xref: /qemu/hw/arm/armsse.c (revision 911612989d8224e1e37e47438dac29330f0798ff)
1 /*
2  * Arm SSE (Subsystems for Embedded): IoTKit
3  *
4  * Copyright (c) 2018 Linaro Limited
5  * Written by Peter Maydell
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 or
9  * (at your option) any later version.
10  */
11 
12 #include "qemu/osdep.h"
13 #include "qemu/log.h"
14 #include "qemu/module.h"
15 #include "qemu/bitops.h"
16 #include "qapi/error.h"
17 #include "trace.h"
18 #include "hw/sysbus.h"
19 #include "migration/vmstate.h"
20 #include "hw/registerfields.h"
21 #include "hw/arm/armsse.h"
22 #include "hw/arm/boot.h"
23 #include "hw/irq.h"
24 #include "hw/qdev-clock.h"
25 
26 /* Format of the System Information block SYS_CONFIG register */
27 typedef enum SysConfigFormat {
28     IoTKitFormat,
29     SSE200Format,
30 } SysConfigFormat;
31 
32 struct ARMSSEInfo {
33     const char *name;
34     int sram_banks;
35     int num_cpus;
36     uint32_t sys_version;
37     uint32_t cpuwait_rst;
38     SysConfigFormat sys_config_format;
39     bool has_mhus;
40     bool has_ppus;
41     bool has_cachectrl;
42     bool has_cpusecctrl;
43     bool has_cpuid;
44     Property *props;
45 };
46 
47 static Property iotkit_properties[] = {
48     DEFINE_PROP_LINK("memory", ARMSSE, board_memory, TYPE_MEMORY_REGION,
49                      MemoryRegion *),
50     DEFINE_PROP_UINT32("EXP_NUMIRQ", ARMSSE, exp_numirq, 64),
51     DEFINE_PROP_UINT32("MAINCLK_FRQ", ARMSSE, mainclk_frq, 0),
52     DEFINE_PROP_UINT32("SRAM_ADDR_WIDTH", ARMSSE, sram_addr_width, 15),
53     DEFINE_PROP_UINT32("init-svtor", ARMSSE, init_svtor, 0x10000000),
54     DEFINE_PROP_BOOL("CPU0_FPU", ARMSSE, cpu_fpu[0], true),
55     DEFINE_PROP_BOOL("CPU0_DSP", ARMSSE, cpu_dsp[0], true),
56     DEFINE_PROP_END_OF_LIST()
57 };
58 
59 static Property armsse_properties[] = {
60     DEFINE_PROP_LINK("memory", ARMSSE, board_memory, TYPE_MEMORY_REGION,
61                      MemoryRegion *),
62     DEFINE_PROP_UINT32("EXP_NUMIRQ", ARMSSE, exp_numirq, 64),
63     DEFINE_PROP_UINT32("MAINCLK_FRQ", ARMSSE, mainclk_frq, 0),
64     DEFINE_PROP_UINT32("SRAM_ADDR_WIDTH", ARMSSE, sram_addr_width, 15),
65     DEFINE_PROP_UINT32("init-svtor", ARMSSE, init_svtor, 0x10000000),
66     DEFINE_PROP_BOOL("CPU0_FPU", ARMSSE, cpu_fpu[0], false),
67     DEFINE_PROP_BOOL("CPU0_DSP", ARMSSE, cpu_dsp[0], false),
68     DEFINE_PROP_BOOL("CPU1_FPU", ARMSSE, cpu_fpu[1], true),
69     DEFINE_PROP_BOOL("CPU1_DSP", ARMSSE, cpu_dsp[1], true),
70     DEFINE_PROP_END_OF_LIST()
71 };
72 
73 static const ARMSSEInfo armsse_variants[] = {
74     {
75         .name = TYPE_IOTKIT,
76         .sram_banks = 1,
77         .num_cpus = 1,
78         .sys_version = 0x41743,
79         .cpuwait_rst = 0,
80         .sys_config_format = IoTKitFormat,
81         .has_mhus = false,
82         .has_ppus = false,
83         .has_cachectrl = false,
84         .has_cpusecctrl = false,
85         .has_cpuid = false,
86         .props = iotkit_properties,
87     },
88     {
89         .name = TYPE_SSE200,
90         .sram_banks = 4,
91         .num_cpus = 2,
92         .sys_version = 0x22041743,
93         .cpuwait_rst = 2,
94         .sys_config_format = SSE200Format,
95         .has_mhus = true,
96         .has_ppus = true,
97         .has_cachectrl = true,
98         .has_cpusecctrl = true,
99         .has_cpuid = true,
100         .props = armsse_properties,
101     },
102 };
103 
104 static uint32_t armsse_sys_config_value(ARMSSE *s, const ARMSSEInfo *info)
105 {
106     /* Return the SYS_CONFIG value for this SSE */
107     uint32_t sys_config;
108 
109     switch (info->sys_config_format) {
110     case IoTKitFormat:
111         sys_config = 0;
112         sys_config = deposit32(sys_config, 0, 4, info->sram_banks);
113         sys_config = deposit32(sys_config, 4, 4, s->sram_addr_width - 12);
114         break;
115     case SSE200Format:
116         sys_config = 0;
117         sys_config = deposit32(sys_config, 0, 4, info->sram_banks);
118         sys_config = deposit32(sys_config, 4, 5, s->sram_addr_width);
119         sys_config = deposit32(sys_config, 24, 4, 2);
120         if (info->num_cpus > 1) {
121             sys_config = deposit32(sys_config, 10, 1, 1);
122             sys_config = deposit32(sys_config, 20, 4, info->sram_banks - 1);
123             sys_config = deposit32(sys_config, 28, 4, 2);
124         }
125         break;
126     default:
127         g_assert_not_reached();
128     }
129     return sys_config;
130 }
131 
132 /* Clock frequency in HZ of the 32KHz "slow clock" */
133 #define S32KCLK (32 * 1000)
134 
135 /* Is internal IRQ n shared between CPUs in a multi-core SSE ? */
136 static bool irq_is_common[32] = {
137     [0 ... 5] = true,
138     /* 6, 7: per-CPU MHU interrupts */
139     [8 ... 12] = true,
140     /* 13: per-CPU icache interrupt */
141     /* 14: reserved */
142     [15 ... 20] = true,
143     /* 21: reserved */
144     [22 ... 26] = true,
145     /* 27: reserved */
146     /* 28, 29: per-CPU CTI interrupts */
147     /* 30, 31: reserved */
148 };
149 
150 /*
151  * Create an alias region in @container of @size bytes starting at @base
152  * which mirrors the memory starting at @orig.
153  */
154 static void make_alias(ARMSSE *s, MemoryRegion *mr, MemoryRegion *container,
155                        const char *name, hwaddr base, hwaddr size, hwaddr orig)
156 {
157     memory_region_init_alias(mr, NULL, name, container, orig, size);
158     /* The alias is even lower priority than unimplemented_device regions */
159     memory_region_add_subregion_overlap(container, base, mr, -1500);
160 }
161 
162 static void irq_status_forwarder(void *opaque, int n, int level)
163 {
164     qemu_irq destirq = opaque;
165 
166     qemu_set_irq(destirq, level);
167 }
168 
169 static void nsccfg_handler(void *opaque, int n, int level)
170 {
171     ARMSSE *s = ARM_SSE(opaque);
172 
173     s->nsccfg = level;
174 }
175 
176 static void armsse_forward_ppc(ARMSSE *s, const char *ppcname, int ppcnum)
177 {
178     /* Each of the 4 AHB and 4 APB PPCs that might be present in a
179      * system using the ARMSSE has a collection of control lines which
180      * are provided by the security controller and which we want to
181      * expose as control lines on the ARMSSE device itself, so the
182      * code using the ARMSSE can wire them up to the PPCs.
183      */
184     SplitIRQ *splitter = &s->ppc_irq_splitter[ppcnum];
185     DeviceState *armssedev = DEVICE(s);
186     DeviceState *dev_secctl = DEVICE(&s->secctl);
187     DeviceState *dev_splitter = DEVICE(splitter);
188     char *name;
189 
190     name = g_strdup_printf("%s_nonsec", ppcname);
191     qdev_pass_gpios(dev_secctl, armssedev, name);
192     g_free(name);
193     name = g_strdup_printf("%s_ap", ppcname);
194     qdev_pass_gpios(dev_secctl, armssedev, name);
195     g_free(name);
196     name = g_strdup_printf("%s_irq_enable", ppcname);
197     qdev_pass_gpios(dev_secctl, armssedev, name);
198     g_free(name);
199     name = g_strdup_printf("%s_irq_clear", ppcname);
200     qdev_pass_gpios(dev_secctl, armssedev, name);
201     g_free(name);
202 
203     /* irq_status is a little more tricky, because we need to
204      * split it so we can send it both to the security controller
205      * and to our OR gate for the NVIC interrupt line.
206      * Connect up the splitter's outputs, and create a GPIO input
207      * which will pass the line state to the input splitter.
208      */
209     name = g_strdup_printf("%s_irq_status", ppcname);
210     qdev_connect_gpio_out(dev_splitter, 0,
211                           qdev_get_gpio_in_named(dev_secctl,
212                                                  name, 0));
213     qdev_connect_gpio_out(dev_splitter, 1,
214                           qdev_get_gpio_in(DEVICE(&s->ppc_irq_orgate), ppcnum));
215     s->irq_status_in[ppcnum] = qdev_get_gpio_in(dev_splitter, 0);
216     qdev_init_gpio_in_named_with_opaque(armssedev, irq_status_forwarder,
217                                         s->irq_status_in[ppcnum], name, 1);
218     g_free(name);
219 }
220 
221 static void armsse_forward_sec_resp_cfg(ARMSSE *s)
222 {
223     /* Forward the 3rd output from the splitter device as a
224      * named GPIO output of the armsse object.
225      */
226     DeviceState *dev = DEVICE(s);
227     DeviceState *dev_splitter = DEVICE(&s->sec_resp_splitter);
228 
229     qdev_init_gpio_out_named(dev, &s->sec_resp_cfg, "sec_resp_cfg", 1);
230     s->sec_resp_cfg_in = qemu_allocate_irq(irq_status_forwarder,
231                                            s->sec_resp_cfg, 1);
232     qdev_connect_gpio_out(dev_splitter, 2, s->sec_resp_cfg_in);
233 }
234 
235 static void armsse_mainclk_update(void *opaque)
236 {
237     ARMSSE *s = ARM_SSE(opaque);
238     /*
239      * Set system_clock_scale from our Clock input; this is what
240      * controls the tick rate of the CPU SysTick timer.
241      */
242     system_clock_scale = clock_ticks_to_ns(s->mainclk, 1);
243 }
244 
245 static void armsse_init(Object *obj)
246 {
247     ARMSSE *s = ARM_SSE(obj);
248     ARMSSEClass *asc = ARM_SSE_GET_CLASS(obj);
249     const ARMSSEInfo *info = asc->info;
250     int i;
251 
252     assert(info->sram_banks <= MAX_SRAM_BANKS);
253     assert(info->num_cpus <= SSE_MAX_CPUS);
254 
255     s->mainclk = qdev_init_clock_in(DEVICE(s), "MAINCLK",
256                                     armsse_mainclk_update, s);
257     s->s32kclk = qdev_init_clock_in(DEVICE(s), "S32KCLK", NULL, NULL);
258 
259     memory_region_init(&s->container, obj, "armsse-container", UINT64_MAX);
260 
261     for (i = 0; i < info->num_cpus; i++) {
262         /*
263          * We put each CPU in its own cluster as they are logically
264          * distinct and may be configured differently.
265          */
266         char *name;
267 
268         name = g_strdup_printf("cluster%d", i);
269         object_initialize_child(obj, name, &s->cluster[i], TYPE_CPU_CLUSTER);
270         qdev_prop_set_uint32(DEVICE(&s->cluster[i]), "cluster-id", i);
271         g_free(name);
272 
273         name = g_strdup_printf("armv7m%d", i);
274         object_initialize_child(OBJECT(&s->cluster[i]), name, &s->armv7m[i],
275                                 TYPE_ARMV7M);
276         qdev_prop_set_string(DEVICE(&s->armv7m[i]), "cpu-type",
277                              ARM_CPU_TYPE_NAME("cortex-m33"));
278         g_free(name);
279         name = g_strdup_printf("arm-sse-cpu-container%d", i);
280         memory_region_init(&s->cpu_container[i], obj, name, UINT64_MAX);
281         g_free(name);
282         if (i > 0) {
283             name = g_strdup_printf("arm-sse-container-alias%d", i);
284             memory_region_init_alias(&s->container_alias[i - 1], obj,
285                                      name, &s->container, 0, UINT64_MAX);
286             g_free(name);
287         }
288     }
289 
290     object_initialize_child(obj, "secctl", &s->secctl, TYPE_IOTKIT_SECCTL);
291     object_initialize_child(obj, "apb-ppc0", &s->apb_ppc0, TYPE_TZ_PPC);
292     object_initialize_child(obj, "apb-ppc1", &s->apb_ppc1, TYPE_TZ_PPC);
293     for (i = 0; i < info->sram_banks; i++) {
294         char *name = g_strdup_printf("mpc%d", i);
295         object_initialize_child(obj, name, &s->mpc[i], TYPE_TZ_MPC);
296         g_free(name);
297     }
298     object_initialize_child(obj, "mpc-irq-orgate", &s->mpc_irq_orgate,
299                             TYPE_OR_IRQ);
300 
301     for (i = 0; i < IOTS_NUM_EXP_MPC + info->sram_banks; i++) {
302         char *name = g_strdup_printf("mpc-irq-splitter-%d", i);
303         SplitIRQ *splitter = &s->mpc_irq_splitter[i];
304 
305         object_initialize_child(obj, name, splitter, TYPE_SPLIT_IRQ);
306         g_free(name);
307     }
308     object_initialize_child(obj, "timer0", &s->timer0, TYPE_CMSDK_APB_TIMER);
309     object_initialize_child(obj, "timer1", &s->timer1, TYPE_CMSDK_APB_TIMER);
310     object_initialize_child(obj, "s32ktimer", &s->s32ktimer,
311                             TYPE_CMSDK_APB_TIMER);
312     object_initialize_child(obj, "dualtimer", &s->dualtimer,
313                             TYPE_CMSDK_APB_DUALTIMER);
314     object_initialize_child(obj, "s32kwatchdog", &s->s32kwatchdog,
315                             TYPE_CMSDK_APB_WATCHDOG);
316     object_initialize_child(obj, "nswatchdog", &s->nswatchdog,
317                             TYPE_CMSDK_APB_WATCHDOG);
318     object_initialize_child(obj, "swatchdog", &s->swatchdog,
319                             TYPE_CMSDK_APB_WATCHDOG);
320     object_initialize_child(obj, "armsse-sysctl", &s->sysctl,
321                             TYPE_IOTKIT_SYSCTL);
322     object_initialize_child(obj, "armsse-sysinfo", &s->sysinfo,
323                             TYPE_IOTKIT_SYSINFO);
324     if (info->has_mhus) {
325         object_initialize_child(obj, "mhu0", &s->mhu[0], TYPE_ARMSSE_MHU);
326         object_initialize_child(obj, "mhu1", &s->mhu[1], TYPE_ARMSSE_MHU);
327     }
328     if (info->has_ppus) {
329         for (i = 0; i < info->num_cpus; i++) {
330             char *name = g_strdup_printf("CPU%dCORE_PPU", i);
331             int ppuidx = CPU0CORE_PPU + i;
332 
333             object_initialize_child(obj, name, &s->ppu[ppuidx],
334                                     TYPE_UNIMPLEMENTED_DEVICE);
335             g_free(name);
336         }
337         object_initialize_child(obj, "DBG_PPU", &s->ppu[DBG_PPU],
338                                 TYPE_UNIMPLEMENTED_DEVICE);
339         for (i = 0; i < info->sram_banks; i++) {
340             char *name = g_strdup_printf("RAM%d_PPU", i);
341             int ppuidx = RAM0_PPU + i;
342 
343             object_initialize_child(obj, name, &s->ppu[ppuidx],
344                                     TYPE_UNIMPLEMENTED_DEVICE);
345             g_free(name);
346         }
347     }
348     if (info->has_cachectrl) {
349         for (i = 0; i < info->num_cpus; i++) {
350             char *name = g_strdup_printf("cachectrl%d", i);
351 
352             object_initialize_child(obj, name, &s->cachectrl[i],
353                                     TYPE_UNIMPLEMENTED_DEVICE);
354             g_free(name);
355         }
356     }
357     if (info->has_cpusecctrl) {
358         for (i = 0; i < info->num_cpus; i++) {
359             char *name = g_strdup_printf("cpusecctrl%d", i);
360 
361             object_initialize_child(obj, name, &s->cpusecctrl[i],
362                                     TYPE_UNIMPLEMENTED_DEVICE);
363             g_free(name);
364         }
365     }
366     if (info->has_cpuid) {
367         for (i = 0; i < info->num_cpus; i++) {
368             char *name = g_strdup_printf("cpuid%d", i);
369 
370             object_initialize_child(obj, name, &s->cpuid[i],
371                                     TYPE_ARMSSE_CPUID);
372             g_free(name);
373         }
374     }
375     object_initialize_child(obj, "nmi-orgate", &s->nmi_orgate, TYPE_OR_IRQ);
376     object_initialize_child(obj, "ppc-irq-orgate", &s->ppc_irq_orgate,
377                             TYPE_OR_IRQ);
378     object_initialize_child(obj, "sec-resp-splitter", &s->sec_resp_splitter,
379                             TYPE_SPLIT_IRQ);
380     for (i = 0; i < ARRAY_SIZE(s->ppc_irq_splitter); i++) {
381         char *name = g_strdup_printf("ppc-irq-splitter-%d", i);
382         SplitIRQ *splitter = &s->ppc_irq_splitter[i];
383 
384         object_initialize_child(obj, name, splitter, TYPE_SPLIT_IRQ);
385         g_free(name);
386     }
387     if (info->num_cpus > 1) {
388         for (i = 0; i < ARRAY_SIZE(s->cpu_irq_splitter); i++) {
389             if (irq_is_common[i]) {
390                 char *name = g_strdup_printf("cpu-irq-splitter%d", i);
391                 SplitIRQ *splitter = &s->cpu_irq_splitter[i];
392 
393                 object_initialize_child(obj, name, splitter, TYPE_SPLIT_IRQ);
394                 g_free(name);
395             }
396         }
397     }
398 }
399 
400 static void armsse_exp_irq(void *opaque, int n, int level)
401 {
402     qemu_irq *irqarray = opaque;
403 
404     qemu_set_irq(irqarray[n], level);
405 }
406 
407 static void armsse_mpcexp_status(void *opaque, int n, int level)
408 {
409     ARMSSE *s = ARM_SSE(opaque);
410     qemu_set_irq(s->mpcexp_status_in[n], level);
411 }
412 
413 static qemu_irq armsse_get_common_irq_in(ARMSSE *s, int irqno)
414 {
415     /*
416      * Return a qemu_irq which can be used to signal IRQ n to
417      * all CPUs in the SSE.
418      */
419     ARMSSEClass *asc = ARM_SSE_GET_CLASS(s);
420     const ARMSSEInfo *info = asc->info;
421 
422     assert(irq_is_common[irqno]);
423 
424     if (info->num_cpus == 1) {
425         /* Only one CPU -- just connect directly to it */
426         return qdev_get_gpio_in(DEVICE(&s->armv7m[0]), irqno);
427     } else {
428         /* Connect to the splitter which feeds all CPUs */
429         return qdev_get_gpio_in(DEVICE(&s->cpu_irq_splitter[irqno]), 0);
430     }
431 }
432 
433 static void map_ppu(ARMSSE *s, int ppuidx, const char *name, hwaddr addr)
434 {
435     /* Map a PPU unimplemented device stub */
436     DeviceState *dev = DEVICE(&s->ppu[ppuidx]);
437 
438     qdev_prop_set_string(dev, "name", name);
439     qdev_prop_set_uint64(dev, "size", 0x1000);
440     sysbus_realize(SYS_BUS_DEVICE(dev), &error_fatal);
441     sysbus_mmio_map(SYS_BUS_DEVICE(&s->ppu[ppuidx]), 0, addr);
442 }
443 
444 static void armsse_realize(DeviceState *dev, Error **errp)
445 {
446     ARMSSE *s = ARM_SSE(dev);
447     ARMSSEClass *asc = ARM_SSE_GET_CLASS(dev);
448     const ARMSSEInfo *info = asc->info;
449     int i;
450     MemoryRegion *mr;
451     Error *err = NULL;
452     SysBusDevice *sbd_apb_ppc0;
453     SysBusDevice *sbd_secctl;
454     DeviceState *dev_apb_ppc0;
455     DeviceState *dev_apb_ppc1;
456     DeviceState *dev_secctl;
457     DeviceState *dev_splitter;
458     uint32_t addr_width_max;
459 
460     if (!s->board_memory) {
461         error_setg(errp, "memory property was not set");
462         return;
463     }
464 
465     if (!clock_has_source(s->mainclk)) {
466         error_setg(errp, "MAINCLK clock was not connected");
467     }
468     if (!clock_has_source(s->s32kclk)) {
469         error_setg(errp, "S32KCLK clock was not connected");
470     }
471 
472     assert(info->num_cpus <= SSE_MAX_CPUS);
473 
474     /* max SRAM_ADDR_WIDTH: 24 - log2(SRAM_NUM_BANK) */
475     assert(is_power_of_2(info->sram_banks));
476     addr_width_max = 24 - ctz32(info->sram_banks);
477     if (s->sram_addr_width < 1 || s->sram_addr_width > addr_width_max) {
478         error_setg(errp, "SRAM_ADDR_WIDTH must be between 1 and %d",
479                    addr_width_max);
480         return;
481     }
482 
483     /* Handling of which devices should be available only to secure
484      * code is usually done differently for M profile than for A profile.
485      * Instead of putting some devices only into the secure address space,
486      * devices exist in both address spaces but with hard-wired security
487      * permissions that will cause the CPU to fault for non-secure accesses.
488      *
489      * The ARMSSE has an IDAU (Implementation Defined Access Unit),
490      * which specifies hard-wired security permissions for different
491      * areas of the physical address space. For the ARMSSE IDAU, the
492      * top 4 bits of the physical address are the IDAU region ID, and
493      * if bit 28 (ie the lowest bit of the ID) is 0 then this is an NS
494      * region, otherwise it is an S region.
495      *
496      * The various devices and RAMs are generally all mapped twice,
497      * once into a region that the IDAU defines as secure and once
498      * into a non-secure region. They sit behind either a Memory
499      * Protection Controller (for RAM) or a Peripheral Protection
500      * Controller (for devices), which allow a more fine grained
501      * configuration of whether non-secure accesses are permitted.
502      *
503      * (The other place that guest software can configure security
504      * permissions is in the architected SAU (Security Attribution
505      * Unit), which is entirely inside the CPU. The IDAU can upgrade
506      * the security attributes for a region to more restrictive than
507      * the SAU specifies, but cannot downgrade them.)
508      *
509      * 0x10000000..0x1fffffff  alias of 0x00000000..0x0fffffff
510      * 0x20000000..0x2007ffff  32KB FPGA block RAM
511      * 0x30000000..0x3fffffff  alias of 0x20000000..0x2fffffff
512      * 0x40000000..0x4000ffff  base peripheral region 1
513      * 0x40010000..0x4001ffff  CPU peripherals (none for ARMSSE)
514      * 0x40020000..0x4002ffff  system control element peripherals
515      * 0x40080000..0x400fffff  base peripheral region 2
516      * 0x50000000..0x5fffffff  alias of 0x40000000..0x4fffffff
517      */
518 
519     memory_region_add_subregion_overlap(&s->container, 0, s->board_memory, -2);
520 
521     for (i = 0; i < info->num_cpus; i++) {
522         DeviceState *cpudev = DEVICE(&s->armv7m[i]);
523         Object *cpuobj = OBJECT(&s->armv7m[i]);
524         int j;
525         char *gpioname;
526 
527         qdev_prop_set_uint32(cpudev, "num-irq", s->exp_numirq + 32);
528         /*
529          * In real hardware the initial Secure VTOR is set from the INITSVTOR*
530          * registers in the IoT Kit System Control Register block. In QEMU
531          * we set the initial value here, and also the reset value of the
532          * sysctl register, from this object's QOM init-svtor property.
533          * If the guest changes the INITSVTOR* registers at runtime then the
534          * code in iotkit-sysctl.c will update the CPU init-svtor property
535          * (which will then take effect on the next CPU warm-reset).
536          *
537          * Note that typically a board using the SSE-200 will have a system
538          * control processor whose boot firmware initializes the INITSVTOR*
539          * registers before powering up the CPUs. QEMU doesn't emulate
540          * the control processor, so instead we behave in the way that the
541          * firmware does: the initial value should be set by the board code
542          * (using the init-svtor property on the ARMSSE object) to match
543          * whatever its firmware does.
544          */
545         qdev_prop_set_uint32(cpudev, "init-svtor", s->init_svtor);
546         /*
547          * CPUs start powered down if the corresponding bit in the CPUWAIT
548          * register is 1. In real hardware the CPUWAIT register reset value is
549          * a configurable property of the SSE-200 (via the CPUWAIT0_RST and
550          * CPUWAIT1_RST parameters), but since all the boards we care about
551          * start CPU0 and leave CPU1 powered off, we hard-code that in
552          * info->cpuwait_rst for now. We can add QOM properties for this
553          * later if necessary.
554          */
555         if (extract32(info->cpuwait_rst, i, 1)) {
556             if (!object_property_set_bool(cpuobj, "start-powered-off", true,
557                                           errp)) {
558                 return;
559             }
560         }
561         if (!s->cpu_fpu[i]) {
562             if (!object_property_set_bool(cpuobj, "vfp", false, errp)) {
563                 return;
564             }
565         }
566         if (!s->cpu_dsp[i]) {
567             if (!object_property_set_bool(cpuobj, "dsp", false, errp)) {
568                 return;
569             }
570         }
571 
572         if (i > 0) {
573             memory_region_add_subregion_overlap(&s->cpu_container[i], 0,
574                                                 &s->container_alias[i - 1], -1);
575         } else {
576             memory_region_add_subregion_overlap(&s->cpu_container[i], 0,
577                                                 &s->container, -1);
578         }
579         object_property_set_link(cpuobj, "memory",
580                                  OBJECT(&s->cpu_container[i]), &error_abort);
581         object_property_set_link(cpuobj, "idau", OBJECT(s), &error_abort);
582         if (!sysbus_realize(SYS_BUS_DEVICE(cpuobj), errp)) {
583             return;
584         }
585         /*
586          * The cluster must be realized after the armv7m container, as
587          * the container's CPU object is only created on realize, and the
588          * CPU must exist and have been parented into the cluster before
589          * the cluster is realized.
590          */
591         if (!qdev_realize(DEVICE(&s->cluster[i]), NULL, errp)) {
592             return;
593         }
594 
595         /* Connect EXP_IRQ/EXP_CPUn_IRQ GPIOs to the NVIC's lines 32 and up */
596         s->exp_irqs[i] = g_new(qemu_irq, s->exp_numirq);
597         for (j = 0; j < s->exp_numirq; j++) {
598             s->exp_irqs[i][j] = qdev_get_gpio_in(cpudev, j + 32);
599         }
600         if (i == 0) {
601             gpioname = g_strdup("EXP_IRQ");
602         } else {
603             gpioname = g_strdup_printf("EXP_CPU%d_IRQ", i);
604         }
605         qdev_init_gpio_in_named_with_opaque(dev, armsse_exp_irq,
606                                             s->exp_irqs[i],
607                                             gpioname, s->exp_numirq);
608         g_free(gpioname);
609     }
610 
611     /* Wire up the splitters that connect common IRQs to all CPUs */
612     if (info->num_cpus > 1) {
613         for (i = 0; i < ARRAY_SIZE(s->cpu_irq_splitter); i++) {
614             if (irq_is_common[i]) {
615                 Object *splitter = OBJECT(&s->cpu_irq_splitter[i]);
616                 DeviceState *devs = DEVICE(splitter);
617                 int cpunum;
618 
619                 if (!object_property_set_int(splitter, "num-lines",
620                                              info->num_cpus, errp)) {
621                     return;
622                 }
623                 if (!qdev_realize(DEVICE(splitter), NULL, errp)) {
624                     return;
625                 }
626                 for (cpunum = 0; cpunum < info->num_cpus; cpunum++) {
627                     DeviceState *cpudev = DEVICE(&s->armv7m[cpunum]);
628 
629                     qdev_connect_gpio_out(devs, cpunum,
630                                           qdev_get_gpio_in(cpudev, i));
631                 }
632             }
633         }
634     }
635 
636     /* Set up the big aliases first */
637     make_alias(s, &s->alias1, &s->container, "alias 1",
638                0x10000000, 0x10000000, 0x00000000);
639     make_alias(s, &s->alias2, &s->container,
640                "alias 2", 0x30000000, 0x10000000, 0x20000000);
641     /* The 0x50000000..0x5fffffff region is not a pure alias: it has
642      * a few extra devices that only appear there (generally the
643      * control interfaces for the protection controllers).
644      * We implement this by mapping those devices over the top of this
645      * alias MR at a higher priority. Some of the devices in this range
646      * are per-CPU, so we must put this alias in the per-cpu containers.
647      */
648     for (i = 0; i < info->num_cpus; i++) {
649         make_alias(s, &s->alias3[i], &s->cpu_container[i],
650                    "alias 3", 0x50000000, 0x10000000, 0x40000000);
651     }
652 
653     /* Security controller */
654     if (!sysbus_realize(SYS_BUS_DEVICE(&s->secctl), errp)) {
655         return;
656     }
657     sbd_secctl = SYS_BUS_DEVICE(&s->secctl);
658     dev_secctl = DEVICE(&s->secctl);
659     sysbus_mmio_map(sbd_secctl, 0, 0x50080000);
660     sysbus_mmio_map(sbd_secctl, 1, 0x40080000);
661 
662     s->nsc_cfg_in = qemu_allocate_irq(nsccfg_handler, s, 1);
663     qdev_connect_gpio_out_named(dev_secctl, "nsc_cfg", 0, s->nsc_cfg_in);
664 
665     /* The sec_resp_cfg output from the security controller must be split into
666      * multiple lines, one for each of the PPCs within the ARMSSE and one
667      * that will be an output from the ARMSSE to the system.
668      */
669     if (!object_property_set_int(OBJECT(&s->sec_resp_splitter),
670                                  "num-lines", 3, errp)) {
671         return;
672     }
673     if (!qdev_realize(DEVICE(&s->sec_resp_splitter), NULL, errp)) {
674         return;
675     }
676     dev_splitter = DEVICE(&s->sec_resp_splitter);
677     qdev_connect_gpio_out_named(dev_secctl, "sec_resp_cfg", 0,
678                                 qdev_get_gpio_in(dev_splitter, 0));
679 
680     /* Each SRAM bank lives behind its own Memory Protection Controller */
681     for (i = 0; i < info->sram_banks; i++) {
682         char *ramname = g_strdup_printf("armsse.sram%d", i);
683         SysBusDevice *sbd_mpc;
684         uint32_t sram_bank_size = 1 << s->sram_addr_width;
685 
686         memory_region_init_ram(&s->sram[i], NULL, ramname,
687                                sram_bank_size, &err);
688         g_free(ramname);
689         if (err) {
690             error_propagate(errp, err);
691             return;
692         }
693         object_property_set_link(OBJECT(&s->mpc[i]), "downstream",
694                                  OBJECT(&s->sram[i]), &error_abort);
695         if (!sysbus_realize(SYS_BUS_DEVICE(&s->mpc[i]), errp)) {
696             return;
697         }
698         /* Map the upstream end of the MPC into the right place... */
699         sbd_mpc = SYS_BUS_DEVICE(&s->mpc[i]);
700         memory_region_add_subregion(&s->container,
701                                     0x20000000 + i * sram_bank_size,
702                                     sysbus_mmio_get_region(sbd_mpc, 1));
703         /* ...and its register interface */
704         memory_region_add_subregion(&s->container, 0x50083000 + i * 0x1000,
705                                     sysbus_mmio_get_region(sbd_mpc, 0));
706     }
707 
708     /* We must OR together lines from the MPC splitters to go to the NVIC */
709     if (!object_property_set_int(OBJECT(&s->mpc_irq_orgate), "num-lines",
710                                  IOTS_NUM_EXP_MPC + info->sram_banks,
711                                  errp)) {
712         return;
713     }
714     if (!qdev_realize(DEVICE(&s->mpc_irq_orgate), NULL, errp)) {
715         return;
716     }
717     qdev_connect_gpio_out(DEVICE(&s->mpc_irq_orgate), 0,
718                           armsse_get_common_irq_in(s, 9));
719 
720     /* Devices behind APB PPC0:
721      *   0x40000000: timer0
722      *   0x40001000: timer1
723      *   0x40002000: dual timer
724      *   0x40003000: MHU0 (SSE-200 only)
725      *   0x40004000: MHU1 (SSE-200 only)
726      * We must configure and realize each downstream device and connect
727      * it to the appropriate PPC port; then we can realize the PPC and
728      * map its upstream ends to the right place in the container.
729      */
730     qdev_connect_clock_in(DEVICE(&s->timer0), "pclk", s->mainclk);
731     if (!sysbus_realize(SYS_BUS_DEVICE(&s->timer0), errp)) {
732         return;
733     }
734     sysbus_connect_irq(SYS_BUS_DEVICE(&s->timer0), 0,
735                        armsse_get_common_irq_in(s, 3));
736     mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->timer0), 0);
737     object_property_set_link(OBJECT(&s->apb_ppc0), "port[0]", OBJECT(mr),
738                              &error_abort);
739 
740     qdev_connect_clock_in(DEVICE(&s->timer1), "pclk", s->mainclk);
741     if (!sysbus_realize(SYS_BUS_DEVICE(&s->timer1), errp)) {
742         return;
743     }
744     sysbus_connect_irq(SYS_BUS_DEVICE(&s->timer1), 0,
745                        armsse_get_common_irq_in(s, 4));
746     mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->timer1), 0);
747     object_property_set_link(OBJECT(&s->apb_ppc0), "port[1]", OBJECT(mr),
748                              &error_abort);
749 
750     qdev_connect_clock_in(DEVICE(&s->dualtimer), "TIMCLK", s->mainclk);
751     if (!sysbus_realize(SYS_BUS_DEVICE(&s->dualtimer), errp)) {
752         return;
753     }
754     sysbus_connect_irq(SYS_BUS_DEVICE(&s->dualtimer), 0,
755                        armsse_get_common_irq_in(s, 5));
756     mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->dualtimer), 0);
757     object_property_set_link(OBJECT(&s->apb_ppc0), "port[2]", OBJECT(mr),
758                              &error_abort);
759 
760     if (info->has_mhus) {
761         /*
762          * An SSE-200 with only one CPU should have only one MHU created,
763          * with the region where the second MHU usually is being RAZ/WI.
764          * We don't implement that SSE-200 config; if we want to support
765          * it then this code needs to be enhanced to handle creating the
766          * RAZ/WI region instead of the second MHU.
767          */
768         assert(info->num_cpus == ARRAY_SIZE(s->mhu));
769 
770         for (i = 0; i < ARRAY_SIZE(s->mhu); i++) {
771             char *port;
772             int cpunum;
773             SysBusDevice *mhu_sbd = SYS_BUS_DEVICE(&s->mhu[i]);
774 
775             if (!sysbus_realize(SYS_BUS_DEVICE(&s->mhu[i]), errp)) {
776                 return;
777             }
778             port = g_strdup_printf("port[%d]", i + 3);
779             mr = sysbus_mmio_get_region(mhu_sbd, 0);
780             object_property_set_link(OBJECT(&s->apb_ppc0), port, OBJECT(mr),
781                                      &error_abort);
782             g_free(port);
783 
784             /*
785              * Each MHU has an irq line for each CPU:
786              *  MHU 0 irq line 0 -> CPU 0 IRQ 6
787              *  MHU 0 irq line 1 -> CPU 1 IRQ 6
788              *  MHU 1 irq line 0 -> CPU 0 IRQ 7
789              *  MHU 1 irq line 1 -> CPU 1 IRQ 7
790              */
791             for (cpunum = 0; cpunum < info->num_cpus; cpunum++) {
792                 DeviceState *cpudev = DEVICE(&s->armv7m[cpunum]);
793 
794                 sysbus_connect_irq(mhu_sbd, cpunum,
795                                    qdev_get_gpio_in(cpudev, 6 + i));
796             }
797         }
798     }
799 
800     if (!sysbus_realize(SYS_BUS_DEVICE(&s->apb_ppc0), errp)) {
801         return;
802     }
803 
804     sbd_apb_ppc0 = SYS_BUS_DEVICE(&s->apb_ppc0);
805     dev_apb_ppc0 = DEVICE(&s->apb_ppc0);
806 
807     mr = sysbus_mmio_get_region(sbd_apb_ppc0, 0);
808     memory_region_add_subregion(&s->container, 0x40000000, mr);
809     mr = sysbus_mmio_get_region(sbd_apb_ppc0, 1);
810     memory_region_add_subregion(&s->container, 0x40001000, mr);
811     mr = sysbus_mmio_get_region(sbd_apb_ppc0, 2);
812     memory_region_add_subregion(&s->container, 0x40002000, mr);
813     if (info->has_mhus) {
814         mr = sysbus_mmio_get_region(sbd_apb_ppc0, 3);
815         memory_region_add_subregion(&s->container, 0x40003000, mr);
816         mr = sysbus_mmio_get_region(sbd_apb_ppc0, 4);
817         memory_region_add_subregion(&s->container, 0x40004000, mr);
818     }
819     for (i = 0; i < IOTS_APB_PPC0_NUM_PORTS; i++) {
820         qdev_connect_gpio_out_named(dev_secctl, "apb_ppc0_nonsec", i,
821                                     qdev_get_gpio_in_named(dev_apb_ppc0,
822                                                            "cfg_nonsec", i));
823         qdev_connect_gpio_out_named(dev_secctl, "apb_ppc0_ap", i,
824                                     qdev_get_gpio_in_named(dev_apb_ppc0,
825                                                            "cfg_ap", i));
826     }
827     qdev_connect_gpio_out_named(dev_secctl, "apb_ppc0_irq_enable", 0,
828                                 qdev_get_gpio_in_named(dev_apb_ppc0,
829                                                        "irq_enable", 0));
830     qdev_connect_gpio_out_named(dev_secctl, "apb_ppc0_irq_clear", 0,
831                                 qdev_get_gpio_in_named(dev_apb_ppc0,
832                                                        "irq_clear", 0));
833     qdev_connect_gpio_out(dev_splitter, 0,
834                           qdev_get_gpio_in_named(dev_apb_ppc0,
835                                                  "cfg_sec_resp", 0));
836 
837     /* All the PPC irq lines (from the 2 internal PPCs and the 8 external
838      * ones) are sent individually to the security controller, and also
839      * ORed together to give a single combined PPC interrupt to the NVIC.
840      */
841     if (!object_property_set_int(OBJECT(&s->ppc_irq_orgate),
842                                  "num-lines", NUM_PPCS, errp)) {
843         return;
844     }
845     if (!qdev_realize(DEVICE(&s->ppc_irq_orgate), NULL, errp)) {
846         return;
847     }
848     qdev_connect_gpio_out(DEVICE(&s->ppc_irq_orgate), 0,
849                           armsse_get_common_irq_in(s, 10));
850 
851     /*
852      * 0x40010000 .. 0x4001ffff (and the 0x5001000... secure-only alias):
853      * private per-CPU region (all these devices are SSE-200 only):
854      *  0x50010000: L1 icache control registers
855      *  0x50011000: CPUSECCTRL (CPU local security control registers)
856      *  0x4001f000 and 0x5001f000: CPU_IDENTITY register block
857      */
858     if (info->has_cachectrl) {
859         for (i = 0; i < info->num_cpus; i++) {
860             char *name = g_strdup_printf("cachectrl%d", i);
861             MemoryRegion *mr;
862 
863             qdev_prop_set_string(DEVICE(&s->cachectrl[i]), "name", name);
864             g_free(name);
865             qdev_prop_set_uint64(DEVICE(&s->cachectrl[i]), "size", 0x1000);
866             if (!sysbus_realize(SYS_BUS_DEVICE(&s->cachectrl[i]), errp)) {
867                 return;
868             }
869 
870             mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->cachectrl[i]), 0);
871             memory_region_add_subregion(&s->cpu_container[i], 0x50010000, mr);
872         }
873     }
874     if (info->has_cpusecctrl) {
875         for (i = 0; i < info->num_cpus; i++) {
876             char *name = g_strdup_printf("CPUSECCTRL%d", i);
877             MemoryRegion *mr;
878 
879             qdev_prop_set_string(DEVICE(&s->cpusecctrl[i]), "name", name);
880             g_free(name);
881             qdev_prop_set_uint64(DEVICE(&s->cpusecctrl[i]), "size", 0x1000);
882             if (!sysbus_realize(SYS_BUS_DEVICE(&s->cpusecctrl[i]), errp)) {
883                 return;
884             }
885 
886             mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->cpusecctrl[i]), 0);
887             memory_region_add_subregion(&s->cpu_container[i], 0x50011000, mr);
888         }
889     }
890     if (info->has_cpuid) {
891         for (i = 0; i < info->num_cpus; i++) {
892             MemoryRegion *mr;
893 
894             qdev_prop_set_uint32(DEVICE(&s->cpuid[i]), "CPUID", i);
895             if (!sysbus_realize(SYS_BUS_DEVICE(&s->cpuid[i]), errp)) {
896                 return;
897             }
898 
899             mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->cpuid[i]), 0);
900             memory_region_add_subregion(&s->cpu_container[i], 0x4001F000, mr);
901         }
902     }
903 
904     /* 0x40020000 .. 0x4002ffff : ARMSSE system control peripheral region */
905     /* Devices behind APB PPC1:
906      *   0x4002f000: S32K timer
907      */
908     qdev_connect_clock_in(DEVICE(&s->s32ktimer), "pclk", s->s32kclk);
909     if (!sysbus_realize(SYS_BUS_DEVICE(&s->s32ktimer), errp)) {
910         return;
911     }
912     sysbus_connect_irq(SYS_BUS_DEVICE(&s->s32ktimer), 0,
913                        armsse_get_common_irq_in(s, 2));
914     mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->s32ktimer), 0);
915     object_property_set_link(OBJECT(&s->apb_ppc1), "port[0]", OBJECT(mr),
916                              &error_abort);
917 
918     if (!sysbus_realize(SYS_BUS_DEVICE(&s->apb_ppc1), errp)) {
919         return;
920     }
921     mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->apb_ppc1), 0);
922     memory_region_add_subregion(&s->container, 0x4002f000, mr);
923 
924     dev_apb_ppc1 = DEVICE(&s->apb_ppc1);
925     qdev_connect_gpio_out_named(dev_secctl, "apb_ppc1_nonsec", 0,
926                                 qdev_get_gpio_in_named(dev_apb_ppc1,
927                                                        "cfg_nonsec", 0));
928     qdev_connect_gpio_out_named(dev_secctl, "apb_ppc1_ap", 0,
929                                 qdev_get_gpio_in_named(dev_apb_ppc1,
930                                                        "cfg_ap", 0));
931     qdev_connect_gpio_out_named(dev_secctl, "apb_ppc1_irq_enable", 0,
932                                 qdev_get_gpio_in_named(dev_apb_ppc1,
933                                                        "irq_enable", 0));
934     qdev_connect_gpio_out_named(dev_secctl, "apb_ppc1_irq_clear", 0,
935                                 qdev_get_gpio_in_named(dev_apb_ppc1,
936                                                        "irq_clear", 0));
937     qdev_connect_gpio_out(dev_splitter, 1,
938                           qdev_get_gpio_in_named(dev_apb_ppc1,
939                                                  "cfg_sec_resp", 0));
940 
941     if (!object_property_set_int(OBJECT(&s->sysinfo), "SYS_VERSION",
942                                  info->sys_version, errp)) {
943         return;
944     }
945     if (!object_property_set_int(OBJECT(&s->sysinfo), "SYS_CONFIG",
946                                  armsse_sys_config_value(s, info), errp)) {
947         return;
948     }
949     if (!sysbus_realize(SYS_BUS_DEVICE(&s->sysinfo), errp)) {
950         return;
951     }
952     /* System information registers */
953     sysbus_mmio_map(SYS_BUS_DEVICE(&s->sysinfo), 0, 0x40020000);
954     /* System control registers */
955     object_property_set_int(OBJECT(&s->sysctl), "SYS_VERSION",
956                             info->sys_version, &error_abort);
957     object_property_set_int(OBJECT(&s->sysctl), "CPUWAIT_RST",
958                             info->cpuwait_rst, &error_abort);
959     object_property_set_int(OBJECT(&s->sysctl), "INITSVTOR0_RST",
960                             s->init_svtor, &error_abort);
961     object_property_set_int(OBJECT(&s->sysctl), "INITSVTOR1_RST",
962                             s->init_svtor, &error_abort);
963     if (!sysbus_realize(SYS_BUS_DEVICE(&s->sysctl), errp)) {
964         return;
965     }
966     sysbus_mmio_map(SYS_BUS_DEVICE(&s->sysctl), 0, 0x50021000);
967 
968     if (info->has_ppus) {
969         /* CPUnCORE_PPU for each CPU */
970         for (i = 0; i < info->num_cpus; i++) {
971             char *name = g_strdup_printf("CPU%dCORE_PPU", i);
972 
973             map_ppu(s, CPU0CORE_PPU + i, name, 0x50023000 + i * 0x2000);
974             /*
975              * We don't support CPU debug so don't create the
976              * CPU0DEBUG_PPU at 0x50024000 and 0x50026000.
977              */
978             g_free(name);
979         }
980         map_ppu(s, DBG_PPU, "DBG_PPU", 0x50029000);
981 
982         for (i = 0; i < info->sram_banks; i++) {
983             char *name = g_strdup_printf("RAM%d_PPU", i);
984 
985             map_ppu(s, RAM0_PPU + i, name, 0x5002a000 + i * 0x1000);
986             g_free(name);
987         }
988     }
989 
990     /* This OR gate wires together outputs from the secure watchdogs to NMI */
991     if (!object_property_set_int(OBJECT(&s->nmi_orgate), "num-lines", 2,
992                                  errp)) {
993         return;
994     }
995     if (!qdev_realize(DEVICE(&s->nmi_orgate), NULL, errp)) {
996         return;
997     }
998     qdev_connect_gpio_out(DEVICE(&s->nmi_orgate), 0,
999                           qdev_get_gpio_in_named(DEVICE(&s->armv7m), "NMI", 0));
1000 
1001     qdev_connect_clock_in(DEVICE(&s->s32kwatchdog), "WDOGCLK", s->s32kclk);
1002     if (!sysbus_realize(SYS_BUS_DEVICE(&s->s32kwatchdog), errp)) {
1003         return;
1004     }
1005     sysbus_connect_irq(SYS_BUS_DEVICE(&s->s32kwatchdog), 0,
1006                        qdev_get_gpio_in(DEVICE(&s->nmi_orgate), 0));
1007     sysbus_mmio_map(SYS_BUS_DEVICE(&s->s32kwatchdog), 0, 0x5002e000);
1008 
1009     /* 0x40080000 .. 0x4008ffff : ARMSSE second Base peripheral region */
1010 
1011     qdev_connect_clock_in(DEVICE(&s->nswatchdog), "WDOGCLK", s->mainclk);
1012     if (!sysbus_realize(SYS_BUS_DEVICE(&s->nswatchdog), errp)) {
1013         return;
1014     }
1015     sysbus_connect_irq(SYS_BUS_DEVICE(&s->nswatchdog), 0,
1016                        armsse_get_common_irq_in(s, 1));
1017     sysbus_mmio_map(SYS_BUS_DEVICE(&s->nswatchdog), 0, 0x40081000);
1018 
1019     qdev_connect_clock_in(DEVICE(&s->swatchdog), "WDOGCLK", s->mainclk);
1020     if (!sysbus_realize(SYS_BUS_DEVICE(&s->swatchdog), errp)) {
1021         return;
1022     }
1023     sysbus_connect_irq(SYS_BUS_DEVICE(&s->swatchdog), 0,
1024                        qdev_get_gpio_in(DEVICE(&s->nmi_orgate), 1));
1025     sysbus_mmio_map(SYS_BUS_DEVICE(&s->swatchdog), 0, 0x50081000);
1026 
1027     for (i = 0; i < ARRAY_SIZE(s->ppc_irq_splitter); i++) {
1028         Object *splitter = OBJECT(&s->ppc_irq_splitter[i]);
1029 
1030         if (!object_property_set_int(splitter, "num-lines", 2, errp)) {
1031             return;
1032         }
1033         if (!qdev_realize(DEVICE(splitter), NULL, errp)) {
1034             return;
1035         }
1036     }
1037 
1038     for (i = 0; i < IOTS_NUM_AHB_EXP_PPC; i++) {
1039         char *ppcname = g_strdup_printf("ahb_ppcexp%d", i);
1040 
1041         armsse_forward_ppc(s, ppcname, i);
1042         g_free(ppcname);
1043     }
1044 
1045     for (i = 0; i < IOTS_NUM_APB_EXP_PPC; i++) {
1046         char *ppcname = g_strdup_printf("apb_ppcexp%d", i);
1047 
1048         armsse_forward_ppc(s, ppcname, i + IOTS_NUM_AHB_EXP_PPC);
1049         g_free(ppcname);
1050     }
1051 
1052     for (i = NUM_EXTERNAL_PPCS; i < NUM_PPCS; i++) {
1053         /* Wire up IRQ splitter for internal PPCs */
1054         DeviceState *devs = DEVICE(&s->ppc_irq_splitter[i]);
1055         char *gpioname = g_strdup_printf("apb_ppc%d_irq_status",
1056                                          i - NUM_EXTERNAL_PPCS);
1057         TZPPC *ppc = (i == NUM_EXTERNAL_PPCS) ? &s->apb_ppc0 : &s->apb_ppc1;
1058 
1059         qdev_connect_gpio_out(devs, 0,
1060                               qdev_get_gpio_in_named(dev_secctl, gpioname, 0));
1061         qdev_connect_gpio_out(devs, 1,
1062                               qdev_get_gpio_in(DEVICE(&s->ppc_irq_orgate), i));
1063         qdev_connect_gpio_out_named(DEVICE(ppc), "irq", 0,
1064                                     qdev_get_gpio_in(devs, 0));
1065         g_free(gpioname);
1066     }
1067 
1068     /* Wire up the splitters for the MPC IRQs */
1069     for (i = 0; i < IOTS_NUM_EXP_MPC + info->sram_banks; i++) {
1070         SplitIRQ *splitter = &s->mpc_irq_splitter[i];
1071         DeviceState *dev_splitter = DEVICE(splitter);
1072 
1073         if (!object_property_set_int(OBJECT(splitter), "num-lines", 2,
1074                                      errp)) {
1075             return;
1076         }
1077         if (!qdev_realize(DEVICE(splitter), NULL, errp)) {
1078             return;
1079         }
1080 
1081         if (i < IOTS_NUM_EXP_MPC) {
1082             /* Splitter input is from GPIO input line */
1083             s->mpcexp_status_in[i] = qdev_get_gpio_in(dev_splitter, 0);
1084             qdev_connect_gpio_out(dev_splitter, 0,
1085                                   qdev_get_gpio_in_named(dev_secctl,
1086                                                          "mpcexp_status", i));
1087         } else {
1088             /* Splitter input is from our own MPC */
1089             qdev_connect_gpio_out_named(DEVICE(&s->mpc[i - IOTS_NUM_EXP_MPC]),
1090                                         "irq", 0,
1091                                         qdev_get_gpio_in(dev_splitter, 0));
1092             qdev_connect_gpio_out(dev_splitter, 0,
1093                                   qdev_get_gpio_in_named(dev_secctl,
1094                                                          "mpc_status",
1095                                                          i - IOTS_NUM_EXP_MPC));
1096         }
1097 
1098         qdev_connect_gpio_out(dev_splitter, 1,
1099                               qdev_get_gpio_in(DEVICE(&s->mpc_irq_orgate), i));
1100     }
1101     /* Create GPIO inputs which will pass the line state for our
1102      * mpcexp_irq inputs to the correct splitter devices.
1103      */
1104     qdev_init_gpio_in_named(dev, armsse_mpcexp_status, "mpcexp_status",
1105                             IOTS_NUM_EXP_MPC);
1106 
1107     armsse_forward_sec_resp_cfg(s);
1108 
1109     /* Forward the MSC related signals */
1110     qdev_pass_gpios(dev_secctl, dev, "mscexp_status");
1111     qdev_pass_gpios(dev_secctl, dev, "mscexp_clear");
1112     qdev_pass_gpios(dev_secctl, dev, "mscexp_ns");
1113     qdev_connect_gpio_out_named(dev_secctl, "msc_irq", 0,
1114                                 armsse_get_common_irq_in(s, 11));
1115 
1116     /*
1117      * Expose our container region to the board model; this corresponds
1118      * to the AHB Slave Expansion ports which allow bus master devices
1119      * (eg DMA controllers) in the board model to make transactions into
1120      * devices in the ARMSSE.
1121      */
1122     sysbus_init_mmio(SYS_BUS_DEVICE(s), &s->container);
1123 
1124     /* Set initial system_clock_scale from MAINCLK */
1125     armsse_mainclk_update(s);
1126 }
1127 
1128 static void armsse_idau_check(IDAUInterface *ii, uint32_t address,
1129                               int *iregion, bool *exempt, bool *ns, bool *nsc)
1130 {
1131     /*
1132      * For ARMSSE systems the IDAU responses are simple logical functions
1133      * of the address bits. The NSC attribute is guest-adjustable via the
1134      * NSCCFG register in the security controller.
1135      */
1136     ARMSSE *s = ARM_SSE(ii);
1137     int region = extract32(address, 28, 4);
1138 
1139     *ns = !(region & 1);
1140     *nsc = (region == 1 && (s->nsccfg & 1)) || (region == 3 && (s->nsccfg & 2));
1141     /* 0xe0000000..0xe00fffff and 0xf0000000..0xf00fffff are exempt */
1142     *exempt = (address & 0xeff00000) == 0xe0000000;
1143     *iregion = region;
1144 }
1145 
1146 static const VMStateDescription armsse_vmstate = {
1147     .name = "iotkit",
1148     .version_id = 2,
1149     .minimum_version_id = 2,
1150     .fields = (VMStateField[]) {
1151         VMSTATE_CLOCK(mainclk, ARMSSE),
1152         VMSTATE_CLOCK(s32kclk, ARMSSE),
1153         VMSTATE_UINT32(nsccfg, ARMSSE),
1154         VMSTATE_END_OF_LIST()
1155     }
1156 };
1157 
1158 static void armsse_reset(DeviceState *dev)
1159 {
1160     ARMSSE *s = ARM_SSE(dev);
1161 
1162     s->nsccfg = 0;
1163 }
1164 
1165 static void armsse_class_init(ObjectClass *klass, void *data)
1166 {
1167     DeviceClass *dc = DEVICE_CLASS(klass);
1168     IDAUInterfaceClass *iic = IDAU_INTERFACE_CLASS(klass);
1169     ARMSSEClass *asc = ARM_SSE_CLASS(klass);
1170     const ARMSSEInfo *info = data;
1171 
1172     dc->realize = armsse_realize;
1173     dc->vmsd = &armsse_vmstate;
1174     device_class_set_props(dc, info->props);
1175     dc->reset = armsse_reset;
1176     iic->check = armsse_idau_check;
1177     asc->info = info;
1178 }
1179 
1180 static const TypeInfo armsse_info = {
1181     .name = TYPE_ARM_SSE,
1182     .parent = TYPE_SYS_BUS_DEVICE,
1183     .instance_size = sizeof(ARMSSE),
1184     .class_size = sizeof(ARMSSEClass),
1185     .instance_init = armsse_init,
1186     .abstract = true,
1187     .interfaces = (InterfaceInfo[]) {
1188         { TYPE_IDAU_INTERFACE },
1189         { }
1190     }
1191 };
1192 
1193 static void armsse_register_types(void)
1194 {
1195     int i;
1196 
1197     type_register_static(&armsse_info);
1198 
1199     for (i = 0; i < ARRAY_SIZE(armsse_variants); i++) {
1200         TypeInfo ti = {
1201             .name = armsse_variants[i].name,
1202             .parent = TYPE_ARM_SSE,
1203             .class_init = armsse_class_init,
1204             .class_data = (void *)&armsse_variants[i],
1205         };
1206         type_register(&ti);
1207     }
1208 }
1209 
1210 type_init(armsse_register_types);
1211