xref: /qemu/hw/arm/armsse.c (revision af60b29183208123d9aab25acf47e44d54d12a9d)
1 /*
2  * Arm IoT Kit
3  *
4  * Copyright (c) 2018 Linaro Limited
5  * Written by Peter Maydell
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 or
9  * (at your option) any later version.
10  */
11 
12 #include "qemu/osdep.h"
13 #include "qemu/log.h"
14 #include "qapi/error.h"
15 #include "trace.h"
16 #include "hw/sysbus.h"
17 #include "hw/registerfields.h"
18 #include "hw/arm/iotkit.h"
19 #include "hw/misc/unimp.h"
20 #include "hw/arm/arm.h"
21 
22 /* Create an alias region of @size bytes starting at @base
23  * which mirrors the memory starting at @orig.
24  */
25 static void make_alias(IoTKit *s, MemoryRegion *mr, const char *name,
26                        hwaddr base, hwaddr size, hwaddr orig)
27 {
28     memory_region_init_alias(mr, NULL, name, &s->container, orig, size);
29     /* The alias is even lower priority than unimplemented_device regions */
30     memory_region_add_subregion_overlap(&s->container, base, mr, -1500);
31 }
32 
33 static void init_sysbus_child(Object *parent, const char *childname,
34                               void *child, size_t childsize,
35                               const char *childtype)
36 {
37     object_initialize(child, childsize, childtype);
38     object_property_add_child(parent, childname, OBJECT(child), &error_abort);
39     qdev_set_parent_bus(DEVICE(child), sysbus_get_default());
40 }
41 
42 static void irq_status_forwarder(void *opaque, int n, int level)
43 {
44     qemu_irq destirq = opaque;
45 
46     qemu_set_irq(destirq, level);
47 }
48 
49 static void nsccfg_handler(void *opaque, int n, int level)
50 {
51     IoTKit *s = IOTKIT(opaque);
52 
53     s->nsccfg = level;
54 }
55 
56 static void iotkit_forward_ppc(IoTKit *s, const char *ppcname, int ppcnum)
57 {
58     /* Each of the 4 AHB and 4 APB PPCs that might be present in a
59      * system using the IoTKit has a collection of control lines which
60      * are provided by the security controller and which we want to
61      * expose as control lines on the IoTKit device itself, so the
62      * code using the IoTKit can wire them up to the PPCs.
63      */
64     SplitIRQ *splitter = &s->ppc_irq_splitter[ppcnum];
65     DeviceState *iotkitdev = DEVICE(s);
66     DeviceState *dev_secctl = DEVICE(&s->secctl);
67     DeviceState *dev_splitter = DEVICE(splitter);
68     char *name;
69 
70     name = g_strdup_printf("%s_nonsec", ppcname);
71     qdev_pass_gpios(dev_secctl, iotkitdev, name);
72     g_free(name);
73     name = g_strdup_printf("%s_ap", ppcname);
74     qdev_pass_gpios(dev_secctl, iotkitdev, name);
75     g_free(name);
76     name = g_strdup_printf("%s_irq_enable", ppcname);
77     qdev_pass_gpios(dev_secctl, iotkitdev, name);
78     g_free(name);
79     name = g_strdup_printf("%s_irq_clear", ppcname);
80     qdev_pass_gpios(dev_secctl, iotkitdev, name);
81     g_free(name);
82 
83     /* irq_status is a little more tricky, because we need to
84      * split it so we can send it both to the security controller
85      * and to our OR gate for the NVIC interrupt line.
86      * Connect up the splitter's outputs, and create a GPIO input
87      * which will pass the line state to the input splitter.
88      */
89     name = g_strdup_printf("%s_irq_status", ppcname);
90     qdev_connect_gpio_out(dev_splitter, 0,
91                           qdev_get_gpio_in_named(dev_secctl,
92                                                  name, 0));
93     qdev_connect_gpio_out(dev_splitter, 1,
94                           qdev_get_gpio_in(DEVICE(&s->ppc_irq_orgate), ppcnum));
95     s->irq_status_in[ppcnum] = qdev_get_gpio_in(dev_splitter, 0);
96     qdev_init_gpio_in_named_with_opaque(iotkitdev, irq_status_forwarder,
97                                         s->irq_status_in[ppcnum], name, 1);
98     g_free(name);
99 }
100 
101 static void iotkit_forward_sec_resp_cfg(IoTKit *s)
102 {
103     /* Forward the 3rd output from the splitter device as a
104      * named GPIO output of the iotkit object.
105      */
106     DeviceState *dev = DEVICE(s);
107     DeviceState *dev_splitter = DEVICE(&s->sec_resp_splitter);
108 
109     qdev_init_gpio_out_named(dev, &s->sec_resp_cfg, "sec_resp_cfg", 1);
110     s->sec_resp_cfg_in = qemu_allocate_irq(irq_status_forwarder,
111                                            s->sec_resp_cfg, 1);
112     qdev_connect_gpio_out(dev_splitter, 2, s->sec_resp_cfg_in);
113 }
114 
115 static void iotkit_init(Object *obj)
116 {
117     IoTKit *s = IOTKIT(obj);
118     int i;
119 
120     memory_region_init(&s->container, obj, "iotkit-container", UINT64_MAX);
121 
122     init_sysbus_child(obj, "armv7m", &s->armv7m, sizeof(s->armv7m),
123                       TYPE_ARMV7M);
124     qdev_prop_set_string(DEVICE(&s->armv7m), "cpu-type",
125                          ARM_CPU_TYPE_NAME("cortex-m33"));
126 
127     init_sysbus_child(obj, "secctl", &s->secctl, sizeof(s->secctl),
128                       TYPE_IOTKIT_SECCTL);
129     init_sysbus_child(obj, "apb-ppc0", &s->apb_ppc0, sizeof(s->apb_ppc0),
130                       TYPE_TZ_PPC);
131     init_sysbus_child(obj, "apb-ppc1", &s->apb_ppc1, sizeof(s->apb_ppc1),
132                       TYPE_TZ_PPC);
133     init_sysbus_child(obj, "mpc", &s->mpc, sizeof(s->mpc), TYPE_TZ_MPC);
134     init_sysbus_child(obj, "timer0", &s->timer0, sizeof(s->timer0),
135                       TYPE_CMSDK_APB_TIMER);
136     init_sysbus_child(obj, "timer1", &s->timer1, sizeof(s->timer1),
137                       TYPE_CMSDK_APB_TIMER);
138     init_sysbus_child(obj, "dualtimer", &s->dualtimer, sizeof(s->dualtimer),
139                       TYPE_UNIMPLEMENTED_DEVICE);
140     object_initialize(&s->ppc_irq_orgate, sizeof(s->ppc_irq_orgate),
141                       TYPE_OR_IRQ);
142     object_property_add_child(obj, "ppc-irq-orgate",
143                               OBJECT(&s->ppc_irq_orgate), &error_abort);
144     object_initialize(&s->sec_resp_splitter, sizeof(s->sec_resp_splitter),
145                       TYPE_SPLIT_IRQ);
146     object_property_add_child(obj, "sec-resp-splitter",
147                               OBJECT(&s->sec_resp_splitter), &error_abort);
148     for (i = 0; i < ARRAY_SIZE(s->ppc_irq_splitter); i++) {
149         char *name = g_strdup_printf("ppc-irq-splitter-%d", i);
150         SplitIRQ *splitter = &s->ppc_irq_splitter[i];
151 
152         object_initialize(splitter, sizeof(*splitter), TYPE_SPLIT_IRQ);
153         object_property_add_child(obj, name, OBJECT(splitter), &error_abort);
154     }
155     init_sysbus_child(obj, "s32ktimer", &s->s32ktimer, sizeof(s->s32ktimer),
156                       TYPE_UNIMPLEMENTED_DEVICE);
157 }
158 
159 static void iotkit_exp_irq(void *opaque, int n, int level)
160 {
161     IoTKit *s = IOTKIT(opaque);
162 
163     qemu_set_irq(s->exp_irqs[n], level);
164 }
165 
166 static void iotkit_realize(DeviceState *dev, Error **errp)
167 {
168     IoTKit *s = IOTKIT(dev);
169     int i;
170     MemoryRegion *mr;
171     Error *err = NULL;
172     SysBusDevice *sbd_apb_ppc0;
173     SysBusDevice *sbd_secctl;
174     DeviceState *dev_apb_ppc0;
175     DeviceState *dev_apb_ppc1;
176     DeviceState *dev_secctl;
177     DeviceState *dev_splitter;
178 
179     if (!s->board_memory) {
180         error_setg(errp, "memory property was not set");
181         return;
182     }
183 
184     if (!s->mainclk_frq) {
185         error_setg(errp, "MAINCLK property was not set");
186         return;
187     }
188 
189     /* Handling of which devices should be available only to secure
190      * code is usually done differently for M profile than for A profile.
191      * Instead of putting some devices only into the secure address space,
192      * devices exist in both address spaces but with hard-wired security
193      * permissions that will cause the CPU to fault for non-secure accesses.
194      *
195      * The IoTKit has an IDAU (Implementation Defined Access Unit),
196      * which specifies hard-wired security permissions for different
197      * areas of the physical address space. For the IoTKit IDAU, the
198      * top 4 bits of the physical address are the IDAU region ID, and
199      * if bit 28 (ie the lowest bit of the ID) is 0 then this is an NS
200      * region, otherwise it is an S region.
201      *
202      * The various devices and RAMs are generally all mapped twice,
203      * once into a region that the IDAU defines as secure and once
204      * into a non-secure region. They sit behind either a Memory
205      * Protection Controller (for RAM) or a Peripheral Protection
206      * Controller (for devices), which allow a more fine grained
207      * configuration of whether non-secure accesses are permitted.
208      *
209      * (The other place that guest software can configure security
210      * permissions is in the architected SAU (Security Attribution
211      * Unit), which is entirely inside the CPU. The IDAU can upgrade
212      * the security attributes for a region to more restrictive than
213      * the SAU specifies, but cannot downgrade them.)
214      *
215      * 0x10000000..0x1fffffff  alias of 0x00000000..0x0fffffff
216      * 0x20000000..0x2007ffff  32KB FPGA block RAM
217      * 0x30000000..0x3fffffff  alias of 0x20000000..0x2fffffff
218      * 0x40000000..0x4000ffff  base peripheral region 1
219      * 0x40010000..0x4001ffff  CPU peripherals (none for IoTKit)
220      * 0x40020000..0x4002ffff  system control element peripherals
221      * 0x40080000..0x400fffff  base peripheral region 2
222      * 0x50000000..0x5fffffff  alias of 0x40000000..0x4fffffff
223      */
224 
225     memory_region_add_subregion_overlap(&s->container, 0, s->board_memory, -1);
226 
227     qdev_prop_set_uint32(DEVICE(&s->armv7m), "num-irq", s->exp_numirq + 32);
228     /* In real hardware the initial Secure VTOR is set from the INITSVTOR0
229      * register in the IoT Kit System Control Register block, and the
230      * initial value of that is in turn specifiable by the FPGA that
231      * instantiates the IoT Kit. In QEMU we don't implement this wrinkle,
232      * and simply set the CPU's init-svtor to the IoT Kit default value.
233      */
234     qdev_prop_set_uint32(DEVICE(&s->armv7m), "init-svtor", 0x10000000);
235     object_property_set_link(OBJECT(&s->armv7m), OBJECT(&s->container),
236                              "memory", &err);
237     if (err) {
238         error_propagate(errp, err);
239         return;
240     }
241     object_property_set_link(OBJECT(&s->armv7m), OBJECT(s), "idau", &err);
242     if (err) {
243         error_propagate(errp, err);
244         return;
245     }
246     object_property_set_bool(OBJECT(&s->armv7m), true, "realized", &err);
247     if (err) {
248         error_propagate(errp, err);
249         return;
250     }
251 
252     /* Connect our EXP_IRQ GPIOs to the NVIC's lines 32 and up. */
253     s->exp_irqs = g_new(qemu_irq, s->exp_numirq);
254     for (i = 0; i < s->exp_numirq; i++) {
255         s->exp_irqs[i] = qdev_get_gpio_in(DEVICE(&s->armv7m), i + 32);
256     }
257     qdev_init_gpio_in_named(dev, iotkit_exp_irq, "EXP_IRQ", s->exp_numirq);
258 
259     /* Set up the big aliases first */
260     make_alias(s, &s->alias1, "alias 1", 0x10000000, 0x10000000, 0x00000000);
261     make_alias(s, &s->alias2, "alias 2", 0x30000000, 0x10000000, 0x20000000);
262     /* The 0x50000000..0x5fffffff region is not a pure alias: it has
263      * a few extra devices that only appear there (generally the
264      * control interfaces for the protection controllers).
265      * We implement this by mapping those devices over the top of this
266      * alias MR at a higher priority.
267      */
268     make_alias(s, &s->alias3, "alias 3", 0x50000000, 0x10000000, 0x40000000);
269 
270 
271     /* Security controller */
272     object_property_set_bool(OBJECT(&s->secctl), true, "realized", &err);
273     if (err) {
274         error_propagate(errp, err);
275         return;
276     }
277     sbd_secctl = SYS_BUS_DEVICE(&s->secctl);
278     dev_secctl = DEVICE(&s->secctl);
279     sysbus_mmio_map(sbd_secctl, 0, 0x50080000);
280     sysbus_mmio_map(sbd_secctl, 1, 0x40080000);
281 
282     s->nsc_cfg_in = qemu_allocate_irq(nsccfg_handler, s, 1);
283     qdev_connect_gpio_out_named(dev_secctl, "nsc_cfg", 0, s->nsc_cfg_in);
284 
285     /* The sec_resp_cfg output from the security controller must be split into
286      * multiple lines, one for each of the PPCs within the IoTKit and one
287      * that will be an output from the IoTKit to the system.
288      */
289     object_property_set_int(OBJECT(&s->sec_resp_splitter), 3,
290                             "num-lines", &err);
291     if (err) {
292         error_propagate(errp, err);
293         return;
294     }
295     object_property_set_bool(OBJECT(&s->sec_resp_splitter), true,
296                              "realized", &err);
297     if (err) {
298         error_propagate(errp, err);
299         return;
300     }
301     dev_splitter = DEVICE(&s->sec_resp_splitter);
302     qdev_connect_gpio_out_named(dev_secctl, "sec_resp_cfg", 0,
303                                 qdev_get_gpio_in(dev_splitter, 0));
304 
305     /* This RAM lives behind the Memory Protection Controller */
306     memory_region_init_ram(&s->sram0, NULL, "iotkit.sram0", 0x00008000, &err);
307     if (err) {
308         error_propagate(errp, err);
309         return;
310     }
311     object_property_set_link(OBJECT(&s->mpc), OBJECT(&s->sram0),
312                              "downstream", &err);
313     if (err) {
314         error_propagate(errp, err);
315         return;
316     }
317     object_property_set_bool(OBJECT(&s->mpc), true, "realized", &err);
318     if (err) {
319         error_propagate(errp, err);
320         return;
321     }
322     /* Map the upstream end of the MPC into the right place... */
323     memory_region_add_subregion(&s->container, 0x20000000,
324                                 sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->mpc),
325                                                        1));
326     /* ...and its register interface */
327     memory_region_add_subregion(&s->container, 0x50083000,
328                                 sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->mpc),
329                                                        0));
330 
331     /* Devices behind APB PPC0:
332      *   0x40000000: timer0
333      *   0x40001000: timer1
334      *   0x40002000: dual timer
335      * We must configure and realize each downstream device and connect
336      * it to the appropriate PPC port; then we can realize the PPC and
337      * map its upstream ends to the right place in the container.
338      */
339     qdev_prop_set_uint32(DEVICE(&s->timer0), "pclk-frq", s->mainclk_frq);
340     object_property_set_bool(OBJECT(&s->timer0), true, "realized", &err);
341     if (err) {
342         error_propagate(errp, err);
343         return;
344     }
345     sysbus_connect_irq(SYS_BUS_DEVICE(&s->timer0), 0,
346                        qdev_get_gpio_in(DEVICE(&s->armv7m), 3));
347     mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->timer0), 0);
348     object_property_set_link(OBJECT(&s->apb_ppc0), OBJECT(mr), "port[0]", &err);
349     if (err) {
350         error_propagate(errp, err);
351         return;
352     }
353 
354     qdev_prop_set_uint32(DEVICE(&s->timer1), "pclk-frq", s->mainclk_frq);
355     object_property_set_bool(OBJECT(&s->timer1), true, "realized", &err);
356     if (err) {
357         error_propagate(errp, err);
358         return;
359     }
360     sysbus_connect_irq(SYS_BUS_DEVICE(&s->timer1), 0,
361                        qdev_get_gpio_in(DEVICE(&s->armv7m), 3));
362     mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->timer1), 0);
363     object_property_set_link(OBJECT(&s->apb_ppc0), OBJECT(mr), "port[1]", &err);
364     if (err) {
365         error_propagate(errp, err);
366         return;
367     }
368 
369     qdev_prop_set_string(DEVICE(&s->dualtimer), "name", "Dual timer");
370     qdev_prop_set_uint64(DEVICE(&s->dualtimer), "size", 0x1000);
371     object_property_set_bool(OBJECT(&s->dualtimer), true, "realized", &err);
372     if (err) {
373         error_propagate(errp, err);
374         return;
375     }
376     mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->dualtimer), 0);
377     object_property_set_link(OBJECT(&s->apb_ppc0), OBJECT(mr), "port[2]", &err);
378     if (err) {
379         error_propagate(errp, err);
380         return;
381     }
382 
383     object_property_set_bool(OBJECT(&s->apb_ppc0), true, "realized", &err);
384     if (err) {
385         error_propagate(errp, err);
386         return;
387     }
388 
389     sbd_apb_ppc0 = SYS_BUS_DEVICE(&s->apb_ppc0);
390     dev_apb_ppc0 = DEVICE(&s->apb_ppc0);
391 
392     mr = sysbus_mmio_get_region(sbd_apb_ppc0, 0);
393     memory_region_add_subregion(&s->container, 0x40000000, mr);
394     mr = sysbus_mmio_get_region(sbd_apb_ppc0, 1);
395     memory_region_add_subregion(&s->container, 0x40001000, mr);
396     mr = sysbus_mmio_get_region(sbd_apb_ppc0, 2);
397     memory_region_add_subregion(&s->container, 0x40002000, mr);
398     for (i = 0; i < IOTS_APB_PPC0_NUM_PORTS; i++) {
399         qdev_connect_gpio_out_named(dev_secctl, "apb_ppc0_nonsec", i,
400                                     qdev_get_gpio_in_named(dev_apb_ppc0,
401                                                            "cfg_nonsec", i));
402         qdev_connect_gpio_out_named(dev_secctl, "apb_ppc0_ap", i,
403                                     qdev_get_gpio_in_named(dev_apb_ppc0,
404                                                            "cfg_ap", i));
405     }
406     qdev_connect_gpio_out_named(dev_secctl, "apb_ppc0_irq_enable", 0,
407                                 qdev_get_gpio_in_named(dev_apb_ppc0,
408                                                        "irq_enable", 0));
409     qdev_connect_gpio_out_named(dev_secctl, "apb_ppc0_irq_clear", 0,
410                                 qdev_get_gpio_in_named(dev_apb_ppc0,
411                                                        "irq_clear", 0));
412     qdev_connect_gpio_out(dev_splitter, 0,
413                           qdev_get_gpio_in_named(dev_apb_ppc0,
414                                                  "cfg_sec_resp", 0));
415 
416     /* All the PPC irq lines (from the 2 internal PPCs and the 8 external
417      * ones) are sent individually to the security controller, and also
418      * ORed together to give a single combined PPC interrupt to the NVIC.
419      */
420     object_property_set_int(OBJECT(&s->ppc_irq_orgate),
421                             NUM_PPCS, "num-lines", &err);
422     if (err) {
423         error_propagate(errp, err);
424         return;
425     }
426     object_property_set_bool(OBJECT(&s->ppc_irq_orgate), true,
427                              "realized", &err);
428     if (err) {
429         error_propagate(errp, err);
430         return;
431     }
432     qdev_connect_gpio_out(DEVICE(&s->ppc_irq_orgate), 0,
433                           qdev_get_gpio_in(DEVICE(&s->armv7m), 10));
434 
435     /* 0x40010000 .. 0x4001ffff: private CPU region: unused in IoTKit */
436 
437     /* 0x40020000 .. 0x4002ffff : IoTKit system control peripheral region */
438     /* Devices behind APB PPC1:
439      *   0x4002f000: S32K timer
440      */
441     qdev_prop_set_string(DEVICE(&s->s32ktimer), "name", "S32KTIMER");
442     qdev_prop_set_uint64(DEVICE(&s->s32ktimer), "size", 0x1000);
443     object_property_set_bool(OBJECT(&s->s32ktimer), true, "realized", &err);
444     if (err) {
445         error_propagate(errp, err);
446         return;
447     }
448     mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->s32ktimer), 0);
449     object_property_set_link(OBJECT(&s->apb_ppc1), OBJECT(mr), "port[0]", &err);
450     if (err) {
451         error_propagate(errp, err);
452         return;
453     }
454 
455     object_property_set_bool(OBJECT(&s->apb_ppc1), true, "realized", &err);
456     if (err) {
457         error_propagate(errp, err);
458         return;
459     }
460     mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->apb_ppc1), 0);
461     memory_region_add_subregion(&s->container, 0x4002f000, mr);
462 
463     dev_apb_ppc1 = DEVICE(&s->apb_ppc1);
464     qdev_connect_gpio_out_named(dev_secctl, "apb_ppc1_nonsec", 0,
465                                 qdev_get_gpio_in_named(dev_apb_ppc1,
466                                                        "cfg_nonsec", 0));
467     qdev_connect_gpio_out_named(dev_secctl, "apb_ppc1_ap", 0,
468                                 qdev_get_gpio_in_named(dev_apb_ppc1,
469                                                        "cfg_ap", 0));
470     qdev_connect_gpio_out_named(dev_secctl, "apb_ppc1_irq_enable", 0,
471                                 qdev_get_gpio_in_named(dev_apb_ppc1,
472                                                        "irq_enable", 0));
473     qdev_connect_gpio_out_named(dev_secctl, "apb_ppc1_irq_clear", 0,
474                                 qdev_get_gpio_in_named(dev_apb_ppc1,
475                                                        "irq_clear", 0));
476     qdev_connect_gpio_out(dev_splitter, 1,
477                           qdev_get_gpio_in_named(dev_apb_ppc1,
478                                                  "cfg_sec_resp", 0));
479 
480     /* Using create_unimplemented_device() maps the stub into the
481      * system address space rather than into our container, but the
482      * overall effect to the guest is the same.
483      */
484     create_unimplemented_device("SYSINFO", 0x40020000, 0x1000);
485 
486     create_unimplemented_device("SYSCONTROL", 0x50021000, 0x1000);
487     create_unimplemented_device("S32KWATCHDOG", 0x5002e000, 0x1000);
488 
489     /* 0x40080000 .. 0x4008ffff : IoTKit second Base peripheral region */
490 
491     create_unimplemented_device("NS watchdog", 0x40081000, 0x1000);
492     create_unimplemented_device("S watchdog", 0x50081000, 0x1000);
493 
494     for (i = 0; i < ARRAY_SIZE(s->ppc_irq_splitter); i++) {
495         Object *splitter = OBJECT(&s->ppc_irq_splitter[i]);
496 
497         object_property_set_int(splitter, 2, "num-lines", &err);
498         if (err) {
499             error_propagate(errp, err);
500             return;
501         }
502         object_property_set_bool(splitter, true, "realized", &err);
503         if (err) {
504             error_propagate(errp, err);
505             return;
506         }
507     }
508 
509     for (i = 0; i < IOTS_NUM_AHB_EXP_PPC; i++) {
510         char *ppcname = g_strdup_printf("ahb_ppcexp%d", i);
511 
512         iotkit_forward_ppc(s, ppcname, i);
513         g_free(ppcname);
514     }
515 
516     for (i = 0; i < IOTS_NUM_APB_EXP_PPC; i++) {
517         char *ppcname = g_strdup_printf("apb_ppcexp%d", i);
518 
519         iotkit_forward_ppc(s, ppcname, i + IOTS_NUM_AHB_EXP_PPC);
520         g_free(ppcname);
521     }
522 
523     for (i = NUM_EXTERNAL_PPCS; i < NUM_PPCS; i++) {
524         /* Wire up IRQ splitter for internal PPCs */
525         DeviceState *devs = DEVICE(&s->ppc_irq_splitter[i]);
526         char *gpioname = g_strdup_printf("apb_ppc%d_irq_status",
527                                          i - NUM_EXTERNAL_PPCS);
528         TZPPC *ppc = (i == NUM_EXTERNAL_PPCS) ? &s->apb_ppc0 : &s->apb_ppc1;
529 
530         qdev_connect_gpio_out(devs, 0,
531                               qdev_get_gpio_in_named(dev_secctl, gpioname, 0));
532         qdev_connect_gpio_out(devs, 1,
533                               qdev_get_gpio_in(DEVICE(&s->ppc_irq_orgate), i));
534         qdev_connect_gpio_out_named(DEVICE(ppc), "irq", 0,
535                                     qdev_get_gpio_in(devs, 0));
536         g_free(gpioname);
537     }
538 
539     iotkit_forward_sec_resp_cfg(s);
540 
541     system_clock_scale = NANOSECONDS_PER_SECOND / s->mainclk_frq;
542 }
543 
544 static void iotkit_idau_check(IDAUInterface *ii, uint32_t address,
545                               int *iregion, bool *exempt, bool *ns, bool *nsc)
546 {
547     /* For IoTKit systems the IDAU responses are simple logical functions
548      * of the address bits. The NSC attribute is guest-adjustable via the
549      * NSCCFG register in the security controller.
550      */
551     IoTKit *s = IOTKIT(ii);
552     int region = extract32(address, 28, 4);
553 
554     *ns = !(region & 1);
555     *nsc = (region == 1 && (s->nsccfg & 1)) || (region == 3 && (s->nsccfg & 2));
556     /* 0xe0000000..0xe00fffff and 0xf0000000..0xf00fffff are exempt */
557     *exempt = (address & 0xeff00000) == 0xe0000000;
558     *iregion = region;
559 }
560 
561 static const VMStateDescription iotkit_vmstate = {
562     .name = "iotkit",
563     .version_id = 1,
564     .minimum_version_id = 1,
565     .fields = (VMStateField[]) {
566         VMSTATE_UINT32(nsccfg, IoTKit),
567         VMSTATE_END_OF_LIST()
568     }
569 };
570 
571 static Property iotkit_properties[] = {
572     DEFINE_PROP_LINK("memory", IoTKit, board_memory, TYPE_MEMORY_REGION,
573                      MemoryRegion *),
574     DEFINE_PROP_UINT32("EXP_NUMIRQ", IoTKit, exp_numirq, 64),
575     DEFINE_PROP_UINT32("MAINCLK", IoTKit, mainclk_frq, 0),
576     DEFINE_PROP_END_OF_LIST()
577 };
578 
579 static void iotkit_reset(DeviceState *dev)
580 {
581     IoTKit *s = IOTKIT(dev);
582 
583     s->nsccfg = 0;
584 }
585 
586 static void iotkit_class_init(ObjectClass *klass, void *data)
587 {
588     DeviceClass *dc = DEVICE_CLASS(klass);
589     IDAUInterfaceClass *iic = IDAU_INTERFACE_CLASS(klass);
590 
591     dc->realize = iotkit_realize;
592     dc->vmsd = &iotkit_vmstate;
593     dc->props = iotkit_properties;
594     dc->reset = iotkit_reset;
595     iic->check = iotkit_idau_check;
596 }
597 
598 static const TypeInfo iotkit_info = {
599     .name = TYPE_IOTKIT,
600     .parent = TYPE_SYS_BUS_DEVICE,
601     .instance_size = sizeof(IoTKit),
602     .instance_init = iotkit_init,
603     .class_init = iotkit_class_init,
604     .interfaces = (InterfaceInfo[]) {
605         { TYPE_IDAU_INTERFACE },
606         { }
607     }
608 };
609 
610 static void iotkit_register_types(void)
611 {
612     type_register_static(&iotkit_info);
613 }
614 
615 type_init(iotkit_register_types);
616