xref: /qemu/hw/arm/armv7m.c (revision 2eb71a0c20a6a77be128a76c1ef8fb5dc7028a8b)
1  /*
2   * ARMV7M System emulation.
3   *
4   * Copyright (c) 2006-2007 CodeSourcery.
5   * Written by Paul Brook
6   *
7   * This code is licensed under the GPL.
8   */
9  
10  #include "qemu/osdep.h"
11  #include "hw/arm/armv7m.h"
12  #include "qapi/error.h"
13  #include "hw/sysbus.h"
14  #include "hw/arm/boot.h"
15  #include "hw/loader.h"
16  #include "hw/qdev-properties.h"
17  #include "hw/qdev-clock.h"
18  #include "elf.h"
19  #include "sysemu/reset.h"
20  #include "qemu/error-report.h"
21  #include "qemu/module.h"
22  #include "qemu/log.h"
23  #include "target/arm/idau.h"
24  #include "target/arm/cpu-features.h"
25  #include "migration/vmstate.h"
26  
27  /* Bitbanded IO.  Each word corresponds to a single bit.  */
28  
29  /* Get the byte address of the real memory for a bitband access.  */
30  static inline hwaddr bitband_addr(BitBandState *s, hwaddr offset)
31  {
32      return s->base | (offset & 0x1ffffff) >> 5;
33  }
34  
35  static MemTxResult bitband_read(void *opaque, hwaddr offset,
36                                  uint64_t *data, unsigned size, MemTxAttrs attrs)
37  {
38      BitBandState *s = opaque;
39      uint8_t buf[4];
40      MemTxResult res;
41      int bitpos, bit;
42      hwaddr addr;
43  
44      assert(size <= 4);
45  
46      /* Find address in underlying memory and round down to multiple of size */
47      addr = bitband_addr(s, offset) & (-size);
48      res = address_space_read(&s->source_as, addr, attrs, buf, size);
49      if (res) {
50          return res;
51      }
52      /* Bit position in the N bytes read... */
53      bitpos = (offset >> 2) & ((size * 8) - 1);
54      /* ...converted to byte in buffer and bit in byte */
55      bit = (buf[bitpos >> 3] >> (bitpos & 7)) & 1;
56      *data = bit;
57      return MEMTX_OK;
58  }
59  
60  static MemTxResult bitband_write(void *opaque, hwaddr offset, uint64_t value,
61                                   unsigned size, MemTxAttrs attrs)
62  {
63      BitBandState *s = opaque;
64      uint8_t buf[4];
65      MemTxResult res;
66      int bitpos, bit;
67      hwaddr addr;
68  
69      assert(size <= 4);
70  
71      /* Find address in underlying memory and round down to multiple of size */
72      addr = bitband_addr(s, offset) & (-size);
73      res = address_space_read(&s->source_as, addr, attrs, buf, size);
74      if (res) {
75          return res;
76      }
77      /* Bit position in the N bytes read... */
78      bitpos = (offset >> 2) & ((size * 8) - 1);
79      /* ...converted to byte in buffer and bit in byte */
80      bit = 1 << (bitpos & 7);
81      if (value & 1) {
82          buf[bitpos >> 3] |= bit;
83      } else {
84          buf[bitpos >> 3] &= ~bit;
85      }
86      return address_space_write(&s->source_as, addr, attrs, buf, size);
87  }
88  
89  static const MemoryRegionOps bitband_ops = {
90      .read_with_attrs = bitband_read,
91      .write_with_attrs = bitband_write,
92      .endianness = DEVICE_NATIVE_ENDIAN,
93      .impl.min_access_size = 1,
94      .impl.max_access_size = 4,
95      .valid.min_access_size = 1,
96      .valid.max_access_size = 4,
97  };
98  
99  static void bitband_init(Object *obj)
100  {
101      BitBandState *s = BITBAND(obj);
102      SysBusDevice *dev = SYS_BUS_DEVICE(obj);
103  
104      memory_region_init_io(&s->iomem, obj, &bitband_ops, s,
105                            "bitband", 0x02000000);
106      sysbus_init_mmio(dev, &s->iomem);
107  }
108  
109  static void bitband_realize(DeviceState *dev, Error **errp)
110  {
111      BitBandState *s = BITBAND(dev);
112  
113      if (!s->source_memory) {
114          error_setg(errp, "source-memory property not set");
115          return;
116      }
117  
118      address_space_init(&s->source_as, s->source_memory, "bitband-source");
119  }
120  
121  /* Board init.  */
122  
123  static const hwaddr bitband_input_addr[ARMV7M_NUM_BITBANDS] = {
124      0x20000000, 0x40000000
125  };
126  
127  static const hwaddr bitband_output_addr[ARMV7M_NUM_BITBANDS] = {
128      0x22000000, 0x42000000
129  };
130  
131  static MemTxResult v7m_sysreg_ns_write(void *opaque, hwaddr addr,
132                                         uint64_t value, unsigned size,
133                                         MemTxAttrs attrs)
134  {
135      MemoryRegion *mr = opaque;
136  
137      if (attrs.secure) {
138          /* S accesses to the alias act like NS accesses to the real region */
139          attrs.secure = 0;
140          return memory_region_dispatch_write(mr, addr, value,
141                                              size_memop(size) | MO_TE, attrs);
142      } else {
143          /* NS attrs are RAZ/WI for privileged, and BusFault for user */
144          if (attrs.user) {
145              return MEMTX_ERROR;
146          }
147          return MEMTX_OK;
148      }
149  }
150  
151  static MemTxResult v7m_sysreg_ns_read(void *opaque, hwaddr addr,
152                                        uint64_t *data, unsigned size,
153                                        MemTxAttrs attrs)
154  {
155      MemoryRegion *mr = opaque;
156  
157      if (attrs.secure) {
158          /* S accesses to the alias act like NS accesses to the real region */
159          attrs.secure = 0;
160          return memory_region_dispatch_read(mr, addr, data,
161                                             size_memop(size) | MO_TE, attrs);
162      } else {
163          /* NS attrs are RAZ/WI for privileged, and BusFault for user */
164          if (attrs.user) {
165              return MEMTX_ERROR;
166          }
167          *data = 0;
168          return MEMTX_OK;
169      }
170  }
171  
172  static const MemoryRegionOps v7m_sysreg_ns_ops = {
173      .read_with_attrs = v7m_sysreg_ns_read,
174      .write_with_attrs = v7m_sysreg_ns_write,
175      .endianness = DEVICE_NATIVE_ENDIAN,
176  };
177  
178  static MemTxResult v7m_systick_write(void *opaque, hwaddr addr,
179                                       uint64_t value, unsigned size,
180                                       MemTxAttrs attrs)
181  {
182      ARMv7MState *s = opaque;
183      MemoryRegion *mr;
184  
185      /* Direct the access to the correct systick */
186      mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->systick[attrs.secure]), 0);
187      return memory_region_dispatch_write(mr, addr, value,
188                                          size_memop(size) | MO_TE, attrs);
189  }
190  
191  static MemTxResult v7m_systick_read(void *opaque, hwaddr addr,
192                                      uint64_t *data, unsigned size,
193                                      MemTxAttrs attrs)
194  {
195      ARMv7MState *s = opaque;
196      MemoryRegion *mr;
197  
198      /* Direct the access to the correct systick */
199      mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->systick[attrs.secure]), 0);
200      return memory_region_dispatch_read(mr, addr, data, size_memop(size) | MO_TE,
201                                         attrs);
202  }
203  
204  static const MemoryRegionOps v7m_systick_ops = {
205      .read_with_attrs = v7m_systick_read,
206      .write_with_attrs = v7m_systick_write,
207      .endianness = DEVICE_NATIVE_ENDIAN,
208  };
209  
210  /*
211   * Unassigned portions of the PPB space are RAZ/WI for privileged
212   * accesses, and fault for non-privileged accesses.
213   */
214  static MemTxResult ppb_default_read(void *opaque, hwaddr addr,
215                                      uint64_t *data, unsigned size,
216                                      MemTxAttrs attrs)
217  {
218      qemu_log_mask(LOG_UNIMP, "Read of unassigned area of PPB: offset 0x%x\n",
219                    (uint32_t)addr);
220      if (attrs.user) {
221          return MEMTX_ERROR;
222      }
223      *data = 0;
224      return MEMTX_OK;
225  }
226  
227  static MemTxResult ppb_default_write(void *opaque, hwaddr addr,
228                                       uint64_t value, unsigned size,
229                                       MemTxAttrs attrs)
230  {
231      qemu_log_mask(LOG_UNIMP, "Write of unassigned area of PPB: offset 0x%x\n",
232                    (uint32_t)addr);
233      if (attrs.user) {
234          return MEMTX_ERROR;
235      }
236      return MEMTX_OK;
237  }
238  
239  static const MemoryRegionOps ppb_default_ops = {
240      .read_with_attrs = ppb_default_read,
241      .write_with_attrs = ppb_default_write,
242      .endianness = DEVICE_NATIVE_ENDIAN,
243      .valid.min_access_size = 1,
244      .valid.max_access_size = 8,
245  };
246  
247  static void armv7m_instance_init(Object *obj)
248  {
249      ARMv7MState *s = ARMV7M(obj);
250      int i;
251  
252      /* Can't init the cpu here, we don't yet know which model to use */
253  
254      memory_region_init(&s->container, obj, "armv7m-container", UINT64_MAX);
255  
256      object_initialize_child(obj, "nvic", &s->nvic, TYPE_NVIC);
257      object_property_add_alias(obj, "num-irq",
258                                OBJECT(&s->nvic), "num-irq");
259  
260      object_initialize_child(obj, "systick-reg-ns", &s->systick[M_REG_NS],
261                              TYPE_SYSTICK);
262      /*
263       * We can't initialize the secure systick here, as we don't know
264       * yet if we need it.
265       */
266  
267      for (i = 0; i < ARRAY_SIZE(s->bitband); i++) {
268          object_initialize_child(obj, "bitband[*]", &s->bitband[i],
269                                  TYPE_BITBAND);
270      }
271  
272      s->refclk = qdev_init_clock_in(DEVICE(obj), "refclk", NULL, NULL, 0);
273      s->cpuclk = qdev_init_clock_in(DEVICE(obj), "cpuclk", NULL, NULL, 0);
274  }
275  
276  static void armv7m_realize(DeviceState *dev, Error **errp)
277  {
278      ARMv7MState *s = ARMV7M(dev);
279      SysBusDevice *sbd;
280      Error *err = NULL;
281      int i;
282  
283      if (!s->board_memory) {
284          error_setg(errp, "memory property was not set");
285          return;
286      }
287  
288      /* cpuclk must be connected; refclk is optional */
289      if (!clock_has_source(s->cpuclk)) {
290          error_setg(errp, "armv7m: cpuclk must be connected");
291          return;
292      }
293  
294      memory_region_add_subregion_overlap(&s->container, 0, s->board_memory, -1);
295  
296      s->cpu = ARM_CPU(object_new_with_props(s->cpu_type, OBJECT(s), "cpu",
297                                             &err, NULL));
298      if (err != NULL) {
299          error_propagate(errp, err);
300          return;
301      }
302  
303      object_property_set_link(OBJECT(s->cpu), "memory", OBJECT(&s->container),
304                               &error_abort);
305      if (object_property_find(OBJECT(s->cpu), "idau")) {
306          object_property_set_link(OBJECT(s->cpu), "idau", s->idau,
307                                   &error_abort);
308      }
309      if (object_property_find(OBJECT(s->cpu), "init-svtor")) {
310          if (!object_property_set_uint(OBJECT(s->cpu), "init-svtor",
311                                        s->init_svtor, errp)) {
312              return;
313          }
314      }
315      if (object_property_find(OBJECT(s->cpu), "init-nsvtor")) {
316          if (!object_property_set_uint(OBJECT(s->cpu), "init-nsvtor",
317                                        s->init_nsvtor, errp)) {
318              return;
319          }
320      }
321      if (object_property_find(OBJECT(s->cpu), "start-powered-off")) {
322          if (!object_property_set_bool(OBJECT(s->cpu), "start-powered-off",
323                                        s->start_powered_off, errp)) {
324              return;
325          }
326      }
327      if (object_property_find(OBJECT(s->cpu), "vfp")) {
328          if (!object_property_set_bool(OBJECT(s->cpu), "vfp", s->vfp, errp)) {
329              return;
330          }
331      }
332      if (object_property_find(OBJECT(s->cpu), "dsp")) {
333          if (!object_property_set_bool(OBJECT(s->cpu), "dsp", s->dsp, errp)) {
334              return;
335          }
336      }
337  
338      /*
339       * Real M-profile hardware can be configured with a different number of
340       * MPU regions for Secure vs NonSecure. QEMU's CPU implementation doesn't
341       * support that yet, so catch attempts to select that.
342       */
343      if (arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY) &&
344          s->mpu_ns_regions != s->mpu_s_regions) {
345          error_setg(errp,
346                     "mpu-ns-regions and mpu-s-regions properties must have the same value");
347          return;
348      }
349      if (s->mpu_ns_regions != UINT_MAX &&
350          object_property_find(OBJECT(s->cpu), "pmsav7-dregion")) {
351          if (!object_property_set_uint(OBJECT(s->cpu), "pmsav7-dregion",
352                                        s->mpu_ns_regions, errp)) {
353              return;
354          }
355      }
356  
357      /*
358       * Tell the CPU where the NVIC is; it will fail realize if it doesn't
359       * have one. Similarly, tell the NVIC where its CPU is.
360       */
361      s->cpu->env.nvic = &s->nvic;
362      s->nvic.cpu = s->cpu;
363  
364      if (!qdev_realize(DEVICE(s->cpu), NULL, errp)) {
365          return;
366      }
367  
368      /* Note that we must realize the NVIC after the CPU */
369      if (!sysbus_realize(SYS_BUS_DEVICE(&s->nvic), errp)) {
370          return;
371      }
372  
373      /* Alias the NVIC's input and output GPIOs as our own so the board
374       * code can wire them up. (We do this in realize because the
375       * NVIC doesn't create the input GPIO array until realize.)
376       */
377      qdev_pass_gpios(DEVICE(&s->nvic), dev, NULL);
378      qdev_pass_gpios(DEVICE(&s->nvic), dev, "SYSRESETREQ");
379      qdev_pass_gpios(DEVICE(&s->nvic), dev, "NMI");
380  
381      /*
382       * We map various devices into the container MR at their architected
383       * addresses. In particular, we map everything corresponding to the
384       * "System PPB" space. This is the range from 0xe0000000 to 0xe00fffff
385       * and includes the NVIC, the System Control Space (system registers),
386       * the systick timer, and for CPUs with the Security extension an NS
387       * banked version of all of these.
388       *
389       * The default behaviour for unimplemented registers/ranges
390       * (for instance the Data Watchpoint and Trace unit at 0xe0001000)
391       * is to RAZ/WI for privileged access and BusFault for non-privileged
392       * access.
393       *
394       * The NVIC and System Control Space (SCS) starts at 0xe000e000
395       * and looks like this:
396       *  0x004 - ICTR
397       *  0x010 - 0xff - systick
398       *  0x100..0x7ec - NVIC
399       *  0x7f0..0xcff - Reserved
400       *  0xd00..0xd3c - SCS registers
401       *  0xd40..0xeff - Reserved or Not implemented
402       *  0xf00 - STIR
403       *
404       * Some registers within this space are banked between security states.
405       * In v8M there is a second range 0xe002e000..0xe002efff which is the
406       * NonSecure alias SCS; secure accesses to this behave like NS accesses
407       * to the main SCS range, and non-secure accesses (including when
408       * the security extension is not implemented) are RAZ/WI.
409       * Note that both the main SCS range and the alias range are defined
410       * to be exempt from memory attribution (R_BLJT) and so the memory
411       * transaction attribute always matches the current CPU security
412       * state (attrs.secure == env->v7m.secure). In the v7m_sysreg_ns_ops
413       * wrappers we change attrs.secure to indicate the NS access; so
414       * generally code determining which banked register to use should
415       * use attrs.secure; code determining actual behaviour of the system
416       * should use env->v7m.secure.
417       *
418       * Within the PPB space, some MRs overlap, and the priority
419       * of overlapping regions is:
420       *  - default region (for RAZ/WI and BusFault) : -1
421       *  - system register regions (provided by the NVIC) : 0
422       *  - systick : 1
423       * This is because the systick device is a small block of registers
424       * in the middle of the other system control registers.
425       */
426  
427      memory_region_init_io(&s->defaultmem, OBJECT(s), &ppb_default_ops, s,
428                            "nvic-default", 0x100000);
429      memory_region_add_subregion_overlap(&s->container, 0xe0000000,
430                                          &s->defaultmem, -1);
431  
432      /* Wire the NVIC up to the CPU */
433      sbd = SYS_BUS_DEVICE(&s->nvic);
434      sysbus_connect_irq(sbd, 0,
435                         qdev_get_gpio_in(DEVICE(s->cpu), ARM_CPU_IRQ));
436  
437      memory_region_add_subregion(&s->container, 0xe000e000,
438                                  sysbus_mmio_get_region(sbd, 0));
439      if (arm_feature(&s->cpu->env, ARM_FEATURE_V8)) {
440          /* Create the NS alias region for the NVIC sysregs */
441          memory_region_init_io(&s->sysreg_ns_mem, OBJECT(s),
442                                &v7m_sysreg_ns_ops,
443                                sysbus_mmio_get_region(sbd, 0),
444                                "nvic_sysregs_ns", 0x1000);
445          memory_region_add_subregion(&s->container, 0xe002e000,
446                                      &s->sysreg_ns_mem);
447      }
448  
449      /*
450       * Create and map the systick devices. Note that we only connect
451       * refclk if it has been connected to us; otherwise the systick
452       * device gets the wrong answer for clock_has_source(refclk), because
453       * it has an immediate source (the ARMv7M's clock object) but not
454       * an ultimate source, and then it won't correctly auto-select the
455       * CPU clock as its only possible clock source.
456       */
457      if (clock_has_source(s->refclk)) {
458          qdev_connect_clock_in(DEVICE(&s->systick[M_REG_NS]), "refclk",
459                                s->refclk);
460      }
461      qdev_connect_clock_in(DEVICE(&s->systick[M_REG_NS]), "cpuclk", s->cpuclk);
462      if (!sysbus_realize(SYS_BUS_DEVICE(&s->systick[M_REG_NS]), errp)) {
463          return;
464      }
465      sysbus_connect_irq(SYS_BUS_DEVICE(&s->systick[M_REG_NS]), 0,
466                         qdev_get_gpio_in_named(DEVICE(&s->nvic),
467                                                "systick-trigger", M_REG_NS));
468  
469      if (arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY)) {
470          /*
471           * We couldn't init the secure systick device in instance_init
472           * as we didn't know then if the CPU had the security extensions;
473           * so we have to do it here.
474           */
475          object_initialize_child(OBJECT(dev), "systick-reg-s",
476                                  &s->systick[M_REG_S], TYPE_SYSTICK);
477          if (clock_has_source(s->refclk)) {
478              qdev_connect_clock_in(DEVICE(&s->systick[M_REG_S]), "refclk",
479                                    s->refclk);
480          }
481          qdev_connect_clock_in(DEVICE(&s->systick[M_REG_S]), "cpuclk",
482                                s->cpuclk);
483  
484          if (!sysbus_realize(SYS_BUS_DEVICE(&s->systick[M_REG_S]), errp)) {
485              return;
486          }
487          sysbus_connect_irq(SYS_BUS_DEVICE(&s->systick[M_REG_S]), 0,
488                             qdev_get_gpio_in_named(DEVICE(&s->nvic),
489                                                    "systick-trigger", M_REG_S));
490      }
491  
492      memory_region_init_io(&s->systickmem, OBJECT(s),
493                            &v7m_systick_ops, s,
494                            "v7m_systick", 0xe0);
495  
496      memory_region_add_subregion_overlap(&s->container, 0xe000e010,
497                                          &s->systickmem, 1);
498      if (arm_feature(&s->cpu->env, ARM_FEATURE_V8)) {
499          memory_region_init_io(&s->systick_ns_mem, OBJECT(s),
500                                &v7m_sysreg_ns_ops, &s->systickmem,
501                                "v7m_systick_ns", 0xe0);
502          memory_region_add_subregion_overlap(&s->container, 0xe002e010,
503                                              &s->systick_ns_mem, 1);
504      }
505  
506      /* If the CPU has RAS support, create the RAS register block */
507      if (cpu_isar_feature(aa32_ras, s->cpu)) {
508          object_initialize_child(OBJECT(dev), "armv7m-ras",
509                                  &s->ras, TYPE_ARMV7M_RAS);
510          sbd = SYS_BUS_DEVICE(&s->ras);
511          if (!sysbus_realize(sbd, errp)) {
512              return;
513          }
514          memory_region_add_subregion_overlap(&s->container, 0xe0005000,
515                                              sysbus_mmio_get_region(sbd, 0), 1);
516      }
517  
518      for (i = 0; i < ARRAY_SIZE(s->bitband); i++) {
519          if (s->enable_bitband) {
520              Object *obj = OBJECT(&s->bitband[i]);
521              sbd = SYS_BUS_DEVICE(&s->bitband[i]);
522  
523              if (!object_property_set_int(obj, "base",
524                                           bitband_input_addr[i], errp)) {
525                  return;
526              }
527              object_property_set_link(obj, "source-memory",
528                                       OBJECT(s->board_memory), &error_abort);
529              if (!sysbus_realize(SYS_BUS_DEVICE(obj), errp)) {
530                  return;
531              }
532  
533              memory_region_add_subregion(&s->container, bitband_output_addr[i],
534                                          sysbus_mmio_get_region(sbd, 0));
535          } else {
536              object_unparent(OBJECT(&s->bitband[i]));
537          }
538      }
539  }
540  
541  static Property armv7m_properties[] = {
542      DEFINE_PROP_STRING("cpu-type", ARMv7MState, cpu_type),
543      DEFINE_PROP_LINK("memory", ARMv7MState, board_memory, TYPE_MEMORY_REGION,
544                       MemoryRegion *),
545      DEFINE_PROP_LINK("idau", ARMv7MState, idau, TYPE_IDAU_INTERFACE, Object *),
546      DEFINE_PROP_UINT32("init-svtor", ARMv7MState, init_svtor, 0),
547      DEFINE_PROP_UINT32("init-nsvtor", ARMv7MState, init_nsvtor, 0),
548      DEFINE_PROP_BOOL("enable-bitband", ARMv7MState, enable_bitband, false),
549      DEFINE_PROP_BOOL("start-powered-off", ARMv7MState, start_powered_off,
550                       false),
551      DEFINE_PROP_BOOL("vfp", ARMv7MState, vfp, true),
552      DEFINE_PROP_BOOL("dsp", ARMv7MState, dsp, true),
553      DEFINE_PROP_UINT32("mpu-ns-regions", ARMv7MState, mpu_ns_regions, UINT_MAX),
554      DEFINE_PROP_UINT32("mpu-s-regions", ARMv7MState, mpu_s_regions, UINT_MAX),
555      DEFINE_PROP_END_OF_LIST(),
556  };
557  
558  static const VMStateDescription vmstate_armv7m = {
559      .name = "armv7m",
560      .version_id = 1,
561      .minimum_version_id = 1,
562      .fields = (VMStateField[]) {
563          VMSTATE_CLOCK(refclk, ARMv7MState),
564          VMSTATE_CLOCK(cpuclk, ARMv7MState),
565          VMSTATE_END_OF_LIST()
566      }
567  };
568  
569  static void armv7m_class_init(ObjectClass *klass, void *data)
570  {
571      DeviceClass *dc = DEVICE_CLASS(klass);
572  
573      dc->realize = armv7m_realize;
574      dc->vmsd = &vmstate_armv7m;
575      device_class_set_props(dc, armv7m_properties);
576  }
577  
578  static const TypeInfo armv7m_info = {
579      .name = TYPE_ARMV7M,
580      .parent = TYPE_SYS_BUS_DEVICE,
581      .instance_size = sizeof(ARMv7MState),
582      .instance_init = armv7m_instance_init,
583      .class_init = armv7m_class_init,
584  };
585  
586  static void armv7m_reset(void *opaque)
587  {
588      ARMCPU *cpu = opaque;
589  
590      cpu_reset(CPU(cpu));
591  }
592  
593  void armv7m_load_kernel(ARMCPU *cpu, const char *kernel_filename,
594                          hwaddr mem_base, int mem_size)
595  {
596      ssize_t image_size;
597      uint64_t entry;
598      AddressSpace *as;
599      int asidx;
600      CPUState *cs = CPU(cpu);
601  
602      if (arm_feature(&cpu->env, ARM_FEATURE_EL3)) {
603          asidx = ARMASIdx_S;
604      } else {
605          asidx = ARMASIdx_NS;
606      }
607      as = cpu_get_address_space(cs, asidx);
608  
609      if (kernel_filename) {
610          image_size = load_elf_as(kernel_filename, NULL, NULL, NULL,
611                                   &entry, NULL, NULL,
612                                   NULL, 0, EM_ARM, 1, 0, as);
613          if (image_size < 0) {
614              image_size = load_image_targphys_as(kernel_filename, mem_base,
615                                                  mem_size, as);
616          }
617          if (image_size < 0) {
618              error_report("Could not load kernel '%s'", kernel_filename);
619              exit(1);
620          }
621      }
622  
623      /* CPU objects (unlike devices) are not automatically reset on system
624       * reset, so we must always register a handler to do so. Unlike
625       * A-profile CPUs, we don't need to do anything special in the
626       * handler to arrange that it starts correctly.
627       * This is arguably the wrong place to do this, but it matches the
628       * way A-profile does it. Note that this means that every M profile
629       * board must call this function!
630       */
631      qemu_register_reset(armv7m_reset, cpu);
632  }
633  
634  static Property bitband_properties[] = {
635      DEFINE_PROP_UINT32("base", BitBandState, base, 0),
636      DEFINE_PROP_LINK("source-memory", BitBandState, source_memory,
637                       TYPE_MEMORY_REGION, MemoryRegion *),
638      DEFINE_PROP_END_OF_LIST(),
639  };
640  
641  static void bitband_class_init(ObjectClass *klass, void *data)
642  {
643      DeviceClass *dc = DEVICE_CLASS(klass);
644  
645      dc->realize = bitband_realize;
646      device_class_set_props(dc, bitband_properties);
647  }
648  
649  static const TypeInfo bitband_info = {
650      .name          = TYPE_BITBAND,
651      .parent        = TYPE_SYS_BUS_DEVICE,
652      .instance_size = sizeof(BitBandState),
653      .instance_init = bitband_init,
654      .class_init    = bitband_class_init,
655  };
656  
657  static void armv7m_register_types(void)
658  {
659      type_register_static(&bitband_info);
660      type_register_static(&armv7m_info);
661  }
662  
663  type_init(armv7m_register_types)
664