xref: /qemu/hw/arm/armsse.c (revision e2d203baba7bf202a64ee321c2754fe918ab909e)
1 /*
2  * Arm IoT Kit
3  *
4  * Copyright (c) 2018 Linaro Limited
5  * Written by Peter Maydell
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 or
9  * (at your option) any later version.
10  */
11 
12 #include "qemu/osdep.h"
13 #include "qemu/log.h"
14 #include "qapi/error.h"
15 #include "trace.h"
16 #include "hw/sysbus.h"
17 #include "hw/registerfields.h"
18 #include "hw/arm/iotkit.h"
19 #include "hw/misc/unimp.h"
20 #include "hw/arm/arm.h"
21 
22 /* Clock frequency in HZ of the 32KHz "slow clock" */
23 #define S32KCLK (32 * 1000)
24 
25 /* Create an alias region of @size bytes starting at @base
26  * which mirrors the memory starting at @orig.
27  */
28 static void make_alias(IoTKit *s, MemoryRegion *mr, const char *name,
29                        hwaddr base, hwaddr size, hwaddr orig)
30 {
31     memory_region_init_alias(mr, NULL, name, &s->container, orig, size);
32     /* The alias is even lower priority than unimplemented_device regions */
33     memory_region_add_subregion_overlap(&s->container, base, mr, -1500);
34 }
35 
36 static void irq_status_forwarder(void *opaque, int n, int level)
37 {
38     qemu_irq destirq = opaque;
39 
40     qemu_set_irq(destirq, level);
41 }
42 
43 static void nsccfg_handler(void *opaque, int n, int level)
44 {
45     IoTKit *s = IOTKIT(opaque);
46 
47     s->nsccfg = level;
48 }
49 
50 static void iotkit_forward_ppc(IoTKit *s, const char *ppcname, int ppcnum)
51 {
52     /* Each of the 4 AHB and 4 APB PPCs that might be present in a
53      * system using the IoTKit has a collection of control lines which
54      * are provided by the security controller and which we want to
55      * expose as control lines on the IoTKit device itself, so the
56      * code using the IoTKit can wire them up to the PPCs.
57      */
58     SplitIRQ *splitter = &s->ppc_irq_splitter[ppcnum];
59     DeviceState *iotkitdev = DEVICE(s);
60     DeviceState *dev_secctl = DEVICE(&s->secctl);
61     DeviceState *dev_splitter = DEVICE(splitter);
62     char *name;
63 
64     name = g_strdup_printf("%s_nonsec", ppcname);
65     qdev_pass_gpios(dev_secctl, iotkitdev, name);
66     g_free(name);
67     name = g_strdup_printf("%s_ap", ppcname);
68     qdev_pass_gpios(dev_secctl, iotkitdev, name);
69     g_free(name);
70     name = g_strdup_printf("%s_irq_enable", ppcname);
71     qdev_pass_gpios(dev_secctl, iotkitdev, name);
72     g_free(name);
73     name = g_strdup_printf("%s_irq_clear", ppcname);
74     qdev_pass_gpios(dev_secctl, iotkitdev, name);
75     g_free(name);
76 
77     /* irq_status is a little more tricky, because we need to
78      * split it so we can send it both to the security controller
79      * and to our OR gate for the NVIC interrupt line.
80      * Connect up the splitter's outputs, and create a GPIO input
81      * which will pass the line state to the input splitter.
82      */
83     name = g_strdup_printf("%s_irq_status", ppcname);
84     qdev_connect_gpio_out(dev_splitter, 0,
85                           qdev_get_gpio_in_named(dev_secctl,
86                                                  name, 0));
87     qdev_connect_gpio_out(dev_splitter, 1,
88                           qdev_get_gpio_in(DEVICE(&s->ppc_irq_orgate), ppcnum));
89     s->irq_status_in[ppcnum] = qdev_get_gpio_in(dev_splitter, 0);
90     qdev_init_gpio_in_named_with_opaque(iotkitdev, irq_status_forwarder,
91                                         s->irq_status_in[ppcnum], name, 1);
92     g_free(name);
93 }
94 
95 static void iotkit_forward_sec_resp_cfg(IoTKit *s)
96 {
97     /* Forward the 3rd output from the splitter device as a
98      * named GPIO output of the iotkit object.
99      */
100     DeviceState *dev = DEVICE(s);
101     DeviceState *dev_splitter = DEVICE(&s->sec_resp_splitter);
102 
103     qdev_init_gpio_out_named(dev, &s->sec_resp_cfg, "sec_resp_cfg", 1);
104     s->sec_resp_cfg_in = qemu_allocate_irq(irq_status_forwarder,
105                                            s->sec_resp_cfg, 1);
106     qdev_connect_gpio_out(dev_splitter, 2, s->sec_resp_cfg_in);
107 }
108 
109 static void iotkit_init(Object *obj)
110 {
111     IoTKit *s = IOTKIT(obj);
112     int i;
113 
114     memory_region_init(&s->container, obj, "iotkit-container", UINT64_MAX);
115 
116     sysbus_init_child_obj(obj, "armv7m", &s->armv7m, sizeof(s->armv7m),
117                           TYPE_ARMV7M);
118     qdev_prop_set_string(DEVICE(&s->armv7m), "cpu-type",
119                          ARM_CPU_TYPE_NAME("cortex-m33"));
120 
121     sysbus_init_child_obj(obj, "secctl", &s->secctl, sizeof(s->secctl),
122                           TYPE_IOTKIT_SECCTL);
123     sysbus_init_child_obj(obj, "apb-ppc0", &s->apb_ppc0, sizeof(s->apb_ppc0),
124                           TYPE_TZ_PPC);
125     sysbus_init_child_obj(obj, "apb-ppc1", &s->apb_ppc1, sizeof(s->apb_ppc1),
126                           TYPE_TZ_PPC);
127     sysbus_init_child_obj(obj, "mpc", &s->mpc, sizeof(s->mpc), TYPE_TZ_MPC);
128     object_initialize_child(obj, "mpc-irq-orgate", &s->mpc_irq_orgate,
129                             sizeof(s->mpc_irq_orgate), TYPE_OR_IRQ,
130                             &error_abort, NULL);
131 
132     for (i = 0; i < ARRAY_SIZE(s->mpc_irq_splitter); i++) {
133         char *name = g_strdup_printf("mpc-irq-splitter-%d", i);
134         SplitIRQ *splitter = &s->mpc_irq_splitter[i];
135 
136         object_initialize_child(obj, name, splitter, sizeof(*splitter),
137                                 TYPE_SPLIT_IRQ, &error_abort, NULL);
138         g_free(name);
139     }
140     sysbus_init_child_obj(obj, "timer0", &s->timer0, sizeof(s->timer0),
141                           TYPE_CMSDK_APB_TIMER);
142     sysbus_init_child_obj(obj, "timer1", &s->timer1, sizeof(s->timer1),
143                           TYPE_CMSDK_APB_TIMER);
144     sysbus_init_child_obj(obj, "s32ktimer", &s->s32ktimer, sizeof(s->s32ktimer),
145                           TYPE_CMSDK_APB_TIMER);
146     sysbus_init_child_obj(obj, "dualtimer", &s->dualtimer, sizeof(s->dualtimer),
147                           TYPE_CMSDK_APB_DUALTIMER);
148     sysbus_init_child_obj(obj, "s32kwatchdog", &s->s32kwatchdog,
149                           sizeof(s->s32kwatchdog), TYPE_CMSDK_APB_WATCHDOG);
150     sysbus_init_child_obj(obj, "nswatchdog", &s->nswatchdog,
151                           sizeof(s->nswatchdog), TYPE_CMSDK_APB_WATCHDOG);
152     sysbus_init_child_obj(obj, "swatchdog", &s->swatchdog,
153                           sizeof(s->swatchdog), TYPE_CMSDK_APB_WATCHDOG);
154     object_initialize_child(obj, "nmi-orgate", &s->nmi_orgate,
155                             sizeof(s->nmi_orgate), TYPE_OR_IRQ,
156                             &error_abort, NULL);
157     object_initialize_child(obj, "ppc-irq-orgate", &s->ppc_irq_orgate,
158                             sizeof(s->ppc_irq_orgate), TYPE_OR_IRQ,
159                             &error_abort, NULL);
160     object_initialize_child(obj, "sec-resp-splitter", &s->sec_resp_splitter,
161                             sizeof(s->sec_resp_splitter), TYPE_SPLIT_IRQ,
162                             &error_abort, NULL);
163     for (i = 0; i < ARRAY_SIZE(s->ppc_irq_splitter); i++) {
164         char *name = g_strdup_printf("ppc-irq-splitter-%d", i);
165         SplitIRQ *splitter = &s->ppc_irq_splitter[i];
166 
167         object_initialize_child(obj, name, splitter, sizeof(*splitter),
168                                 TYPE_SPLIT_IRQ, &error_abort, NULL);
169         g_free(name);
170     }
171 }
172 
173 static void iotkit_exp_irq(void *opaque, int n, int level)
174 {
175     IoTKit *s = IOTKIT(opaque);
176 
177     qemu_set_irq(s->exp_irqs[n], level);
178 }
179 
180 static void iotkit_mpcexp_status(void *opaque, int n, int level)
181 {
182     IoTKit *s = IOTKIT(opaque);
183     qemu_set_irq(s->mpcexp_status_in[n], level);
184 }
185 
186 static void iotkit_realize(DeviceState *dev, Error **errp)
187 {
188     IoTKit *s = IOTKIT(dev);
189     int i;
190     MemoryRegion *mr;
191     Error *err = NULL;
192     SysBusDevice *sbd_apb_ppc0;
193     SysBusDevice *sbd_secctl;
194     DeviceState *dev_apb_ppc0;
195     DeviceState *dev_apb_ppc1;
196     DeviceState *dev_secctl;
197     DeviceState *dev_splitter;
198 
199     if (!s->board_memory) {
200         error_setg(errp, "memory property was not set");
201         return;
202     }
203 
204     if (!s->mainclk_frq) {
205         error_setg(errp, "MAINCLK property was not set");
206         return;
207     }
208 
209     /* Handling of which devices should be available only to secure
210      * code is usually done differently for M profile than for A profile.
211      * Instead of putting some devices only into the secure address space,
212      * devices exist in both address spaces but with hard-wired security
213      * permissions that will cause the CPU to fault for non-secure accesses.
214      *
215      * The IoTKit has an IDAU (Implementation Defined Access Unit),
216      * which specifies hard-wired security permissions for different
217      * areas of the physical address space. For the IoTKit IDAU, the
218      * top 4 bits of the physical address are the IDAU region ID, and
219      * if bit 28 (ie the lowest bit of the ID) is 0 then this is an NS
220      * region, otherwise it is an S region.
221      *
222      * The various devices and RAMs are generally all mapped twice,
223      * once into a region that the IDAU defines as secure and once
224      * into a non-secure region. They sit behind either a Memory
225      * Protection Controller (for RAM) or a Peripheral Protection
226      * Controller (for devices), which allow a more fine grained
227      * configuration of whether non-secure accesses are permitted.
228      *
229      * (The other place that guest software can configure security
230      * permissions is in the architected SAU (Security Attribution
231      * Unit), which is entirely inside the CPU. The IDAU can upgrade
232      * the security attributes for a region to more restrictive than
233      * the SAU specifies, but cannot downgrade them.)
234      *
235      * 0x10000000..0x1fffffff  alias of 0x00000000..0x0fffffff
236      * 0x20000000..0x2007ffff  32KB FPGA block RAM
237      * 0x30000000..0x3fffffff  alias of 0x20000000..0x2fffffff
238      * 0x40000000..0x4000ffff  base peripheral region 1
239      * 0x40010000..0x4001ffff  CPU peripherals (none for IoTKit)
240      * 0x40020000..0x4002ffff  system control element peripherals
241      * 0x40080000..0x400fffff  base peripheral region 2
242      * 0x50000000..0x5fffffff  alias of 0x40000000..0x4fffffff
243      */
244 
245     memory_region_add_subregion_overlap(&s->container, 0, s->board_memory, -1);
246 
247     qdev_prop_set_uint32(DEVICE(&s->armv7m), "num-irq", s->exp_numirq + 32);
248     /* In real hardware the initial Secure VTOR is set from the INITSVTOR0
249      * register in the IoT Kit System Control Register block, and the
250      * initial value of that is in turn specifiable by the FPGA that
251      * instantiates the IoT Kit. In QEMU we don't implement this wrinkle,
252      * and simply set the CPU's init-svtor to the IoT Kit default value.
253      */
254     qdev_prop_set_uint32(DEVICE(&s->armv7m), "init-svtor", 0x10000000);
255     object_property_set_link(OBJECT(&s->armv7m), OBJECT(&s->container),
256                              "memory", &err);
257     if (err) {
258         error_propagate(errp, err);
259         return;
260     }
261     object_property_set_link(OBJECT(&s->armv7m), OBJECT(s), "idau", &err);
262     if (err) {
263         error_propagate(errp, err);
264         return;
265     }
266     object_property_set_bool(OBJECT(&s->armv7m), true, "realized", &err);
267     if (err) {
268         error_propagate(errp, err);
269         return;
270     }
271 
272     /* Connect our EXP_IRQ GPIOs to the NVIC's lines 32 and up. */
273     s->exp_irqs = g_new(qemu_irq, s->exp_numirq);
274     for (i = 0; i < s->exp_numirq; i++) {
275         s->exp_irqs[i] = qdev_get_gpio_in(DEVICE(&s->armv7m), i + 32);
276     }
277     qdev_init_gpio_in_named(dev, iotkit_exp_irq, "EXP_IRQ", s->exp_numirq);
278 
279     /* Set up the big aliases first */
280     make_alias(s, &s->alias1, "alias 1", 0x10000000, 0x10000000, 0x00000000);
281     make_alias(s, &s->alias2, "alias 2", 0x30000000, 0x10000000, 0x20000000);
282     /* The 0x50000000..0x5fffffff region is not a pure alias: it has
283      * a few extra devices that only appear there (generally the
284      * control interfaces for the protection controllers).
285      * We implement this by mapping those devices over the top of this
286      * alias MR at a higher priority.
287      */
288     make_alias(s, &s->alias3, "alias 3", 0x50000000, 0x10000000, 0x40000000);
289 
290 
291     /* Security controller */
292     object_property_set_bool(OBJECT(&s->secctl), true, "realized", &err);
293     if (err) {
294         error_propagate(errp, err);
295         return;
296     }
297     sbd_secctl = SYS_BUS_DEVICE(&s->secctl);
298     dev_secctl = DEVICE(&s->secctl);
299     sysbus_mmio_map(sbd_secctl, 0, 0x50080000);
300     sysbus_mmio_map(sbd_secctl, 1, 0x40080000);
301 
302     s->nsc_cfg_in = qemu_allocate_irq(nsccfg_handler, s, 1);
303     qdev_connect_gpio_out_named(dev_secctl, "nsc_cfg", 0, s->nsc_cfg_in);
304 
305     /* The sec_resp_cfg output from the security controller must be split into
306      * multiple lines, one for each of the PPCs within the IoTKit and one
307      * that will be an output from the IoTKit to the system.
308      */
309     object_property_set_int(OBJECT(&s->sec_resp_splitter), 3,
310                             "num-lines", &err);
311     if (err) {
312         error_propagate(errp, err);
313         return;
314     }
315     object_property_set_bool(OBJECT(&s->sec_resp_splitter), true,
316                              "realized", &err);
317     if (err) {
318         error_propagate(errp, err);
319         return;
320     }
321     dev_splitter = DEVICE(&s->sec_resp_splitter);
322     qdev_connect_gpio_out_named(dev_secctl, "sec_resp_cfg", 0,
323                                 qdev_get_gpio_in(dev_splitter, 0));
324 
325     /* This RAM lives behind the Memory Protection Controller */
326     memory_region_init_ram(&s->sram0, NULL, "iotkit.sram0", 0x00008000, &err);
327     if (err) {
328         error_propagate(errp, err);
329         return;
330     }
331     object_property_set_link(OBJECT(&s->mpc), OBJECT(&s->sram0),
332                              "downstream", &err);
333     if (err) {
334         error_propagate(errp, err);
335         return;
336     }
337     object_property_set_bool(OBJECT(&s->mpc), true, "realized", &err);
338     if (err) {
339         error_propagate(errp, err);
340         return;
341     }
342     /* Map the upstream end of the MPC into the right place... */
343     memory_region_add_subregion(&s->container, 0x20000000,
344                                 sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->mpc),
345                                                        1));
346     /* ...and its register interface */
347     memory_region_add_subregion(&s->container, 0x50083000,
348                                 sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->mpc),
349                                                        0));
350 
351     /* We must OR together lines from the MPC splitters to go to the NVIC */
352     object_property_set_int(OBJECT(&s->mpc_irq_orgate),
353                             IOTS_NUM_EXP_MPC + IOTS_NUM_MPC, "num-lines", &err);
354     if (err) {
355         error_propagate(errp, err);
356         return;
357     }
358     object_property_set_bool(OBJECT(&s->mpc_irq_orgate), true,
359                              "realized", &err);
360     if (err) {
361         error_propagate(errp, err);
362         return;
363     }
364     qdev_connect_gpio_out(DEVICE(&s->mpc_irq_orgate), 0,
365                           qdev_get_gpio_in(DEVICE(&s->armv7m), 9));
366 
367     /* Devices behind APB PPC0:
368      *   0x40000000: timer0
369      *   0x40001000: timer1
370      *   0x40002000: dual timer
371      * We must configure and realize each downstream device and connect
372      * it to the appropriate PPC port; then we can realize the PPC and
373      * map its upstream ends to the right place in the container.
374      */
375     qdev_prop_set_uint32(DEVICE(&s->timer0), "pclk-frq", s->mainclk_frq);
376     object_property_set_bool(OBJECT(&s->timer0), true, "realized", &err);
377     if (err) {
378         error_propagate(errp, err);
379         return;
380     }
381     sysbus_connect_irq(SYS_BUS_DEVICE(&s->timer0), 0,
382                        qdev_get_gpio_in(DEVICE(&s->armv7m), 3));
383     mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->timer0), 0);
384     object_property_set_link(OBJECT(&s->apb_ppc0), OBJECT(mr), "port[0]", &err);
385     if (err) {
386         error_propagate(errp, err);
387         return;
388     }
389 
390     qdev_prop_set_uint32(DEVICE(&s->timer1), "pclk-frq", s->mainclk_frq);
391     object_property_set_bool(OBJECT(&s->timer1), true, "realized", &err);
392     if (err) {
393         error_propagate(errp, err);
394         return;
395     }
396     sysbus_connect_irq(SYS_BUS_DEVICE(&s->timer1), 0,
397                        qdev_get_gpio_in(DEVICE(&s->armv7m), 4));
398     mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->timer1), 0);
399     object_property_set_link(OBJECT(&s->apb_ppc0), OBJECT(mr), "port[1]", &err);
400     if (err) {
401         error_propagate(errp, err);
402         return;
403     }
404 
405 
406     qdev_prop_set_uint32(DEVICE(&s->dualtimer), "pclk-frq", s->mainclk_frq);
407     object_property_set_bool(OBJECT(&s->dualtimer), true, "realized", &err);
408     if (err) {
409         error_propagate(errp, err);
410         return;
411     }
412     sysbus_connect_irq(SYS_BUS_DEVICE(&s->dualtimer), 0,
413                        qdev_get_gpio_in(DEVICE(&s->armv7m), 5));
414     mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->dualtimer), 0);
415     object_property_set_link(OBJECT(&s->apb_ppc0), OBJECT(mr), "port[2]", &err);
416     if (err) {
417         error_propagate(errp, err);
418         return;
419     }
420 
421     object_property_set_bool(OBJECT(&s->apb_ppc0), true, "realized", &err);
422     if (err) {
423         error_propagate(errp, err);
424         return;
425     }
426 
427     sbd_apb_ppc0 = SYS_BUS_DEVICE(&s->apb_ppc0);
428     dev_apb_ppc0 = DEVICE(&s->apb_ppc0);
429 
430     mr = sysbus_mmio_get_region(sbd_apb_ppc0, 0);
431     memory_region_add_subregion(&s->container, 0x40000000, mr);
432     mr = sysbus_mmio_get_region(sbd_apb_ppc0, 1);
433     memory_region_add_subregion(&s->container, 0x40001000, mr);
434     mr = sysbus_mmio_get_region(sbd_apb_ppc0, 2);
435     memory_region_add_subregion(&s->container, 0x40002000, mr);
436     for (i = 0; i < IOTS_APB_PPC0_NUM_PORTS; i++) {
437         qdev_connect_gpio_out_named(dev_secctl, "apb_ppc0_nonsec", i,
438                                     qdev_get_gpio_in_named(dev_apb_ppc0,
439                                                            "cfg_nonsec", i));
440         qdev_connect_gpio_out_named(dev_secctl, "apb_ppc0_ap", i,
441                                     qdev_get_gpio_in_named(dev_apb_ppc0,
442                                                            "cfg_ap", i));
443     }
444     qdev_connect_gpio_out_named(dev_secctl, "apb_ppc0_irq_enable", 0,
445                                 qdev_get_gpio_in_named(dev_apb_ppc0,
446                                                        "irq_enable", 0));
447     qdev_connect_gpio_out_named(dev_secctl, "apb_ppc0_irq_clear", 0,
448                                 qdev_get_gpio_in_named(dev_apb_ppc0,
449                                                        "irq_clear", 0));
450     qdev_connect_gpio_out(dev_splitter, 0,
451                           qdev_get_gpio_in_named(dev_apb_ppc0,
452                                                  "cfg_sec_resp", 0));
453 
454     /* All the PPC irq lines (from the 2 internal PPCs and the 8 external
455      * ones) are sent individually to the security controller, and also
456      * ORed together to give a single combined PPC interrupt to the NVIC.
457      */
458     object_property_set_int(OBJECT(&s->ppc_irq_orgate),
459                             NUM_PPCS, "num-lines", &err);
460     if (err) {
461         error_propagate(errp, err);
462         return;
463     }
464     object_property_set_bool(OBJECT(&s->ppc_irq_orgate), true,
465                              "realized", &err);
466     if (err) {
467         error_propagate(errp, err);
468         return;
469     }
470     qdev_connect_gpio_out(DEVICE(&s->ppc_irq_orgate), 0,
471                           qdev_get_gpio_in(DEVICE(&s->armv7m), 10));
472 
473     /* 0x40010000 .. 0x4001ffff: private CPU region: unused in IoTKit */
474 
475     /* 0x40020000 .. 0x4002ffff : IoTKit system control peripheral region */
476     /* Devices behind APB PPC1:
477      *   0x4002f000: S32K timer
478      */
479     qdev_prop_set_uint32(DEVICE(&s->s32ktimer), "pclk-frq", S32KCLK);
480     object_property_set_bool(OBJECT(&s->s32ktimer), true, "realized", &err);
481     if (err) {
482         error_propagate(errp, err);
483         return;
484     }
485     sysbus_connect_irq(SYS_BUS_DEVICE(&s->s32ktimer), 0,
486                        qdev_get_gpio_in(DEVICE(&s->armv7m), 2));
487     mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->s32ktimer), 0);
488     object_property_set_link(OBJECT(&s->apb_ppc1), OBJECT(mr), "port[0]", &err);
489     if (err) {
490         error_propagate(errp, err);
491         return;
492     }
493 
494     object_property_set_bool(OBJECT(&s->apb_ppc1), true, "realized", &err);
495     if (err) {
496         error_propagate(errp, err);
497         return;
498     }
499     mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->apb_ppc1), 0);
500     memory_region_add_subregion(&s->container, 0x4002f000, mr);
501 
502     dev_apb_ppc1 = DEVICE(&s->apb_ppc1);
503     qdev_connect_gpio_out_named(dev_secctl, "apb_ppc1_nonsec", 0,
504                                 qdev_get_gpio_in_named(dev_apb_ppc1,
505                                                        "cfg_nonsec", 0));
506     qdev_connect_gpio_out_named(dev_secctl, "apb_ppc1_ap", 0,
507                                 qdev_get_gpio_in_named(dev_apb_ppc1,
508                                                        "cfg_ap", 0));
509     qdev_connect_gpio_out_named(dev_secctl, "apb_ppc1_irq_enable", 0,
510                                 qdev_get_gpio_in_named(dev_apb_ppc1,
511                                                        "irq_enable", 0));
512     qdev_connect_gpio_out_named(dev_secctl, "apb_ppc1_irq_clear", 0,
513                                 qdev_get_gpio_in_named(dev_apb_ppc1,
514                                                        "irq_clear", 0));
515     qdev_connect_gpio_out(dev_splitter, 1,
516                           qdev_get_gpio_in_named(dev_apb_ppc1,
517                                                  "cfg_sec_resp", 0));
518 
519     /* Using create_unimplemented_device() maps the stub into the
520      * system address space rather than into our container, but the
521      * overall effect to the guest is the same.
522      */
523     create_unimplemented_device("SYSINFO", 0x40020000, 0x1000);
524 
525     create_unimplemented_device("SYSCONTROL", 0x50021000, 0x1000);
526 
527     /* This OR gate wires together outputs from the secure watchdogs to NMI */
528     object_property_set_int(OBJECT(&s->nmi_orgate), 2, "num-lines", &err);
529     if (err) {
530         error_propagate(errp, err);
531         return;
532     }
533     object_property_set_bool(OBJECT(&s->nmi_orgate), true, "realized", &err);
534     if (err) {
535         error_propagate(errp, err);
536         return;
537     }
538     qdev_connect_gpio_out(DEVICE(&s->nmi_orgate), 0,
539                           qdev_get_gpio_in_named(DEVICE(&s->armv7m), "NMI", 0));
540 
541     qdev_prop_set_uint32(DEVICE(&s->s32kwatchdog), "wdogclk-frq", S32KCLK);
542     object_property_set_bool(OBJECT(&s->s32kwatchdog), true, "realized", &err);
543     if (err) {
544         error_propagate(errp, err);
545         return;
546     }
547     sysbus_connect_irq(SYS_BUS_DEVICE(&s->s32kwatchdog), 0,
548                        qdev_get_gpio_in(DEVICE(&s->nmi_orgate), 0));
549     sysbus_mmio_map(SYS_BUS_DEVICE(&s->s32kwatchdog), 0, 0x5002e000);
550 
551     /* 0x40080000 .. 0x4008ffff : IoTKit second Base peripheral region */
552 
553     qdev_prop_set_uint32(DEVICE(&s->nswatchdog), "wdogclk-frq", s->mainclk_frq);
554     object_property_set_bool(OBJECT(&s->nswatchdog), true, "realized", &err);
555     if (err) {
556         error_propagate(errp, err);
557         return;
558     }
559     sysbus_connect_irq(SYS_BUS_DEVICE(&s->nswatchdog), 0,
560                        qdev_get_gpio_in(DEVICE(&s->armv7m), 1));
561     sysbus_mmio_map(SYS_BUS_DEVICE(&s->nswatchdog), 0, 0x40081000);
562 
563     qdev_prop_set_uint32(DEVICE(&s->swatchdog), "wdogclk-frq", s->mainclk_frq);
564     object_property_set_bool(OBJECT(&s->swatchdog), true, "realized", &err);
565     if (err) {
566         error_propagate(errp, err);
567         return;
568     }
569     sysbus_connect_irq(SYS_BUS_DEVICE(&s->swatchdog), 0,
570                        qdev_get_gpio_in(DEVICE(&s->nmi_orgate), 1));
571     sysbus_mmio_map(SYS_BUS_DEVICE(&s->swatchdog), 0, 0x50081000);
572 
573     for (i = 0; i < ARRAY_SIZE(s->ppc_irq_splitter); i++) {
574         Object *splitter = OBJECT(&s->ppc_irq_splitter[i]);
575 
576         object_property_set_int(splitter, 2, "num-lines", &err);
577         if (err) {
578             error_propagate(errp, err);
579             return;
580         }
581         object_property_set_bool(splitter, true, "realized", &err);
582         if (err) {
583             error_propagate(errp, err);
584             return;
585         }
586     }
587 
588     for (i = 0; i < IOTS_NUM_AHB_EXP_PPC; i++) {
589         char *ppcname = g_strdup_printf("ahb_ppcexp%d", i);
590 
591         iotkit_forward_ppc(s, ppcname, i);
592         g_free(ppcname);
593     }
594 
595     for (i = 0; i < IOTS_NUM_APB_EXP_PPC; i++) {
596         char *ppcname = g_strdup_printf("apb_ppcexp%d", i);
597 
598         iotkit_forward_ppc(s, ppcname, i + IOTS_NUM_AHB_EXP_PPC);
599         g_free(ppcname);
600     }
601 
602     for (i = NUM_EXTERNAL_PPCS; i < NUM_PPCS; i++) {
603         /* Wire up IRQ splitter for internal PPCs */
604         DeviceState *devs = DEVICE(&s->ppc_irq_splitter[i]);
605         char *gpioname = g_strdup_printf("apb_ppc%d_irq_status",
606                                          i - NUM_EXTERNAL_PPCS);
607         TZPPC *ppc = (i == NUM_EXTERNAL_PPCS) ? &s->apb_ppc0 : &s->apb_ppc1;
608 
609         qdev_connect_gpio_out(devs, 0,
610                               qdev_get_gpio_in_named(dev_secctl, gpioname, 0));
611         qdev_connect_gpio_out(devs, 1,
612                               qdev_get_gpio_in(DEVICE(&s->ppc_irq_orgate), i));
613         qdev_connect_gpio_out_named(DEVICE(ppc), "irq", 0,
614                                     qdev_get_gpio_in(devs, 0));
615         g_free(gpioname);
616     }
617 
618     /* Wire up the splitters for the MPC IRQs */
619     for (i = 0; i < IOTS_NUM_EXP_MPC + IOTS_NUM_MPC; i++) {
620         SplitIRQ *splitter = &s->mpc_irq_splitter[i];
621         DeviceState *dev_splitter = DEVICE(splitter);
622 
623         object_property_set_int(OBJECT(splitter), 2, "num-lines", &err);
624         if (err) {
625             error_propagate(errp, err);
626             return;
627         }
628         object_property_set_bool(OBJECT(splitter), true, "realized", &err);
629         if (err) {
630             error_propagate(errp, err);
631             return;
632         }
633 
634         if (i < IOTS_NUM_EXP_MPC) {
635             /* Splitter input is from GPIO input line */
636             s->mpcexp_status_in[i] = qdev_get_gpio_in(dev_splitter, 0);
637             qdev_connect_gpio_out(dev_splitter, 0,
638                                   qdev_get_gpio_in_named(dev_secctl,
639                                                          "mpcexp_status", i));
640         } else {
641             /* Splitter input is from our own MPC */
642             qdev_connect_gpio_out_named(DEVICE(&s->mpc), "irq", 0,
643                                         qdev_get_gpio_in(dev_splitter, 0));
644             qdev_connect_gpio_out(dev_splitter, 0,
645                                   qdev_get_gpio_in_named(dev_secctl,
646                                                          "mpc_status", 0));
647         }
648 
649         qdev_connect_gpio_out(dev_splitter, 1,
650                               qdev_get_gpio_in(DEVICE(&s->mpc_irq_orgate), i));
651     }
652     /* Create GPIO inputs which will pass the line state for our
653      * mpcexp_irq inputs to the correct splitter devices.
654      */
655     qdev_init_gpio_in_named(dev, iotkit_mpcexp_status, "mpcexp_status",
656                             IOTS_NUM_EXP_MPC);
657 
658     iotkit_forward_sec_resp_cfg(s);
659 
660     system_clock_scale = NANOSECONDS_PER_SECOND / s->mainclk_frq;
661 }
662 
663 static void iotkit_idau_check(IDAUInterface *ii, uint32_t address,
664                               int *iregion, bool *exempt, bool *ns, bool *nsc)
665 {
666     /* For IoTKit systems the IDAU responses are simple logical functions
667      * of the address bits. The NSC attribute is guest-adjustable via the
668      * NSCCFG register in the security controller.
669      */
670     IoTKit *s = IOTKIT(ii);
671     int region = extract32(address, 28, 4);
672 
673     *ns = !(region & 1);
674     *nsc = (region == 1 && (s->nsccfg & 1)) || (region == 3 && (s->nsccfg & 2));
675     /* 0xe0000000..0xe00fffff and 0xf0000000..0xf00fffff are exempt */
676     *exempt = (address & 0xeff00000) == 0xe0000000;
677     *iregion = region;
678 }
679 
680 static const VMStateDescription iotkit_vmstate = {
681     .name = "iotkit",
682     .version_id = 1,
683     .minimum_version_id = 1,
684     .fields = (VMStateField[]) {
685         VMSTATE_UINT32(nsccfg, IoTKit),
686         VMSTATE_END_OF_LIST()
687     }
688 };
689 
690 static Property iotkit_properties[] = {
691     DEFINE_PROP_LINK("memory", IoTKit, board_memory, TYPE_MEMORY_REGION,
692                      MemoryRegion *),
693     DEFINE_PROP_UINT32("EXP_NUMIRQ", IoTKit, exp_numirq, 64),
694     DEFINE_PROP_UINT32("MAINCLK", IoTKit, mainclk_frq, 0),
695     DEFINE_PROP_END_OF_LIST()
696 };
697 
698 static void iotkit_reset(DeviceState *dev)
699 {
700     IoTKit *s = IOTKIT(dev);
701 
702     s->nsccfg = 0;
703 }
704 
705 static void iotkit_class_init(ObjectClass *klass, void *data)
706 {
707     DeviceClass *dc = DEVICE_CLASS(klass);
708     IDAUInterfaceClass *iic = IDAU_INTERFACE_CLASS(klass);
709 
710     dc->realize = iotkit_realize;
711     dc->vmsd = &iotkit_vmstate;
712     dc->props = iotkit_properties;
713     dc->reset = iotkit_reset;
714     iic->check = iotkit_idau_check;
715 }
716 
717 static const TypeInfo iotkit_info = {
718     .name = TYPE_IOTKIT,
719     .parent = TYPE_SYS_BUS_DEVICE,
720     .instance_size = sizeof(IoTKit),
721     .instance_init = iotkit_init,
722     .class_init = iotkit_class_init,
723     .interfaces = (InterfaceInfo[]) {
724         { TYPE_IDAU_INTERFACE },
725         { }
726     }
727 };
728 
729 static void iotkit_register_types(void)
730 {
731     type_register_static(&iotkit_info);
732 }
733 
734 type_init(iotkit_register_types);
735