xref: /qemu/hw/arm/armsse.c (revision 9fc7fc4d3909817555ce0af6bcb69dff1606140d)
1 /*
2  * Arm SSE (Subsystems for Embedded): IoTKit
3  *
4  * Copyright (c) 2018 Linaro Limited
5  * Written by Peter Maydell
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 or
9  * (at your option) any later version.
10  */
11 
12 #include "qemu/osdep.h"
13 #include "qemu/log.h"
14 #include "qemu/module.h"
15 #include "qemu/bitops.h"
16 #include "qapi/error.h"
17 #include "trace.h"
18 #include "hw/sysbus.h"
19 #include "migration/vmstate.h"
20 #include "hw/registerfields.h"
21 #include "hw/arm/armsse.h"
22 #include "hw/arm/boot.h"
23 #include "hw/irq.h"
24 
25 /* Format of the System Information block SYS_CONFIG register */
26 typedef enum SysConfigFormat {
27     IoTKitFormat,
28     SSE200Format,
29 } SysConfigFormat;
30 
31 struct ARMSSEInfo {
32     const char *name;
33     int sram_banks;
34     int num_cpus;
35     uint32_t sys_version;
36     uint32_t cpuwait_rst;
37     SysConfigFormat sys_config_format;
38     bool has_mhus;
39     bool has_ppus;
40     bool has_cachectrl;
41     bool has_cpusecctrl;
42     bool has_cpuid;
43     Property *props;
44 };
45 
46 static Property iotkit_properties[] = {
47     DEFINE_PROP_LINK("memory", ARMSSE, board_memory, TYPE_MEMORY_REGION,
48                      MemoryRegion *),
49     DEFINE_PROP_UINT32("EXP_NUMIRQ", ARMSSE, exp_numirq, 64),
50     DEFINE_PROP_UINT32("MAINCLK", ARMSSE, mainclk_frq, 0),
51     DEFINE_PROP_UINT32("SRAM_ADDR_WIDTH", ARMSSE, sram_addr_width, 15),
52     DEFINE_PROP_UINT32("init-svtor", ARMSSE, init_svtor, 0x10000000),
53     DEFINE_PROP_BOOL("CPU0_FPU", ARMSSE, cpu_fpu[0], true),
54     DEFINE_PROP_BOOL("CPU0_DSP", ARMSSE, cpu_dsp[0], true),
55     DEFINE_PROP_END_OF_LIST()
56 };
57 
58 static Property armsse_properties[] = {
59     DEFINE_PROP_LINK("memory", ARMSSE, board_memory, TYPE_MEMORY_REGION,
60                      MemoryRegion *),
61     DEFINE_PROP_UINT32("EXP_NUMIRQ", ARMSSE, exp_numirq, 64),
62     DEFINE_PROP_UINT32("MAINCLK", ARMSSE, mainclk_frq, 0),
63     DEFINE_PROP_UINT32("SRAM_ADDR_WIDTH", ARMSSE, sram_addr_width, 15),
64     DEFINE_PROP_UINT32("init-svtor", ARMSSE, init_svtor, 0x10000000),
65     DEFINE_PROP_BOOL("CPU0_FPU", ARMSSE, cpu_fpu[0], false),
66     DEFINE_PROP_BOOL("CPU0_DSP", ARMSSE, cpu_dsp[0], false),
67     DEFINE_PROP_BOOL("CPU1_FPU", ARMSSE, cpu_fpu[1], true),
68     DEFINE_PROP_BOOL("CPU1_DSP", ARMSSE, cpu_dsp[1], true),
69     DEFINE_PROP_END_OF_LIST()
70 };
71 
72 static const ARMSSEInfo armsse_variants[] = {
73     {
74         .name = TYPE_IOTKIT,
75         .sram_banks = 1,
76         .num_cpus = 1,
77         .sys_version = 0x41743,
78         .cpuwait_rst = 0,
79         .sys_config_format = IoTKitFormat,
80         .has_mhus = false,
81         .has_ppus = false,
82         .has_cachectrl = false,
83         .has_cpusecctrl = false,
84         .has_cpuid = false,
85         .props = iotkit_properties,
86     },
87     {
88         .name = TYPE_SSE200,
89         .sram_banks = 4,
90         .num_cpus = 2,
91         .sys_version = 0x22041743,
92         .cpuwait_rst = 2,
93         .sys_config_format = SSE200Format,
94         .has_mhus = true,
95         .has_ppus = true,
96         .has_cachectrl = true,
97         .has_cpusecctrl = true,
98         .has_cpuid = true,
99         .props = armsse_properties,
100     },
101 };
102 
103 static uint32_t armsse_sys_config_value(ARMSSE *s, const ARMSSEInfo *info)
104 {
105     /* Return the SYS_CONFIG value for this SSE */
106     uint32_t sys_config;
107 
108     switch (info->sys_config_format) {
109     case IoTKitFormat:
110         sys_config = 0;
111         sys_config = deposit32(sys_config, 0, 4, info->sram_banks);
112         sys_config = deposit32(sys_config, 4, 4, s->sram_addr_width - 12);
113         break;
114     case SSE200Format:
115         sys_config = 0;
116         sys_config = deposit32(sys_config, 0, 4, info->sram_banks);
117         sys_config = deposit32(sys_config, 4, 5, s->sram_addr_width);
118         sys_config = deposit32(sys_config, 24, 4, 2);
119         if (info->num_cpus > 1) {
120             sys_config = deposit32(sys_config, 10, 1, 1);
121             sys_config = deposit32(sys_config, 20, 4, info->sram_banks - 1);
122             sys_config = deposit32(sys_config, 28, 4, 2);
123         }
124         break;
125     default:
126         g_assert_not_reached();
127     }
128     return sys_config;
129 }
130 
131 /* Clock frequency in HZ of the 32KHz "slow clock" */
132 #define S32KCLK (32 * 1000)
133 
134 /* Is internal IRQ n shared between CPUs in a multi-core SSE ? */
135 static bool irq_is_common[32] = {
136     [0 ... 5] = true,
137     /* 6, 7: per-CPU MHU interrupts */
138     [8 ... 12] = true,
139     /* 13: per-CPU icache interrupt */
140     /* 14: reserved */
141     [15 ... 20] = true,
142     /* 21: reserved */
143     [22 ... 26] = true,
144     /* 27: reserved */
145     /* 28, 29: per-CPU CTI interrupts */
146     /* 30, 31: reserved */
147 };
148 
149 /*
150  * Create an alias region in @container of @size bytes starting at @base
151  * which mirrors the memory starting at @orig.
152  */
153 static void make_alias(ARMSSE *s, MemoryRegion *mr, MemoryRegion *container,
154                        const char *name, hwaddr base, hwaddr size, hwaddr orig)
155 {
156     memory_region_init_alias(mr, NULL, name, container, orig, size);
157     /* The alias is even lower priority than unimplemented_device regions */
158     memory_region_add_subregion_overlap(container, base, mr, -1500);
159 }
160 
161 static void irq_status_forwarder(void *opaque, int n, int level)
162 {
163     qemu_irq destirq = opaque;
164 
165     qemu_set_irq(destirq, level);
166 }
167 
168 static void nsccfg_handler(void *opaque, int n, int level)
169 {
170     ARMSSE *s = ARMSSE(opaque);
171 
172     s->nsccfg = level;
173 }
174 
175 static void armsse_forward_ppc(ARMSSE *s, const char *ppcname, int ppcnum)
176 {
177     /* Each of the 4 AHB and 4 APB PPCs that might be present in a
178      * system using the ARMSSE has a collection of control lines which
179      * are provided by the security controller and which we want to
180      * expose as control lines on the ARMSSE device itself, so the
181      * code using the ARMSSE can wire them up to the PPCs.
182      */
183     SplitIRQ *splitter = &s->ppc_irq_splitter[ppcnum];
184     DeviceState *armssedev = DEVICE(s);
185     DeviceState *dev_secctl = DEVICE(&s->secctl);
186     DeviceState *dev_splitter = DEVICE(splitter);
187     char *name;
188 
189     name = g_strdup_printf("%s_nonsec", ppcname);
190     qdev_pass_gpios(dev_secctl, armssedev, name);
191     g_free(name);
192     name = g_strdup_printf("%s_ap", ppcname);
193     qdev_pass_gpios(dev_secctl, armssedev, name);
194     g_free(name);
195     name = g_strdup_printf("%s_irq_enable", ppcname);
196     qdev_pass_gpios(dev_secctl, armssedev, name);
197     g_free(name);
198     name = g_strdup_printf("%s_irq_clear", ppcname);
199     qdev_pass_gpios(dev_secctl, armssedev, name);
200     g_free(name);
201 
202     /* irq_status is a little more tricky, because we need to
203      * split it so we can send it both to the security controller
204      * and to our OR gate for the NVIC interrupt line.
205      * Connect up the splitter's outputs, and create a GPIO input
206      * which will pass the line state to the input splitter.
207      */
208     name = g_strdup_printf("%s_irq_status", ppcname);
209     qdev_connect_gpio_out(dev_splitter, 0,
210                           qdev_get_gpio_in_named(dev_secctl,
211                                                  name, 0));
212     qdev_connect_gpio_out(dev_splitter, 1,
213                           qdev_get_gpio_in(DEVICE(&s->ppc_irq_orgate), ppcnum));
214     s->irq_status_in[ppcnum] = qdev_get_gpio_in(dev_splitter, 0);
215     qdev_init_gpio_in_named_with_opaque(armssedev, irq_status_forwarder,
216                                         s->irq_status_in[ppcnum], name, 1);
217     g_free(name);
218 }
219 
220 static void armsse_forward_sec_resp_cfg(ARMSSE *s)
221 {
222     /* Forward the 3rd output from the splitter device as a
223      * named GPIO output of the armsse object.
224      */
225     DeviceState *dev = DEVICE(s);
226     DeviceState *dev_splitter = DEVICE(&s->sec_resp_splitter);
227 
228     qdev_init_gpio_out_named(dev, &s->sec_resp_cfg, "sec_resp_cfg", 1);
229     s->sec_resp_cfg_in = qemu_allocate_irq(irq_status_forwarder,
230                                            s->sec_resp_cfg, 1);
231     qdev_connect_gpio_out(dev_splitter, 2, s->sec_resp_cfg_in);
232 }
233 
234 static void armsse_init(Object *obj)
235 {
236     ARMSSE *s = ARMSSE(obj);
237     ARMSSEClass *asc = ARMSSE_GET_CLASS(obj);
238     const ARMSSEInfo *info = asc->info;
239     int i;
240 
241     assert(info->sram_banks <= MAX_SRAM_BANKS);
242     assert(info->num_cpus <= SSE_MAX_CPUS);
243 
244     memory_region_init(&s->container, obj, "armsse-container", UINT64_MAX);
245 
246     for (i = 0; i < info->num_cpus; i++) {
247         /*
248          * We put each CPU in its own cluster as they are logically
249          * distinct and may be configured differently.
250          */
251         char *name;
252 
253         name = g_strdup_printf("cluster%d", i);
254         object_initialize_child(obj, name, &s->cluster[i], TYPE_CPU_CLUSTER);
255         qdev_prop_set_uint32(DEVICE(&s->cluster[i]), "cluster-id", i);
256         g_free(name);
257 
258         name = g_strdup_printf("armv7m%d", i);
259         sysbus_init_child_obj(OBJECT(&s->cluster[i]), name,
260                               &s->armv7m[i], sizeof(s->armv7m), TYPE_ARMV7M);
261         qdev_prop_set_string(DEVICE(&s->armv7m[i]), "cpu-type",
262                              ARM_CPU_TYPE_NAME("cortex-m33"));
263         g_free(name);
264         name = g_strdup_printf("arm-sse-cpu-container%d", i);
265         memory_region_init(&s->cpu_container[i], obj, name, UINT64_MAX);
266         g_free(name);
267         if (i > 0) {
268             name = g_strdup_printf("arm-sse-container-alias%d", i);
269             memory_region_init_alias(&s->container_alias[i - 1], obj,
270                                      name, &s->container, 0, UINT64_MAX);
271             g_free(name);
272         }
273     }
274 
275     sysbus_init_child_obj(obj, "secctl", &s->secctl, sizeof(s->secctl),
276                           TYPE_IOTKIT_SECCTL);
277     sysbus_init_child_obj(obj, "apb-ppc0", &s->apb_ppc0, sizeof(s->apb_ppc0),
278                           TYPE_TZ_PPC);
279     sysbus_init_child_obj(obj, "apb-ppc1", &s->apb_ppc1, sizeof(s->apb_ppc1),
280                           TYPE_TZ_PPC);
281     for (i = 0; i < info->sram_banks; i++) {
282         char *name = g_strdup_printf("mpc%d", i);
283         sysbus_init_child_obj(obj, name, &s->mpc[i],
284                               sizeof(s->mpc[i]), TYPE_TZ_MPC);
285         g_free(name);
286     }
287     object_initialize_child(obj, "mpc-irq-orgate", &s->mpc_irq_orgate,
288                             TYPE_OR_IRQ);
289 
290     for (i = 0; i < IOTS_NUM_EXP_MPC + info->sram_banks; i++) {
291         char *name = g_strdup_printf("mpc-irq-splitter-%d", i);
292         SplitIRQ *splitter = &s->mpc_irq_splitter[i];
293 
294         object_initialize_child(obj, name, splitter, TYPE_SPLIT_IRQ);
295         g_free(name);
296     }
297     sysbus_init_child_obj(obj, "timer0", &s->timer0, sizeof(s->timer0),
298                           TYPE_CMSDK_APB_TIMER);
299     sysbus_init_child_obj(obj, "timer1", &s->timer1, sizeof(s->timer1),
300                           TYPE_CMSDK_APB_TIMER);
301     sysbus_init_child_obj(obj, "s32ktimer", &s->s32ktimer, sizeof(s->s32ktimer),
302                           TYPE_CMSDK_APB_TIMER);
303     sysbus_init_child_obj(obj, "dualtimer", &s->dualtimer, sizeof(s->dualtimer),
304                           TYPE_CMSDK_APB_DUALTIMER);
305     sysbus_init_child_obj(obj, "s32kwatchdog", &s->s32kwatchdog,
306                           sizeof(s->s32kwatchdog), TYPE_CMSDK_APB_WATCHDOG);
307     sysbus_init_child_obj(obj, "nswatchdog", &s->nswatchdog,
308                           sizeof(s->nswatchdog), TYPE_CMSDK_APB_WATCHDOG);
309     sysbus_init_child_obj(obj, "swatchdog", &s->swatchdog,
310                           sizeof(s->swatchdog), TYPE_CMSDK_APB_WATCHDOG);
311     sysbus_init_child_obj(obj, "armsse-sysctl", &s->sysctl,
312                           sizeof(s->sysctl), TYPE_IOTKIT_SYSCTL);
313     sysbus_init_child_obj(obj, "armsse-sysinfo", &s->sysinfo,
314                           sizeof(s->sysinfo), TYPE_IOTKIT_SYSINFO);
315     if (info->has_mhus) {
316         sysbus_init_child_obj(obj, "mhu0", &s->mhu[0], sizeof(s->mhu[0]),
317                               TYPE_ARMSSE_MHU);
318         sysbus_init_child_obj(obj, "mhu1", &s->mhu[1], sizeof(s->mhu[1]),
319                               TYPE_ARMSSE_MHU);
320     }
321     if (info->has_ppus) {
322         for (i = 0; i < info->num_cpus; i++) {
323             char *name = g_strdup_printf("CPU%dCORE_PPU", i);
324             int ppuidx = CPU0CORE_PPU + i;
325 
326             sysbus_init_child_obj(obj, name, &s->ppu[ppuidx],
327                                   sizeof(s->ppu[ppuidx]),
328                                   TYPE_UNIMPLEMENTED_DEVICE);
329             g_free(name);
330         }
331         sysbus_init_child_obj(obj, "DBG_PPU", &s->ppu[DBG_PPU],
332                               sizeof(s->ppu[DBG_PPU]),
333                               TYPE_UNIMPLEMENTED_DEVICE);
334         for (i = 0; i < info->sram_banks; i++) {
335             char *name = g_strdup_printf("RAM%d_PPU", i);
336             int ppuidx = RAM0_PPU + i;
337 
338             sysbus_init_child_obj(obj, name, &s->ppu[ppuidx],
339                                   sizeof(s->ppu[ppuidx]),
340                                   TYPE_UNIMPLEMENTED_DEVICE);
341             g_free(name);
342         }
343     }
344     if (info->has_cachectrl) {
345         for (i = 0; i < info->num_cpus; i++) {
346             char *name = g_strdup_printf("cachectrl%d", i);
347 
348             sysbus_init_child_obj(obj, name, &s->cachectrl[i],
349                                   sizeof(s->cachectrl[i]),
350                                   TYPE_UNIMPLEMENTED_DEVICE);
351             g_free(name);
352         }
353     }
354     if (info->has_cpusecctrl) {
355         for (i = 0; i < info->num_cpus; i++) {
356             char *name = g_strdup_printf("cpusecctrl%d", i);
357 
358             sysbus_init_child_obj(obj, name, &s->cpusecctrl[i],
359                                   sizeof(s->cpusecctrl[i]),
360                                   TYPE_UNIMPLEMENTED_DEVICE);
361             g_free(name);
362         }
363     }
364     if (info->has_cpuid) {
365         for (i = 0; i < info->num_cpus; i++) {
366             char *name = g_strdup_printf("cpuid%d", i);
367 
368             sysbus_init_child_obj(obj, name, &s->cpuid[i],
369                                   sizeof(s->cpuid[i]),
370                                   TYPE_ARMSSE_CPUID);
371             g_free(name);
372         }
373     }
374     object_initialize_child(obj, "nmi-orgate", &s->nmi_orgate, TYPE_OR_IRQ);
375     object_initialize_child(obj, "ppc-irq-orgate", &s->ppc_irq_orgate,
376                             TYPE_OR_IRQ);
377     object_initialize_child(obj, "sec-resp-splitter", &s->sec_resp_splitter,
378                             TYPE_SPLIT_IRQ);
379     for (i = 0; i < ARRAY_SIZE(s->ppc_irq_splitter); i++) {
380         char *name = g_strdup_printf("ppc-irq-splitter-%d", i);
381         SplitIRQ *splitter = &s->ppc_irq_splitter[i];
382 
383         object_initialize_child(obj, name, splitter, TYPE_SPLIT_IRQ);
384         g_free(name);
385     }
386     if (info->num_cpus > 1) {
387         for (i = 0; i < ARRAY_SIZE(s->cpu_irq_splitter); i++) {
388             if (irq_is_common[i]) {
389                 char *name = g_strdup_printf("cpu-irq-splitter%d", i);
390                 SplitIRQ *splitter = &s->cpu_irq_splitter[i];
391 
392                 object_initialize_child(obj, name, splitter, TYPE_SPLIT_IRQ);
393                 g_free(name);
394             }
395         }
396     }
397 }
398 
399 static void armsse_exp_irq(void *opaque, int n, int level)
400 {
401     qemu_irq *irqarray = opaque;
402 
403     qemu_set_irq(irqarray[n], level);
404 }
405 
406 static void armsse_mpcexp_status(void *opaque, int n, int level)
407 {
408     ARMSSE *s = ARMSSE(opaque);
409     qemu_set_irq(s->mpcexp_status_in[n], level);
410 }
411 
412 static qemu_irq armsse_get_common_irq_in(ARMSSE *s, int irqno)
413 {
414     /*
415      * Return a qemu_irq which can be used to signal IRQ n to
416      * all CPUs in the SSE.
417      */
418     ARMSSEClass *asc = ARMSSE_GET_CLASS(s);
419     const ARMSSEInfo *info = asc->info;
420 
421     assert(irq_is_common[irqno]);
422 
423     if (info->num_cpus == 1) {
424         /* Only one CPU -- just connect directly to it */
425         return qdev_get_gpio_in(DEVICE(&s->armv7m[0]), irqno);
426     } else {
427         /* Connect to the splitter which feeds all CPUs */
428         return qdev_get_gpio_in(DEVICE(&s->cpu_irq_splitter[irqno]), 0);
429     }
430 }
431 
432 static void map_ppu(ARMSSE *s, int ppuidx, const char *name, hwaddr addr)
433 {
434     /* Map a PPU unimplemented device stub */
435     DeviceState *dev = DEVICE(&s->ppu[ppuidx]);
436 
437     qdev_prop_set_string(dev, "name", name);
438     qdev_prop_set_uint64(dev, "size", 0x1000);
439     qdev_init_nofail(dev);
440     sysbus_mmio_map(SYS_BUS_DEVICE(&s->ppu[ppuidx]), 0, addr);
441 }
442 
443 static void armsse_realize(DeviceState *dev, Error **errp)
444 {
445     ARMSSE *s = ARMSSE(dev);
446     ARMSSEClass *asc = ARMSSE_GET_CLASS(dev);
447     const ARMSSEInfo *info = asc->info;
448     int i;
449     MemoryRegion *mr;
450     Error *err = NULL;
451     SysBusDevice *sbd_apb_ppc0;
452     SysBusDevice *sbd_secctl;
453     DeviceState *dev_apb_ppc0;
454     DeviceState *dev_apb_ppc1;
455     DeviceState *dev_secctl;
456     DeviceState *dev_splitter;
457     uint32_t addr_width_max;
458 
459     if (!s->board_memory) {
460         error_setg(errp, "memory property was not set");
461         return;
462     }
463 
464     if (!s->mainclk_frq) {
465         error_setg(errp, "MAINCLK property was not set");
466         return;
467     }
468 
469     /* max SRAM_ADDR_WIDTH: 24 - log2(SRAM_NUM_BANK) */
470     assert(is_power_of_2(info->sram_banks));
471     addr_width_max = 24 - ctz32(info->sram_banks);
472     if (s->sram_addr_width < 1 || s->sram_addr_width > addr_width_max) {
473         error_setg(errp, "SRAM_ADDR_WIDTH must be between 1 and %d",
474                    addr_width_max);
475         return;
476     }
477 
478     /* Handling of which devices should be available only to secure
479      * code is usually done differently for M profile than for A profile.
480      * Instead of putting some devices only into the secure address space,
481      * devices exist in both address spaces but with hard-wired security
482      * permissions that will cause the CPU to fault for non-secure accesses.
483      *
484      * The ARMSSE has an IDAU (Implementation Defined Access Unit),
485      * which specifies hard-wired security permissions for different
486      * areas of the physical address space. For the ARMSSE IDAU, the
487      * top 4 bits of the physical address are the IDAU region ID, and
488      * if bit 28 (ie the lowest bit of the ID) is 0 then this is an NS
489      * region, otherwise it is an S region.
490      *
491      * The various devices and RAMs are generally all mapped twice,
492      * once into a region that the IDAU defines as secure and once
493      * into a non-secure region. They sit behind either a Memory
494      * Protection Controller (for RAM) or a Peripheral Protection
495      * Controller (for devices), which allow a more fine grained
496      * configuration of whether non-secure accesses are permitted.
497      *
498      * (The other place that guest software can configure security
499      * permissions is in the architected SAU (Security Attribution
500      * Unit), which is entirely inside the CPU. The IDAU can upgrade
501      * the security attributes for a region to more restrictive than
502      * the SAU specifies, but cannot downgrade them.)
503      *
504      * 0x10000000..0x1fffffff  alias of 0x00000000..0x0fffffff
505      * 0x20000000..0x2007ffff  32KB FPGA block RAM
506      * 0x30000000..0x3fffffff  alias of 0x20000000..0x2fffffff
507      * 0x40000000..0x4000ffff  base peripheral region 1
508      * 0x40010000..0x4001ffff  CPU peripherals (none for ARMSSE)
509      * 0x40020000..0x4002ffff  system control element peripherals
510      * 0x40080000..0x400fffff  base peripheral region 2
511      * 0x50000000..0x5fffffff  alias of 0x40000000..0x4fffffff
512      */
513 
514     memory_region_add_subregion_overlap(&s->container, 0, s->board_memory, -2);
515 
516     for (i = 0; i < info->num_cpus; i++) {
517         DeviceState *cpudev = DEVICE(&s->armv7m[i]);
518         Object *cpuobj = OBJECT(&s->armv7m[i]);
519         int j;
520         char *gpioname;
521 
522         qdev_prop_set_uint32(cpudev, "num-irq", s->exp_numirq + 32);
523         /*
524          * In real hardware the initial Secure VTOR is set from the INITSVTOR*
525          * registers in the IoT Kit System Control Register block. In QEMU
526          * we set the initial value here, and also the reset value of the
527          * sysctl register, from this object's QOM init-svtor property.
528          * If the guest changes the INITSVTOR* registers at runtime then the
529          * code in iotkit-sysctl.c will update the CPU init-svtor property
530          * (which will then take effect on the next CPU warm-reset).
531          *
532          * Note that typically a board using the SSE-200 will have a system
533          * control processor whose boot firmware initializes the INITSVTOR*
534          * registers before powering up the CPUs. QEMU doesn't emulate
535          * the control processor, so instead we behave in the way that the
536          * firmware does: the initial value should be set by the board code
537          * (using the init-svtor property on the ARMSSE object) to match
538          * whatever its firmware does.
539          */
540         qdev_prop_set_uint32(cpudev, "init-svtor", s->init_svtor);
541         /*
542          * CPUs start powered down if the corresponding bit in the CPUWAIT
543          * register is 1. In real hardware the CPUWAIT register reset value is
544          * a configurable property of the SSE-200 (via the CPUWAIT0_RST and
545          * CPUWAIT1_RST parameters), but since all the boards we care about
546          * start CPU0 and leave CPU1 powered off, we hard-code that in
547          * info->cpuwait_rst for now. We can add QOM properties for this
548          * later if necessary.
549          */
550         if (extract32(info->cpuwait_rst, i, 1)) {
551             object_property_set_bool(cpuobj, true, "start-powered-off", &err);
552             if (err) {
553                 error_propagate(errp, err);
554                 return;
555             }
556         }
557         if (!s->cpu_fpu[i]) {
558             object_property_set_bool(cpuobj, false, "vfp", &err);
559             if (err) {
560                 error_propagate(errp, err);
561                 return;
562             }
563         }
564         if (!s->cpu_dsp[i]) {
565             object_property_set_bool(cpuobj, false, "dsp", &err);
566             if (err) {
567                 error_propagate(errp, err);
568                 return;
569             }
570         }
571 
572         if (i > 0) {
573             memory_region_add_subregion_overlap(&s->cpu_container[i], 0,
574                                                 &s->container_alias[i - 1], -1);
575         } else {
576             memory_region_add_subregion_overlap(&s->cpu_container[i], 0,
577                                                 &s->container, -1);
578         }
579         object_property_set_link(cpuobj, OBJECT(&s->cpu_container[i]),
580                                  "memory", &err);
581         if (err) {
582             error_propagate(errp, err);
583             return;
584         }
585         object_property_set_link(cpuobj, OBJECT(s), "idau", &err);
586         if (err) {
587             error_propagate(errp, err);
588             return;
589         }
590         object_property_set_bool(cpuobj, true, "realized", &err);
591         if (err) {
592             error_propagate(errp, err);
593             return;
594         }
595         /*
596          * The cluster must be realized after the armv7m container, as
597          * the container's CPU object is only created on realize, and the
598          * CPU must exist and have been parented into the cluster before
599          * the cluster is realized.
600          */
601         object_property_set_bool(OBJECT(&s->cluster[i]),
602                                  true, "realized", &err);
603         if (err) {
604             error_propagate(errp, err);
605             return;
606         }
607 
608         /* Connect EXP_IRQ/EXP_CPUn_IRQ GPIOs to the NVIC's lines 32 and up */
609         s->exp_irqs[i] = g_new(qemu_irq, s->exp_numirq);
610         for (j = 0; j < s->exp_numirq; j++) {
611             s->exp_irqs[i][j] = qdev_get_gpio_in(cpudev, j + 32);
612         }
613         if (i == 0) {
614             gpioname = g_strdup("EXP_IRQ");
615         } else {
616             gpioname = g_strdup_printf("EXP_CPU%d_IRQ", i);
617         }
618         qdev_init_gpio_in_named_with_opaque(dev, armsse_exp_irq,
619                                             s->exp_irqs[i],
620                                             gpioname, s->exp_numirq);
621         g_free(gpioname);
622     }
623 
624     /* Wire up the splitters that connect common IRQs to all CPUs */
625     if (info->num_cpus > 1) {
626         for (i = 0; i < ARRAY_SIZE(s->cpu_irq_splitter); i++) {
627             if (irq_is_common[i]) {
628                 Object *splitter = OBJECT(&s->cpu_irq_splitter[i]);
629                 DeviceState *devs = DEVICE(splitter);
630                 int cpunum;
631 
632                 object_property_set_int(splitter, info->num_cpus,
633                                         "num-lines", &err);
634                 if (err) {
635                     error_propagate(errp, err);
636                     return;
637                 }
638                 object_property_set_bool(splitter, true, "realized", &err);
639                 if (err) {
640                     error_propagate(errp, err);
641                     return;
642                 }
643                 for (cpunum = 0; cpunum < info->num_cpus; cpunum++) {
644                     DeviceState *cpudev = DEVICE(&s->armv7m[cpunum]);
645 
646                     qdev_connect_gpio_out(devs, cpunum,
647                                           qdev_get_gpio_in(cpudev, i));
648                 }
649             }
650         }
651     }
652 
653     /* Set up the big aliases first */
654     make_alias(s, &s->alias1, &s->container, "alias 1",
655                0x10000000, 0x10000000, 0x00000000);
656     make_alias(s, &s->alias2, &s->container,
657                "alias 2", 0x30000000, 0x10000000, 0x20000000);
658     /* The 0x50000000..0x5fffffff region is not a pure alias: it has
659      * a few extra devices that only appear there (generally the
660      * control interfaces for the protection controllers).
661      * We implement this by mapping those devices over the top of this
662      * alias MR at a higher priority. Some of the devices in this range
663      * are per-CPU, so we must put this alias in the per-cpu containers.
664      */
665     for (i = 0; i < info->num_cpus; i++) {
666         make_alias(s, &s->alias3[i], &s->cpu_container[i],
667                    "alias 3", 0x50000000, 0x10000000, 0x40000000);
668     }
669 
670     /* Security controller */
671     object_property_set_bool(OBJECT(&s->secctl), true, "realized", &err);
672     if (err) {
673         error_propagate(errp, err);
674         return;
675     }
676     sbd_secctl = SYS_BUS_DEVICE(&s->secctl);
677     dev_secctl = DEVICE(&s->secctl);
678     sysbus_mmio_map(sbd_secctl, 0, 0x50080000);
679     sysbus_mmio_map(sbd_secctl, 1, 0x40080000);
680 
681     s->nsc_cfg_in = qemu_allocate_irq(nsccfg_handler, s, 1);
682     qdev_connect_gpio_out_named(dev_secctl, "nsc_cfg", 0, s->nsc_cfg_in);
683 
684     /* The sec_resp_cfg output from the security controller must be split into
685      * multiple lines, one for each of the PPCs within the ARMSSE and one
686      * that will be an output from the ARMSSE to the system.
687      */
688     object_property_set_int(OBJECT(&s->sec_resp_splitter), 3,
689                             "num-lines", &err);
690     if (err) {
691         error_propagate(errp, err);
692         return;
693     }
694     object_property_set_bool(OBJECT(&s->sec_resp_splitter), true,
695                              "realized", &err);
696     if (err) {
697         error_propagate(errp, err);
698         return;
699     }
700     dev_splitter = DEVICE(&s->sec_resp_splitter);
701     qdev_connect_gpio_out_named(dev_secctl, "sec_resp_cfg", 0,
702                                 qdev_get_gpio_in(dev_splitter, 0));
703 
704     /* Each SRAM bank lives behind its own Memory Protection Controller */
705     for (i = 0; i < info->sram_banks; i++) {
706         char *ramname = g_strdup_printf("armsse.sram%d", i);
707         SysBusDevice *sbd_mpc;
708         uint32_t sram_bank_size = 1 << s->sram_addr_width;
709 
710         memory_region_init_ram(&s->sram[i], NULL, ramname,
711                                sram_bank_size, &err);
712         g_free(ramname);
713         if (err) {
714             error_propagate(errp, err);
715             return;
716         }
717         object_property_set_link(OBJECT(&s->mpc[i]), OBJECT(&s->sram[i]),
718                                  "downstream", &err);
719         if (err) {
720             error_propagate(errp, err);
721             return;
722         }
723         object_property_set_bool(OBJECT(&s->mpc[i]), true, "realized", &err);
724         if (err) {
725             error_propagate(errp, err);
726             return;
727         }
728         /* Map the upstream end of the MPC into the right place... */
729         sbd_mpc = SYS_BUS_DEVICE(&s->mpc[i]);
730         memory_region_add_subregion(&s->container,
731                                     0x20000000 + i * sram_bank_size,
732                                     sysbus_mmio_get_region(sbd_mpc, 1));
733         /* ...and its register interface */
734         memory_region_add_subregion(&s->container, 0x50083000 + i * 0x1000,
735                                     sysbus_mmio_get_region(sbd_mpc, 0));
736     }
737 
738     /* We must OR together lines from the MPC splitters to go to the NVIC */
739     object_property_set_int(OBJECT(&s->mpc_irq_orgate),
740                             IOTS_NUM_EXP_MPC + info->sram_banks,
741                             "num-lines", &err);
742     if (err) {
743         error_propagate(errp, err);
744         return;
745     }
746     object_property_set_bool(OBJECT(&s->mpc_irq_orgate), true,
747                              "realized", &err);
748     if (err) {
749         error_propagate(errp, err);
750         return;
751     }
752     qdev_connect_gpio_out(DEVICE(&s->mpc_irq_orgate), 0,
753                           armsse_get_common_irq_in(s, 9));
754 
755     /* Devices behind APB PPC0:
756      *   0x40000000: timer0
757      *   0x40001000: timer1
758      *   0x40002000: dual timer
759      *   0x40003000: MHU0 (SSE-200 only)
760      *   0x40004000: MHU1 (SSE-200 only)
761      * We must configure and realize each downstream device and connect
762      * it to the appropriate PPC port; then we can realize the PPC and
763      * map its upstream ends to the right place in the container.
764      */
765     qdev_prop_set_uint32(DEVICE(&s->timer0), "pclk-frq", s->mainclk_frq);
766     object_property_set_bool(OBJECT(&s->timer0), true, "realized", &err);
767     if (err) {
768         error_propagate(errp, err);
769         return;
770     }
771     sysbus_connect_irq(SYS_BUS_DEVICE(&s->timer0), 0,
772                        armsse_get_common_irq_in(s, 3));
773     mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->timer0), 0);
774     object_property_set_link(OBJECT(&s->apb_ppc0), OBJECT(mr), "port[0]", &err);
775     if (err) {
776         error_propagate(errp, err);
777         return;
778     }
779 
780     qdev_prop_set_uint32(DEVICE(&s->timer1), "pclk-frq", s->mainclk_frq);
781     object_property_set_bool(OBJECT(&s->timer1), true, "realized", &err);
782     if (err) {
783         error_propagate(errp, err);
784         return;
785     }
786     sysbus_connect_irq(SYS_BUS_DEVICE(&s->timer1), 0,
787                        armsse_get_common_irq_in(s, 4));
788     mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->timer1), 0);
789     object_property_set_link(OBJECT(&s->apb_ppc0), OBJECT(mr), "port[1]", &err);
790     if (err) {
791         error_propagate(errp, err);
792         return;
793     }
794 
795 
796     qdev_prop_set_uint32(DEVICE(&s->dualtimer), "pclk-frq", s->mainclk_frq);
797     object_property_set_bool(OBJECT(&s->dualtimer), true, "realized", &err);
798     if (err) {
799         error_propagate(errp, err);
800         return;
801     }
802     sysbus_connect_irq(SYS_BUS_DEVICE(&s->dualtimer), 0,
803                        armsse_get_common_irq_in(s, 5));
804     mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->dualtimer), 0);
805     object_property_set_link(OBJECT(&s->apb_ppc0), OBJECT(mr), "port[2]", &err);
806     if (err) {
807         error_propagate(errp, err);
808         return;
809     }
810 
811     if (info->has_mhus) {
812         /*
813          * An SSE-200 with only one CPU should have only one MHU created,
814          * with the region where the second MHU usually is being RAZ/WI.
815          * We don't implement that SSE-200 config; if we want to support
816          * it then this code needs to be enhanced to handle creating the
817          * RAZ/WI region instead of the second MHU.
818          */
819         assert(info->num_cpus == ARRAY_SIZE(s->mhu));
820 
821         for (i = 0; i < ARRAY_SIZE(s->mhu); i++) {
822             char *port;
823             int cpunum;
824             SysBusDevice *mhu_sbd = SYS_BUS_DEVICE(&s->mhu[i]);
825 
826             object_property_set_bool(OBJECT(&s->mhu[i]), true,
827                                      "realized", &err);
828             if (err) {
829                 error_propagate(errp, err);
830                 return;
831             }
832             port = g_strdup_printf("port[%d]", i + 3);
833             mr = sysbus_mmio_get_region(mhu_sbd, 0);
834             object_property_set_link(OBJECT(&s->apb_ppc0), OBJECT(mr),
835                                      port, &err);
836             g_free(port);
837             if (err) {
838                 error_propagate(errp, err);
839                 return;
840             }
841 
842             /*
843              * Each MHU has an irq line for each CPU:
844              *  MHU 0 irq line 0 -> CPU 0 IRQ 6
845              *  MHU 0 irq line 1 -> CPU 1 IRQ 6
846              *  MHU 1 irq line 0 -> CPU 0 IRQ 7
847              *  MHU 1 irq line 1 -> CPU 1 IRQ 7
848              */
849             for (cpunum = 0; cpunum < info->num_cpus; cpunum++) {
850                 DeviceState *cpudev = DEVICE(&s->armv7m[cpunum]);
851 
852                 sysbus_connect_irq(mhu_sbd, cpunum,
853                                    qdev_get_gpio_in(cpudev, 6 + i));
854             }
855         }
856     }
857 
858     object_property_set_bool(OBJECT(&s->apb_ppc0), true, "realized", &err);
859     if (err) {
860         error_propagate(errp, err);
861         return;
862     }
863 
864     sbd_apb_ppc0 = SYS_BUS_DEVICE(&s->apb_ppc0);
865     dev_apb_ppc0 = DEVICE(&s->apb_ppc0);
866 
867     mr = sysbus_mmio_get_region(sbd_apb_ppc0, 0);
868     memory_region_add_subregion(&s->container, 0x40000000, mr);
869     mr = sysbus_mmio_get_region(sbd_apb_ppc0, 1);
870     memory_region_add_subregion(&s->container, 0x40001000, mr);
871     mr = sysbus_mmio_get_region(sbd_apb_ppc0, 2);
872     memory_region_add_subregion(&s->container, 0x40002000, mr);
873     if (info->has_mhus) {
874         mr = sysbus_mmio_get_region(sbd_apb_ppc0, 3);
875         memory_region_add_subregion(&s->container, 0x40003000, mr);
876         mr = sysbus_mmio_get_region(sbd_apb_ppc0, 4);
877         memory_region_add_subregion(&s->container, 0x40004000, mr);
878     }
879     for (i = 0; i < IOTS_APB_PPC0_NUM_PORTS; i++) {
880         qdev_connect_gpio_out_named(dev_secctl, "apb_ppc0_nonsec", i,
881                                     qdev_get_gpio_in_named(dev_apb_ppc0,
882                                                            "cfg_nonsec", i));
883         qdev_connect_gpio_out_named(dev_secctl, "apb_ppc0_ap", i,
884                                     qdev_get_gpio_in_named(dev_apb_ppc0,
885                                                            "cfg_ap", i));
886     }
887     qdev_connect_gpio_out_named(dev_secctl, "apb_ppc0_irq_enable", 0,
888                                 qdev_get_gpio_in_named(dev_apb_ppc0,
889                                                        "irq_enable", 0));
890     qdev_connect_gpio_out_named(dev_secctl, "apb_ppc0_irq_clear", 0,
891                                 qdev_get_gpio_in_named(dev_apb_ppc0,
892                                                        "irq_clear", 0));
893     qdev_connect_gpio_out(dev_splitter, 0,
894                           qdev_get_gpio_in_named(dev_apb_ppc0,
895                                                  "cfg_sec_resp", 0));
896 
897     /* All the PPC irq lines (from the 2 internal PPCs and the 8 external
898      * ones) are sent individually to the security controller, and also
899      * ORed together to give a single combined PPC interrupt to the NVIC.
900      */
901     object_property_set_int(OBJECT(&s->ppc_irq_orgate),
902                             NUM_PPCS, "num-lines", &err);
903     if (err) {
904         error_propagate(errp, err);
905         return;
906     }
907     object_property_set_bool(OBJECT(&s->ppc_irq_orgate), true,
908                              "realized", &err);
909     if (err) {
910         error_propagate(errp, err);
911         return;
912     }
913     qdev_connect_gpio_out(DEVICE(&s->ppc_irq_orgate), 0,
914                           armsse_get_common_irq_in(s, 10));
915 
916     /*
917      * 0x40010000 .. 0x4001ffff (and the 0x5001000... secure-only alias):
918      * private per-CPU region (all these devices are SSE-200 only):
919      *  0x50010000: L1 icache control registers
920      *  0x50011000: CPUSECCTRL (CPU local security control registers)
921      *  0x4001f000 and 0x5001f000: CPU_IDENTITY register block
922      */
923     if (info->has_cachectrl) {
924         for (i = 0; i < info->num_cpus; i++) {
925             char *name = g_strdup_printf("cachectrl%d", i);
926             MemoryRegion *mr;
927 
928             qdev_prop_set_string(DEVICE(&s->cachectrl[i]), "name", name);
929             g_free(name);
930             qdev_prop_set_uint64(DEVICE(&s->cachectrl[i]), "size", 0x1000);
931             object_property_set_bool(OBJECT(&s->cachectrl[i]), true,
932                                      "realized", &err);
933             if (err) {
934                 error_propagate(errp, err);
935                 return;
936             }
937 
938             mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->cachectrl[i]), 0);
939             memory_region_add_subregion(&s->cpu_container[i], 0x50010000, mr);
940         }
941     }
942     if (info->has_cpusecctrl) {
943         for (i = 0; i < info->num_cpus; i++) {
944             char *name = g_strdup_printf("CPUSECCTRL%d", i);
945             MemoryRegion *mr;
946 
947             qdev_prop_set_string(DEVICE(&s->cpusecctrl[i]), "name", name);
948             g_free(name);
949             qdev_prop_set_uint64(DEVICE(&s->cpusecctrl[i]), "size", 0x1000);
950             object_property_set_bool(OBJECT(&s->cpusecctrl[i]), true,
951                                      "realized", &err);
952             if (err) {
953                 error_propagate(errp, err);
954                 return;
955             }
956 
957             mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->cpusecctrl[i]), 0);
958             memory_region_add_subregion(&s->cpu_container[i], 0x50011000, mr);
959         }
960     }
961     if (info->has_cpuid) {
962         for (i = 0; i < info->num_cpus; i++) {
963             MemoryRegion *mr;
964 
965             qdev_prop_set_uint32(DEVICE(&s->cpuid[i]), "CPUID", i);
966             object_property_set_bool(OBJECT(&s->cpuid[i]), true,
967                                      "realized", &err);
968             if (err) {
969                 error_propagate(errp, err);
970                 return;
971             }
972 
973             mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->cpuid[i]), 0);
974             memory_region_add_subregion(&s->cpu_container[i], 0x4001F000, mr);
975         }
976     }
977 
978     /* 0x40020000 .. 0x4002ffff : ARMSSE system control peripheral region */
979     /* Devices behind APB PPC1:
980      *   0x4002f000: S32K timer
981      */
982     qdev_prop_set_uint32(DEVICE(&s->s32ktimer), "pclk-frq", S32KCLK);
983     object_property_set_bool(OBJECT(&s->s32ktimer), true, "realized", &err);
984     if (err) {
985         error_propagate(errp, err);
986         return;
987     }
988     sysbus_connect_irq(SYS_BUS_DEVICE(&s->s32ktimer), 0,
989                        armsse_get_common_irq_in(s, 2));
990     mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->s32ktimer), 0);
991     object_property_set_link(OBJECT(&s->apb_ppc1), OBJECT(mr), "port[0]", &err);
992     if (err) {
993         error_propagate(errp, err);
994         return;
995     }
996 
997     object_property_set_bool(OBJECT(&s->apb_ppc1), true, "realized", &err);
998     if (err) {
999         error_propagate(errp, err);
1000         return;
1001     }
1002     mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->apb_ppc1), 0);
1003     memory_region_add_subregion(&s->container, 0x4002f000, mr);
1004 
1005     dev_apb_ppc1 = DEVICE(&s->apb_ppc1);
1006     qdev_connect_gpio_out_named(dev_secctl, "apb_ppc1_nonsec", 0,
1007                                 qdev_get_gpio_in_named(dev_apb_ppc1,
1008                                                        "cfg_nonsec", 0));
1009     qdev_connect_gpio_out_named(dev_secctl, "apb_ppc1_ap", 0,
1010                                 qdev_get_gpio_in_named(dev_apb_ppc1,
1011                                                        "cfg_ap", 0));
1012     qdev_connect_gpio_out_named(dev_secctl, "apb_ppc1_irq_enable", 0,
1013                                 qdev_get_gpio_in_named(dev_apb_ppc1,
1014                                                        "irq_enable", 0));
1015     qdev_connect_gpio_out_named(dev_secctl, "apb_ppc1_irq_clear", 0,
1016                                 qdev_get_gpio_in_named(dev_apb_ppc1,
1017                                                        "irq_clear", 0));
1018     qdev_connect_gpio_out(dev_splitter, 1,
1019                           qdev_get_gpio_in_named(dev_apb_ppc1,
1020                                                  "cfg_sec_resp", 0));
1021 
1022     object_property_set_int(OBJECT(&s->sysinfo), info->sys_version,
1023                             "SYS_VERSION", &err);
1024     if (err) {
1025         error_propagate(errp, err);
1026         return;
1027     }
1028     object_property_set_int(OBJECT(&s->sysinfo),
1029                             armsse_sys_config_value(s, info),
1030                             "SYS_CONFIG", &err);
1031     if (err) {
1032         error_propagate(errp, err);
1033         return;
1034     }
1035     object_property_set_bool(OBJECT(&s->sysinfo), true, "realized", &err);
1036     if (err) {
1037         error_propagate(errp, err);
1038         return;
1039     }
1040     /* System information registers */
1041     sysbus_mmio_map(SYS_BUS_DEVICE(&s->sysinfo), 0, 0x40020000);
1042     /* System control registers */
1043     object_property_set_int(OBJECT(&s->sysctl), info->sys_version,
1044                             "SYS_VERSION", &err);
1045     object_property_set_int(OBJECT(&s->sysctl), info->cpuwait_rst,
1046                             "CPUWAIT_RST", &err);
1047     object_property_set_int(OBJECT(&s->sysctl), s->init_svtor,
1048                             "INITSVTOR0_RST", &err);
1049     object_property_set_int(OBJECT(&s->sysctl), s->init_svtor,
1050                             "INITSVTOR1_RST", &err);
1051     object_property_set_bool(OBJECT(&s->sysctl), true, "realized", &err);
1052     if (err) {
1053         error_propagate(errp, err);
1054         return;
1055     }
1056     sysbus_mmio_map(SYS_BUS_DEVICE(&s->sysctl), 0, 0x50021000);
1057 
1058     if (info->has_ppus) {
1059         /* CPUnCORE_PPU for each CPU */
1060         for (i = 0; i < info->num_cpus; i++) {
1061             char *name = g_strdup_printf("CPU%dCORE_PPU", i);
1062 
1063             map_ppu(s, CPU0CORE_PPU + i, name, 0x50023000 + i * 0x2000);
1064             /*
1065              * We don't support CPU debug so don't create the
1066              * CPU0DEBUG_PPU at 0x50024000 and 0x50026000.
1067              */
1068             g_free(name);
1069         }
1070         map_ppu(s, DBG_PPU, "DBG_PPU", 0x50029000);
1071 
1072         for (i = 0; i < info->sram_banks; i++) {
1073             char *name = g_strdup_printf("RAM%d_PPU", i);
1074 
1075             map_ppu(s, RAM0_PPU + i, name, 0x5002a000 + i * 0x1000);
1076             g_free(name);
1077         }
1078     }
1079 
1080     /* This OR gate wires together outputs from the secure watchdogs to NMI */
1081     object_property_set_int(OBJECT(&s->nmi_orgate), 2, "num-lines", &err);
1082     if (err) {
1083         error_propagate(errp, err);
1084         return;
1085     }
1086     object_property_set_bool(OBJECT(&s->nmi_orgate), true, "realized", &err);
1087     if (err) {
1088         error_propagate(errp, err);
1089         return;
1090     }
1091     qdev_connect_gpio_out(DEVICE(&s->nmi_orgate), 0,
1092                           qdev_get_gpio_in_named(DEVICE(&s->armv7m), "NMI", 0));
1093 
1094     qdev_prop_set_uint32(DEVICE(&s->s32kwatchdog), "wdogclk-frq", S32KCLK);
1095     object_property_set_bool(OBJECT(&s->s32kwatchdog), true, "realized", &err);
1096     if (err) {
1097         error_propagate(errp, err);
1098         return;
1099     }
1100     sysbus_connect_irq(SYS_BUS_DEVICE(&s->s32kwatchdog), 0,
1101                        qdev_get_gpio_in(DEVICE(&s->nmi_orgate), 0));
1102     sysbus_mmio_map(SYS_BUS_DEVICE(&s->s32kwatchdog), 0, 0x5002e000);
1103 
1104     /* 0x40080000 .. 0x4008ffff : ARMSSE second Base peripheral region */
1105 
1106     qdev_prop_set_uint32(DEVICE(&s->nswatchdog), "wdogclk-frq", s->mainclk_frq);
1107     object_property_set_bool(OBJECT(&s->nswatchdog), true, "realized", &err);
1108     if (err) {
1109         error_propagate(errp, err);
1110         return;
1111     }
1112     sysbus_connect_irq(SYS_BUS_DEVICE(&s->nswatchdog), 0,
1113                        armsse_get_common_irq_in(s, 1));
1114     sysbus_mmio_map(SYS_BUS_DEVICE(&s->nswatchdog), 0, 0x40081000);
1115 
1116     qdev_prop_set_uint32(DEVICE(&s->swatchdog), "wdogclk-frq", s->mainclk_frq);
1117     object_property_set_bool(OBJECT(&s->swatchdog), true, "realized", &err);
1118     if (err) {
1119         error_propagate(errp, err);
1120         return;
1121     }
1122     sysbus_connect_irq(SYS_BUS_DEVICE(&s->swatchdog), 0,
1123                        qdev_get_gpio_in(DEVICE(&s->nmi_orgate), 1));
1124     sysbus_mmio_map(SYS_BUS_DEVICE(&s->swatchdog), 0, 0x50081000);
1125 
1126     for (i = 0; i < ARRAY_SIZE(s->ppc_irq_splitter); i++) {
1127         Object *splitter = OBJECT(&s->ppc_irq_splitter[i]);
1128 
1129         object_property_set_int(splitter, 2, "num-lines", &err);
1130         if (err) {
1131             error_propagate(errp, err);
1132             return;
1133         }
1134         object_property_set_bool(splitter, true, "realized", &err);
1135         if (err) {
1136             error_propagate(errp, err);
1137             return;
1138         }
1139     }
1140 
1141     for (i = 0; i < IOTS_NUM_AHB_EXP_PPC; i++) {
1142         char *ppcname = g_strdup_printf("ahb_ppcexp%d", i);
1143 
1144         armsse_forward_ppc(s, ppcname, i);
1145         g_free(ppcname);
1146     }
1147 
1148     for (i = 0; i < IOTS_NUM_APB_EXP_PPC; i++) {
1149         char *ppcname = g_strdup_printf("apb_ppcexp%d", i);
1150 
1151         armsse_forward_ppc(s, ppcname, i + IOTS_NUM_AHB_EXP_PPC);
1152         g_free(ppcname);
1153     }
1154 
1155     for (i = NUM_EXTERNAL_PPCS; i < NUM_PPCS; i++) {
1156         /* Wire up IRQ splitter for internal PPCs */
1157         DeviceState *devs = DEVICE(&s->ppc_irq_splitter[i]);
1158         char *gpioname = g_strdup_printf("apb_ppc%d_irq_status",
1159                                          i - NUM_EXTERNAL_PPCS);
1160         TZPPC *ppc = (i == NUM_EXTERNAL_PPCS) ? &s->apb_ppc0 : &s->apb_ppc1;
1161 
1162         qdev_connect_gpio_out(devs, 0,
1163                               qdev_get_gpio_in_named(dev_secctl, gpioname, 0));
1164         qdev_connect_gpio_out(devs, 1,
1165                               qdev_get_gpio_in(DEVICE(&s->ppc_irq_orgate), i));
1166         qdev_connect_gpio_out_named(DEVICE(ppc), "irq", 0,
1167                                     qdev_get_gpio_in(devs, 0));
1168         g_free(gpioname);
1169     }
1170 
1171     /* Wire up the splitters for the MPC IRQs */
1172     for (i = 0; i < IOTS_NUM_EXP_MPC + info->sram_banks; i++) {
1173         SplitIRQ *splitter = &s->mpc_irq_splitter[i];
1174         DeviceState *dev_splitter = DEVICE(splitter);
1175 
1176         object_property_set_int(OBJECT(splitter), 2, "num-lines", &err);
1177         if (err) {
1178             error_propagate(errp, err);
1179             return;
1180         }
1181         object_property_set_bool(OBJECT(splitter), true, "realized", &err);
1182         if (err) {
1183             error_propagate(errp, err);
1184             return;
1185         }
1186 
1187         if (i < IOTS_NUM_EXP_MPC) {
1188             /* Splitter input is from GPIO input line */
1189             s->mpcexp_status_in[i] = qdev_get_gpio_in(dev_splitter, 0);
1190             qdev_connect_gpio_out(dev_splitter, 0,
1191                                   qdev_get_gpio_in_named(dev_secctl,
1192                                                          "mpcexp_status", i));
1193         } else {
1194             /* Splitter input is from our own MPC */
1195             qdev_connect_gpio_out_named(DEVICE(&s->mpc[i - IOTS_NUM_EXP_MPC]),
1196                                         "irq", 0,
1197                                         qdev_get_gpio_in(dev_splitter, 0));
1198             qdev_connect_gpio_out(dev_splitter, 0,
1199                                   qdev_get_gpio_in_named(dev_secctl,
1200                                                          "mpc_status", 0));
1201         }
1202 
1203         qdev_connect_gpio_out(dev_splitter, 1,
1204                               qdev_get_gpio_in(DEVICE(&s->mpc_irq_orgate), i));
1205     }
1206     /* Create GPIO inputs which will pass the line state for our
1207      * mpcexp_irq inputs to the correct splitter devices.
1208      */
1209     qdev_init_gpio_in_named(dev, armsse_mpcexp_status, "mpcexp_status",
1210                             IOTS_NUM_EXP_MPC);
1211 
1212     armsse_forward_sec_resp_cfg(s);
1213 
1214     /* Forward the MSC related signals */
1215     qdev_pass_gpios(dev_secctl, dev, "mscexp_status");
1216     qdev_pass_gpios(dev_secctl, dev, "mscexp_clear");
1217     qdev_pass_gpios(dev_secctl, dev, "mscexp_ns");
1218     qdev_connect_gpio_out_named(dev_secctl, "msc_irq", 0,
1219                                 armsse_get_common_irq_in(s, 11));
1220 
1221     /*
1222      * Expose our container region to the board model; this corresponds
1223      * to the AHB Slave Expansion ports which allow bus master devices
1224      * (eg DMA controllers) in the board model to make transactions into
1225      * devices in the ARMSSE.
1226      */
1227     sysbus_init_mmio(SYS_BUS_DEVICE(s), &s->container);
1228 
1229     system_clock_scale = NANOSECONDS_PER_SECOND / s->mainclk_frq;
1230 }
1231 
1232 static void armsse_idau_check(IDAUInterface *ii, uint32_t address,
1233                               int *iregion, bool *exempt, bool *ns, bool *nsc)
1234 {
1235     /*
1236      * For ARMSSE systems the IDAU responses are simple logical functions
1237      * of the address bits. The NSC attribute is guest-adjustable via the
1238      * NSCCFG register in the security controller.
1239      */
1240     ARMSSE *s = ARMSSE(ii);
1241     int region = extract32(address, 28, 4);
1242 
1243     *ns = !(region & 1);
1244     *nsc = (region == 1 && (s->nsccfg & 1)) || (region == 3 && (s->nsccfg & 2));
1245     /* 0xe0000000..0xe00fffff and 0xf0000000..0xf00fffff are exempt */
1246     *exempt = (address & 0xeff00000) == 0xe0000000;
1247     *iregion = region;
1248 }
1249 
1250 static const VMStateDescription armsse_vmstate = {
1251     .name = "iotkit",
1252     .version_id = 1,
1253     .minimum_version_id = 1,
1254     .fields = (VMStateField[]) {
1255         VMSTATE_UINT32(nsccfg, ARMSSE),
1256         VMSTATE_END_OF_LIST()
1257     }
1258 };
1259 
1260 static void armsse_reset(DeviceState *dev)
1261 {
1262     ARMSSE *s = ARMSSE(dev);
1263 
1264     s->nsccfg = 0;
1265 }
1266 
1267 static void armsse_class_init(ObjectClass *klass, void *data)
1268 {
1269     DeviceClass *dc = DEVICE_CLASS(klass);
1270     IDAUInterfaceClass *iic = IDAU_INTERFACE_CLASS(klass);
1271     ARMSSEClass *asc = ARMSSE_CLASS(klass);
1272     const ARMSSEInfo *info = data;
1273 
1274     dc->realize = armsse_realize;
1275     dc->vmsd = &armsse_vmstate;
1276     device_class_set_props(dc, info->props);
1277     dc->reset = armsse_reset;
1278     iic->check = armsse_idau_check;
1279     asc->info = info;
1280 }
1281 
1282 static const TypeInfo armsse_info = {
1283     .name = TYPE_ARMSSE,
1284     .parent = TYPE_SYS_BUS_DEVICE,
1285     .instance_size = sizeof(ARMSSE),
1286     .instance_init = armsse_init,
1287     .abstract = true,
1288     .interfaces = (InterfaceInfo[]) {
1289         { TYPE_IDAU_INTERFACE },
1290         { }
1291     }
1292 };
1293 
1294 static void armsse_register_types(void)
1295 {
1296     int i;
1297 
1298     type_register_static(&armsse_info);
1299 
1300     for (i = 0; i < ARRAY_SIZE(armsse_variants); i++) {
1301         TypeInfo ti = {
1302             .name = armsse_variants[i].name,
1303             .parent = TYPE_ARMSSE,
1304             .class_init = armsse_class_init,
1305             .class_data = (void *)&armsse_variants[i],
1306         };
1307         type_register(&ti);
1308     }
1309 }
1310 
1311 type_init(armsse_register_types);
1312