"
38 #include "hw/or-irq.h"
39 #include "hw/boards.h"
40 #include "exec/address-spaces.h"
41 #include "sysemu/sysemu.h"
42 #include "hw/misc/unimp.h"
43 #include "hw/char/cmsdk-apb-uart.h"
44 #include "hw/timer/cmsdk-apb-timer.h"
45 #include "hw/misc/mps2-scc.h"
46 #include "hw/misc/mps2-fpgaio.h"
47 #include "hw/misc/tz-mpc.h"
48 #include "hw/misc/tz-msc.h"
49 #include "hw/arm/iotkit.h"
50 #include "hw/dma/pl080.h"
51 #include "hw/devices.h"
52 #include "net/net.h"
53 #include "hw/core/split-irq.h"
54 
55 typedef enum MPS2TZFPGAType {
56     FPGA_AN505,
57 } MPS2TZFPGAType;
58 
59 typedef struct {
60     MachineClass parent;
61     MPS2TZFPGAType fpga_type;
62     uint32_t scc_id;
63 } MPS2TZMachineClass;
64 
65 typedef struct {
66     MachineState parent;
67 
68     IoTKit iotkit;
69     MemoryRegion psram;
70     MemoryRegion ssram[3];
71     MemoryRegion ssram1_m;
72     MPS2SCC scc;
73     MPS2FPGAIO fpgaio;
74     TZPPC ppc[5];
75     TZMPC ssram_mpc[3];
76     UnimplementedDeviceState spi[5];
77     UnimplementedDeviceState i2c[4];
78     UnimplementedDeviceState i2s_audio;
79     UnimplementedDeviceState gpio[4];
80     UnimplementedDeviceState gfx;
81     PL080State dma[4];
82     TZMSC msc[4];
83     CMSDKAPBUART uart[5];
84     SplitIRQ sec_resp_splitter;
85     qemu_or_irq uart_irq_orgate;
86     DeviceState *lan9118;
87 } MPS2TZMachineState;
88 
89 #define TYPE_MPS2TZ_MACHINE "mps2tz"
90 #define TYPE_MPS2TZ_AN505_MACHINE MACHINE_TYPE_NAME("mps2-an505")
91 
92 #define MPS2TZ_MACHINE(obj) \
93     OBJECT_CHECK(MPS2TZMachineState, obj, TYPE_MPS2TZ_MACHINE)
94 #define MPS2TZ_MACHINE_GET_CLASS(obj) \
95     OBJECT_GET_CLASS(MPS2TZMachineClass, obj, TYPE_MPS2TZ_MACHINE)
96 #define MPS2TZ_MACHINE_CLASS(klass) \
97     OBJECT_CLASS_CHECK(MPS2TZMachineClass, klass, TYPE_MPS2TZ_MACHINE)
98 
99 /* Main SYSCLK frequency in Hz */
100 #define SYSCLK_FRQ 20000000
101 
102 /* Create an alias of an entire original MemoryRegion @orig
103  * located at @base in the memory map.
104  */
105 static void make_ram_alias(MemoryRegion *mr, const char *name,
106                            MemoryRegion *orig, hwaddr base)
107 {
108     memory_region_init_alias(mr, NULL, name, orig, 0,
109                              memory_region_size(orig));
110     memory_region_add_subregion(get_system_memory(), base, mr);
111 }
112 
113 /* Most of the devices in the AN505 FPGA image sit behind
114  * Peripheral Protection Controllers. These data structures
115  * define the layout of which devices sit behind which PPCs.
116  * The devfn for each port is a function which creates, configures
117  * and initializes the device, returning the MemoryRegion which
118  * needs to be plugged into the downstream end of the PPC port.
119  */
120 typedef MemoryRegion *MakeDevFn(MPS2TZMachineState *mms, void *opaque,
121                                 const char *name, hwaddr size);
122 
123 typedef struct PPCPortInfo {
124     const char *name;
125     MakeDevFn *devfn;
126     void *opaque;
127     hwaddr addr;
128     hwaddr size;
129 } PPCPortInfo;
130 
131 typedef struct PPCInfo {
132     const char *name;
133     PPCPortInfo ports[TZ_NUM_PORTS];
134 } PPCInfo;
135 
136 static MemoryRegion *make_unimp_dev(MPS2TZMachineState *mms,
137                                        void *opaque,
138                                        const char *name, hwaddr size)
139 {
140     /* Initialize, configure and realize a TYPE_UNIMPLEMENTED_DEVICE,
141      * and return a pointer to its MemoryRegion.
142      */
143     UnimplementedDeviceState *uds = opaque;
144 
145     sysbus_init_child_obj(OBJECT(mms), name, uds,
146                           sizeof(UnimplementedDeviceState),
147                           TYPE_UNIMPLEMENTED_DEVICE);
148     qdev_prop_set_string(DEVICE(uds), "name", name);
149     qdev_prop_set_uint64(DEVICE(uds), "size", size);
150     object_property_set_bool(OBJECT(uds), true, "realized", &error_fatal);
151     return sysbus_mmio_get_region(SYS_BUS_DEVICE(uds), 0);
152 }
153 
154 static MemoryRegion *make_uart(MPS2TZMachineState *mms, void *opaque,
155                                const char *name, hwaddr size)
156 {
157     CMSDKAPBUART *uart = opaque;
158     int i = uart - &mms->uart[0];
159     int rxirqno = i * 2;
160     int txirqno = i * 2 + 1;
161     int combirqno = i + 10;
162     SysBusDevice *s;
163     DeviceState *iotkitdev = DEVICE(&mms->iotkit);
164     DeviceState *orgate_dev = DEVICE(&mms->uart_irq_orgate);
165 
166     sysbus_init_child_obj(OBJECT(mms), name, uart, sizeof(mms->uart[0]),
167                           TYPE_CMSDK_APB_UART);
168     qdev_prop_set_chr(DEVICE(uart), "chardev", serial_hd(i));
169     qdev_prop_set_uint32(DEVICE(uart), "pclk-frq", SYSCLK_FRQ);
170     object_property_set_bool(OBJECT(uart), true, "realized", &error_fatal);
171     s = SYS_BUS_DEVICE(uart);
172     sysbus_connect_irq(s, 0, qdev_get_gpio_in_named(iotkitdev,
173                                                     "EXP_IRQ", txirqno));
174     sysbus_connect_irq(s, 1, qdev_get_gpio_in_named(iotkitdev,
175                                                     "EXP_IRQ", rxirqno));
176     sysbus_connect_irq(s, 2, qdev_get_gpio_in(orgate_dev, i * 2));
177     sysbus_connect_irq(s, 3, qdev_get_gpio_in(orgate_dev, i * 2 + 1));
178     sysbus_connect_irq(s, 4, qdev_get_gpio_in_named(iotkitdev,
179                                                     "EXP_IRQ", combirqno));
180     return sysbus_mmio_get_region(SYS_BUS_DEVICE(uart), 0);
181 }
182 
183 static MemoryRegion *make_scc(MPS2TZMachineState *mms, void *opaque,
184                               const char *name, hwaddr size)
185 {
186     MPS2SCC *scc = opaque;
187     DeviceState *sccdev;
188     MPS2TZMachineClass *mmc = MPS2TZ_MACHINE_GET_CLASS(mms);
189 
190     object_initialize(scc, sizeof(mms->scc), TYPE_MPS2_SCC);
191     sccdev = DEVICE(scc);
192     qdev_set_parent_bus(sccdev, sysbus_get_default());
193     qdev_prop_set_uint32(sccdev, "scc-cfg4", 0x2);
194     qdev_prop_set_uint32(sccdev, "scc-aid", 0x02000008);
195     qdev_prop_set_uint32(sccdev, "scc-id", mmc->scc_id);
196     object_property_set_bool(OBJECT(scc), true, "realized", &error_fatal);
197     return sysbus_mmio_get_region(SYS_BUS_DEVICE(sccdev), 0);
198 }
199 
200 static MemoryRegion *make_fpgaio(MPS2TZMachineState *mms, void *opaque,
201                                  const char *name, hwaddr size)
202 {
203     MPS2FPGAIO *fpgaio = opaque;
204 
205     object_initialize(fpgaio, sizeof(mms->fpgaio), TYPE_MPS2_FPGAIO);
206     qdev_set_parent_bus(DEVICE(fpgaio), sysbus_get_default());
207     object_property_set_bool(OBJECT(fpgaio), true, "realized", &error_fatal);
208     return sysbus_mmio_get_region(SYS_BUS_DEVICE(fpgaio), 0);
209 }
210 
211 static MemoryRegion *make_eth_dev(MPS2TZMachineState *mms, void *opaque,
212                                   const char *name, hwaddr size)
213 {
214     SysBusDevice *s;
215     DeviceState *iotkitdev = DEVICE(&mms->iotkit);
216     NICInfo *nd = &nd_table[0];
217 
218     /* In hardware this is a LAN9220; the LAN9118 is software compatible
219      * except that it doesn't support the checksum-offload feature.
220      */
221     qemu_check_nic_model(nd, "lan9118");
222     mms->lan9118 = qdev_create(NULL, "lan9118");
223     qdev_set_nic_properties(mms->lan9118, nd);
224     qdev_init_nofail(mms->lan9118);
225 
226     s = SYS_BUS_DEVICE(mms->lan9118);
227     sysbus_connect_irq(s, 0, qdev_get_gpio_in_named(iotkitdev, "EXP_IRQ", 16));
228     return sysbus_mmio_get_region(s, 0);
229 }
230 
231 static MemoryRegion *make_mpc(MPS2TZMachineState *mms, void *opaque,
232                               const char *name, hwaddr size)
233 {
234     TZMPC *mpc = opaque;
235     int i = mpc - &mms->ssram_mpc[0];
236     MemoryRegion *ssram = &mms->ssram[i];
237     MemoryRegion *upstream;
238     char *mpcname = g_strdup_printf("%s-mpc", name);
239     static uint32_t ramsize[] = { 0x00400000, 0x00200000, 0x00200000 };
240     static uint32_t rambase[] = { 0x00000000, 0x28000000, 0x28200000 };
241 
242     memory_region_init_ram(ssram, NULL, name, ramsize[i], &error_fatal);
243 
244     sysbus_init_child_obj(OBJECT(mms), mpcname, mpc, sizeof(mms->ssram_mpc[0]),
245                           TYPE_TZ_MPC);
246     object_property_set_link(OBJECT(mpc), OBJECT(ssram),
247                              "downstream", &error_fatal);
248     object_property_set_bool(OBJECT(mpc), true, "realized", &error_fatal);
249     /* Map the upstream end of the MPC into system memory */
250     upstream = sysbus_mmio_get_region(SYS_BUS_DEVICE(mpc), 1);
251     memory_region_add_subregion(get_system_memory(), rambase[i], upstream);
252     /* and connect its interrupt to the IoTKit */
253     qdev_connect_gpio_out_named(DEVICE(mpc), "irq", 0,
254                                 qdev_get_gpio_in_named(DEVICE(&mms->iotkit),
255                                                        "mpcexp_status", i));
256 
257     /* The first SSRAM is a special case as it has an alias; accesses to
258      * the alias region at 0x00400000 must also go to the MPC upstream.
259      */
260     if (i == 0) {
261         make_ram_alias(&mms->ssram1_m, "mps.ssram1_m", upstream, 0x00400000);
262     }
263 
264     g_free(mpcname);
265     /* Return the register interface MR for our caller to map behind the PPC */
266     return sysbus_mmio_get_region(SYS_BUS_DEVICE(mpc), 0);
267 }
268 
269 static MemoryRegion *make_dma(MPS2TZMachineState *mms, void *opaque,
270                               const char *name, hwaddr size)
271 {
272     PL080State *dma = opaque;
273     int i = dma - &mms->dma[0];
274     SysBusDevice *s;
275     char *mscname = g_strdup_printf("%s-msc", name);
276     TZMSC *msc = &mms->msc[i];
277     DeviceState *iotkitdev = DEVICE(&mms->iotkit);
278     MemoryRegion *msc_upstream;
279     MemoryRegion *msc_downstream;
280 
281     /*
282      * Each DMA device is a PL081 whose transaction master interface
283      * is guarded by a Master Security Controller. The downstream end of
284      * the MSC connects to the IoTKit AHB Slave Expansion port, so the
285      * DMA devices can see all devices and memory that the CPU does.
286      */
287     sysbus_init_child_obj(OBJECT(mms), mscname, msc, sizeof(*msc), TYPE_TZ_MSC);
288     msc_downstream = sysbus_mmio_get_region(SYS_BUS_DEVICE(&mms->iotkit), 0);
289     object_property_set_link(OBJECT(msc), OBJECT(msc_downstream),
290                              "downstream", &error_fatal);
291     object_property_set_link(OBJECT(msc), OBJECT(mms),
292                              "idau", &error_fatal);
293     object_property_set_bool(OBJECT(msc), true, "realized", &error_fatal);
294 
295     qdev_connect_gpio_out_named(DEVICE(msc), "irq", 0,
296                                 qdev_get_gpio_in_named(iotkitdev,
297                                                        "mscexp_status", i));
298     qdev_connect_gpio_out_named(iotkitdev, "mscexp_clear", i,
299                                 qdev_get_gpio_in_named(DEVICE(msc),
300                                                        "irq_clear", 0));
301     qdev_connect_gpio_out_named(iotkitdev, "mscexp_ns", i,
302                                 qdev_get_gpio_in_named(DEVICE(msc),
303                                                        "cfg_nonsec", 0));
304     qdev_connect_gpio_out(DEVICE(&mms->sec_resp_splitter),
305                           ARRAY_SIZE(mms->ppc) + i,
306                           qdev_get_gpio_in_named(DEVICE(msc),
307                                                  "cfg_sec_resp", 0));
308     msc_upstream = sysbus_mmio_get_region(SYS_BUS_DEVICE(msc), 0);
309 
310     sysbus_init_child_obj(OBJECT(mms), name, dma, sizeof(*dma), TYPE_PL081);
311     object_property_set_link(OBJECT(dma), OBJECT(msc_upstream),
312                              "downstream", &error_fatal);
313     object_property_set_bool(OBJECT(dma), true, "realized", &error_fatal);
314 
315     s = SYS_BUS_DEVICE(dma);
316     /* Wire up DMACINTR, DMACINTERR, DMACINTTC */
317     sysbus_connect_irq(s, 0, qdev_get_gpio_in_named(iotkitdev,
318                                                     "EXP_IRQ", 58 + i * 3));
319     sysbus_connect_irq(s, 1, qdev_get_gpio_in_named(iotkitdev,
320                                                     "EXP_IRQ", 56 + i * 3));
321     sysbus_connect_irq(s, 2, qdev_get_gpio_in_named(iotkitdev,
322                                                     "EXP_IRQ", 57 + i * 3));
323 
324     return sysbus_mmio_get_region(s, 0);
325 }
326 
327 static void mps2tz_common_init(MachineState *machine)
328 {
329     MPS2TZMachineState *mms = MPS2TZ_MACHINE(machine);
330     MachineClass *mc = MACHINE_GET_CLASS(machine);
331     MemoryRegion *system_memory = get_system_memory();
332     DeviceState *iotkitdev;
333     DeviceState *dev_splitter;
334     int i;
335 
336     if (strcmp(machine->cpu_type, mc->default_cpu_type) != 0) {
337         error_report("This board can only be used with CPU %s",
338                      mc->default_cpu_type);
339         exit(1);
340     }
341 
342     sysbus_init_child_obj(OBJECT(machine), "iotkit", &mms->iotkit,
343                           sizeof(mms->iotkit), TYPE_IOTKIT);
344     iotkitdev = DEVICE(&mms->iotkit);
345     object_property_set_link(OBJECT(&mms->iotkit), OBJECT(system_memory),
346                              "memory", &error_abort);
347     qdev_prop_set_uint32(iotkitdev, "EXP_NUMIRQ", 92);
348     qdev_prop_set_uint32(iotkitdev, "MAINCLK", SYSCLK_FRQ);
349     object_property_set_bool(OBJECT(&mms->iotkit), true, "realized",
350                              &error_fatal);
351 
352     /* The sec_resp_cfg output from the IoTKit must be split into multiple
353      * lines, one for each of the PPCs we create here, plus one per MSC.
354      */
355     object_initialize(&mms->sec_resp_splitter, sizeof(mms->sec_resp_splitter),
356                       TYPE_SPLIT_IRQ);
357     object_property_add_child(OBJECT(machine), "sec-resp-splitter",
358                               OBJECT(&mms->sec_resp_splitter), &error_abort);
359     object_property_set_int(OBJECT(&mms->sec_resp_splitter),
360                             ARRAY_SIZE(mms->ppc) + ARRAY_SIZE(mms->msc),
361                             "num-lines", &error_fatal);
362     object_property_set_bool(OBJECT(&mms->sec_resp_splitter), true,
363                              "realized", &error_fatal);
364     dev_splitter = DEVICE(&mms->sec_resp_splitter);
365     qdev_connect_gpio_out_named(iotkitdev, "sec_resp_cfg", 0,
366                                 qdev_get_gpio_in(dev_splitter, 0));
367 
368     /* The IoTKit sets up much of the memory layout, including
369      * the aliases between secure and non-secure regions in the
370      * address space. The FPGA itself contains:
371      *
372      * 0x00000000..0x003fffff  SSRAM1
373      * 0x00400000..0x007fffff  alias of SSRAM1
374      * 0x28000000..0x283fffff  4MB SSRAM2 + SSRAM3
375      * 0x40100000..0x4fffffff  AHB Master Expansion 1 interface devices
376      * 0x80000000..0x80ffffff  16MB PSRAM
377      */
378 
379     /* The FPGA images have an odd combination of different RAMs,
380      * because in hardware they are different implementations and
381      * connected to different buses, giving varying performance/size
382      * tradeoffs. For QEMU they're all just RAM, though. We arbitrarily
383      * call the 16MB our "system memory", as it's the largest lump.
384      */
385     memory_region_allocate_system_memory(&mms->psram,
386                                          NULL, "mps.ram", 0x01000000);
387     memory_region_add_subregion(system_memory, 0x80000000, &mms->psram);
388 
389     /* The overflow IRQs for all UARTs are ORed together.
390      * Tx, Rx and "combined" IRQs are sent to the NVIC separately.
391      * Create the OR gate for this.
392      */
393     object_initialize(&mms->uart_irq_orgate, sizeof(mms->uart_irq_orgate),
394                       TYPE_OR_IRQ);
395     object_property_add_child(OBJECT(mms), "uart-irq-orgate",
396                               OBJECT(&mms->uart_irq_orgate), &error_abort);
397     object_property_set_int(OBJECT(&mms->uart_irq_orgate), 10, "num-lines",
398                             &error_fatal);
399     object_property_set_bool(OBJECT(&mms->uart_irq_orgate), true,
400                              "realized", &error_fatal);
401     qdev_connect_gpio_out(DEVICE(&mms->uart_irq_orgate), 0,
402                           qdev_get_gpio_in_named(iotkitdev, "EXP_IRQ", 15));
403 
404     /* Most of the devices in the FPGA are behind Peripheral Protection
405      * Controllers. The required order for initializing things is:
406      *  + initialize the PPC
407      *  + initialize, configure and realize downstream devices
408      *  + connect downstream device MemoryRegions to the PPC
409      *  + realize the PPC
410      *  + map the PPC's MemoryRegions to the places in the address map
411      *    where the downstream devices should appear
412      *  + wire up the PPC's control lines to the IoTKit object
413      */
414 
415     const PPCInfo ppcs[] = { {
416             .name = "apb_ppcexp0",
417             .ports = {
418                 { "ssram-0", make_mpc, &mms->ssram_mpc[0], 0x58007000, 0x1000 },
419                 { "ssram-1", make_mpc, &mms->ssram_mpc[1], 0x58008000, 0x1000 },
420                 { "ssram-2", make_mpc, &mms->ssram_mpc[2], 0x58009000, 0x1000 },
421             },
422         }, {
423             .name = "apb_ppcexp1",
424             .ports = {
425                 { "spi0", make_unimp_dev, &mms->spi[0], 0x40205000, 0x1000 },
426                 { "spi1", make_unimp_dev, &mms->spi[1], 0x40206000, 0x1000 },
427                 { "spi2", make_unimp_dev, &mms->spi[2], 0x40209000, 0x1000 },
428                 { "spi3", make_unimp_dev, &mms->spi[3], 0x4020a000, 0x1000 },
429                 { "spi4", make_unimp_dev, &mms->spi[4], 0x4020b000, 0x1000 },
430                 { "uart0", make_uart, &mms->uart[0], 0x40200000, 0x1000 },
431                 { "uart1", make_uart, &mms->uart[1], 0x40201000, 0x1000 },
432                 { "uart2", make_uart, &mms->uart[2], 0x40202000, 0x1000 },
433                 { "uart3", make_uart, &mms->uart[3], 0x40203000, 0x1000 },
434                 { "uart4", make_uart, &mms->uart[4], 0x40204000, 0x1000 },
435                 { "i2c0", make_unimp_dev, &mms->i2c[0], 0x40207000, 0x1000 },
436                 { "i2c1", make_unimp_dev, &mms->i2c[1], 0x40208000, 0x1000 },
437                 { "i2c2", make_unimp_dev, &mms->i2c[2], 0x4020c000, 0x1000 },
438                 { "i2c3", make_unimp_dev, &mms->i2c[3], 0x4020d000, 0x1000 },
439             },
440         }, {
441             .name = "apb_ppcexp2",
442             .ports = {
443                 { "scc", make_scc, &mms->scc, 0x40300000, 0x1000 },
444                 { "i2s-audio", make_unimp_dev, &mms->i2s_audio,
445                   0x40301000, 0x1000 },
446                 { "fpgaio", make_fpgaio, &mms->fpgaio, 0x40302000, 0x1000 },
447             },
448         }, {
449             .name = "ahb_ppcexp0",
450             .ports = {
451                 { "gfx", make_unimp_dev, &mms->gfx, 0x41000000, 0x140000 },
452                 { "gpio0", make_unimp_dev, &mms->gpio[0], 0x40100000, 0x1000 },
453                 { "gpio1", make_unimp_dev, &mms->gpio[1], 0x40101000, 0x1000 },
454                 { "gpio2", make_unimp_dev, &mms->gpio[2], 0x40102000, 0x1000 },
455                 { "gpio3", make_unimp_dev, &mms->gpio[3], 0x40103000, 0x1000 },
456                 { "eth", make_eth_dev, NULL, 0x42000000, 0x100000 },
457             },
458         }, {
459             .name = "ahb_ppcexp1",
460             .ports = {
461                 { "dma0", make_dma, &mms->dma[0], 0x40110000, 0x1000 },
462                 { "dma1", make_dma, &mms->dma[1], 0x40111000, 0x1000 },
463                 { "dma2", make_dma, &mms->dma[2], 0x40112000, 0x1000 },
464                 { "dma3", make_dma, &mms->dma[3], 0x40113000, 0x1000 },
465             },
466         },
467     };
468 
469     for (i = 0; i < ARRAY_SIZE(ppcs); i++) {
470         const PPCInfo *ppcinfo = &ppcs[i];
471         TZPPC *ppc = &mms->ppc[i];
472         DeviceState *ppcdev;
473         int port;
474         char *gpioname;
475 
476         sysbus_init_child_obj(OBJECT(machine), ppcinfo->name, ppc,
477                               sizeof(TZPPC), TYPE_TZ_PPC);
478         ppcdev = DEVICE(ppc);
479 
480         for (port = 0; port < TZ_NUM_PORTS; port++) {
481             const PPCPortInfo *pinfo = &ppcinfo->ports[port];
482             MemoryRegion *mr;
483             char *portname;
484 
485             if (!pinfo->devfn) {
486                 continue;
487             }
488 
489             mr = pinfo->devfn(mms, pinfo->opaque, pinfo->name, pinfo->size);
490             portname = g_strdup_printf("port[%d]", port);
491             object_property_set_link(OBJECT(ppc), OBJECT(mr),
492                                      portname, &error_fatal);
493             g_free(portname);
494         }
495 
496         object_property_set_bool(OBJECT(ppc), true, "realized", &error_fatal);
497 
498         for (port = 0; port < TZ_NUM_PORTS; port++) {
499             const PPCPortInfo *pinfo = &ppcinfo->ports[port];
500 
501             if (!pinfo->devfn) {
502                 continue;
503             }
504             sysbus_mmio_map(SYS_BUS_DEVICE(ppc), port, pinfo->addr);
505 
506             gpioname = g_strdup_printf("%s_nonsec", ppcinfo->name);
507             qdev_connect_gpio_out_named(iotkitdev, gpioname, port,
508                                         qdev_get_gpio_in_named(ppcdev,
509                                                                "cfg_nonsec",
510                                                                port));
511             g_free(gpioname);
512             gpioname = g_strdup_printf("%s_ap", ppcinfo->name);
513             qdev_connect_gpio_out_named(iotkitdev, gpioname, port,
514                                         qdev_get_gpio_in_named(ppcdev,
515                                                                "cfg_ap", port));
516             g_free(gpioname);
517         }
518 
519         gpioname = g_strdup_printf("%s_irq_enable", ppcinfo->name);
520         qdev_connect_gpio_out_named(iotkitdev, gpioname, 0,
521                                     qdev_get_gpio_in_named(ppcdev,
522                                                            "irq_enable", 0));
523         g_free(gpioname);
524         gpioname = g_strdup_printf("%s_irq_clear", ppcinfo->name);
525         qdev_connect_gpio_out_named(iotkitdev, gpioname, 0,
526                                     qdev_get_gpio_in_named(ppcdev,
527                                                            "irq_clear", 0));
528         g_free(gpioname);
529         gpioname = g_strdup_printf("%s_irq_status", ppcinfo->name);
530         qdev_connect_gpio_out_named(ppcdev, "irq", 0,
531                                     qdev_get_gpio_in_named(iotkitdev,
532                                                            gpioname, 0));
533         g_free(gpioname);
534 
535         qdev_connect_gpio_out(dev_splitter, i,
536                               qdev_get_gpio_in_named(ppcdev,
537                                                      "cfg_sec_resp", 0));
538     }
539 
540     create_unimplemented_device("FPGA NS PC", 0x48007000, 0x1000);
541 
542     armv7m_load_kernel(ARM_CPU(first_cpu), machine->kernel_filename, 0x400000);
543 }
544 
545 static void mps2_tz_idau_check(IDAUInterface *ii, uint32_t address,
546                                int *iregion, bool *exempt, bool *ns, bool *nsc)
547 {
548     /*
549      * The MPS2 TZ FPGA images have IDAUs in them which are connected to
550      * the Master Security Controllers. Thes have the same logic as
551      * is used by the IoTKit for the IDAU connected to the CPU, except
552      * that MSCs don't care about the NSC attribute.
553      */
554     int region = extract32(address, 28, 4);
555 
556     *ns = !(region & 1);
557     *nsc = false;
558     /* 0xe0000000..0xe00fffff and 0xf0000000..0xf00fffff are exempt */
559     *exempt = (address & 0xeff00000) == 0xe0000000;
560     *iregion = region;
561 }
562 
563 static void mps2tz_class_init(ObjectClass *oc, void *data)
564 {
565     MachineClass *mc = MACHINE_CLASS(oc);
566     IDAUInterfaceClass *iic = IDAU_INTERFACE_CLASS(oc);
567 
568     mc->init = mps2tz_common_init;
569     mc->max_cpus = 1;
570     iic->check = mps2_tz_idau_check;
571 }
572 
573 static void mps2tz_an505_class_init(ObjectClass *oc, void *data)
574 {
575     MachineClass *mc = MACHINE_CLASS(oc);
576     MPS2TZMachineClass *mmc = MPS2TZ_MACHINE_CLASS(oc);
577 
578     mc->desc = "ARM MPS2 with AN505 FPGA image for Cortex-M33";
579     mmc->fpga_type = FPGA_AN505;
580     mc->default_cpu_type = ARM_CPU_TYPE_NAME("cortex-m33");
581     mmc->scc_id = 0x41040000 | (505 << 4);
582 }
583 
584 static const TypeInfo mps2tz_info = {
585     .name = TYPE_MPS2TZ_MACHINE,
586     .parent = TYPE_MACHINE,
587     .abstract = true,
588     .instance_size = sizeof(MPS2TZMachineState),
589     .class_size = sizeof(MPS2TZMachineClass),
590     .class_init = mps2tz_class_init,
591     .interfaces = (InterfaceInfo[]) {
592         { TYPE_IDAU_INTERFACE },
593         { }
594     },
595 };
596 
597 static const TypeInfo mps2tz_an505_info = {
598     .name = TYPE_MPS2TZ_AN505_MACHINE,
599     .parent = TYPE_MPS2TZ_MACHINE,
600     .class_init = mps2tz_an505_class_init,
601 };
602 
603 static void mps2tz_machine_init(void)
604 {
605     type_register_static(&mps2tz_info);
606     type_register_static(&mps2tz_an505_info);
607 }
608 
609 type_init(mps2tz_machine_init);
610