xref: /qemu/hw/arm/boot.c (revision 4ff1b33edf95497a8e6f0615a3ae91f736cf1f8a)
1 /*
2  * ARM kernel loader.
3  *
4  * Copyright (c) 2006-2007 CodeSourcery.
5  * Written by Paul Brook
6  *
7  * This code is licensed under the GPL.
8  */
9 
10 #include "qemu/osdep.h"
11 #include "qemu/datadir.h"
12 #include "qemu/error-report.h"
13 #include "qapi/error.h"
14 #include <libfdt.h>
15 #include "hw/arm/boot.h"
16 #include "hw/arm/linux-boot-if.h"
17 #include "cpu.h"
18 #include "exec/target_page.h"
19 #include "system/kvm.h"
20 #include "system/tcg.h"
21 #include "system/system.h"
22 #include "system/numa.h"
23 #include "hw/boards.h"
24 #include "system/reset.h"
25 #include "hw/loader.h"
26 #include "elf.h"
27 #include "system/device_tree.h"
28 #include "qemu/config-file.h"
29 #include "qemu/option.h"
30 #include "qemu/units.h"
31 
32 /* Kernel boot protocol is specified in the kernel docs
33  * Documentation/arm/Booting and Documentation/arm64/booting.txt
34  * They have different preferred image load offsets from system RAM base.
35  */
36 #define KERNEL_ARGS_ADDR   0x100
37 #define KERNEL_NOLOAD_ADDR 0x02000000
38 #define KERNEL_LOAD_ADDR   0x00010000
39 #define KERNEL64_LOAD_ADDR 0x00080000
40 
41 #define ARM64_TEXT_OFFSET_OFFSET    8
42 #define ARM64_MAGIC_OFFSET          56
43 
44 #define BOOTLOADER_MAX_SIZE         (4 * KiB)
45 
46 AddressSpace *arm_boot_address_space(ARMCPU *cpu,
47                                      const struct arm_boot_info *info)
48 {
49     /* Return the address space to use for bootloader reads and writes.
50      * We prefer the secure address space if the CPU has it and we're
51      * going to boot the guest into it.
52      */
53     int asidx;
54     CPUState *cs = CPU(cpu);
55 
56     if (arm_feature(&cpu->env, ARM_FEATURE_EL3) && info->secure_boot) {
57         asidx = ARMASIdx_S;
58     } else {
59         asidx = ARMASIdx_NS;
60     }
61 
62     return cpu_get_address_space(cs, asidx);
63 }
64 
65 static const ARMInsnFixup bootloader_aarch64[] = {
66     { 0x580000c0 }, /* ldr x0, arg ; Load the lower 32-bits of DTB */
67     { 0xaa1f03e1 }, /* mov x1, xzr */
68     { 0xaa1f03e2 }, /* mov x2, xzr */
69     { 0xaa1f03e3 }, /* mov x3, xzr */
70     { 0x58000084 }, /* ldr x4, entry ; Load the lower 32-bits of kernel entry */
71     { 0xd61f0080 }, /* br x4      ; Jump to the kernel entry point */
72     { 0, FIXUP_ARGPTR_LO }, /* arg: .word @DTB Lower 32-bits */
73     { 0, FIXUP_ARGPTR_HI}, /* .word @DTB Higher 32-bits */
74     { 0, FIXUP_ENTRYPOINT_LO }, /* entry: .word @Kernel Entry Lower 32-bits */
75     { 0, FIXUP_ENTRYPOINT_HI }, /* .word @Kernel Entry Higher 32-bits */
76     { 0, FIXUP_TERMINATOR }
77 };
78 
79 /* A very small bootloader: call the board-setup code (if needed),
80  * set r0-r2, then jump to the kernel.
81  * If we're not calling boot setup code then we don't copy across
82  * the first BOOTLOADER_NO_BOARD_SETUP_OFFSET insns in this array.
83  */
84 
85 static const ARMInsnFixup bootloader[] = {
86     { 0xe28fe004 }, /* add     lr, pc, #4 */
87     { 0xe51ff004 }, /* ldr     pc, [pc, #-4] */
88     { 0, FIXUP_BOARD_SETUP },
89 #define BOOTLOADER_NO_BOARD_SETUP_OFFSET 3
90     { 0xe3a00000 }, /* mov     r0, #0 */
91     { 0xe59f1004 }, /* ldr     r1, [pc, #4] */
92     { 0xe59f2004 }, /* ldr     r2, [pc, #4] */
93     { 0xe59ff004 }, /* ldr     pc, [pc, #4] */
94     { 0, FIXUP_BOARDID },
95     { 0, FIXUP_ARGPTR_LO },
96     { 0, FIXUP_ENTRYPOINT_LO },
97     { 0, FIXUP_TERMINATOR }
98 };
99 
100 /* Handling for secondary CPU boot in a multicore system.
101  * Unlike the uniprocessor/primary CPU boot, this is platform
102  * dependent. The default code here is based on the secondary
103  * CPU boot protocol used on realview/vexpress boards, with
104  * some parameterisation to increase its flexibility.
105  * QEMU platform models for which this code is not appropriate
106  * should override write_secondary_boot and secondary_cpu_reset_hook
107  * instead.
108  *
109  * This code enables the interrupt controllers for the secondary
110  * CPUs and then puts all the secondary CPUs into a loop waiting
111  * for an interprocessor interrupt and polling a configurable
112  * location for the kernel secondary CPU entry point.
113  */
114 #define DSB_INSN 0xf57ff04f
115 #define CP15_DSB_INSN 0xee070f9a /* mcr cp15, 0, r0, c7, c10, 4 */
116 
117 static const ARMInsnFixup smpboot[] = {
118     { 0xe59f2028 }, /* ldr r2, gic_cpu_if */
119     { 0xe59f0028 }, /* ldr r0, bootreg_addr */
120     { 0xe3a01001 }, /* mov r1, #1 */
121     { 0xe5821000 }, /* str r1, [r2] - set GICC_CTLR.Enable */
122     { 0xe3a010ff }, /* mov r1, #0xff */
123     { 0xe5821004 }, /* str r1, [r2, 4] - set GIC_PMR.Priority to 0xff */
124     { 0, FIXUP_DSB },   /* dsb */
125     { 0xe320f003 }, /* wfi */
126     { 0xe5901000 }, /* ldr     r1, [r0] */
127     { 0xe1110001 }, /* tst     r1, r1 */
128     { 0x0afffffb }, /* beq     <wfi> */
129     { 0xe12fff11 }, /* bx      r1 */
130     { 0, FIXUP_GIC_CPU_IF }, /* gic_cpu_if: .word 0x.... */
131     { 0, FIXUP_BOOTREG }, /* bootreg_addr: .word 0x.... */
132     { 0, FIXUP_TERMINATOR }
133 };
134 
135 void arm_write_bootloader(const char *name,
136                           AddressSpace *as, hwaddr addr,
137                           const ARMInsnFixup *insns,
138                           const uint32_t *fixupcontext)
139 {
140     /* Fix up the specified bootloader fragment and write it into
141      * guest memory using rom_add_blob_fixed(). fixupcontext is
142      * an array giving the values to write in for the fixup types
143      * which write a value into the code array.
144      */
145     int i, len;
146     uint32_t *code;
147 
148     len = 0;
149     while (insns[len].fixup != FIXUP_TERMINATOR) {
150         len++;
151     }
152 
153     code = g_new0(uint32_t, len);
154 
155     for (i = 0; i < len; i++) {
156         uint32_t insn = insns[i].insn;
157         FixupType fixup = insns[i].fixup;
158 
159         switch (fixup) {
160         case FIXUP_NONE:
161             break;
162         case FIXUP_BOARDID:
163         case FIXUP_BOARD_SETUP:
164         case FIXUP_ARGPTR_LO:
165         case FIXUP_ARGPTR_HI:
166         case FIXUP_ENTRYPOINT_LO:
167         case FIXUP_ENTRYPOINT_HI:
168         case FIXUP_GIC_CPU_IF:
169         case FIXUP_BOOTREG:
170         case FIXUP_DSB:
171             insn = fixupcontext[fixup];
172             break;
173         default:
174             abort();
175         }
176         code[i] = tswap32(insn);
177     }
178 
179     assert((len * sizeof(uint32_t)) < BOOTLOADER_MAX_SIZE);
180 
181     rom_add_blob_fixed_as(name, code, len * sizeof(uint32_t), addr, as);
182 
183     g_free(code);
184 }
185 
186 static void default_write_secondary(ARMCPU *cpu,
187                                     const struct arm_boot_info *info)
188 {
189     uint32_t fixupcontext[FIXUP_MAX];
190     AddressSpace *as = arm_boot_address_space(cpu, info);
191 
192     fixupcontext[FIXUP_GIC_CPU_IF] = info->gic_cpu_if_addr;
193     fixupcontext[FIXUP_BOOTREG] = info->smp_bootreg_addr;
194     if (arm_feature(&cpu->env, ARM_FEATURE_V7)) {
195         fixupcontext[FIXUP_DSB] = DSB_INSN;
196     } else {
197         fixupcontext[FIXUP_DSB] = CP15_DSB_INSN;
198     }
199 
200     arm_write_bootloader("smpboot", as, info->smp_loader_start,
201                          smpboot, fixupcontext);
202 }
203 
204 void arm_write_secure_board_setup_dummy_smc(ARMCPU *cpu,
205                                             const struct arm_boot_info *info,
206                                             hwaddr mvbar_addr)
207 {
208     AddressSpace *as = arm_boot_address_space(cpu, info);
209     int n;
210     uint32_t mvbar_blob[] = {
211         /* mvbar_addr: secure monitor vectors
212          * Default unimplemented and unused vectors to spin. Makes it
213          * easier to debug (as opposed to the CPU running away).
214          */
215         0xeafffffe, /* (spin) */
216         0xeafffffe, /* (spin) */
217         0xe1b0f00e, /* movs pc, lr ;SMC exception return */
218         0xeafffffe, /* (spin) */
219         0xeafffffe, /* (spin) */
220         0xeafffffe, /* (spin) */
221         0xeafffffe, /* (spin) */
222         0xeafffffe, /* (spin) */
223     };
224     uint32_t board_setup_blob[] = {
225         /* board setup addr */
226         0xee110f51, /* mrc     p15, 0, r0, c1, c1, 2  ;read NSACR */
227         0xe3800b03, /* orr     r0, #0xc00             ;set CP11, CP10 */
228         0xee010f51, /* mcr     p15, 0, r0, c1, c1, 2  ;write NSACR */
229         0xe3a00e00 + (mvbar_addr >> 4), /* mov r0, #mvbar_addr */
230         0xee0c0f30, /* mcr     p15, 0, r0, c12, c0, 1 ;set MVBAR */
231         0xee110f11, /* mrc     p15, 0, r0, c1 , c1, 0 ;read SCR */
232         0xe3800031, /* orr     r0, #0x31              ;enable AW, FW, NS */
233         0xee010f11, /* mcr     p15, 0, r0, c1, c1, 0  ;write SCR */
234         0xe1a0100e, /* mov     r1, lr                 ;save LR across SMC */
235         0xe1600070, /* smc     #0                     ;call monitor to flush SCR */
236         0xe1a0f001, /* mov     pc, r1                 ;return */
237     };
238 
239     /* check that mvbar_addr is correctly aligned and relocatable (using MOV) */
240     assert((mvbar_addr & 0x1f) == 0 && (mvbar_addr >> 4) < 0x100);
241 
242     /* check that these blobs don't overlap */
243     assert((mvbar_addr + sizeof(mvbar_blob) <= info->board_setup_addr)
244           || (info->board_setup_addr + sizeof(board_setup_blob) <= mvbar_addr));
245 
246     for (n = 0; n < ARRAY_SIZE(mvbar_blob); n++) {
247         mvbar_blob[n] = tswap32(mvbar_blob[n]);
248     }
249     rom_add_blob_fixed_as("board-setup-mvbar", mvbar_blob, sizeof(mvbar_blob),
250                           mvbar_addr, as);
251 
252     for (n = 0; n < ARRAY_SIZE(board_setup_blob); n++) {
253         board_setup_blob[n] = tswap32(board_setup_blob[n]);
254     }
255     rom_add_blob_fixed_as("board-setup", board_setup_blob,
256                           sizeof(board_setup_blob), info->board_setup_addr, as);
257 }
258 
259 static void default_reset_secondary(ARMCPU *cpu,
260                                     const struct arm_boot_info *info)
261 {
262     AddressSpace *as = arm_boot_address_space(cpu, info);
263     CPUState *cs = CPU(cpu);
264 
265     address_space_stl_notdirty(as, info->smp_bootreg_addr,
266                                0, MEMTXATTRS_UNSPECIFIED, NULL);
267     cpu_set_pc(cs, info->smp_loader_start);
268 }
269 
270 static inline bool have_dtb(const struct arm_boot_info *info)
271 {
272     return info->dtb_filename || info->get_dtb;
273 }
274 
275 #define WRITE_WORD(p, value) do { \
276     address_space_stl_notdirty(as, p, value, \
277                                MEMTXATTRS_UNSPECIFIED, NULL);  \
278     p += 4;                       \
279 } while (0)
280 
281 static void set_kernel_args(const struct arm_boot_info *info, AddressSpace *as)
282 {
283     int initrd_size = info->initrd_size;
284     hwaddr base = info->loader_start;
285     hwaddr p;
286 
287     p = base + KERNEL_ARGS_ADDR;
288     /* ATAG_CORE */
289     WRITE_WORD(p, 5);
290     WRITE_WORD(p, 0x54410001);
291     WRITE_WORD(p, 1);
292     WRITE_WORD(p, 0x1000);
293     WRITE_WORD(p, 0);
294     /* ATAG_MEM */
295     /* TODO: handle multiple chips on one ATAG list */
296     WRITE_WORD(p, 4);
297     WRITE_WORD(p, 0x54410002);
298     WRITE_WORD(p, info->ram_size);
299     WRITE_WORD(p, info->loader_start);
300     if (initrd_size) {
301         /* ATAG_INITRD2 */
302         WRITE_WORD(p, 4);
303         WRITE_WORD(p, 0x54420005);
304         WRITE_WORD(p, info->initrd_start);
305         WRITE_WORD(p, initrd_size);
306     }
307     if (info->kernel_cmdline && *info->kernel_cmdline) {
308         /* ATAG_CMDLINE */
309         int cmdline_size;
310 
311         cmdline_size = strlen(info->kernel_cmdline);
312         address_space_write(as, p + 8, MEMTXATTRS_UNSPECIFIED,
313                             info->kernel_cmdline, cmdline_size + 1);
314         cmdline_size = (cmdline_size >> 2) + 1;
315         WRITE_WORD(p, cmdline_size + 2);
316         WRITE_WORD(p, 0x54410009);
317         p += cmdline_size * 4;
318     }
319     if (info->atag_board) {
320         /* ATAG_BOARD */
321         int atag_board_len;
322         uint8_t atag_board_buf[0x1000];
323 
324         atag_board_len = (info->atag_board(info, atag_board_buf) + 3) & ~3;
325         WRITE_WORD(p, (atag_board_len + 8) >> 2);
326         WRITE_WORD(p, 0x414f4d50);
327         address_space_write(as, p, MEMTXATTRS_UNSPECIFIED,
328                             atag_board_buf, atag_board_len);
329         p += atag_board_len;
330     }
331     /* ATAG_END */
332     WRITE_WORD(p, 0);
333     WRITE_WORD(p, 0);
334 }
335 
336 static void set_kernel_args_old(const struct arm_boot_info *info,
337                                 AddressSpace *as)
338 {
339     hwaddr p;
340     const char *s;
341     int initrd_size = info->initrd_size;
342     hwaddr base = info->loader_start;
343 
344     /* see linux/include/asm-arm/setup.h */
345     p = base + KERNEL_ARGS_ADDR;
346     /* page_size */
347     WRITE_WORD(p, 4096);
348     /* nr_pages */
349     WRITE_WORD(p, info->ram_size / 4096);
350     /* ramdisk_size */
351     WRITE_WORD(p, 0);
352 #define FLAG_READONLY 1
353 #define FLAG_RDLOAD   4
354 #define FLAG_RDPROMPT 8
355     /* flags */
356     WRITE_WORD(p, FLAG_READONLY | FLAG_RDLOAD | FLAG_RDPROMPT);
357     /* rootdev */
358     WRITE_WORD(p, (31 << 8) | 0); /* /dev/mtdblock0 */
359     /* video_num_cols */
360     WRITE_WORD(p, 0);
361     /* video_num_rows */
362     WRITE_WORD(p, 0);
363     /* video_x */
364     WRITE_WORD(p, 0);
365     /* video_y */
366     WRITE_WORD(p, 0);
367     /* memc_control_reg */
368     WRITE_WORD(p, 0);
369     /* unsigned char sounddefault */
370     /* unsigned char adfsdrives */
371     /* unsigned char bytes_per_char_h */
372     /* unsigned char bytes_per_char_v */
373     WRITE_WORD(p, 0);
374     /* pages_in_bank[4] */
375     WRITE_WORD(p, 0);
376     WRITE_WORD(p, 0);
377     WRITE_WORD(p, 0);
378     WRITE_WORD(p, 0);
379     /* pages_in_vram */
380     WRITE_WORD(p, 0);
381     /* initrd_start */
382     if (initrd_size) {
383         WRITE_WORD(p, info->initrd_start);
384     } else {
385         WRITE_WORD(p, 0);
386     }
387     /* initrd_size */
388     WRITE_WORD(p, initrd_size);
389     /* rd_start */
390     WRITE_WORD(p, 0);
391     /* system_rev */
392     WRITE_WORD(p, 0);
393     /* system_serial_low */
394     WRITE_WORD(p, 0);
395     /* system_serial_high */
396     WRITE_WORD(p, 0);
397     /* mem_fclk_21285 */
398     WRITE_WORD(p, 0);
399     /* zero unused fields */
400     while (p < base + KERNEL_ARGS_ADDR + 256 + 1024) {
401         WRITE_WORD(p, 0);
402     }
403     s = info->kernel_cmdline;
404     if (s) {
405         address_space_write(as, p, MEMTXATTRS_UNSPECIFIED, s, strlen(s) + 1);
406     } else {
407         WRITE_WORD(p, 0);
408     }
409 }
410 
411 static int fdt_add_memory_node(void *fdt, uint32_t acells, hwaddr mem_base,
412                                uint32_t scells, hwaddr mem_len,
413                                int numa_node_id)
414 {
415     char *nodename;
416     int ret;
417 
418     nodename = g_strdup_printf("/memory@%" PRIx64, mem_base);
419     qemu_fdt_add_subnode(fdt, nodename);
420     qemu_fdt_setprop_string(fdt, nodename, "device_type", "memory");
421     ret = qemu_fdt_setprop_sized_cells(fdt, nodename, "reg", acells, mem_base,
422                                        scells, mem_len);
423     if (ret < 0) {
424         goto out;
425     }
426 
427     /* only set the NUMA ID if it is specified */
428     if (numa_node_id >= 0) {
429         ret = qemu_fdt_setprop_cell(fdt, nodename,
430                                     "numa-node-id", numa_node_id);
431     }
432 out:
433     g_free(nodename);
434     return ret;
435 }
436 
437 static void fdt_add_psci_node(void *fdt, ARMCPU *armcpu)
438 {
439     uint32_t cpu_suspend_fn;
440     uint32_t cpu_off_fn;
441     uint32_t cpu_on_fn;
442     uint32_t migrate_fn;
443     const char *psci_method;
444     int64_t psci_conduit;
445     int rc;
446 
447     psci_conduit = object_property_get_int(OBJECT(armcpu),
448                                            "psci-conduit",
449                                            &error_abort);
450     switch (psci_conduit) {
451     case QEMU_PSCI_CONDUIT_DISABLED:
452         return;
453     case QEMU_PSCI_CONDUIT_HVC:
454         psci_method = "hvc";
455         break;
456     case QEMU_PSCI_CONDUIT_SMC:
457         psci_method = "smc";
458         break;
459     default:
460         g_assert_not_reached();
461     }
462 
463     /*
464      * A pre-existing /psci node might specify function ID values
465      * that don't match QEMU's PSCI implementation. Delete the whole
466      * node and put our own in instead.
467      */
468     rc = fdt_path_offset(fdt, "/psci");
469     if (rc >= 0) {
470         qemu_fdt_nop_node(fdt, "/psci");
471     }
472 
473     qemu_fdt_add_subnode(fdt, "/psci");
474     if (armcpu->psci_version >= QEMU_PSCI_VERSION_0_2) {
475         if (armcpu->psci_version < QEMU_PSCI_VERSION_1_0) {
476             const char comp[] = "arm,psci-0.2\0arm,psci";
477             qemu_fdt_setprop(fdt, "/psci", "compatible", comp, sizeof(comp));
478         } else {
479             const char comp[] = "arm,psci-1.0\0arm,psci-0.2\0arm,psci";
480             qemu_fdt_setprop(fdt, "/psci", "compatible", comp, sizeof(comp));
481         }
482 
483         cpu_off_fn = QEMU_PSCI_0_2_FN_CPU_OFF;
484         if (arm_feature(&armcpu->env, ARM_FEATURE_AARCH64)) {
485             cpu_suspend_fn = QEMU_PSCI_0_2_FN64_CPU_SUSPEND;
486             cpu_on_fn = QEMU_PSCI_0_2_FN64_CPU_ON;
487             migrate_fn = QEMU_PSCI_0_2_FN64_MIGRATE;
488         } else {
489             cpu_suspend_fn = QEMU_PSCI_0_2_FN_CPU_SUSPEND;
490             cpu_on_fn = QEMU_PSCI_0_2_FN_CPU_ON;
491             migrate_fn = QEMU_PSCI_0_2_FN_MIGRATE;
492         }
493     } else {
494         qemu_fdt_setprop_string(fdt, "/psci", "compatible", "arm,psci");
495 
496         cpu_suspend_fn = QEMU_PSCI_0_1_FN_CPU_SUSPEND;
497         cpu_off_fn = QEMU_PSCI_0_1_FN_CPU_OFF;
498         cpu_on_fn = QEMU_PSCI_0_1_FN_CPU_ON;
499         migrate_fn = QEMU_PSCI_0_1_FN_MIGRATE;
500     }
501 
502     /* We adopt the PSCI spec's nomenclature, and use 'conduit' to refer
503      * to the instruction that should be used to invoke PSCI functions.
504      * However, the device tree binding uses 'method' instead, so that is
505      * what we should use here.
506      */
507     qemu_fdt_setprop_string(fdt, "/psci", "method", psci_method);
508 
509     qemu_fdt_setprop_cell(fdt, "/psci", "cpu_suspend", cpu_suspend_fn);
510     qemu_fdt_setprop_cell(fdt, "/psci", "cpu_off", cpu_off_fn);
511     qemu_fdt_setprop_cell(fdt, "/psci", "cpu_on", cpu_on_fn);
512     qemu_fdt_setprop_cell(fdt, "/psci", "migrate", migrate_fn);
513 }
514 
515 int arm_load_dtb(hwaddr addr, const struct arm_boot_info *binfo,
516                  hwaddr addr_limit, AddressSpace *as, MachineState *ms,
517                  ARMCPU *cpu)
518 {
519     void *fdt = NULL;
520     int size, rc, n = 0;
521     uint32_t acells, scells;
522     unsigned int i;
523     hwaddr mem_base, mem_len;
524     char **node_path;
525     Error *err = NULL;
526 
527     if (binfo->dtb_filename) {
528         char *filename;
529         filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, binfo->dtb_filename);
530         if (!filename) {
531             fprintf(stderr, "Couldn't open dtb file %s\n", binfo->dtb_filename);
532             goto fail;
533         }
534 
535         fdt = load_device_tree(filename, &size);
536         if (!fdt) {
537             fprintf(stderr, "Couldn't open dtb file %s\n", filename);
538             g_free(filename);
539             goto fail;
540         }
541         g_free(filename);
542     } else {
543         fdt = binfo->get_dtb(binfo, &size);
544         if (!fdt) {
545             fprintf(stderr, "Board was unable to create a dtb blob\n");
546             goto fail;
547         }
548     }
549 
550     if (addr_limit > addr && size > (addr_limit - addr)) {
551         /* Installing the device tree blob at addr would exceed addr_limit.
552          * Whether this constitutes failure is up to the caller to decide,
553          * so just return 0 as size, i.e., no error.
554          */
555         g_free(fdt);
556         return 0;
557     }
558 
559     acells = qemu_fdt_getprop_cell(fdt, "/", "#address-cells",
560                                    NULL, &error_fatal);
561     scells = qemu_fdt_getprop_cell(fdt, "/", "#size-cells",
562                                    NULL, &error_fatal);
563     if (acells == 0 || scells == 0) {
564         fprintf(stderr, "dtb file invalid (#address-cells or #size-cells 0)\n");
565         goto fail;
566     }
567 
568     if (scells < 2 && binfo->ram_size >= 4 * GiB) {
569         /* This is user error so deserves a friendlier error message
570          * than the failure of setprop_sized_cells would provide
571          */
572         fprintf(stderr, "qemu: dtb file not compatible with "
573                 "RAM size > 4GB\n");
574         goto fail;
575     }
576 
577     /* nop all root nodes matching /memory or /memory@unit-address */
578     node_path = qemu_fdt_node_unit_path(fdt, "memory", &err);
579     if (err) {
580         error_report_err(err);
581         goto fail;
582     }
583     while (node_path[n]) {
584         if (g_str_has_prefix(node_path[n], "/memory")) {
585             qemu_fdt_nop_node(fdt, node_path[n]);
586         }
587         n++;
588     }
589     g_strfreev(node_path);
590 
591     /*
592      * We drop all the memory nodes which correspond to empty NUMA nodes
593      * from the device tree, because the Linux NUMA binding document
594      * states they should not be generated. Linux will get the NUMA node
595      * IDs of the empty NUMA nodes from the distance map if they are needed.
596      * This means QEMU users may be obliged to provide command lines which
597      * configure distance maps when the empty NUMA node IDs are needed and
598      * Linux's default distance map isn't sufficient.
599      */
600     if (ms->numa_state != NULL && ms->numa_state->num_nodes > 0) {
601         mem_base = binfo->loader_start;
602         for (i = 0; i < ms->numa_state->num_nodes; i++) {
603             mem_len = ms->numa_state->nodes[i].node_mem;
604             if (!mem_len) {
605                 continue;
606             }
607 
608             rc = fdt_add_memory_node(fdt, acells, mem_base,
609                                      scells, mem_len, i);
610             if (rc < 0) {
611                 fprintf(stderr, "couldn't add /memory@%"PRIx64" node\n",
612                         mem_base);
613                 goto fail;
614             }
615 
616             mem_base += mem_len;
617         }
618     } else {
619         rc = fdt_add_memory_node(fdt, acells, binfo->loader_start,
620                                  scells, binfo->ram_size, -1);
621         if (rc < 0) {
622             fprintf(stderr, "couldn't add /memory@%"PRIx64" node\n",
623                     binfo->loader_start);
624             goto fail;
625         }
626     }
627 
628     rc = fdt_path_offset(fdt, "/chosen");
629     if (rc < 0) {
630         qemu_fdt_add_subnode(fdt, "/chosen");
631     }
632 
633     if (ms->kernel_cmdline && *ms->kernel_cmdline) {
634         rc = qemu_fdt_setprop_string(fdt, "/chosen", "bootargs",
635                                      ms->kernel_cmdline);
636         if (rc < 0) {
637             fprintf(stderr, "couldn't set /chosen/bootargs\n");
638             goto fail;
639         }
640     }
641 
642     if (binfo->initrd_size) {
643         rc = qemu_fdt_setprop_sized_cells(fdt, "/chosen", "linux,initrd-start",
644                                           acells, binfo->initrd_start);
645         if (rc < 0) {
646             fprintf(stderr, "couldn't set /chosen/linux,initrd-start\n");
647             goto fail;
648         }
649 
650         rc = qemu_fdt_setprop_sized_cells(fdt, "/chosen", "linux,initrd-end",
651                                           acells,
652                                           binfo->initrd_start +
653                                           binfo->initrd_size);
654         if (rc < 0) {
655             fprintf(stderr, "couldn't set /chosen/linux,initrd-end\n");
656             goto fail;
657         }
658     }
659 
660     fdt_add_psci_node(fdt, cpu);
661 
662     if (binfo->modify_dtb) {
663         binfo->modify_dtb(binfo, fdt);
664     }
665 
666     /* Put the DTB into the memory map as a ROM image: this will ensure
667      * the DTB is copied again upon reset, even if addr points into RAM.
668      */
669     rom_add_blob_fixed_as("dtb", fdt, size, addr, as);
670     qemu_register_reset_nosnapshotload(qemu_fdt_randomize_seeds,
671                                        rom_ptr_for_as(as, addr, size));
672 
673     if (fdt != ms->fdt) {
674         g_free(ms->fdt);
675         ms->fdt = fdt;
676     }
677 
678     return size;
679 
680 fail:
681     g_free(fdt);
682     return -1;
683 }
684 
685 static void do_cpu_reset(void *opaque)
686 {
687     ARMCPU *cpu = opaque;
688     CPUState *cs = CPU(cpu);
689     CPUARMState *env = &cpu->env;
690     const struct arm_boot_info *info = env->boot_info;
691 
692     cpu_reset(cs);
693     if (info) {
694         if (!info->is_linux) {
695             int i;
696             /* Jump to the entry point.  */
697             uint64_t entry = info->entry;
698 
699             switch (info->endianness) {
700             case ARM_ENDIANNESS_LE:
701                 env->cp15.sctlr_el[1] &= ~SCTLR_E0E;
702                 for (i = 1; i < 4; ++i) {
703                     env->cp15.sctlr_el[i] &= ~SCTLR_EE;
704                 }
705                 env->uncached_cpsr &= ~CPSR_E;
706                 break;
707             case ARM_ENDIANNESS_BE8:
708                 env->cp15.sctlr_el[1] |= SCTLR_E0E;
709                 for (i = 1; i < 4; ++i) {
710                     env->cp15.sctlr_el[i] |= SCTLR_EE;
711                 }
712                 env->uncached_cpsr |= CPSR_E;
713                 break;
714             case ARM_ENDIANNESS_BE32:
715                 env->cp15.sctlr_el[1] |= SCTLR_B;
716                 break;
717             case ARM_ENDIANNESS_UNKNOWN:
718                 break; /* Board's decision */
719             default:
720                 g_assert_not_reached();
721             }
722 
723             cpu_set_pc(cs, entry);
724         } else {
725             /*
726              * If we are booting Linux then we might need to do so at:
727              *  - AArch64 NS EL2 or NS EL1
728              *  - AArch32 Secure SVC (EL3)
729              *  - AArch32 NS Hyp (EL2)
730              *  - AArch32 NS SVC (EL1)
731              * Configure the CPU in the way boot firmware would do to
732              * drop us down to the appropriate level.
733              */
734             int target_el = arm_feature(env, ARM_FEATURE_EL2) ? 2 : 1;
735 
736             if (env->aarch64) {
737                 /*
738                  * AArch64 kernels never boot in secure mode, and we don't
739                  * support the secure_board_setup hook for AArch64.
740                  */
741                 assert(!info->secure_boot);
742                 assert(!info->secure_board_setup);
743             } else {
744                 if (arm_feature(env, ARM_FEATURE_EL3) &&
745                     (info->secure_boot ||
746                      (info->secure_board_setup && cs == first_cpu))) {
747                     /* Start this CPU in Secure SVC */
748                     target_el = 3;
749                 }
750             }
751 
752             arm_emulate_firmware_reset(cs, target_el);
753 
754             if (cs == first_cpu) {
755                 AddressSpace *as = arm_boot_address_space(cpu, info);
756 
757                 cpu_set_pc(cs, info->loader_start);
758 
759                 if (!have_dtb(info)) {
760                     if (old_param) {
761                         set_kernel_args_old(info, as);
762                     } else {
763                         set_kernel_args(info, as);
764                     }
765                 }
766             } else if (info->secondary_cpu_reset_hook) {
767                 info->secondary_cpu_reset_hook(cpu, info);
768             }
769         }
770 
771         if (tcg_enabled()) {
772             arm_rebuild_hflags(env);
773         }
774     }
775 }
776 
777 static int do_arm_linux_init(Object *obj, void *opaque)
778 {
779     if (object_dynamic_cast(obj, TYPE_ARM_LINUX_BOOT_IF)) {
780         ARMLinuxBootIf *albif = ARM_LINUX_BOOT_IF(obj);
781         ARMLinuxBootIfClass *albifc = ARM_LINUX_BOOT_IF_GET_CLASS(obj);
782         struct arm_boot_info *info = opaque;
783 
784         if (albifc->arm_linux_init) {
785             albifc->arm_linux_init(albif, info->secure_boot);
786         }
787     }
788     return 0;
789 }
790 
791 static ssize_t arm_load_elf(struct arm_boot_info *info, uint64_t *pentry,
792                             uint64_t *lowaddr, uint64_t *highaddr,
793                             int elf_machine, AddressSpace *as)
794 {
795     bool elf_is64;
796     union {
797         Elf32_Ehdr h32;
798         Elf64_Ehdr h64;
799     } elf_header;
800     int data_swab = 0;
801     int elf_data_order;
802     ssize_t ret;
803     Error *err = NULL;
804 
805 
806     load_elf_hdr(info->kernel_filename, &elf_header, &elf_is64, &err);
807     if (err) {
808         /*
809          * If the file is not an ELF file we silently return.
810          * The caller will fall back to try other formats.
811          */
812         error_free(err);
813         return -1;
814     }
815 
816     if (elf_is64) {
817         elf_data_order = elf_header.h64.e_ident[EI_DATA];
818         info->endianness = elf_data_order == ELFDATA2MSB ? ARM_ENDIANNESS_BE8
819                                                          : ARM_ENDIANNESS_LE;
820     } else {
821         elf_data_order = elf_header.h32.e_ident[EI_DATA];
822         if (elf_data_order == ELFDATA2MSB) {
823             if (bswap32(elf_header.h32.e_flags) & EF_ARM_BE8) {
824                 info->endianness = ARM_ENDIANNESS_BE8;
825             } else {
826                 info->endianness = ARM_ENDIANNESS_BE32;
827                 /* In BE32, the CPU has a different view of the per-byte
828                  * address map than the rest of the system. BE32 ELF files
829                  * are organised such that they can be programmed through
830                  * the CPU's per-word byte-reversed view of the world. QEMU
831                  * however loads ELF files independently of the CPU. So
832                  * tell the ELF loader to byte reverse the data for us.
833                  */
834                 data_swab = 2;
835             }
836         } else {
837             info->endianness = ARM_ENDIANNESS_LE;
838         }
839     }
840 
841     ret = load_elf_as(info->kernel_filename, NULL, NULL, NULL,
842                       pentry, lowaddr, highaddr, NULL, elf_data_order,
843                       elf_machine, 1, data_swab, as);
844     if (ret <= 0) {
845         /* The header loaded but the image didn't */
846         error_report("Couldn't load elf '%s': %s",
847                      info->kernel_filename, load_elf_strerror(ret));
848         exit(1);
849     }
850 
851     return ret;
852 }
853 
854 static uint64_t load_aarch64_image(const char *filename, hwaddr mem_base,
855                                    hwaddr *entry, AddressSpace *as)
856 {
857     hwaddr kernel_load_offset = KERNEL64_LOAD_ADDR;
858     uint64_t kernel_size = 0;
859     uint8_t *buffer;
860     ssize_t size;
861 
862     /* On aarch64, it's the bootloader's job to uncompress the kernel. */
863     size = load_image_gzipped_buffer(filename, LOAD_IMAGE_MAX_GUNZIP_BYTES,
864                                      &buffer);
865 
866     if (size < 0) {
867         gsize len;
868 
869         /* Load as raw file otherwise */
870         if (!g_file_get_contents(filename, (char **)&buffer, &len, NULL)) {
871             return -1;
872         }
873         size = len;
874 
875         /* Unpack the image if it is a EFI zboot image */
876         if (unpack_efi_zboot_image(&buffer, &size) < 0) {
877             g_free(buffer);
878             return -1;
879         }
880     }
881 
882     /* check the arm64 magic header value -- very old kernels may not have it */
883     if (size > ARM64_MAGIC_OFFSET + 4 &&
884         memcmp(buffer + ARM64_MAGIC_OFFSET, "ARM\x64", 4) == 0) {
885         uint64_t hdrvals[2];
886 
887         /* The arm64 Image header has text_offset and image_size fields at 8 and
888          * 16 bytes into the Image header, respectively. The text_offset field
889          * is only valid if the image_size is non-zero.
890          */
891         memcpy(&hdrvals, buffer + ARM64_TEXT_OFFSET_OFFSET, sizeof(hdrvals));
892 
893         kernel_size = le64_to_cpu(hdrvals[1]);
894 
895         if (kernel_size != 0) {
896             kernel_load_offset = le64_to_cpu(hdrvals[0]);
897 
898             /*
899              * We write our startup "bootloader" at the very bottom of RAM,
900              * so that bit can't be used for the image. Luckily the Image
901              * format specification is that the image requests only an offset
902              * from a 2MB boundary, not an absolute load address. So if the
903              * image requests an offset that might mean it overlaps with the
904              * bootloader, we can just load it starting at 2MB+offset rather
905              * than 0MB + offset.
906              */
907             if (kernel_load_offset < BOOTLOADER_MAX_SIZE) {
908                 kernel_load_offset += 2 * MiB;
909             }
910         }
911     }
912 
913     /*
914      * Kernels before v3.17 don't populate the image_size field, and
915      * raw images have no header. For those our best guess at the size
916      * is the size of the Image file itself.
917      */
918     if (kernel_size == 0) {
919         kernel_size = size;
920     }
921 
922     *entry = mem_base + kernel_load_offset;
923     rom_add_blob_fixed_as(filename, buffer, size, *entry, as);
924 
925     g_free(buffer);
926 
927     return kernel_size;
928 }
929 
930 static void arm_setup_direct_kernel_boot(ARMCPU *cpu,
931                                          struct arm_boot_info *info)
932 {
933     /* Set up for a direct boot of a kernel image file. */
934     CPUState *cs;
935     AddressSpace *as = arm_boot_address_space(cpu, info);
936     ssize_t kernel_size;
937     int initrd_size;
938     int is_linux = 0;
939     uint64_t elf_entry;
940     /* Addresses of first byte used and first byte not used by the image */
941     uint64_t image_low_addr = 0, image_high_addr = 0;
942     int elf_machine;
943     hwaddr entry;
944     static const ARMInsnFixup *primary_loader;
945     uint64_t ram_end = info->loader_start + info->ram_size;
946 
947     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
948         primary_loader = bootloader_aarch64;
949         elf_machine = EM_AARCH64;
950     } else {
951         primary_loader = bootloader;
952         if (!info->write_board_setup) {
953             primary_loader += BOOTLOADER_NO_BOARD_SETUP_OFFSET;
954         }
955         elf_machine = EM_ARM;
956     }
957 
958     /* Assume that raw images are linux kernels, and ELF images are not.  */
959     kernel_size = arm_load_elf(info, &elf_entry, &image_low_addr,
960                                &image_high_addr, elf_machine, as);
961     if (kernel_size > 0 && have_dtb(info)) {
962         /*
963          * If there is still some room left at the base of RAM, try and put
964          * the DTB there like we do for images loaded with -bios or -pflash.
965          */
966         if (image_low_addr > info->loader_start
967             || image_high_addr < info->loader_start) {
968             /*
969              * Set image_low_addr as address limit for arm_load_dtb if it may be
970              * pointing into RAM, otherwise pass '0' (no limit)
971              */
972             if (image_low_addr < info->loader_start) {
973                 image_low_addr = 0;
974             }
975             info->dtb_start = info->loader_start;
976             info->dtb_limit = image_low_addr;
977         }
978     }
979     entry = elf_entry;
980     if (kernel_size < 0) {
981         uint64_t loadaddr = info->loader_start + KERNEL_NOLOAD_ADDR;
982         kernel_size = load_uimage_as(info->kernel_filename, &entry, &loadaddr,
983                                      &is_linux, NULL, NULL, as);
984         if (kernel_size >= 0) {
985             image_low_addr = loadaddr;
986             image_high_addr = image_low_addr + kernel_size;
987         }
988     }
989     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64) && kernel_size < 0) {
990         kernel_size = load_aarch64_image(info->kernel_filename,
991                                          info->loader_start, &entry, as);
992         is_linux = 1;
993         if (kernel_size >= 0) {
994             image_low_addr = entry;
995             image_high_addr = image_low_addr + kernel_size;
996         }
997     } else if (kernel_size < 0) {
998         /* 32-bit ARM */
999         entry = info->loader_start + KERNEL_LOAD_ADDR;
1000         kernel_size = load_image_targphys_as(info->kernel_filename, entry,
1001                                              ram_end - KERNEL_LOAD_ADDR, as);
1002         is_linux = 1;
1003         if (kernel_size >= 0) {
1004             image_low_addr = entry;
1005             image_high_addr = image_low_addr + kernel_size;
1006         }
1007     }
1008     if (kernel_size < 0) {
1009         error_report("could not load kernel '%s'", info->kernel_filename);
1010         exit(1);
1011     }
1012 
1013     if (kernel_size > info->ram_size) {
1014         error_report("kernel '%s' is too large to fit in RAM "
1015                      "(kernel size %zd, RAM size %" PRId64 ")",
1016                      info->kernel_filename, kernel_size, info->ram_size);
1017         exit(1);
1018     }
1019 
1020     info->entry = entry;
1021 
1022     /*
1023      * We want to put the initrd far enough into RAM that when the
1024      * kernel is uncompressed it will not clobber the initrd. However
1025      * on boards without much RAM we must ensure that we still leave
1026      * enough room for a decent sized initrd, and on boards with large
1027      * amounts of RAM we must avoid the initrd being so far up in RAM
1028      * that it is outside lowmem and inaccessible to the kernel.
1029      * So for boards with less  than 256MB of RAM we put the initrd
1030      * halfway into RAM, and for boards with 256MB of RAM or more we put
1031      * the initrd at 128MB.
1032      * We also refuse to put the initrd somewhere that will definitely
1033      * overlay the kernel we just loaded, though for kernel formats which
1034      * don't tell us their exact size (eg self-decompressing 32-bit kernels)
1035      * we might still make a bad choice here.
1036      */
1037     info->initrd_start = info->loader_start +
1038         MIN(info->ram_size / 2, 128 * MiB);
1039     if (image_high_addr) {
1040         info->initrd_start = MAX(info->initrd_start, image_high_addr);
1041     }
1042     info->initrd_start = TARGET_PAGE_ALIGN(info->initrd_start);
1043 
1044     if (is_linux) {
1045         uint32_t fixupcontext[FIXUP_MAX];
1046 
1047         if (info->initrd_filename) {
1048 
1049             if (info->initrd_start >= ram_end) {
1050                 error_report("not enough space after kernel to load initrd");
1051                 exit(1);
1052             }
1053 
1054             initrd_size = load_ramdisk_as(info->initrd_filename,
1055                                           info->initrd_start,
1056                                           ram_end - info->initrd_start, as);
1057             if (initrd_size < 0) {
1058                 initrd_size = load_image_targphys_as(info->initrd_filename,
1059                                                      info->initrd_start,
1060                                                      ram_end -
1061                                                      info->initrd_start,
1062                                                      as);
1063             }
1064             if (initrd_size < 0) {
1065                 error_report("could not load initrd '%s'",
1066                              info->initrd_filename);
1067                 exit(1);
1068             }
1069             if (info->initrd_start + initrd_size > ram_end) {
1070                 error_report("could not load initrd '%s': "
1071                              "too big to fit into RAM after the kernel",
1072                              info->initrd_filename);
1073                 exit(1);
1074             }
1075         } else {
1076             initrd_size = 0;
1077         }
1078         info->initrd_size = initrd_size;
1079 
1080         fixupcontext[FIXUP_BOARDID] = info->board_id;
1081         fixupcontext[FIXUP_BOARD_SETUP] = info->board_setup_addr;
1082 
1083         /*
1084          * for device tree boot, we pass the DTB directly in r2. Otherwise
1085          * we point to the kernel args.
1086          */
1087         if (have_dtb(info)) {
1088             hwaddr align;
1089 
1090             if (elf_machine == EM_AARCH64) {
1091                 /*
1092                  * Some AArch64 kernels on early bootup map the fdt region as
1093                  *
1094                  *   [ ALIGN_DOWN(fdt, 2MB) ... ALIGN_DOWN(fdt, 2MB) + 2MB ]
1095                  *
1096                  * Let's play safe and prealign it to 2MB to give us some space.
1097                  */
1098                 align = 2 * MiB;
1099             } else {
1100                 /*
1101                  * Some 32bit kernels will trash anything in the 4K page the
1102                  * initrd ends in, so make sure the DTB isn't caught up in that.
1103                  */
1104                 align = 4 * KiB;
1105             }
1106 
1107             /* Place the DTB after the initrd in memory with alignment. */
1108             info->dtb_start = QEMU_ALIGN_UP(info->initrd_start + initrd_size,
1109                                            align);
1110             if (info->dtb_start >= ram_end) {
1111                 error_report("Not enough space for DTB after kernel/initrd");
1112                 exit(1);
1113             }
1114             fixupcontext[FIXUP_ARGPTR_LO] = info->dtb_start;
1115             fixupcontext[FIXUP_ARGPTR_HI] = info->dtb_start >> 32;
1116         } else {
1117             fixupcontext[FIXUP_ARGPTR_LO] =
1118                 info->loader_start + KERNEL_ARGS_ADDR;
1119             fixupcontext[FIXUP_ARGPTR_HI] =
1120                 (info->loader_start + KERNEL_ARGS_ADDR) >> 32;
1121             if (info->ram_size >= 4 * GiB) {
1122                 error_report("RAM size must be less than 4GB to boot"
1123                              " Linux kernel using ATAGS (try passing a device tree"
1124                              " using -dtb)");
1125                 exit(1);
1126             }
1127         }
1128         fixupcontext[FIXUP_ENTRYPOINT_LO] = entry;
1129         fixupcontext[FIXUP_ENTRYPOINT_HI] = entry >> 32;
1130 
1131         arm_write_bootloader("bootloader", as, info->loader_start,
1132                              primary_loader, fixupcontext);
1133 
1134         if (info->write_board_setup) {
1135             info->write_board_setup(cpu, info);
1136         }
1137 
1138         /*
1139          * Notify devices which need to fake up firmware initialization
1140          * that we're doing a direct kernel boot.
1141          */
1142         object_child_foreach_recursive(object_get_root(),
1143                                        do_arm_linux_init, info);
1144     }
1145     info->is_linux = is_linux;
1146 
1147     for (cs = first_cpu; cs; cs = CPU_NEXT(cs)) {
1148         ARM_CPU(cs)->env.boot_info = info;
1149     }
1150 }
1151 
1152 static void arm_setup_firmware_boot(ARMCPU *cpu, struct arm_boot_info *info)
1153 {
1154     /* Set up for booting firmware (which might load a kernel via fw_cfg) */
1155 
1156     if (have_dtb(info)) {
1157         /*
1158          * If we have a device tree blob, but no kernel to supply it to (or
1159          * the kernel is supposed to be loaded by the bootloader), copy the
1160          * DTB to the base of RAM for the bootloader to pick up.
1161          */
1162         info->dtb_start = info->loader_start;
1163     }
1164 
1165     if (info->kernel_filename) {
1166         FWCfgState *fw_cfg;
1167         bool try_decompressing_kernel;
1168 
1169         fw_cfg = fw_cfg_find();
1170 
1171         if (!fw_cfg) {
1172             error_report("This machine type does not support loading both "
1173                          "a guest firmware/BIOS image and a guest kernel at "
1174                          "the same time. You should change your QEMU command "
1175                          "line to specify one or the other, but not both.");
1176             exit(1);
1177         }
1178 
1179         try_decompressing_kernel = arm_feature(&cpu->env,
1180                                                ARM_FEATURE_AARCH64);
1181 
1182         /*
1183          * Expose the kernel, the command line, and the initrd in fw_cfg.
1184          * We don't process them here at all, it's all left to the
1185          * firmware.
1186          */
1187         load_image_to_fw_cfg(fw_cfg,
1188                              FW_CFG_KERNEL_SIZE, FW_CFG_KERNEL_DATA,
1189                              info->kernel_filename,
1190                              try_decompressing_kernel);
1191         load_image_to_fw_cfg(fw_cfg,
1192                              FW_CFG_INITRD_SIZE, FW_CFG_INITRD_DATA,
1193                              info->initrd_filename, false);
1194 
1195         if (info->kernel_cmdline) {
1196             fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE,
1197                            strlen(info->kernel_cmdline) + 1);
1198             fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA,
1199                               info->kernel_cmdline);
1200         }
1201     }
1202 
1203     /*
1204      * We will start from address 0 (typically a boot ROM image) in the
1205      * same way as hardware. Leave env->boot_info NULL, so that
1206      * do_cpu_reset() knows it does not need to alter the PC on reset.
1207      */
1208 }
1209 
1210 void arm_load_kernel(ARMCPU *cpu, MachineState *ms, struct arm_boot_info *info)
1211 {
1212     CPUState *cs;
1213     AddressSpace *as = arm_boot_address_space(cpu, info);
1214     int boot_el;
1215     CPUARMState *env = &cpu->env;
1216     int nb_cpus = 0;
1217 
1218     /*
1219      * CPU objects (unlike devices) are not automatically reset on system
1220      * reset, so we must always register a handler to do so. If we're
1221      * actually loading a kernel, the handler is also responsible for
1222      * arranging that we start it correctly.
1223      */
1224     for (cs = first_cpu; cs; cs = CPU_NEXT(cs)) {
1225         qemu_register_reset(do_cpu_reset, ARM_CPU(cs));
1226         nb_cpus++;
1227     }
1228 
1229     /*
1230      * The board code is not supposed to set secure_board_setup unless
1231      * running its code in secure mode is actually possible, and KVM
1232      * doesn't support secure.
1233      */
1234     assert(!(info->secure_board_setup && kvm_enabled()));
1235     info->kernel_filename = ms->kernel_filename;
1236     info->kernel_cmdline = ms->kernel_cmdline;
1237     info->initrd_filename = ms->initrd_filename;
1238     info->dtb_filename = ms->dtb;
1239     info->dtb_limit = 0;
1240 
1241     /* Load the kernel.  */
1242     if (!info->kernel_filename || info->firmware_loaded) {
1243         arm_setup_firmware_boot(cpu, info);
1244     } else {
1245         arm_setup_direct_kernel_boot(cpu, info);
1246     }
1247 
1248     /*
1249      * Disable the PSCI conduit if it is set up to target the same
1250      * or a lower EL than the one we're going to start the guest code in.
1251      * This logic needs to agree with the code in do_cpu_reset() which
1252      * decides whether we're going to boot the guest in the highest
1253      * supported exception level or in a lower one.
1254      */
1255 
1256     /*
1257      * If PSCI is enabled, then SMC calls all go to the PSCI handler and
1258      * are never emulated to trap into guest code. It therefore does not
1259      * make sense for the board to have a setup code fragment that runs
1260      * in Secure, because this will probably need to itself issue an SMC of some
1261      * kind as part of its operation.
1262      */
1263     assert(info->psci_conduit == QEMU_PSCI_CONDUIT_DISABLED ||
1264            !info->secure_board_setup);
1265 
1266     /* Boot into highest supported EL ... */
1267     if (arm_feature(env, ARM_FEATURE_EL3)) {
1268         boot_el = 3;
1269     } else if (arm_feature(env, ARM_FEATURE_EL2)) {
1270         boot_el = 2;
1271     } else {
1272         boot_el = 1;
1273     }
1274     /* ...except that if we're booting Linux we adjust the EL we boot into */
1275     if (info->is_linux && !info->secure_boot) {
1276         boot_el = arm_feature(env, ARM_FEATURE_EL2) ? 2 : 1;
1277     }
1278 
1279     if ((info->psci_conduit == QEMU_PSCI_CONDUIT_HVC && boot_el >= 2) ||
1280         (info->psci_conduit == QEMU_PSCI_CONDUIT_SMC && boot_el == 3)) {
1281         info->psci_conduit = QEMU_PSCI_CONDUIT_DISABLED;
1282     }
1283 
1284     if (info->psci_conduit != QEMU_PSCI_CONDUIT_DISABLED) {
1285         for (cs = first_cpu; cs; cs = CPU_NEXT(cs)) {
1286             Object *cpuobj = OBJECT(cs);
1287 
1288             object_property_set_int(cpuobj, "psci-conduit", info->psci_conduit,
1289                                     &error_abort);
1290             /*
1291              * Secondary CPUs start in PSCI powered-down state. Like the
1292              * code in do_cpu_reset(), we assume first_cpu is the primary
1293              * CPU.
1294              */
1295             if (cs != first_cpu) {
1296                 object_property_set_bool(cpuobj, "start-powered-off", true,
1297                                          &error_abort);
1298             }
1299         }
1300     }
1301 
1302     if (info->psci_conduit == QEMU_PSCI_CONDUIT_DISABLED &&
1303         info->is_linux && nb_cpus > 1) {
1304         /*
1305          * We're booting Linux but not using PSCI, so for SMP we need
1306          * to write a custom secondary CPU boot loader stub, and arrange
1307          * for the secondary CPU reset to make the accompanying initialization.
1308          */
1309         if (!info->secondary_cpu_reset_hook) {
1310             info->secondary_cpu_reset_hook = default_reset_secondary;
1311         }
1312         if (!info->write_secondary_boot) {
1313             info->write_secondary_boot = default_write_secondary;
1314         }
1315         info->write_secondary_boot(cpu, info);
1316     } else {
1317         /*
1318          * No secondary boot stub; don't use the reset hook that would
1319          * have set the CPU up to call it
1320          */
1321         info->write_secondary_boot = NULL;
1322         info->secondary_cpu_reset_hook = NULL;
1323     }
1324 
1325     /*
1326      * arm_load_dtb() may add a PSCI node so it must be called after we have
1327      * decided whether to enable PSCI and set the psci-conduit CPU properties.
1328      */
1329     if (!info->skip_dtb_autoload && have_dtb(info)) {
1330         if (arm_load_dtb(info->dtb_start, info, info->dtb_limit,
1331                          as, ms, cpu) < 0) {
1332             exit(1);
1333         }
1334     }
1335 }
1336 
1337 static const TypeInfo arm_linux_boot_if_info = {
1338     .name = TYPE_ARM_LINUX_BOOT_IF,
1339     .parent = TYPE_INTERFACE,
1340     .class_size = sizeof(ARMLinuxBootIfClass),
1341 };
1342 
1343 static void arm_linux_boot_register_types(void)
1344 {
1345     type_register_static(&arm_linux_boot_if_info);
1346 }
1347 
1348 type_init(arm_linux_boot_register_types)
1349