xref: /qemu/hw/arm/armsse.c (revision 8fd34dc0c484850c7b1126a484add00df0374c98)
1 /*
2  * Arm SSE (Subsystems for Embedded): IoTKit
3  *
4  * Copyright (c) 2018 Linaro Limited
5  * Written by Peter Maydell
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 or
9  * (at your option) any later version.
10  */
11 
12 #include "qemu/osdep.h"
13 #include "qemu/log.h"
14 #include "qemu/module.h"
15 #include "qemu/bitops.h"
16 #include "qapi/error.h"
17 #include "trace.h"
18 #include "hw/sysbus.h"
19 #include "migration/vmstate.h"
20 #include "hw/registerfields.h"
21 #include "hw/arm/armsse.h"
22 #include "hw/arm/boot.h"
23 #include "hw/irq.h"
24 #include "hw/qdev-clock.h"
25 
26 /* Format of the System Information block SYS_CONFIG register */
27 typedef enum SysConfigFormat {
28     IoTKitFormat,
29     SSE200Format,
30 } SysConfigFormat;
31 
32 struct ARMSSEInfo {
33     const char *name;
34     int sram_banks;
35     int num_cpus;
36     uint32_t sys_version;
37     uint32_t cpuwait_rst;
38     SysConfigFormat sys_config_format;
39     bool has_mhus;
40     bool has_ppus;
41     bool has_cachectrl;
42     bool has_cpusecctrl;
43     bool has_cpuid;
44     Property *props;
45 };
46 
47 static Property iotkit_properties[] = {
48     DEFINE_PROP_LINK("memory", ARMSSE, board_memory, TYPE_MEMORY_REGION,
49                      MemoryRegion *),
50     DEFINE_PROP_UINT32("EXP_NUMIRQ", ARMSSE, exp_numirq, 64),
51     DEFINE_PROP_UINT32("MAINCLK_FRQ", ARMSSE, mainclk_frq, 0),
52     DEFINE_PROP_UINT32("SRAM_ADDR_WIDTH", ARMSSE, sram_addr_width, 15),
53     DEFINE_PROP_UINT32("init-svtor", ARMSSE, init_svtor, 0x10000000),
54     DEFINE_PROP_BOOL("CPU0_FPU", ARMSSE, cpu_fpu[0], true),
55     DEFINE_PROP_BOOL("CPU0_DSP", ARMSSE, cpu_dsp[0], true),
56     DEFINE_PROP_END_OF_LIST()
57 };
58 
59 static Property armsse_properties[] = {
60     DEFINE_PROP_LINK("memory", ARMSSE, board_memory, TYPE_MEMORY_REGION,
61                      MemoryRegion *),
62     DEFINE_PROP_UINT32("EXP_NUMIRQ", ARMSSE, exp_numirq, 64),
63     DEFINE_PROP_UINT32("MAINCLK_FRQ", ARMSSE, mainclk_frq, 0),
64     DEFINE_PROP_UINT32("SRAM_ADDR_WIDTH", ARMSSE, sram_addr_width, 15),
65     DEFINE_PROP_UINT32("init-svtor", ARMSSE, init_svtor, 0x10000000),
66     DEFINE_PROP_BOOL("CPU0_FPU", ARMSSE, cpu_fpu[0], false),
67     DEFINE_PROP_BOOL("CPU0_DSP", ARMSSE, cpu_dsp[0], false),
68     DEFINE_PROP_BOOL("CPU1_FPU", ARMSSE, cpu_fpu[1], true),
69     DEFINE_PROP_BOOL("CPU1_DSP", ARMSSE, cpu_dsp[1], true),
70     DEFINE_PROP_END_OF_LIST()
71 };
72 
73 static const ARMSSEInfo armsse_variants[] = {
74     {
75         .name = TYPE_IOTKIT,
76         .sram_banks = 1,
77         .num_cpus = 1,
78         .sys_version = 0x41743,
79         .cpuwait_rst = 0,
80         .sys_config_format = IoTKitFormat,
81         .has_mhus = false,
82         .has_ppus = false,
83         .has_cachectrl = false,
84         .has_cpusecctrl = false,
85         .has_cpuid = false,
86         .props = iotkit_properties,
87     },
88     {
89         .name = TYPE_SSE200,
90         .sram_banks = 4,
91         .num_cpus = 2,
92         .sys_version = 0x22041743,
93         .cpuwait_rst = 2,
94         .sys_config_format = SSE200Format,
95         .has_mhus = true,
96         .has_ppus = true,
97         .has_cachectrl = true,
98         .has_cpusecctrl = true,
99         .has_cpuid = true,
100         .props = armsse_properties,
101     },
102 };
103 
104 static uint32_t armsse_sys_config_value(ARMSSE *s, const ARMSSEInfo *info)
105 {
106     /* Return the SYS_CONFIG value for this SSE */
107     uint32_t sys_config;
108 
109     switch (info->sys_config_format) {
110     case IoTKitFormat:
111         sys_config = 0;
112         sys_config = deposit32(sys_config, 0, 4, info->sram_banks);
113         sys_config = deposit32(sys_config, 4, 4, s->sram_addr_width - 12);
114         break;
115     case SSE200Format:
116         sys_config = 0;
117         sys_config = deposit32(sys_config, 0, 4, info->sram_banks);
118         sys_config = deposit32(sys_config, 4, 5, s->sram_addr_width);
119         sys_config = deposit32(sys_config, 24, 4, 2);
120         if (info->num_cpus > 1) {
121             sys_config = deposit32(sys_config, 10, 1, 1);
122             sys_config = deposit32(sys_config, 20, 4, info->sram_banks - 1);
123             sys_config = deposit32(sys_config, 28, 4, 2);
124         }
125         break;
126     default:
127         g_assert_not_reached();
128     }
129     return sys_config;
130 }
131 
132 /* Clock frequency in HZ of the 32KHz "slow clock" */
133 #define S32KCLK (32 * 1000)
134 
135 /* Is internal IRQ n shared between CPUs in a multi-core SSE ? */
136 static bool irq_is_common[32] = {
137     [0 ... 5] = true,
138     /* 6, 7: per-CPU MHU interrupts */
139     [8 ... 12] = true,
140     /* 13: per-CPU icache interrupt */
141     /* 14: reserved */
142     [15 ... 20] = true,
143     /* 21: reserved */
144     [22 ... 26] = true,
145     /* 27: reserved */
146     /* 28, 29: per-CPU CTI interrupts */
147     /* 30, 31: reserved */
148 };
149 
150 /*
151  * Create an alias region in @container of @size bytes starting at @base
152  * which mirrors the memory starting at @orig.
153  */
154 static void make_alias(ARMSSE *s, MemoryRegion *mr, MemoryRegion *container,
155                        const char *name, hwaddr base, hwaddr size, hwaddr orig)
156 {
157     memory_region_init_alias(mr, NULL, name, container, orig, size);
158     /* The alias is even lower priority than unimplemented_device regions */
159     memory_region_add_subregion_overlap(container, base, mr, -1500);
160 }
161 
162 static void irq_status_forwarder(void *opaque, int n, int level)
163 {
164     qemu_irq destirq = opaque;
165 
166     qemu_set_irq(destirq, level);
167 }
168 
169 static void nsccfg_handler(void *opaque, int n, int level)
170 {
171     ARMSSE *s = ARM_SSE(opaque);
172 
173     s->nsccfg = level;
174 }
175 
176 static void armsse_forward_ppc(ARMSSE *s, const char *ppcname, int ppcnum)
177 {
178     /* Each of the 4 AHB and 4 APB PPCs that might be present in a
179      * system using the ARMSSE has a collection of control lines which
180      * are provided by the security controller and which we want to
181      * expose as control lines on the ARMSSE device itself, so the
182      * code using the ARMSSE can wire them up to the PPCs.
183      */
184     SplitIRQ *splitter = &s->ppc_irq_splitter[ppcnum];
185     DeviceState *armssedev = DEVICE(s);
186     DeviceState *dev_secctl = DEVICE(&s->secctl);
187     DeviceState *dev_splitter = DEVICE(splitter);
188     char *name;
189 
190     name = g_strdup_printf("%s_nonsec", ppcname);
191     qdev_pass_gpios(dev_secctl, armssedev, name);
192     g_free(name);
193     name = g_strdup_printf("%s_ap", ppcname);
194     qdev_pass_gpios(dev_secctl, armssedev, name);
195     g_free(name);
196     name = g_strdup_printf("%s_irq_enable", ppcname);
197     qdev_pass_gpios(dev_secctl, armssedev, name);
198     g_free(name);
199     name = g_strdup_printf("%s_irq_clear", ppcname);
200     qdev_pass_gpios(dev_secctl, armssedev, name);
201     g_free(name);
202 
203     /* irq_status is a little more tricky, because we need to
204      * split it so we can send it both to the security controller
205      * and to our OR gate for the NVIC interrupt line.
206      * Connect up the splitter's outputs, and create a GPIO input
207      * which will pass the line state to the input splitter.
208      */
209     name = g_strdup_printf("%s_irq_status", ppcname);
210     qdev_connect_gpio_out(dev_splitter, 0,
211                           qdev_get_gpio_in_named(dev_secctl,
212                                                  name, 0));
213     qdev_connect_gpio_out(dev_splitter, 1,
214                           qdev_get_gpio_in(DEVICE(&s->ppc_irq_orgate), ppcnum));
215     s->irq_status_in[ppcnum] = qdev_get_gpio_in(dev_splitter, 0);
216     qdev_init_gpio_in_named_with_opaque(armssedev, irq_status_forwarder,
217                                         s->irq_status_in[ppcnum], name, 1);
218     g_free(name);
219 }
220 
221 static void armsse_forward_sec_resp_cfg(ARMSSE *s)
222 {
223     /* Forward the 3rd output from the splitter device as a
224      * named GPIO output of the armsse object.
225      */
226     DeviceState *dev = DEVICE(s);
227     DeviceState *dev_splitter = DEVICE(&s->sec_resp_splitter);
228 
229     qdev_init_gpio_out_named(dev, &s->sec_resp_cfg, "sec_resp_cfg", 1);
230     s->sec_resp_cfg_in = qemu_allocate_irq(irq_status_forwarder,
231                                            s->sec_resp_cfg, 1);
232     qdev_connect_gpio_out(dev_splitter, 2, s->sec_resp_cfg_in);
233 }
234 
235 static void armsse_init(Object *obj)
236 {
237     ARMSSE *s = ARM_SSE(obj);
238     ARMSSEClass *asc = ARM_SSE_GET_CLASS(obj);
239     const ARMSSEInfo *info = asc->info;
240     int i;
241 
242     assert(info->sram_banks <= MAX_SRAM_BANKS);
243     assert(info->num_cpus <= SSE_MAX_CPUS);
244 
245     s->mainclk = qdev_init_clock_in(DEVICE(s), "MAINCLK", NULL, NULL);
246     s->s32kclk = qdev_init_clock_in(DEVICE(s), "S32KCLK", NULL, NULL);
247 
248     memory_region_init(&s->container, obj, "armsse-container", UINT64_MAX);
249 
250     for (i = 0; i < info->num_cpus; i++) {
251         /*
252          * We put each CPU in its own cluster as they are logically
253          * distinct and may be configured differently.
254          */
255         char *name;
256 
257         name = g_strdup_printf("cluster%d", i);
258         object_initialize_child(obj, name, &s->cluster[i], TYPE_CPU_CLUSTER);
259         qdev_prop_set_uint32(DEVICE(&s->cluster[i]), "cluster-id", i);
260         g_free(name);
261 
262         name = g_strdup_printf("armv7m%d", i);
263         object_initialize_child(OBJECT(&s->cluster[i]), name, &s->armv7m[i],
264                                 TYPE_ARMV7M);
265         qdev_prop_set_string(DEVICE(&s->armv7m[i]), "cpu-type",
266                              ARM_CPU_TYPE_NAME("cortex-m33"));
267         g_free(name);
268         name = g_strdup_printf("arm-sse-cpu-container%d", i);
269         memory_region_init(&s->cpu_container[i], obj, name, UINT64_MAX);
270         g_free(name);
271         if (i > 0) {
272             name = g_strdup_printf("arm-sse-container-alias%d", i);
273             memory_region_init_alias(&s->container_alias[i - 1], obj,
274                                      name, &s->container, 0, UINT64_MAX);
275             g_free(name);
276         }
277     }
278 
279     object_initialize_child(obj, "secctl", &s->secctl, TYPE_IOTKIT_SECCTL);
280     object_initialize_child(obj, "apb-ppc0", &s->apb_ppc0, TYPE_TZ_PPC);
281     object_initialize_child(obj, "apb-ppc1", &s->apb_ppc1, TYPE_TZ_PPC);
282     for (i = 0; i < info->sram_banks; i++) {
283         char *name = g_strdup_printf("mpc%d", i);
284         object_initialize_child(obj, name, &s->mpc[i], TYPE_TZ_MPC);
285         g_free(name);
286     }
287     object_initialize_child(obj, "mpc-irq-orgate", &s->mpc_irq_orgate,
288                             TYPE_OR_IRQ);
289 
290     for (i = 0; i < IOTS_NUM_EXP_MPC + info->sram_banks; i++) {
291         char *name = g_strdup_printf("mpc-irq-splitter-%d", i);
292         SplitIRQ *splitter = &s->mpc_irq_splitter[i];
293 
294         object_initialize_child(obj, name, splitter, TYPE_SPLIT_IRQ);
295         g_free(name);
296     }
297     object_initialize_child(obj, "timer0", &s->timer0, TYPE_CMSDK_APB_TIMER);
298     object_initialize_child(obj, "timer1", &s->timer1, TYPE_CMSDK_APB_TIMER);
299     object_initialize_child(obj, "s32ktimer", &s->s32ktimer,
300                             TYPE_CMSDK_APB_TIMER);
301     object_initialize_child(obj, "dualtimer", &s->dualtimer,
302                             TYPE_CMSDK_APB_DUALTIMER);
303     object_initialize_child(obj, "s32kwatchdog", &s->s32kwatchdog,
304                             TYPE_CMSDK_APB_WATCHDOG);
305     object_initialize_child(obj, "nswatchdog", &s->nswatchdog,
306                             TYPE_CMSDK_APB_WATCHDOG);
307     object_initialize_child(obj, "swatchdog", &s->swatchdog,
308                             TYPE_CMSDK_APB_WATCHDOG);
309     object_initialize_child(obj, "armsse-sysctl", &s->sysctl,
310                             TYPE_IOTKIT_SYSCTL);
311     object_initialize_child(obj, "armsse-sysinfo", &s->sysinfo,
312                             TYPE_IOTKIT_SYSINFO);
313     if (info->has_mhus) {
314         object_initialize_child(obj, "mhu0", &s->mhu[0], TYPE_ARMSSE_MHU);
315         object_initialize_child(obj, "mhu1", &s->mhu[1], TYPE_ARMSSE_MHU);
316     }
317     if (info->has_ppus) {
318         for (i = 0; i < info->num_cpus; i++) {
319             char *name = g_strdup_printf("CPU%dCORE_PPU", i);
320             int ppuidx = CPU0CORE_PPU + i;
321 
322             object_initialize_child(obj, name, &s->ppu[ppuidx],
323                                     TYPE_UNIMPLEMENTED_DEVICE);
324             g_free(name);
325         }
326         object_initialize_child(obj, "DBG_PPU", &s->ppu[DBG_PPU],
327                                 TYPE_UNIMPLEMENTED_DEVICE);
328         for (i = 0; i < info->sram_banks; i++) {
329             char *name = g_strdup_printf("RAM%d_PPU", i);
330             int ppuidx = RAM0_PPU + i;
331 
332             object_initialize_child(obj, name, &s->ppu[ppuidx],
333                                     TYPE_UNIMPLEMENTED_DEVICE);
334             g_free(name);
335         }
336     }
337     if (info->has_cachectrl) {
338         for (i = 0; i < info->num_cpus; i++) {
339             char *name = g_strdup_printf("cachectrl%d", i);
340 
341             object_initialize_child(obj, name, &s->cachectrl[i],
342                                     TYPE_UNIMPLEMENTED_DEVICE);
343             g_free(name);
344         }
345     }
346     if (info->has_cpusecctrl) {
347         for (i = 0; i < info->num_cpus; i++) {
348             char *name = g_strdup_printf("cpusecctrl%d", i);
349 
350             object_initialize_child(obj, name, &s->cpusecctrl[i],
351                                     TYPE_UNIMPLEMENTED_DEVICE);
352             g_free(name);
353         }
354     }
355     if (info->has_cpuid) {
356         for (i = 0; i < info->num_cpus; i++) {
357             char *name = g_strdup_printf("cpuid%d", i);
358 
359             object_initialize_child(obj, name, &s->cpuid[i],
360                                     TYPE_ARMSSE_CPUID);
361             g_free(name);
362         }
363     }
364     object_initialize_child(obj, "nmi-orgate", &s->nmi_orgate, TYPE_OR_IRQ);
365     object_initialize_child(obj, "ppc-irq-orgate", &s->ppc_irq_orgate,
366                             TYPE_OR_IRQ);
367     object_initialize_child(obj, "sec-resp-splitter", &s->sec_resp_splitter,
368                             TYPE_SPLIT_IRQ);
369     for (i = 0; i < ARRAY_SIZE(s->ppc_irq_splitter); i++) {
370         char *name = g_strdup_printf("ppc-irq-splitter-%d", i);
371         SplitIRQ *splitter = &s->ppc_irq_splitter[i];
372 
373         object_initialize_child(obj, name, splitter, TYPE_SPLIT_IRQ);
374         g_free(name);
375     }
376     if (info->num_cpus > 1) {
377         for (i = 0; i < ARRAY_SIZE(s->cpu_irq_splitter); i++) {
378             if (irq_is_common[i]) {
379                 char *name = g_strdup_printf("cpu-irq-splitter%d", i);
380                 SplitIRQ *splitter = &s->cpu_irq_splitter[i];
381 
382                 object_initialize_child(obj, name, splitter, TYPE_SPLIT_IRQ);
383                 g_free(name);
384             }
385         }
386     }
387 }
388 
389 static void armsse_exp_irq(void *opaque, int n, int level)
390 {
391     qemu_irq *irqarray = opaque;
392 
393     qemu_set_irq(irqarray[n], level);
394 }
395 
396 static void armsse_mpcexp_status(void *opaque, int n, int level)
397 {
398     ARMSSE *s = ARM_SSE(opaque);
399     qemu_set_irq(s->mpcexp_status_in[n], level);
400 }
401 
402 static qemu_irq armsse_get_common_irq_in(ARMSSE *s, int irqno)
403 {
404     /*
405      * Return a qemu_irq which can be used to signal IRQ n to
406      * all CPUs in the SSE.
407      */
408     ARMSSEClass *asc = ARM_SSE_GET_CLASS(s);
409     const ARMSSEInfo *info = asc->info;
410 
411     assert(irq_is_common[irqno]);
412 
413     if (info->num_cpus == 1) {
414         /* Only one CPU -- just connect directly to it */
415         return qdev_get_gpio_in(DEVICE(&s->armv7m[0]), irqno);
416     } else {
417         /* Connect to the splitter which feeds all CPUs */
418         return qdev_get_gpio_in(DEVICE(&s->cpu_irq_splitter[irqno]), 0);
419     }
420 }
421 
422 static void map_ppu(ARMSSE *s, int ppuidx, const char *name, hwaddr addr)
423 {
424     /* Map a PPU unimplemented device stub */
425     DeviceState *dev = DEVICE(&s->ppu[ppuidx]);
426 
427     qdev_prop_set_string(dev, "name", name);
428     qdev_prop_set_uint64(dev, "size", 0x1000);
429     sysbus_realize(SYS_BUS_DEVICE(dev), &error_fatal);
430     sysbus_mmio_map(SYS_BUS_DEVICE(&s->ppu[ppuidx]), 0, addr);
431 }
432 
433 static void armsse_realize(DeviceState *dev, Error **errp)
434 {
435     ARMSSE *s = ARM_SSE(dev);
436     ARMSSEClass *asc = ARM_SSE_GET_CLASS(dev);
437     const ARMSSEInfo *info = asc->info;
438     int i;
439     MemoryRegion *mr;
440     Error *err = NULL;
441     SysBusDevice *sbd_apb_ppc0;
442     SysBusDevice *sbd_secctl;
443     DeviceState *dev_apb_ppc0;
444     DeviceState *dev_apb_ppc1;
445     DeviceState *dev_secctl;
446     DeviceState *dev_splitter;
447     uint32_t addr_width_max;
448 
449     if (!s->board_memory) {
450         error_setg(errp, "memory property was not set");
451         return;
452     }
453 
454     if (!s->mainclk_frq) {
455         error_setg(errp, "MAINCLK_FRQ property was not set");
456         return;
457     }
458 
459     assert(info->num_cpus <= SSE_MAX_CPUS);
460 
461     /* max SRAM_ADDR_WIDTH: 24 - log2(SRAM_NUM_BANK) */
462     assert(is_power_of_2(info->sram_banks));
463     addr_width_max = 24 - ctz32(info->sram_banks);
464     if (s->sram_addr_width < 1 || s->sram_addr_width > addr_width_max) {
465         error_setg(errp, "SRAM_ADDR_WIDTH must be between 1 and %d",
466                    addr_width_max);
467         return;
468     }
469 
470     /* Handling of which devices should be available only to secure
471      * code is usually done differently for M profile than for A profile.
472      * Instead of putting some devices only into the secure address space,
473      * devices exist in both address spaces but with hard-wired security
474      * permissions that will cause the CPU to fault for non-secure accesses.
475      *
476      * The ARMSSE has an IDAU (Implementation Defined Access Unit),
477      * which specifies hard-wired security permissions for different
478      * areas of the physical address space. For the ARMSSE IDAU, the
479      * top 4 bits of the physical address are the IDAU region ID, and
480      * if bit 28 (ie the lowest bit of the ID) is 0 then this is an NS
481      * region, otherwise it is an S region.
482      *
483      * The various devices and RAMs are generally all mapped twice,
484      * once into a region that the IDAU defines as secure and once
485      * into a non-secure region. They sit behind either a Memory
486      * Protection Controller (for RAM) or a Peripheral Protection
487      * Controller (for devices), which allow a more fine grained
488      * configuration of whether non-secure accesses are permitted.
489      *
490      * (The other place that guest software can configure security
491      * permissions is in the architected SAU (Security Attribution
492      * Unit), which is entirely inside the CPU. The IDAU can upgrade
493      * the security attributes for a region to more restrictive than
494      * the SAU specifies, but cannot downgrade them.)
495      *
496      * 0x10000000..0x1fffffff  alias of 0x00000000..0x0fffffff
497      * 0x20000000..0x2007ffff  32KB FPGA block RAM
498      * 0x30000000..0x3fffffff  alias of 0x20000000..0x2fffffff
499      * 0x40000000..0x4000ffff  base peripheral region 1
500      * 0x40010000..0x4001ffff  CPU peripherals (none for ARMSSE)
501      * 0x40020000..0x4002ffff  system control element peripherals
502      * 0x40080000..0x400fffff  base peripheral region 2
503      * 0x50000000..0x5fffffff  alias of 0x40000000..0x4fffffff
504      */
505 
506     memory_region_add_subregion_overlap(&s->container, 0, s->board_memory, -2);
507 
508     for (i = 0; i < info->num_cpus; i++) {
509         DeviceState *cpudev = DEVICE(&s->armv7m[i]);
510         Object *cpuobj = OBJECT(&s->armv7m[i]);
511         int j;
512         char *gpioname;
513 
514         qdev_prop_set_uint32(cpudev, "num-irq", s->exp_numirq + 32);
515         /*
516          * In real hardware the initial Secure VTOR is set from the INITSVTOR*
517          * registers in the IoT Kit System Control Register block. In QEMU
518          * we set the initial value here, and also the reset value of the
519          * sysctl register, from this object's QOM init-svtor property.
520          * If the guest changes the INITSVTOR* registers at runtime then the
521          * code in iotkit-sysctl.c will update the CPU init-svtor property
522          * (which will then take effect on the next CPU warm-reset).
523          *
524          * Note that typically a board using the SSE-200 will have a system
525          * control processor whose boot firmware initializes the INITSVTOR*
526          * registers before powering up the CPUs. QEMU doesn't emulate
527          * the control processor, so instead we behave in the way that the
528          * firmware does: the initial value should be set by the board code
529          * (using the init-svtor property on the ARMSSE object) to match
530          * whatever its firmware does.
531          */
532         qdev_prop_set_uint32(cpudev, "init-svtor", s->init_svtor);
533         /*
534          * CPUs start powered down if the corresponding bit in the CPUWAIT
535          * register is 1. In real hardware the CPUWAIT register reset value is
536          * a configurable property of the SSE-200 (via the CPUWAIT0_RST and
537          * CPUWAIT1_RST parameters), but since all the boards we care about
538          * start CPU0 and leave CPU1 powered off, we hard-code that in
539          * info->cpuwait_rst for now. We can add QOM properties for this
540          * later if necessary.
541          */
542         if (extract32(info->cpuwait_rst, i, 1)) {
543             if (!object_property_set_bool(cpuobj, "start-powered-off", true,
544                                           errp)) {
545                 return;
546             }
547         }
548         if (!s->cpu_fpu[i]) {
549             if (!object_property_set_bool(cpuobj, "vfp", false, errp)) {
550                 return;
551             }
552         }
553         if (!s->cpu_dsp[i]) {
554             if (!object_property_set_bool(cpuobj, "dsp", false, errp)) {
555                 return;
556             }
557         }
558 
559         if (i > 0) {
560             memory_region_add_subregion_overlap(&s->cpu_container[i], 0,
561                                                 &s->container_alias[i - 1], -1);
562         } else {
563             memory_region_add_subregion_overlap(&s->cpu_container[i], 0,
564                                                 &s->container, -1);
565         }
566         object_property_set_link(cpuobj, "memory",
567                                  OBJECT(&s->cpu_container[i]), &error_abort);
568         object_property_set_link(cpuobj, "idau", OBJECT(s), &error_abort);
569         if (!sysbus_realize(SYS_BUS_DEVICE(cpuobj), errp)) {
570             return;
571         }
572         /*
573          * The cluster must be realized after the armv7m container, as
574          * the container's CPU object is only created on realize, and the
575          * CPU must exist and have been parented into the cluster before
576          * the cluster is realized.
577          */
578         if (!qdev_realize(DEVICE(&s->cluster[i]), NULL, errp)) {
579             return;
580         }
581 
582         /* Connect EXP_IRQ/EXP_CPUn_IRQ GPIOs to the NVIC's lines 32 and up */
583         s->exp_irqs[i] = g_new(qemu_irq, s->exp_numirq);
584         for (j = 0; j < s->exp_numirq; j++) {
585             s->exp_irqs[i][j] = qdev_get_gpio_in(cpudev, j + 32);
586         }
587         if (i == 0) {
588             gpioname = g_strdup("EXP_IRQ");
589         } else {
590             gpioname = g_strdup_printf("EXP_CPU%d_IRQ", i);
591         }
592         qdev_init_gpio_in_named_with_opaque(dev, armsse_exp_irq,
593                                             s->exp_irqs[i],
594                                             gpioname, s->exp_numirq);
595         g_free(gpioname);
596     }
597 
598     /* Wire up the splitters that connect common IRQs to all CPUs */
599     if (info->num_cpus > 1) {
600         for (i = 0; i < ARRAY_SIZE(s->cpu_irq_splitter); i++) {
601             if (irq_is_common[i]) {
602                 Object *splitter = OBJECT(&s->cpu_irq_splitter[i]);
603                 DeviceState *devs = DEVICE(splitter);
604                 int cpunum;
605 
606                 if (!object_property_set_int(splitter, "num-lines",
607                                              info->num_cpus, errp)) {
608                     return;
609                 }
610                 if (!qdev_realize(DEVICE(splitter), NULL, errp)) {
611                     return;
612                 }
613                 for (cpunum = 0; cpunum < info->num_cpus; cpunum++) {
614                     DeviceState *cpudev = DEVICE(&s->armv7m[cpunum]);
615 
616                     qdev_connect_gpio_out(devs, cpunum,
617                                           qdev_get_gpio_in(cpudev, i));
618                 }
619             }
620         }
621     }
622 
623     /* Set up the big aliases first */
624     make_alias(s, &s->alias1, &s->container, "alias 1",
625                0x10000000, 0x10000000, 0x00000000);
626     make_alias(s, &s->alias2, &s->container,
627                "alias 2", 0x30000000, 0x10000000, 0x20000000);
628     /* The 0x50000000..0x5fffffff region is not a pure alias: it has
629      * a few extra devices that only appear there (generally the
630      * control interfaces for the protection controllers).
631      * We implement this by mapping those devices over the top of this
632      * alias MR at a higher priority. Some of the devices in this range
633      * are per-CPU, so we must put this alias in the per-cpu containers.
634      */
635     for (i = 0; i < info->num_cpus; i++) {
636         make_alias(s, &s->alias3[i], &s->cpu_container[i],
637                    "alias 3", 0x50000000, 0x10000000, 0x40000000);
638     }
639 
640     /* Security controller */
641     if (!sysbus_realize(SYS_BUS_DEVICE(&s->secctl), errp)) {
642         return;
643     }
644     sbd_secctl = SYS_BUS_DEVICE(&s->secctl);
645     dev_secctl = DEVICE(&s->secctl);
646     sysbus_mmio_map(sbd_secctl, 0, 0x50080000);
647     sysbus_mmio_map(sbd_secctl, 1, 0x40080000);
648 
649     s->nsc_cfg_in = qemu_allocate_irq(nsccfg_handler, s, 1);
650     qdev_connect_gpio_out_named(dev_secctl, "nsc_cfg", 0, s->nsc_cfg_in);
651 
652     /* The sec_resp_cfg output from the security controller must be split into
653      * multiple lines, one for each of the PPCs within the ARMSSE and one
654      * that will be an output from the ARMSSE to the system.
655      */
656     if (!object_property_set_int(OBJECT(&s->sec_resp_splitter),
657                                  "num-lines", 3, errp)) {
658         return;
659     }
660     if (!qdev_realize(DEVICE(&s->sec_resp_splitter), NULL, errp)) {
661         return;
662     }
663     dev_splitter = DEVICE(&s->sec_resp_splitter);
664     qdev_connect_gpio_out_named(dev_secctl, "sec_resp_cfg", 0,
665                                 qdev_get_gpio_in(dev_splitter, 0));
666 
667     /* Each SRAM bank lives behind its own Memory Protection Controller */
668     for (i = 0; i < info->sram_banks; i++) {
669         char *ramname = g_strdup_printf("armsse.sram%d", i);
670         SysBusDevice *sbd_mpc;
671         uint32_t sram_bank_size = 1 << s->sram_addr_width;
672 
673         memory_region_init_ram(&s->sram[i], NULL, ramname,
674                                sram_bank_size, &err);
675         g_free(ramname);
676         if (err) {
677             error_propagate(errp, err);
678             return;
679         }
680         object_property_set_link(OBJECT(&s->mpc[i]), "downstream",
681                                  OBJECT(&s->sram[i]), &error_abort);
682         if (!sysbus_realize(SYS_BUS_DEVICE(&s->mpc[i]), errp)) {
683             return;
684         }
685         /* Map the upstream end of the MPC into the right place... */
686         sbd_mpc = SYS_BUS_DEVICE(&s->mpc[i]);
687         memory_region_add_subregion(&s->container,
688                                     0x20000000 + i * sram_bank_size,
689                                     sysbus_mmio_get_region(sbd_mpc, 1));
690         /* ...and its register interface */
691         memory_region_add_subregion(&s->container, 0x50083000 + i * 0x1000,
692                                     sysbus_mmio_get_region(sbd_mpc, 0));
693     }
694 
695     /* We must OR together lines from the MPC splitters to go to the NVIC */
696     if (!object_property_set_int(OBJECT(&s->mpc_irq_orgate), "num-lines",
697                                  IOTS_NUM_EXP_MPC + info->sram_banks,
698                                  errp)) {
699         return;
700     }
701     if (!qdev_realize(DEVICE(&s->mpc_irq_orgate), NULL, errp)) {
702         return;
703     }
704     qdev_connect_gpio_out(DEVICE(&s->mpc_irq_orgate), 0,
705                           armsse_get_common_irq_in(s, 9));
706 
707     /* Devices behind APB PPC0:
708      *   0x40000000: timer0
709      *   0x40001000: timer1
710      *   0x40002000: dual timer
711      *   0x40003000: MHU0 (SSE-200 only)
712      *   0x40004000: MHU1 (SSE-200 only)
713      * We must configure and realize each downstream device and connect
714      * it to the appropriate PPC port; then we can realize the PPC and
715      * map its upstream ends to the right place in the container.
716      */
717     qdev_prop_set_uint32(DEVICE(&s->timer0), "pclk-frq", s->mainclk_frq);
718     qdev_connect_clock_in(DEVICE(&s->timer0), "pclk", s->mainclk);
719     if (!sysbus_realize(SYS_BUS_DEVICE(&s->timer0), errp)) {
720         return;
721     }
722     sysbus_connect_irq(SYS_BUS_DEVICE(&s->timer0), 0,
723                        armsse_get_common_irq_in(s, 3));
724     mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->timer0), 0);
725     object_property_set_link(OBJECT(&s->apb_ppc0), "port[0]", OBJECT(mr),
726                              &error_abort);
727 
728     qdev_prop_set_uint32(DEVICE(&s->timer1), "pclk-frq", s->mainclk_frq);
729     qdev_connect_clock_in(DEVICE(&s->timer1), "pclk", s->mainclk);
730     if (!sysbus_realize(SYS_BUS_DEVICE(&s->timer1), errp)) {
731         return;
732     }
733     sysbus_connect_irq(SYS_BUS_DEVICE(&s->timer1), 0,
734                        armsse_get_common_irq_in(s, 4));
735     mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->timer1), 0);
736     object_property_set_link(OBJECT(&s->apb_ppc0), "port[1]", OBJECT(mr),
737                              &error_abort);
738 
739     qdev_prop_set_uint32(DEVICE(&s->dualtimer), "pclk-frq", s->mainclk_frq);
740     qdev_connect_clock_in(DEVICE(&s->dualtimer), "TIMCLK", s->mainclk);
741     if (!sysbus_realize(SYS_BUS_DEVICE(&s->dualtimer), errp)) {
742         return;
743     }
744     sysbus_connect_irq(SYS_BUS_DEVICE(&s->dualtimer), 0,
745                        armsse_get_common_irq_in(s, 5));
746     mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->dualtimer), 0);
747     object_property_set_link(OBJECT(&s->apb_ppc0), "port[2]", OBJECT(mr),
748                              &error_abort);
749 
750     if (info->has_mhus) {
751         /*
752          * An SSE-200 with only one CPU should have only one MHU created,
753          * with the region where the second MHU usually is being RAZ/WI.
754          * We don't implement that SSE-200 config; if we want to support
755          * it then this code needs to be enhanced to handle creating the
756          * RAZ/WI region instead of the second MHU.
757          */
758         assert(info->num_cpus == ARRAY_SIZE(s->mhu));
759 
760         for (i = 0; i < ARRAY_SIZE(s->mhu); i++) {
761             char *port;
762             int cpunum;
763             SysBusDevice *mhu_sbd = SYS_BUS_DEVICE(&s->mhu[i]);
764 
765             if (!sysbus_realize(SYS_BUS_DEVICE(&s->mhu[i]), errp)) {
766                 return;
767             }
768             port = g_strdup_printf("port[%d]", i + 3);
769             mr = sysbus_mmio_get_region(mhu_sbd, 0);
770             object_property_set_link(OBJECT(&s->apb_ppc0), port, OBJECT(mr),
771                                      &error_abort);
772             g_free(port);
773 
774             /*
775              * Each MHU has an irq line for each CPU:
776              *  MHU 0 irq line 0 -> CPU 0 IRQ 6
777              *  MHU 0 irq line 1 -> CPU 1 IRQ 6
778              *  MHU 1 irq line 0 -> CPU 0 IRQ 7
779              *  MHU 1 irq line 1 -> CPU 1 IRQ 7
780              */
781             for (cpunum = 0; cpunum < info->num_cpus; cpunum++) {
782                 DeviceState *cpudev = DEVICE(&s->armv7m[cpunum]);
783 
784                 sysbus_connect_irq(mhu_sbd, cpunum,
785                                    qdev_get_gpio_in(cpudev, 6 + i));
786             }
787         }
788     }
789 
790     if (!sysbus_realize(SYS_BUS_DEVICE(&s->apb_ppc0), errp)) {
791         return;
792     }
793 
794     sbd_apb_ppc0 = SYS_BUS_DEVICE(&s->apb_ppc0);
795     dev_apb_ppc0 = DEVICE(&s->apb_ppc0);
796 
797     mr = sysbus_mmio_get_region(sbd_apb_ppc0, 0);
798     memory_region_add_subregion(&s->container, 0x40000000, mr);
799     mr = sysbus_mmio_get_region(sbd_apb_ppc0, 1);
800     memory_region_add_subregion(&s->container, 0x40001000, mr);
801     mr = sysbus_mmio_get_region(sbd_apb_ppc0, 2);
802     memory_region_add_subregion(&s->container, 0x40002000, mr);
803     if (info->has_mhus) {
804         mr = sysbus_mmio_get_region(sbd_apb_ppc0, 3);
805         memory_region_add_subregion(&s->container, 0x40003000, mr);
806         mr = sysbus_mmio_get_region(sbd_apb_ppc0, 4);
807         memory_region_add_subregion(&s->container, 0x40004000, mr);
808     }
809     for (i = 0; i < IOTS_APB_PPC0_NUM_PORTS; i++) {
810         qdev_connect_gpio_out_named(dev_secctl, "apb_ppc0_nonsec", i,
811                                     qdev_get_gpio_in_named(dev_apb_ppc0,
812                                                            "cfg_nonsec", i));
813         qdev_connect_gpio_out_named(dev_secctl, "apb_ppc0_ap", i,
814                                     qdev_get_gpio_in_named(dev_apb_ppc0,
815                                                            "cfg_ap", i));
816     }
817     qdev_connect_gpio_out_named(dev_secctl, "apb_ppc0_irq_enable", 0,
818                                 qdev_get_gpio_in_named(dev_apb_ppc0,
819                                                        "irq_enable", 0));
820     qdev_connect_gpio_out_named(dev_secctl, "apb_ppc0_irq_clear", 0,
821                                 qdev_get_gpio_in_named(dev_apb_ppc0,
822                                                        "irq_clear", 0));
823     qdev_connect_gpio_out(dev_splitter, 0,
824                           qdev_get_gpio_in_named(dev_apb_ppc0,
825                                                  "cfg_sec_resp", 0));
826 
827     /* All the PPC irq lines (from the 2 internal PPCs and the 8 external
828      * ones) are sent individually to the security controller, and also
829      * ORed together to give a single combined PPC interrupt to the NVIC.
830      */
831     if (!object_property_set_int(OBJECT(&s->ppc_irq_orgate),
832                                  "num-lines", NUM_PPCS, errp)) {
833         return;
834     }
835     if (!qdev_realize(DEVICE(&s->ppc_irq_orgate), NULL, errp)) {
836         return;
837     }
838     qdev_connect_gpio_out(DEVICE(&s->ppc_irq_orgate), 0,
839                           armsse_get_common_irq_in(s, 10));
840 
841     /*
842      * 0x40010000 .. 0x4001ffff (and the 0x5001000... secure-only alias):
843      * private per-CPU region (all these devices are SSE-200 only):
844      *  0x50010000: L1 icache control registers
845      *  0x50011000: CPUSECCTRL (CPU local security control registers)
846      *  0x4001f000 and 0x5001f000: CPU_IDENTITY register block
847      */
848     if (info->has_cachectrl) {
849         for (i = 0; i < info->num_cpus; i++) {
850             char *name = g_strdup_printf("cachectrl%d", i);
851             MemoryRegion *mr;
852 
853             qdev_prop_set_string(DEVICE(&s->cachectrl[i]), "name", name);
854             g_free(name);
855             qdev_prop_set_uint64(DEVICE(&s->cachectrl[i]), "size", 0x1000);
856             if (!sysbus_realize(SYS_BUS_DEVICE(&s->cachectrl[i]), errp)) {
857                 return;
858             }
859 
860             mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->cachectrl[i]), 0);
861             memory_region_add_subregion(&s->cpu_container[i], 0x50010000, mr);
862         }
863     }
864     if (info->has_cpusecctrl) {
865         for (i = 0; i < info->num_cpus; i++) {
866             char *name = g_strdup_printf("CPUSECCTRL%d", i);
867             MemoryRegion *mr;
868 
869             qdev_prop_set_string(DEVICE(&s->cpusecctrl[i]), "name", name);
870             g_free(name);
871             qdev_prop_set_uint64(DEVICE(&s->cpusecctrl[i]), "size", 0x1000);
872             if (!sysbus_realize(SYS_BUS_DEVICE(&s->cpusecctrl[i]), errp)) {
873                 return;
874             }
875 
876             mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->cpusecctrl[i]), 0);
877             memory_region_add_subregion(&s->cpu_container[i], 0x50011000, mr);
878         }
879     }
880     if (info->has_cpuid) {
881         for (i = 0; i < info->num_cpus; i++) {
882             MemoryRegion *mr;
883 
884             qdev_prop_set_uint32(DEVICE(&s->cpuid[i]), "CPUID", i);
885             if (!sysbus_realize(SYS_BUS_DEVICE(&s->cpuid[i]), errp)) {
886                 return;
887             }
888 
889             mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->cpuid[i]), 0);
890             memory_region_add_subregion(&s->cpu_container[i], 0x4001F000, mr);
891         }
892     }
893 
894     /* 0x40020000 .. 0x4002ffff : ARMSSE system control peripheral region */
895     /* Devices behind APB PPC1:
896      *   0x4002f000: S32K timer
897      */
898     qdev_prop_set_uint32(DEVICE(&s->s32ktimer), "pclk-frq", S32KCLK);
899     qdev_connect_clock_in(DEVICE(&s->s32ktimer), "pclk", s->s32kclk);
900     if (!sysbus_realize(SYS_BUS_DEVICE(&s->s32ktimer), errp)) {
901         return;
902     }
903     sysbus_connect_irq(SYS_BUS_DEVICE(&s->s32ktimer), 0,
904                        armsse_get_common_irq_in(s, 2));
905     mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->s32ktimer), 0);
906     object_property_set_link(OBJECT(&s->apb_ppc1), "port[0]", OBJECT(mr),
907                              &error_abort);
908 
909     if (!sysbus_realize(SYS_BUS_DEVICE(&s->apb_ppc1), errp)) {
910         return;
911     }
912     mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->apb_ppc1), 0);
913     memory_region_add_subregion(&s->container, 0x4002f000, mr);
914 
915     dev_apb_ppc1 = DEVICE(&s->apb_ppc1);
916     qdev_connect_gpio_out_named(dev_secctl, "apb_ppc1_nonsec", 0,
917                                 qdev_get_gpio_in_named(dev_apb_ppc1,
918                                                        "cfg_nonsec", 0));
919     qdev_connect_gpio_out_named(dev_secctl, "apb_ppc1_ap", 0,
920                                 qdev_get_gpio_in_named(dev_apb_ppc1,
921                                                        "cfg_ap", 0));
922     qdev_connect_gpio_out_named(dev_secctl, "apb_ppc1_irq_enable", 0,
923                                 qdev_get_gpio_in_named(dev_apb_ppc1,
924                                                        "irq_enable", 0));
925     qdev_connect_gpio_out_named(dev_secctl, "apb_ppc1_irq_clear", 0,
926                                 qdev_get_gpio_in_named(dev_apb_ppc1,
927                                                        "irq_clear", 0));
928     qdev_connect_gpio_out(dev_splitter, 1,
929                           qdev_get_gpio_in_named(dev_apb_ppc1,
930                                                  "cfg_sec_resp", 0));
931 
932     if (!object_property_set_int(OBJECT(&s->sysinfo), "SYS_VERSION",
933                                  info->sys_version, errp)) {
934         return;
935     }
936     if (!object_property_set_int(OBJECT(&s->sysinfo), "SYS_CONFIG",
937                                  armsse_sys_config_value(s, info), errp)) {
938         return;
939     }
940     if (!sysbus_realize(SYS_BUS_DEVICE(&s->sysinfo), errp)) {
941         return;
942     }
943     /* System information registers */
944     sysbus_mmio_map(SYS_BUS_DEVICE(&s->sysinfo), 0, 0x40020000);
945     /* System control registers */
946     object_property_set_int(OBJECT(&s->sysctl), "SYS_VERSION",
947                             info->sys_version, &error_abort);
948     object_property_set_int(OBJECT(&s->sysctl), "CPUWAIT_RST",
949                             info->cpuwait_rst, &error_abort);
950     object_property_set_int(OBJECT(&s->sysctl), "INITSVTOR0_RST",
951                             s->init_svtor, &error_abort);
952     object_property_set_int(OBJECT(&s->sysctl), "INITSVTOR1_RST",
953                             s->init_svtor, &error_abort);
954     if (!sysbus_realize(SYS_BUS_DEVICE(&s->sysctl), errp)) {
955         return;
956     }
957     sysbus_mmio_map(SYS_BUS_DEVICE(&s->sysctl), 0, 0x50021000);
958 
959     if (info->has_ppus) {
960         /* CPUnCORE_PPU for each CPU */
961         for (i = 0; i < info->num_cpus; i++) {
962             char *name = g_strdup_printf("CPU%dCORE_PPU", i);
963 
964             map_ppu(s, CPU0CORE_PPU + i, name, 0x50023000 + i * 0x2000);
965             /*
966              * We don't support CPU debug so don't create the
967              * CPU0DEBUG_PPU at 0x50024000 and 0x50026000.
968              */
969             g_free(name);
970         }
971         map_ppu(s, DBG_PPU, "DBG_PPU", 0x50029000);
972 
973         for (i = 0; i < info->sram_banks; i++) {
974             char *name = g_strdup_printf("RAM%d_PPU", i);
975 
976             map_ppu(s, RAM0_PPU + i, name, 0x5002a000 + i * 0x1000);
977             g_free(name);
978         }
979     }
980 
981     /* This OR gate wires together outputs from the secure watchdogs to NMI */
982     if (!object_property_set_int(OBJECT(&s->nmi_orgate), "num-lines", 2,
983                                  errp)) {
984         return;
985     }
986     if (!qdev_realize(DEVICE(&s->nmi_orgate), NULL, errp)) {
987         return;
988     }
989     qdev_connect_gpio_out(DEVICE(&s->nmi_orgate), 0,
990                           qdev_get_gpio_in_named(DEVICE(&s->armv7m), "NMI", 0));
991 
992     qdev_prop_set_uint32(DEVICE(&s->s32kwatchdog), "wdogclk-frq", S32KCLK);
993     qdev_connect_clock_in(DEVICE(&s->s32kwatchdog), "WDOGCLK", s->s32kclk);
994     if (!sysbus_realize(SYS_BUS_DEVICE(&s->s32kwatchdog), errp)) {
995         return;
996     }
997     sysbus_connect_irq(SYS_BUS_DEVICE(&s->s32kwatchdog), 0,
998                        qdev_get_gpio_in(DEVICE(&s->nmi_orgate), 0));
999     sysbus_mmio_map(SYS_BUS_DEVICE(&s->s32kwatchdog), 0, 0x5002e000);
1000 
1001     /* 0x40080000 .. 0x4008ffff : ARMSSE second Base peripheral region */
1002 
1003     qdev_prop_set_uint32(DEVICE(&s->nswatchdog), "wdogclk-frq", s->mainclk_frq);
1004     qdev_connect_clock_in(DEVICE(&s->nswatchdog), "WDOGCLK", s->mainclk);
1005     if (!sysbus_realize(SYS_BUS_DEVICE(&s->nswatchdog), errp)) {
1006         return;
1007     }
1008     sysbus_connect_irq(SYS_BUS_DEVICE(&s->nswatchdog), 0,
1009                        armsse_get_common_irq_in(s, 1));
1010     sysbus_mmio_map(SYS_BUS_DEVICE(&s->nswatchdog), 0, 0x40081000);
1011 
1012     qdev_prop_set_uint32(DEVICE(&s->swatchdog), "wdogclk-frq", s->mainclk_frq);
1013     qdev_connect_clock_in(DEVICE(&s->swatchdog), "WDOGCLK", s->mainclk);
1014     if (!sysbus_realize(SYS_BUS_DEVICE(&s->swatchdog), errp)) {
1015         return;
1016     }
1017     sysbus_connect_irq(SYS_BUS_DEVICE(&s->swatchdog), 0,
1018                        qdev_get_gpio_in(DEVICE(&s->nmi_orgate), 1));
1019     sysbus_mmio_map(SYS_BUS_DEVICE(&s->swatchdog), 0, 0x50081000);
1020 
1021     for (i = 0; i < ARRAY_SIZE(s->ppc_irq_splitter); i++) {
1022         Object *splitter = OBJECT(&s->ppc_irq_splitter[i]);
1023 
1024         if (!object_property_set_int(splitter, "num-lines", 2, errp)) {
1025             return;
1026         }
1027         if (!qdev_realize(DEVICE(splitter), NULL, errp)) {
1028             return;
1029         }
1030     }
1031 
1032     for (i = 0; i < IOTS_NUM_AHB_EXP_PPC; i++) {
1033         char *ppcname = g_strdup_printf("ahb_ppcexp%d", i);
1034 
1035         armsse_forward_ppc(s, ppcname, i);
1036         g_free(ppcname);
1037     }
1038 
1039     for (i = 0; i < IOTS_NUM_APB_EXP_PPC; i++) {
1040         char *ppcname = g_strdup_printf("apb_ppcexp%d", i);
1041 
1042         armsse_forward_ppc(s, ppcname, i + IOTS_NUM_AHB_EXP_PPC);
1043         g_free(ppcname);
1044     }
1045 
1046     for (i = NUM_EXTERNAL_PPCS; i < NUM_PPCS; i++) {
1047         /* Wire up IRQ splitter for internal PPCs */
1048         DeviceState *devs = DEVICE(&s->ppc_irq_splitter[i]);
1049         char *gpioname = g_strdup_printf("apb_ppc%d_irq_status",
1050                                          i - NUM_EXTERNAL_PPCS);
1051         TZPPC *ppc = (i == NUM_EXTERNAL_PPCS) ? &s->apb_ppc0 : &s->apb_ppc1;
1052 
1053         qdev_connect_gpio_out(devs, 0,
1054                               qdev_get_gpio_in_named(dev_secctl, gpioname, 0));
1055         qdev_connect_gpio_out(devs, 1,
1056                               qdev_get_gpio_in(DEVICE(&s->ppc_irq_orgate), i));
1057         qdev_connect_gpio_out_named(DEVICE(ppc), "irq", 0,
1058                                     qdev_get_gpio_in(devs, 0));
1059         g_free(gpioname);
1060     }
1061 
1062     /* Wire up the splitters for the MPC IRQs */
1063     for (i = 0; i < IOTS_NUM_EXP_MPC + info->sram_banks; i++) {
1064         SplitIRQ *splitter = &s->mpc_irq_splitter[i];
1065         DeviceState *dev_splitter = DEVICE(splitter);
1066 
1067         if (!object_property_set_int(OBJECT(splitter), "num-lines", 2,
1068                                      errp)) {
1069             return;
1070         }
1071         if (!qdev_realize(DEVICE(splitter), NULL, errp)) {
1072             return;
1073         }
1074 
1075         if (i < IOTS_NUM_EXP_MPC) {
1076             /* Splitter input is from GPIO input line */
1077             s->mpcexp_status_in[i] = qdev_get_gpio_in(dev_splitter, 0);
1078             qdev_connect_gpio_out(dev_splitter, 0,
1079                                   qdev_get_gpio_in_named(dev_secctl,
1080                                                          "mpcexp_status", i));
1081         } else {
1082             /* Splitter input is from our own MPC */
1083             qdev_connect_gpio_out_named(DEVICE(&s->mpc[i - IOTS_NUM_EXP_MPC]),
1084                                         "irq", 0,
1085                                         qdev_get_gpio_in(dev_splitter, 0));
1086             qdev_connect_gpio_out(dev_splitter, 0,
1087                                   qdev_get_gpio_in_named(dev_secctl,
1088                                                          "mpc_status",
1089                                                          i - IOTS_NUM_EXP_MPC));
1090         }
1091 
1092         qdev_connect_gpio_out(dev_splitter, 1,
1093                               qdev_get_gpio_in(DEVICE(&s->mpc_irq_orgate), i));
1094     }
1095     /* Create GPIO inputs which will pass the line state for our
1096      * mpcexp_irq inputs to the correct splitter devices.
1097      */
1098     qdev_init_gpio_in_named(dev, armsse_mpcexp_status, "mpcexp_status",
1099                             IOTS_NUM_EXP_MPC);
1100 
1101     armsse_forward_sec_resp_cfg(s);
1102 
1103     /* Forward the MSC related signals */
1104     qdev_pass_gpios(dev_secctl, dev, "mscexp_status");
1105     qdev_pass_gpios(dev_secctl, dev, "mscexp_clear");
1106     qdev_pass_gpios(dev_secctl, dev, "mscexp_ns");
1107     qdev_connect_gpio_out_named(dev_secctl, "msc_irq", 0,
1108                                 armsse_get_common_irq_in(s, 11));
1109 
1110     /*
1111      * Expose our container region to the board model; this corresponds
1112      * to the AHB Slave Expansion ports which allow bus master devices
1113      * (eg DMA controllers) in the board model to make transactions into
1114      * devices in the ARMSSE.
1115      */
1116     sysbus_init_mmio(SYS_BUS_DEVICE(s), &s->container);
1117 
1118     system_clock_scale = NANOSECONDS_PER_SECOND / s->mainclk_frq;
1119 }
1120 
1121 static void armsse_idau_check(IDAUInterface *ii, uint32_t address,
1122                               int *iregion, bool *exempt, bool *ns, bool *nsc)
1123 {
1124     /*
1125      * For ARMSSE systems the IDAU responses are simple logical functions
1126      * of the address bits. The NSC attribute is guest-adjustable via the
1127      * NSCCFG register in the security controller.
1128      */
1129     ARMSSE *s = ARM_SSE(ii);
1130     int region = extract32(address, 28, 4);
1131 
1132     *ns = !(region & 1);
1133     *nsc = (region == 1 && (s->nsccfg & 1)) || (region == 3 && (s->nsccfg & 2));
1134     /* 0xe0000000..0xe00fffff and 0xf0000000..0xf00fffff are exempt */
1135     *exempt = (address & 0xeff00000) == 0xe0000000;
1136     *iregion = region;
1137 }
1138 
1139 static const VMStateDescription armsse_vmstate = {
1140     .name = "iotkit",
1141     .version_id = 2,
1142     .minimum_version_id = 2,
1143     .fields = (VMStateField[]) {
1144         VMSTATE_CLOCK(mainclk, ARMSSE),
1145         VMSTATE_CLOCK(s32kclk, ARMSSE),
1146         VMSTATE_UINT32(nsccfg, ARMSSE),
1147         VMSTATE_END_OF_LIST()
1148     }
1149 };
1150 
1151 static void armsse_reset(DeviceState *dev)
1152 {
1153     ARMSSE *s = ARM_SSE(dev);
1154 
1155     s->nsccfg = 0;
1156 }
1157 
1158 static void armsse_class_init(ObjectClass *klass, void *data)
1159 {
1160     DeviceClass *dc = DEVICE_CLASS(klass);
1161     IDAUInterfaceClass *iic = IDAU_INTERFACE_CLASS(klass);
1162     ARMSSEClass *asc = ARM_SSE_CLASS(klass);
1163     const ARMSSEInfo *info = data;
1164 
1165     dc->realize = armsse_realize;
1166     dc->vmsd = &armsse_vmstate;
1167     device_class_set_props(dc, info->props);
1168     dc->reset = armsse_reset;
1169     iic->check = armsse_idau_check;
1170     asc->info = info;
1171 }
1172 
1173 static const TypeInfo armsse_info = {
1174     .name = TYPE_ARM_SSE,
1175     .parent = TYPE_SYS_BUS_DEVICE,
1176     .instance_size = sizeof(ARMSSE),
1177     .class_size = sizeof(ARMSSEClass),
1178     .instance_init = armsse_init,
1179     .abstract = true,
1180     .interfaces = (InterfaceInfo[]) {
1181         { TYPE_IDAU_INTERFACE },
1182         { }
1183     }
1184 };
1185 
1186 static void armsse_register_types(void)
1187 {
1188     int i;
1189 
1190     type_register_static(&armsse_info);
1191 
1192     for (i = 0; i < ARRAY_SIZE(armsse_variants); i++) {
1193         TypeInfo ti = {
1194             .name = armsse_variants[i].name,
1195             .parent = TYPE_ARM_SSE,
1196             .class_init = armsse_class_init,
1197             .class_data = (void *)&armsse_variants[i],
1198         };
1199         type_register(&ti);
1200     }
1201 }
1202 
1203 type_init(armsse_register_types);
1204