xref: /qemu/hw/arm/armsse.c (revision 7cd3a2e0d53ea0dc5e2811082a4f64b52c220ded)
1 /*
2  * Arm SSE (Subsystems for Embedded): IoTKit
3  *
4  * Copyright (c) 2018 Linaro Limited
5  * Written by Peter Maydell
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 or
9  * (at your option) any later version.
10  */
11 
12 #include "qemu/osdep.h"
13 #include "qemu/log.h"
14 #include "qapi/error.h"
15 #include "trace.h"
16 #include "hw/sysbus.h"
17 #include "hw/registerfields.h"
18 #include "hw/arm/armsse.h"
19 #include "hw/arm/arm.h"
20 
21 struct ARMSSEInfo {
22     const char *name;
23     int sram_banks;
24     int num_cpus;
25 };
26 
27 static const ARMSSEInfo armsse_variants[] = {
28     {
29         .name = TYPE_IOTKIT,
30         .sram_banks = 1,
31         .num_cpus = 1,
32     },
33 };
34 
35 /* Clock frequency in HZ of the 32KHz "slow clock" */
36 #define S32KCLK (32 * 1000)
37 
38 /* Is internal IRQ n shared between CPUs in a multi-core SSE ? */
39 static bool irq_is_common[32] = {
40     [0 ... 5] = true,
41     /* 6, 7: per-CPU MHU interrupts */
42     [8 ... 12] = true,
43     /* 13: per-CPU icache interrupt */
44     /* 14: reserved */
45     [15 ... 20] = true,
46     /* 21: reserved */
47     [22 ... 26] = true,
48     /* 27: reserved */
49     /* 28, 29: per-CPU CTI interrupts */
50     /* 30, 31: reserved */
51 };
52 
53 /* Create an alias region of @size bytes starting at @base
54  * which mirrors the memory starting at @orig.
55  */
56 static void make_alias(ARMSSE *s, MemoryRegion *mr, const char *name,
57                        hwaddr base, hwaddr size, hwaddr orig)
58 {
59     memory_region_init_alias(mr, NULL, name, &s->container, orig, size);
60     /* The alias is even lower priority than unimplemented_device regions */
61     memory_region_add_subregion_overlap(&s->container, base, mr, -1500);
62 }
63 
64 static void irq_status_forwarder(void *opaque, int n, int level)
65 {
66     qemu_irq destirq = opaque;
67 
68     qemu_set_irq(destirq, level);
69 }
70 
71 static void nsccfg_handler(void *opaque, int n, int level)
72 {
73     ARMSSE *s = ARMSSE(opaque);
74 
75     s->nsccfg = level;
76 }
77 
78 static void armsse_forward_ppc(ARMSSE *s, const char *ppcname, int ppcnum)
79 {
80     /* Each of the 4 AHB and 4 APB PPCs that might be present in a
81      * system using the ARMSSE has a collection of control lines which
82      * are provided by the security controller and which we want to
83      * expose as control lines on the ARMSSE device itself, so the
84      * code using the ARMSSE can wire them up to the PPCs.
85      */
86     SplitIRQ *splitter = &s->ppc_irq_splitter[ppcnum];
87     DeviceState *armssedev = DEVICE(s);
88     DeviceState *dev_secctl = DEVICE(&s->secctl);
89     DeviceState *dev_splitter = DEVICE(splitter);
90     char *name;
91 
92     name = g_strdup_printf("%s_nonsec", ppcname);
93     qdev_pass_gpios(dev_secctl, armssedev, name);
94     g_free(name);
95     name = g_strdup_printf("%s_ap", ppcname);
96     qdev_pass_gpios(dev_secctl, armssedev, name);
97     g_free(name);
98     name = g_strdup_printf("%s_irq_enable", ppcname);
99     qdev_pass_gpios(dev_secctl, armssedev, name);
100     g_free(name);
101     name = g_strdup_printf("%s_irq_clear", ppcname);
102     qdev_pass_gpios(dev_secctl, armssedev, name);
103     g_free(name);
104 
105     /* irq_status is a little more tricky, because we need to
106      * split it so we can send it both to the security controller
107      * and to our OR gate for the NVIC interrupt line.
108      * Connect up the splitter's outputs, and create a GPIO input
109      * which will pass the line state to the input splitter.
110      */
111     name = g_strdup_printf("%s_irq_status", ppcname);
112     qdev_connect_gpio_out(dev_splitter, 0,
113                           qdev_get_gpio_in_named(dev_secctl,
114                                                  name, 0));
115     qdev_connect_gpio_out(dev_splitter, 1,
116                           qdev_get_gpio_in(DEVICE(&s->ppc_irq_orgate), ppcnum));
117     s->irq_status_in[ppcnum] = qdev_get_gpio_in(dev_splitter, 0);
118     qdev_init_gpio_in_named_with_opaque(armssedev, irq_status_forwarder,
119                                         s->irq_status_in[ppcnum], name, 1);
120     g_free(name);
121 }
122 
123 static void armsse_forward_sec_resp_cfg(ARMSSE *s)
124 {
125     /* Forward the 3rd output from the splitter device as a
126      * named GPIO output of the armsse object.
127      */
128     DeviceState *dev = DEVICE(s);
129     DeviceState *dev_splitter = DEVICE(&s->sec_resp_splitter);
130 
131     qdev_init_gpio_out_named(dev, &s->sec_resp_cfg, "sec_resp_cfg", 1);
132     s->sec_resp_cfg_in = qemu_allocate_irq(irq_status_forwarder,
133                                            s->sec_resp_cfg, 1);
134     qdev_connect_gpio_out(dev_splitter, 2, s->sec_resp_cfg_in);
135 }
136 
137 static void armsse_init(Object *obj)
138 {
139     ARMSSE *s = ARMSSE(obj);
140     ARMSSEClass *asc = ARMSSE_GET_CLASS(obj);
141     const ARMSSEInfo *info = asc->info;
142     int i;
143 
144     assert(info->sram_banks <= MAX_SRAM_BANKS);
145     assert(info->num_cpus <= SSE_MAX_CPUS);
146 
147     memory_region_init(&s->container, obj, "armsse-container", UINT64_MAX);
148 
149     for (i = 0; i < info->num_cpus; i++) {
150         /*
151          * We put each CPU in its own cluster as they are logically
152          * distinct and may be configured differently.
153          */
154         char *name;
155 
156         name = g_strdup_printf("cluster%d", i);
157         object_initialize_child(obj, name, &s->cluster[i],
158                                 sizeof(s->cluster[i]), TYPE_CPU_CLUSTER,
159                                 &error_abort, NULL);
160         qdev_prop_set_uint32(DEVICE(&s->cluster[i]), "cluster-id", i);
161         g_free(name);
162 
163         name = g_strdup_printf("armv7m%d", i);
164         sysbus_init_child_obj(OBJECT(&s->cluster[i]), name,
165                               &s->armv7m[i], sizeof(s->armv7m), TYPE_ARMV7M);
166         qdev_prop_set_string(DEVICE(&s->armv7m[i]), "cpu-type",
167                              ARM_CPU_TYPE_NAME("cortex-m33"));
168         g_free(name);
169         name = g_strdup_printf("arm-sse-cpu-container%d", i);
170         memory_region_init(&s->cpu_container[i], obj, name, UINT64_MAX);
171         g_free(name);
172         if (i > 0) {
173             name = g_strdup_printf("arm-sse-container-alias%d", i);
174             memory_region_init_alias(&s->container_alias[i - 1], obj,
175                                      name, &s->container, 0, UINT64_MAX);
176             g_free(name);
177         }
178     }
179 
180     sysbus_init_child_obj(obj, "secctl", &s->secctl, sizeof(s->secctl),
181                           TYPE_IOTKIT_SECCTL);
182     sysbus_init_child_obj(obj, "apb-ppc0", &s->apb_ppc0, sizeof(s->apb_ppc0),
183                           TYPE_TZ_PPC);
184     sysbus_init_child_obj(obj, "apb-ppc1", &s->apb_ppc1, sizeof(s->apb_ppc1),
185                           TYPE_TZ_PPC);
186     for (i = 0; i < info->sram_banks; i++) {
187         char *name = g_strdup_printf("mpc%d", i);
188         sysbus_init_child_obj(obj, name, &s->mpc[i],
189                               sizeof(s->mpc[i]), TYPE_TZ_MPC);
190         g_free(name);
191     }
192     object_initialize_child(obj, "mpc-irq-orgate", &s->mpc_irq_orgate,
193                             sizeof(s->mpc_irq_orgate), TYPE_OR_IRQ,
194                             &error_abort, NULL);
195 
196     for (i = 0; i < IOTS_NUM_EXP_MPC + info->sram_banks; i++) {
197         char *name = g_strdup_printf("mpc-irq-splitter-%d", i);
198         SplitIRQ *splitter = &s->mpc_irq_splitter[i];
199 
200         object_initialize_child(obj, name, splitter, sizeof(*splitter),
201                                 TYPE_SPLIT_IRQ, &error_abort, NULL);
202         g_free(name);
203     }
204     sysbus_init_child_obj(obj, "timer0", &s->timer0, sizeof(s->timer0),
205                           TYPE_CMSDK_APB_TIMER);
206     sysbus_init_child_obj(obj, "timer1", &s->timer1, sizeof(s->timer1),
207                           TYPE_CMSDK_APB_TIMER);
208     sysbus_init_child_obj(obj, "s32ktimer", &s->s32ktimer, sizeof(s->s32ktimer),
209                           TYPE_CMSDK_APB_TIMER);
210     sysbus_init_child_obj(obj, "dualtimer", &s->dualtimer, sizeof(s->dualtimer),
211                           TYPE_CMSDK_APB_DUALTIMER);
212     sysbus_init_child_obj(obj, "s32kwatchdog", &s->s32kwatchdog,
213                           sizeof(s->s32kwatchdog), TYPE_CMSDK_APB_WATCHDOG);
214     sysbus_init_child_obj(obj, "nswatchdog", &s->nswatchdog,
215                           sizeof(s->nswatchdog), TYPE_CMSDK_APB_WATCHDOG);
216     sysbus_init_child_obj(obj, "swatchdog", &s->swatchdog,
217                           sizeof(s->swatchdog), TYPE_CMSDK_APB_WATCHDOG);
218     sysbus_init_child_obj(obj, "armsse-sysctl", &s->sysctl,
219                           sizeof(s->sysctl), TYPE_IOTKIT_SYSCTL);
220     sysbus_init_child_obj(obj, "armsse-sysinfo", &s->sysinfo,
221                           sizeof(s->sysinfo), TYPE_IOTKIT_SYSINFO);
222     object_initialize_child(obj, "nmi-orgate", &s->nmi_orgate,
223                             sizeof(s->nmi_orgate), TYPE_OR_IRQ,
224                             &error_abort, NULL);
225     object_initialize_child(obj, "ppc-irq-orgate", &s->ppc_irq_orgate,
226                             sizeof(s->ppc_irq_orgate), TYPE_OR_IRQ,
227                             &error_abort, NULL);
228     object_initialize_child(obj, "sec-resp-splitter", &s->sec_resp_splitter,
229                             sizeof(s->sec_resp_splitter), TYPE_SPLIT_IRQ,
230                             &error_abort, NULL);
231     for (i = 0; i < ARRAY_SIZE(s->ppc_irq_splitter); i++) {
232         char *name = g_strdup_printf("ppc-irq-splitter-%d", i);
233         SplitIRQ *splitter = &s->ppc_irq_splitter[i];
234 
235         object_initialize_child(obj, name, splitter, sizeof(*splitter),
236                                 TYPE_SPLIT_IRQ, &error_abort, NULL);
237         g_free(name);
238     }
239     if (info->num_cpus > 1) {
240         for (i = 0; i < ARRAY_SIZE(s->cpu_irq_splitter); i++) {
241             if (irq_is_common[i]) {
242                 char *name = g_strdup_printf("cpu-irq-splitter%d", i);
243                 SplitIRQ *splitter = &s->cpu_irq_splitter[i];
244 
245                 object_initialize_child(obj, name, splitter, sizeof(*splitter),
246                                         TYPE_SPLIT_IRQ, &error_abort, NULL);
247                 g_free(name);
248             }
249         }
250     }
251 }
252 
253 static void armsse_exp_irq(void *opaque, int n, int level)
254 {
255     qemu_irq *irqarray = opaque;
256 
257     qemu_set_irq(irqarray[n], level);
258 }
259 
260 static void armsse_mpcexp_status(void *opaque, int n, int level)
261 {
262     ARMSSE *s = ARMSSE(opaque);
263     qemu_set_irq(s->mpcexp_status_in[n], level);
264 }
265 
266 static qemu_irq armsse_get_common_irq_in(ARMSSE *s, int irqno)
267 {
268     /*
269      * Return a qemu_irq which can be used to signal IRQ n to
270      * all CPUs in the SSE.
271      */
272     ARMSSEClass *asc = ARMSSE_GET_CLASS(s);
273     const ARMSSEInfo *info = asc->info;
274 
275     assert(irq_is_common[irqno]);
276 
277     if (info->num_cpus == 1) {
278         /* Only one CPU -- just connect directly to it */
279         return qdev_get_gpio_in(DEVICE(&s->armv7m[0]), irqno);
280     } else {
281         /* Connect to the splitter which feeds all CPUs */
282         return qdev_get_gpio_in(DEVICE(&s->cpu_irq_splitter[irqno]), 0);
283     }
284 }
285 
286 static void armsse_realize(DeviceState *dev, Error **errp)
287 {
288     ARMSSE *s = ARMSSE(dev);
289     ARMSSEClass *asc = ARMSSE_GET_CLASS(dev);
290     const ARMSSEInfo *info = asc->info;
291     int i;
292     MemoryRegion *mr;
293     Error *err = NULL;
294     SysBusDevice *sbd_apb_ppc0;
295     SysBusDevice *sbd_secctl;
296     DeviceState *dev_apb_ppc0;
297     DeviceState *dev_apb_ppc1;
298     DeviceState *dev_secctl;
299     DeviceState *dev_splitter;
300     uint32_t addr_width_max;
301 
302     if (!s->board_memory) {
303         error_setg(errp, "memory property was not set");
304         return;
305     }
306 
307     if (!s->mainclk_frq) {
308         error_setg(errp, "MAINCLK property was not set");
309         return;
310     }
311 
312     /* max SRAM_ADDR_WIDTH: 24 - log2(SRAM_NUM_BANK) */
313     assert(is_power_of_2(info->sram_banks));
314     addr_width_max = 24 - ctz32(info->sram_banks);
315     if (s->sram_addr_width < 1 || s->sram_addr_width > addr_width_max) {
316         error_setg(errp, "SRAM_ADDR_WIDTH must be between 1 and %d",
317                    addr_width_max);
318         return;
319     }
320 
321     /* Handling of which devices should be available only to secure
322      * code is usually done differently for M profile than for A profile.
323      * Instead of putting some devices only into the secure address space,
324      * devices exist in both address spaces but with hard-wired security
325      * permissions that will cause the CPU to fault for non-secure accesses.
326      *
327      * The ARMSSE has an IDAU (Implementation Defined Access Unit),
328      * which specifies hard-wired security permissions for different
329      * areas of the physical address space. For the ARMSSE IDAU, the
330      * top 4 bits of the physical address are the IDAU region ID, and
331      * if bit 28 (ie the lowest bit of the ID) is 0 then this is an NS
332      * region, otherwise it is an S region.
333      *
334      * The various devices and RAMs are generally all mapped twice,
335      * once into a region that the IDAU defines as secure and once
336      * into a non-secure region. They sit behind either a Memory
337      * Protection Controller (for RAM) or a Peripheral Protection
338      * Controller (for devices), which allow a more fine grained
339      * configuration of whether non-secure accesses are permitted.
340      *
341      * (The other place that guest software can configure security
342      * permissions is in the architected SAU (Security Attribution
343      * Unit), which is entirely inside the CPU. The IDAU can upgrade
344      * the security attributes for a region to more restrictive than
345      * the SAU specifies, but cannot downgrade them.)
346      *
347      * 0x10000000..0x1fffffff  alias of 0x00000000..0x0fffffff
348      * 0x20000000..0x2007ffff  32KB FPGA block RAM
349      * 0x30000000..0x3fffffff  alias of 0x20000000..0x2fffffff
350      * 0x40000000..0x4000ffff  base peripheral region 1
351      * 0x40010000..0x4001ffff  CPU peripherals (none for ARMSSE)
352      * 0x40020000..0x4002ffff  system control element peripherals
353      * 0x40080000..0x400fffff  base peripheral region 2
354      * 0x50000000..0x5fffffff  alias of 0x40000000..0x4fffffff
355      */
356 
357     memory_region_add_subregion_overlap(&s->container, 0, s->board_memory, -2);
358 
359     for (i = 0; i < info->num_cpus; i++) {
360         DeviceState *cpudev = DEVICE(&s->armv7m[i]);
361         Object *cpuobj = OBJECT(&s->armv7m[i]);
362         int j;
363         char *gpioname;
364 
365         qdev_prop_set_uint32(cpudev, "num-irq", s->exp_numirq + 32);
366         /*
367          * In real hardware the initial Secure VTOR is set from the INITSVTOR0
368          * register in the IoT Kit System Control Register block, and the
369          * initial value of that is in turn specifiable by the FPGA that
370          * instantiates the IoT Kit. In QEMU we don't implement this wrinkle,
371          * and simply set the CPU's init-svtor to the IoT Kit default value.
372          * In SSE-200 the situation is similar, except that the default value
373          * is a reset-time signal input. Typically a board using the SSE-200
374          * will have a system control processor whose boot firmware initializes
375          * the INITSVTOR* registers before powering up the CPUs in any case,
376          * so the hardware's default value doesn't matter. QEMU doesn't emulate
377          * the control processor, so instead we behave in the way that the
378          * firmware does. All boards currently known about have firmware that
379          * sets the INITSVTOR0 and INITSVTOR1 registers to 0x10000000, like the
380          * IoTKit default. We can make this more configurable if necessary.
381          */
382         qdev_prop_set_uint32(cpudev, "init-svtor", 0x10000000);
383         /*
384          * Start all CPUs except CPU0 powered down. In real hardware it is
385          * a configurable property of the SSE-200 which CPUs start powered up
386          * (via the CPUWAIT0_RST and CPUWAIT1_RST parameters), but since all
387          * the boards we care about start CPU0 and leave CPU1 powered off,
388          * we hard-code that for now. We can add QOM properties for this
389          * later if necessary.
390          */
391         if (i > 0) {
392             object_property_set_bool(cpuobj, true, "start-powered-off", &err);
393             if (err) {
394                 error_propagate(errp, err);
395                 return;
396             }
397         }
398 
399         if (i > 0) {
400             memory_region_add_subregion_overlap(&s->cpu_container[i], 0,
401                                                 &s->container_alias[i - 1], -1);
402         } else {
403             memory_region_add_subregion_overlap(&s->cpu_container[i], 0,
404                                                 &s->container, -1);
405         }
406         object_property_set_link(cpuobj, OBJECT(&s->cpu_container[i]),
407                                  "memory", &err);
408         if (err) {
409             error_propagate(errp, err);
410             return;
411         }
412         object_property_set_link(cpuobj, OBJECT(s), "idau", &err);
413         if (err) {
414             error_propagate(errp, err);
415             return;
416         }
417         object_property_set_bool(cpuobj, true, "realized", &err);
418         if (err) {
419             error_propagate(errp, err);
420             return;
421         }
422         /*
423          * The cluster must be realized after the armv7m container, as
424          * the container's CPU object is only created on realize, and the
425          * CPU must exist and have been parented into the cluster before
426          * the cluster is realized.
427          */
428         object_property_set_bool(OBJECT(&s->cluster[i]),
429                                  true, "realized", &err);
430         if (err) {
431             error_propagate(errp, err);
432             return;
433         }
434 
435         /* Connect EXP_IRQ/EXP_CPUn_IRQ GPIOs to the NVIC's lines 32 and up */
436         s->exp_irqs[i] = g_new(qemu_irq, s->exp_numirq);
437         for (j = 0; j < s->exp_numirq; j++) {
438             s->exp_irqs[i][j] = qdev_get_gpio_in(cpudev, i + 32);
439         }
440         if (i == 0) {
441             gpioname = g_strdup("EXP_IRQ");
442         } else {
443             gpioname = g_strdup_printf("EXP_CPU%d_IRQ", i);
444         }
445         qdev_init_gpio_in_named_with_opaque(dev, armsse_exp_irq,
446                                             s->exp_irqs[i],
447                                             gpioname, s->exp_numirq);
448         g_free(gpioname);
449     }
450 
451     /* Wire up the splitters that connect common IRQs to all CPUs */
452     if (info->num_cpus > 1) {
453         for (i = 0; i < ARRAY_SIZE(s->cpu_irq_splitter); i++) {
454             if (irq_is_common[i]) {
455                 Object *splitter = OBJECT(&s->cpu_irq_splitter[i]);
456                 DeviceState *devs = DEVICE(splitter);
457                 int cpunum;
458 
459                 object_property_set_int(splitter, info->num_cpus,
460                                         "num-lines", &err);
461                 if (err) {
462                     error_propagate(errp, err);
463                     return;
464                 }
465                 object_property_set_bool(splitter, true, "realized", &err);
466                 if (err) {
467                     error_propagate(errp, err);
468                     return;
469                 }
470                 for (cpunum = 0; cpunum < info->num_cpus; cpunum++) {
471                     DeviceState *cpudev = DEVICE(&s->armv7m[cpunum]);
472 
473                     qdev_connect_gpio_out(devs, cpunum,
474                                           qdev_get_gpio_in(cpudev, i));
475                 }
476             }
477         }
478     }
479 
480     /* Set up the big aliases first */
481     make_alias(s, &s->alias1, "alias 1", 0x10000000, 0x10000000, 0x00000000);
482     make_alias(s, &s->alias2, "alias 2", 0x30000000, 0x10000000, 0x20000000);
483     /* The 0x50000000..0x5fffffff region is not a pure alias: it has
484      * a few extra devices that only appear there (generally the
485      * control interfaces for the protection controllers).
486      * We implement this by mapping those devices over the top of this
487      * alias MR at a higher priority.
488      */
489     make_alias(s, &s->alias3, "alias 3", 0x50000000, 0x10000000, 0x40000000);
490 
491 
492     /* Security controller */
493     object_property_set_bool(OBJECT(&s->secctl), true, "realized", &err);
494     if (err) {
495         error_propagate(errp, err);
496         return;
497     }
498     sbd_secctl = SYS_BUS_DEVICE(&s->secctl);
499     dev_secctl = DEVICE(&s->secctl);
500     sysbus_mmio_map(sbd_secctl, 0, 0x50080000);
501     sysbus_mmio_map(sbd_secctl, 1, 0x40080000);
502 
503     s->nsc_cfg_in = qemu_allocate_irq(nsccfg_handler, s, 1);
504     qdev_connect_gpio_out_named(dev_secctl, "nsc_cfg", 0, s->nsc_cfg_in);
505 
506     /* The sec_resp_cfg output from the security controller must be split into
507      * multiple lines, one for each of the PPCs within the ARMSSE and one
508      * that will be an output from the ARMSSE to the system.
509      */
510     object_property_set_int(OBJECT(&s->sec_resp_splitter), 3,
511                             "num-lines", &err);
512     if (err) {
513         error_propagate(errp, err);
514         return;
515     }
516     object_property_set_bool(OBJECT(&s->sec_resp_splitter), true,
517                              "realized", &err);
518     if (err) {
519         error_propagate(errp, err);
520         return;
521     }
522     dev_splitter = DEVICE(&s->sec_resp_splitter);
523     qdev_connect_gpio_out_named(dev_secctl, "sec_resp_cfg", 0,
524                                 qdev_get_gpio_in(dev_splitter, 0));
525 
526     /* Each SRAM bank lives behind its own Memory Protection Controller */
527     for (i = 0; i < info->sram_banks; i++) {
528         char *ramname = g_strdup_printf("armsse.sram%d", i);
529         SysBusDevice *sbd_mpc;
530         uint32_t sram_bank_size = 1 << s->sram_addr_width;
531 
532         memory_region_init_ram(&s->sram[i], NULL, ramname,
533                                sram_bank_size, &err);
534         g_free(ramname);
535         if (err) {
536             error_propagate(errp, err);
537             return;
538         }
539         object_property_set_link(OBJECT(&s->mpc[i]), OBJECT(&s->sram[i]),
540                                  "downstream", &err);
541         if (err) {
542             error_propagate(errp, err);
543             return;
544         }
545         object_property_set_bool(OBJECT(&s->mpc[i]), true, "realized", &err);
546         if (err) {
547             error_propagate(errp, err);
548             return;
549         }
550         /* Map the upstream end of the MPC into the right place... */
551         sbd_mpc = SYS_BUS_DEVICE(&s->mpc[i]);
552         memory_region_add_subregion(&s->container,
553                                     0x20000000 + i * sram_bank_size,
554                                     sysbus_mmio_get_region(sbd_mpc, 1));
555         /* ...and its register interface */
556         memory_region_add_subregion(&s->container, 0x50083000 + i * 0x1000,
557                                     sysbus_mmio_get_region(sbd_mpc, 0));
558     }
559 
560     /* We must OR together lines from the MPC splitters to go to the NVIC */
561     object_property_set_int(OBJECT(&s->mpc_irq_orgate),
562                             IOTS_NUM_EXP_MPC + info->sram_banks,
563                             "num-lines", &err);
564     if (err) {
565         error_propagate(errp, err);
566         return;
567     }
568     object_property_set_bool(OBJECT(&s->mpc_irq_orgate), true,
569                              "realized", &err);
570     if (err) {
571         error_propagate(errp, err);
572         return;
573     }
574     qdev_connect_gpio_out(DEVICE(&s->mpc_irq_orgate), 0,
575                           armsse_get_common_irq_in(s, 9));
576 
577     /* Devices behind APB PPC0:
578      *   0x40000000: timer0
579      *   0x40001000: timer1
580      *   0x40002000: dual timer
581      * We must configure and realize each downstream device and connect
582      * it to the appropriate PPC port; then we can realize the PPC and
583      * map its upstream ends to the right place in the container.
584      */
585     qdev_prop_set_uint32(DEVICE(&s->timer0), "pclk-frq", s->mainclk_frq);
586     object_property_set_bool(OBJECT(&s->timer0), true, "realized", &err);
587     if (err) {
588         error_propagate(errp, err);
589         return;
590     }
591     sysbus_connect_irq(SYS_BUS_DEVICE(&s->timer0), 0,
592                        armsse_get_common_irq_in(s, 3));
593     mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->timer0), 0);
594     object_property_set_link(OBJECT(&s->apb_ppc0), OBJECT(mr), "port[0]", &err);
595     if (err) {
596         error_propagate(errp, err);
597         return;
598     }
599 
600     qdev_prop_set_uint32(DEVICE(&s->timer1), "pclk-frq", s->mainclk_frq);
601     object_property_set_bool(OBJECT(&s->timer1), true, "realized", &err);
602     if (err) {
603         error_propagate(errp, err);
604         return;
605     }
606     sysbus_connect_irq(SYS_BUS_DEVICE(&s->timer1), 0,
607                        armsse_get_common_irq_in(s, 4));
608     mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->timer1), 0);
609     object_property_set_link(OBJECT(&s->apb_ppc0), OBJECT(mr), "port[1]", &err);
610     if (err) {
611         error_propagate(errp, err);
612         return;
613     }
614 
615 
616     qdev_prop_set_uint32(DEVICE(&s->dualtimer), "pclk-frq", s->mainclk_frq);
617     object_property_set_bool(OBJECT(&s->dualtimer), true, "realized", &err);
618     if (err) {
619         error_propagate(errp, err);
620         return;
621     }
622     sysbus_connect_irq(SYS_BUS_DEVICE(&s->dualtimer), 0,
623                        armsse_get_common_irq_in(s, 5));
624     mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->dualtimer), 0);
625     object_property_set_link(OBJECT(&s->apb_ppc0), OBJECT(mr), "port[2]", &err);
626     if (err) {
627         error_propagate(errp, err);
628         return;
629     }
630 
631     object_property_set_bool(OBJECT(&s->apb_ppc0), true, "realized", &err);
632     if (err) {
633         error_propagate(errp, err);
634         return;
635     }
636 
637     sbd_apb_ppc0 = SYS_BUS_DEVICE(&s->apb_ppc0);
638     dev_apb_ppc0 = DEVICE(&s->apb_ppc0);
639 
640     mr = sysbus_mmio_get_region(sbd_apb_ppc0, 0);
641     memory_region_add_subregion(&s->container, 0x40000000, mr);
642     mr = sysbus_mmio_get_region(sbd_apb_ppc0, 1);
643     memory_region_add_subregion(&s->container, 0x40001000, mr);
644     mr = sysbus_mmio_get_region(sbd_apb_ppc0, 2);
645     memory_region_add_subregion(&s->container, 0x40002000, mr);
646     for (i = 0; i < IOTS_APB_PPC0_NUM_PORTS; i++) {
647         qdev_connect_gpio_out_named(dev_secctl, "apb_ppc0_nonsec", i,
648                                     qdev_get_gpio_in_named(dev_apb_ppc0,
649                                                            "cfg_nonsec", i));
650         qdev_connect_gpio_out_named(dev_secctl, "apb_ppc0_ap", i,
651                                     qdev_get_gpio_in_named(dev_apb_ppc0,
652                                                            "cfg_ap", i));
653     }
654     qdev_connect_gpio_out_named(dev_secctl, "apb_ppc0_irq_enable", 0,
655                                 qdev_get_gpio_in_named(dev_apb_ppc0,
656                                                        "irq_enable", 0));
657     qdev_connect_gpio_out_named(dev_secctl, "apb_ppc0_irq_clear", 0,
658                                 qdev_get_gpio_in_named(dev_apb_ppc0,
659                                                        "irq_clear", 0));
660     qdev_connect_gpio_out(dev_splitter, 0,
661                           qdev_get_gpio_in_named(dev_apb_ppc0,
662                                                  "cfg_sec_resp", 0));
663 
664     /* All the PPC irq lines (from the 2 internal PPCs and the 8 external
665      * ones) are sent individually to the security controller, and also
666      * ORed together to give a single combined PPC interrupt to the NVIC.
667      */
668     object_property_set_int(OBJECT(&s->ppc_irq_orgate),
669                             NUM_PPCS, "num-lines", &err);
670     if (err) {
671         error_propagate(errp, err);
672         return;
673     }
674     object_property_set_bool(OBJECT(&s->ppc_irq_orgate), true,
675                              "realized", &err);
676     if (err) {
677         error_propagate(errp, err);
678         return;
679     }
680     qdev_connect_gpio_out(DEVICE(&s->ppc_irq_orgate), 0,
681                           armsse_get_common_irq_in(s, 10));
682 
683     /* 0x40010000 .. 0x4001ffff: private CPU region: unused in IoTKit */
684 
685     /* 0x40020000 .. 0x4002ffff : ARMSSE system control peripheral region */
686     /* Devices behind APB PPC1:
687      *   0x4002f000: S32K timer
688      */
689     qdev_prop_set_uint32(DEVICE(&s->s32ktimer), "pclk-frq", S32KCLK);
690     object_property_set_bool(OBJECT(&s->s32ktimer), true, "realized", &err);
691     if (err) {
692         error_propagate(errp, err);
693         return;
694     }
695     sysbus_connect_irq(SYS_BUS_DEVICE(&s->s32ktimer), 0,
696                        armsse_get_common_irq_in(s, 2));
697     mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->s32ktimer), 0);
698     object_property_set_link(OBJECT(&s->apb_ppc1), OBJECT(mr), "port[0]", &err);
699     if (err) {
700         error_propagate(errp, err);
701         return;
702     }
703 
704     object_property_set_bool(OBJECT(&s->apb_ppc1), true, "realized", &err);
705     if (err) {
706         error_propagate(errp, err);
707         return;
708     }
709     mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->apb_ppc1), 0);
710     memory_region_add_subregion(&s->container, 0x4002f000, mr);
711 
712     dev_apb_ppc1 = DEVICE(&s->apb_ppc1);
713     qdev_connect_gpio_out_named(dev_secctl, "apb_ppc1_nonsec", 0,
714                                 qdev_get_gpio_in_named(dev_apb_ppc1,
715                                                        "cfg_nonsec", 0));
716     qdev_connect_gpio_out_named(dev_secctl, "apb_ppc1_ap", 0,
717                                 qdev_get_gpio_in_named(dev_apb_ppc1,
718                                                        "cfg_ap", 0));
719     qdev_connect_gpio_out_named(dev_secctl, "apb_ppc1_irq_enable", 0,
720                                 qdev_get_gpio_in_named(dev_apb_ppc1,
721                                                        "irq_enable", 0));
722     qdev_connect_gpio_out_named(dev_secctl, "apb_ppc1_irq_clear", 0,
723                                 qdev_get_gpio_in_named(dev_apb_ppc1,
724                                                        "irq_clear", 0));
725     qdev_connect_gpio_out(dev_splitter, 1,
726                           qdev_get_gpio_in_named(dev_apb_ppc1,
727                                                  "cfg_sec_resp", 0));
728 
729     object_property_set_bool(OBJECT(&s->sysinfo), true, "realized", &err);
730     if (err) {
731         error_propagate(errp, err);
732         return;
733     }
734     /* System information registers */
735     sysbus_mmio_map(SYS_BUS_DEVICE(&s->sysinfo), 0, 0x40020000);
736     /* System control registers */
737     object_property_set_bool(OBJECT(&s->sysctl), true, "realized", &err);
738     if (err) {
739         error_propagate(errp, err);
740         return;
741     }
742     sysbus_mmio_map(SYS_BUS_DEVICE(&s->sysctl), 0, 0x50021000);
743 
744     /* This OR gate wires together outputs from the secure watchdogs to NMI */
745     object_property_set_int(OBJECT(&s->nmi_orgate), 2, "num-lines", &err);
746     if (err) {
747         error_propagate(errp, err);
748         return;
749     }
750     object_property_set_bool(OBJECT(&s->nmi_orgate), true, "realized", &err);
751     if (err) {
752         error_propagate(errp, err);
753         return;
754     }
755     qdev_connect_gpio_out(DEVICE(&s->nmi_orgate), 0,
756                           qdev_get_gpio_in_named(DEVICE(&s->armv7m), "NMI", 0));
757 
758     qdev_prop_set_uint32(DEVICE(&s->s32kwatchdog), "wdogclk-frq", S32KCLK);
759     object_property_set_bool(OBJECT(&s->s32kwatchdog), true, "realized", &err);
760     if (err) {
761         error_propagate(errp, err);
762         return;
763     }
764     sysbus_connect_irq(SYS_BUS_DEVICE(&s->s32kwatchdog), 0,
765                        qdev_get_gpio_in(DEVICE(&s->nmi_orgate), 0));
766     sysbus_mmio_map(SYS_BUS_DEVICE(&s->s32kwatchdog), 0, 0x5002e000);
767 
768     /* 0x40080000 .. 0x4008ffff : ARMSSE second Base peripheral region */
769 
770     qdev_prop_set_uint32(DEVICE(&s->nswatchdog), "wdogclk-frq", s->mainclk_frq);
771     object_property_set_bool(OBJECT(&s->nswatchdog), true, "realized", &err);
772     if (err) {
773         error_propagate(errp, err);
774         return;
775     }
776     sysbus_connect_irq(SYS_BUS_DEVICE(&s->nswatchdog), 0,
777                        armsse_get_common_irq_in(s, 1));
778     sysbus_mmio_map(SYS_BUS_DEVICE(&s->nswatchdog), 0, 0x40081000);
779 
780     qdev_prop_set_uint32(DEVICE(&s->swatchdog), "wdogclk-frq", s->mainclk_frq);
781     object_property_set_bool(OBJECT(&s->swatchdog), true, "realized", &err);
782     if (err) {
783         error_propagate(errp, err);
784         return;
785     }
786     sysbus_connect_irq(SYS_BUS_DEVICE(&s->swatchdog), 0,
787                        qdev_get_gpio_in(DEVICE(&s->nmi_orgate), 1));
788     sysbus_mmio_map(SYS_BUS_DEVICE(&s->swatchdog), 0, 0x50081000);
789 
790     for (i = 0; i < ARRAY_SIZE(s->ppc_irq_splitter); i++) {
791         Object *splitter = OBJECT(&s->ppc_irq_splitter[i]);
792 
793         object_property_set_int(splitter, 2, "num-lines", &err);
794         if (err) {
795             error_propagate(errp, err);
796             return;
797         }
798         object_property_set_bool(splitter, true, "realized", &err);
799         if (err) {
800             error_propagate(errp, err);
801             return;
802         }
803     }
804 
805     for (i = 0; i < IOTS_NUM_AHB_EXP_PPC; i++) {
806         char *ppcname = g_strdup_printf("ahb_ppcexp%d", i);
807 
808         armsse_forward_ppc(s, ppcname, i);
809         g_free(ppcname);
810     }
811 
812     for (i = 0; i < IOTS_NUM_APB_EXP_PPC; i++) {
813         char *ppcname = g_strdup_printf("apb_ppcexp%d", i);
814 
815         armsse_forward_ppc(s, ppcname, i + IOTS_NUM_AHB_EXP_PPC);
816         g_free(ppcname);
817     }
818 
819     for (i = NUM_EXTERNAL_PPCS; i < NUM_PPCS; i++) {
820         /* Wire up IRQ splitter for internal PPCs */
821         DeviceState *devs = DEVICE(&s->ppc_irq_splitter[i]);
822         char *gpioname = g_strdup_printf("apb_ppc%d_irq_status",
823                                          i - NUM_EXTERNAL_PPCS);
824         TZPPC *ppc = (i == NUM_EXTERNAL_PPCS) ? &s->apb_ppc0 : &s->apb_ppc1;
825 
826         qdev_connect_gpio_out(devs, 0,
827                               qdev_get_gpio_in_named(dev_secctl, gpioname, 0));
828         qdev_connect_gpio_out(devs, 1,
829                               qdev_get_gpio_in(DEVICE(&s->ppc_irq_orgate), i));
830         qdev_connect_gpio_out_named(DEVICE(ppc), "irq", 0,
831                                     qdev_get_gpio_in(devs, 0));
832         g_free(gpioname);
833     }
834 
835     /* Wire up the splitters for the MPC IRQs */
836     for (i = 0; i < IOTS_NUM_EXP_MPC + info->sram_banks; i++) {
837         SplitIRQ *splitter = &s->mpc_irq_splitter[i];
838         DeviceState *dev_splitter = DEVICE(splitter);
839 
840         object_property_set_int(OBJECT(splitter), 2, "num-lines", &err);
841         if (err) {
842             error_propagate(errp, err);
843             return;
844         }
845         object_property_set_bool(OBJECT(splitter), true, "realized", &err);
846         if (err) {
847             error_propagate(errp, err);
848             return;
849         }
850 
851         if (i < IOTS_NUM_EXP_MPC) {
852             /* Splitter input is from GPIO input line */
853             s->mpcexp_status_in[i] = qdev_get_gpio_in(dev_splitter, 0);
854             qdev_connect_gpio_out(dev_splitter, 0,
855                                   qdev_get_gpio_in_named(dev_secctl,
856                                                          "mpcexp_status", i));
857         } else {
858             /* Splitter input is from our own MPC */
859             qdev_connect_gpio_out_named(DEVICE(&s->mpc[i - IOTS_NUM_EXP_MPC]),
860                                         "irq", 0,
861                                         qdev_get_gpio_in(dev_splitter, 0));
862             qdev_connect_gpio_out(dev_splitter, 0,
863                                   qdev_get_gpio_in_named(dev_secctl,
864                                                          "mpc_status", 0));
865         }
866 
867         qdev_connect_gpio_out(dev_splitter, 1,
868                               qdev_get_gpio_in(DEVICE(&s->mpc_irq_orgate), i));
869     }
870     /* Create GPIO inputs which will pass the line state for our
871      * mpcexp_irq inputs to the correct splitter devices.
872      */
873     qdev_init_gpio_in_named(dev, armsse_mpcexp_status, "mpcexp_status",
874                             IOTS_NUM_EXP_MPC);
875 
876     armsse_forward_sec_resp_cfg(s);
877 
878     /* Forward the MSC related signals */
879     qdev_pass_gpios(dev_secctl, dev, "mscexp_status");
880     qdev_pass_gpios(dev_secctl, dev, "mscexp_clear");
881     qdev_pass_gpios(dev_secctl, dev, "mscexp_ns");
882     qdev_connect_gpio_out_named(dev_secctl, "msc_irq", 0,
883                                 armsse_get_common_irq_in(s, 11));
884 
885     /*
886      * Expose our container region to the board model; this corresponds
887      * to the AHB Slave Expansion ports which allow bus master devices
888      * (eg DMA controllers) in the board model to make transactions into
889      * devices in the ARMSSE.
890      */
891     sysbus_init_mmio(SYS_BUS_DEVICE(s), &s->container);
892 
893     system_clock_scale = NANOSECONDS_PER_SECOND / s->mainclk_frq;
894 }
895 
896 static void armsse_idau_check(IDAUInterface *ii, uint32_t address,
897                               int *iregion, bool *exempt, bool *ns, bool *nsc)
898 {
899     /*
900      * For ARMSSE systems the IDAU responses are simple logical functions
901      * of the address bits. The NSC attribute is guest-adjustable via the
902      * NSCCFG register in the security controller.
903      */
904     ARMSSE *s = ARMSSE(ii);
905     int region = extract32(address, 28, 4);
906 
907     *ns = !(region & 1);
908     *nsc = (region == 1 && (s->nsccfg & 1)) || (region == 3 && (s->nsccfg & 2));
909     /* 0xe0000000..0xe00fffff and 0xf0000000..0xf00fffff are exempt */
910     *exempt = (address & 0xeff00000) == 0xe0000000;
911     *iregion = region;
912 }
913 
914 static const VMStateDescription armsse_vmstate = {
915     .name = "iotkit",
916     .version_id = 1,
917     .minimum_version_id = 1,
918     .fields = (VMStateField[]) {
919         VMSTATE_UINT32(nsccfg, ARMSSE),
920         VMSTATE_END_OF_LIST()
921     }
922 };
923 
924 static Property armsse_properties[] = {
925     DEFINE_PROP_LINK("memory", ARMSSE, board_memory, TYPE_MEMORY_REGION,
926                      MemoryRegion *),
927     DEFINE_PROP_UINT32("EXP_NUMIRQ", ARMSSE, exp_numirq, 64),
928     DEFINE_PROP_UINT32("MAINCLK", ARMSSE, mainclk_frq, 0),
929     DEFINE_PROP_UINT32("SRAM_ADDR_WIDTH", ARMSSE, sram_addr_width, 15),
930     DEFINE_PROP_END_OF_LIST()
931 };
932 
933 static void armsse_reset(DeviceState *dev)
934 {
935     ARMSSE *s = ARMSSE(dev);
936 
937     s->nsccfg = 0;
938 }
939 
940 static void armsse_class_init(ObjectClass *klass, void *data)
941 {
942     DeviceClass *dc = DEVICE_CLASS(klass);
943     IDAUInterfaceClass *iic = IDAU_INTERFACE_CLASS(klass);
944     ARMSSEClass *asc = ARMSSE_CLASS(klass);
945 
946     dc->realize = armsse_realize;
947     dc->vmsd = &armsse_vmstate;
948     dc->props = armsse_properties;
949     dc->reset = armsse_reset;
950     iic->check = armsse_idau_check;
951     asc->info = data;
952 }
953 
954 static const TypeInfo armsse_info = {
955     .name = TYPE_ARMSSE,
956     .parent = TYPE_SYS_BUS_DEVICE,
957     .instance_size = sizeof(ARMSSE),
958     .instance_init = armsse_init,
959     .abstract = true,
960     .interfaces = (InterfaceInfo[]) {
961         { TYPE_IDAU_INTERFACE },
962         { }
963     }
964 };
965 
966 static void armsse_register_types(void)
967 {
968     int i;
969 
970     type_register_static(&armsse_info);
971 
972     for (i = 0; i < ARRAY_SIZE(armsse_variants); i++) {
973         TypeInfo ti = {
974             .name = armsse_variants[i].name,
975             .parent = TYPE_ARMSSE,
976             .class_init = armsse_class_init,
977             .class_data = (void *)&armsse_variants[i],
978         };
979         type_register(&ti);
980     }
981 }
982 
983 type_init(armsse_register_types);
984