xref: /qemu/hw/arm/armsse.c (revision 5ee0abed51231949ef91d7f8e1115be69ed91e93)
1 /*
2  * Arm SSE (Subsystems for Embedded): IoTKit
3  *
4  * Copyright (c) 2018 Linaro Limited
5  * Written by Peter Maydell
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 or
9  * (at your option) any later version.
10  */
11 
12 #include "qemu/osdep.h"
13 #include "qemu/log.h"
14 #include "qemu/module.h"
15 #include "qemu/bitops.h"
16 #include "qapi/error.h"
17 #include "trace.h"
18 #include "hw/sysbus.h"
19 #include "migration/vmstate.h"
20 #include "hw/registerfields.h"
21 #include "hw/arm/armsse.h"
22 #include "hw/arm/boot.h"
23 #include "hw/irq.h"
24 #include "hw/qdev-clock.h"
25 
26 /* Format of the System Information block SYS_CONFIG register */
27 typedef enum SysConfigFormat {
28     IoTKitFormat,
29     SSE200Format,
30 } SysConfigFormat;
31 
32 struct ARMSSEInfo {
33     const char *name;
34     int sram_banks;
35     int num_cpus;
36     uint32_t sys_version;
37     uint32_t cpuwait_rst;
38     SysConfigFormat sys_config_format;
39     bool has_mhus;
40     bool has_ppus;
41     bool has_cachectrl;
42     bool has_cpusecctrl;
43     bool has_cpuid;
44     Property *props;
45 };
46 
47 static Property iotkit_properties[] = {
48     DEFINE_PROP_LINK("memory", ARMSSE, board_memory, TYPE_MEMORY_REGION,
49                      MemoryRegion *),
50     DEFINE_PROP_UINT32("EXP_NUMIRQ", ARMSSE, exp_numirq, 64),
51     DEFINE_PROP_UINT32("SRAM_ADDR_WIDTH", ARMSSE, sram_addr_width, 15),
52     DEFINE_PROP_UINT32("init-svtor", ARMSSE, init_svtor, 0x10000000),
53     DEFINE_PROP_BOOL("CPU0_FPU", ARMSSE, cpu_fpu[0], true),
54     DEFINE_PROP_BOOL("CPU0_DSP", ARMSSE, cpu_dsp[0], true),
55     DEFINE_PROP_END_OF_LIST()
56 };
57 
58 static Property armsse_properties[] = {
59     DEFINE_PROP_LINK("memory", ARMSSE, board_memory, TYPE_MEMORY_REGION,
60                      MemoryRegion *),
61     DEFINE_PROP_UINT32("EXP_NUMIRQ", ARMSSE, exp_numirq, 64),
62     DEFINE_PROP_UINT32("SRAM_ADDR_WIDTH", ARMSSE, sram_addr_width, 15),
63     DEFINE_PROP_UINT32("init-svtor", ARMSSE, init_svtor, 0x10000000),
64     DEFINE_PROP_BOOL("CPU0_FPU", ARMSSE, cpu_fpu[0], false),
65     DEFINE_PROP_BOOL("CPU0_DSP", ARMSSE, cpu_dsp[0], false),
66     DEFINE_PROP_BOOL("CPU1_FPU", ARMSSE, cpu_fpu[1], true),
67     DEFINE_PROP_BOOL("CPU1_DSP", ARMSSE, cpu_dsp[1], true),
68     DEFINE_PROP_END_OF_LIST()
69 };
70 
71 static const ARMSSEInfo armsse_variants[] = {
72     {
73         .name = TYPE_IOTKIT,
74         .sram_banks = 1,
75         .num_cpus = 1,
76         .sys_version = 0x41743,
77         .cpuwait_rst = 0,
78         .sys_config_format = IoTKitFormat,
79         .has_mhus = false,
80         .has_ppus = false,
81         .has_cachectrl = false,
82         .has_cpusecctrl = false,
83         .has_cpuid = false,
84         .props = iotkit_properties,
85     },
86     {
87         .name = TYPE_SSE200,
88         .sram_banks = 4,
89         .num_cpus = 2,
90         .sys_version = 0x22041743,
91         .cpuwait_rst = 2,
92         .sys_config_format = SSE200Format,
93         .has_mhus = true,
94         .has_ppus = true,
95         .has_cachectrl = true,
96         .has_cpusecctrl = true,
97         .has_cpuid = true,
98         .props = armsse_properties,
99     },
100 };
101 
102 static uint32_t armsse_sys_config_value(ARMSSE *s, const ARMSSEInfo *info)
103 {
104     /* Return the SYS_CONFIG value for this SSE */
105     uint32_t sys_config;
106 
107     switch (info->sys_config_format) {
108     case IoTKitFormat:
109         sys_config = 0;
110         sys_config = deposit32(sys_config, 0, 4, info->sram_banks);
111         sys_config = deposit32(sys_config, 4, 4, s->sram_addr_width - 12);
112         break;
113     case SSE200Format:
114         sys_config = 0;
115         sys_config = deposit32(sys_config, 0, 4, info->sram_banks);
116         sys_config = deposit32(sys_config, 4, 5, s->sram_addr_width);
117         sys_config = deposit32(sys_config, 24, 4, 2);
118         if (info->num_cpus > 1) {
119             sys_config = deposit32(sys_config, 10, 1, 1);
120             sys_config = deposit32(sys_config, 20, 4, info->sram_banks - 1);
121             sys_config = deposit32(sys_config, 28, 4, 2);
122         }
123         break;
124     default:
125         g_assert_not_reached();
126     }
127     return sys_config;
128 }
129 
130 /* Clock frequency in HZ of the 32KHz "slow clock" */
131 #define S32KCLK (32 * 1000)
132 
133 /* Is internal IRQ n shared between CPUs in a multi-core SSE ? */
134 static bool irq_is_common[32] = {
135     [0 ... 5] = true,
136     /* 6, 7: per-CPU MHU interrupts */
137     [8 ... 12] = true,
138     /* 13: per-CPU icache interrupt */
139     /* 14: reserved */
140     [15 ... 20] = true,
141     /* 21: reserved */
142     [22 ... 26] = true,
143     /* 27: reserved */
144     /* 28, 29: per-CPU CTI interrupts */
145     /* 30, 31: reserved */
146 };
147 
148 /*
149  * Create an alias region in @container of @size bytes starting at @base
150  * which mirrors the memory starting at @orig.
151  */
152 static void make_alias(ARMSSE *s, MemoryRegion *mr, MemoryRegion *container,
153                        const char *name, hwaddr base, hwaddr size, hwaddr orig)
154 {
155     memory_region_init_alias(mr, NULL, name, container, orig, size);
156     /* The alias is even lower priority than unimplemented_device regions */
157     memory_region_add_subregion_overlap(container, base, mr, -1500);
158 }
159 
160 static void irq_status_forwarder(void *opaque, int n, int level)
161 {
162     qemu_irq destirq = opaque;
163 
164     qemu_set_irq(destirq, level);
165 }
166 
167 static void nsccfg_handler(void *opaque, int n, int level)
168 {
169     ARMSSE *s = ARM_SSE(opaque);
170 
171     s->nsccfg = level;
172 }
173 
174 static void armsse_forward_ppc(ARMSSE *s, const char *ppcname, int ppcnum)
175 {
176     /* Each of the 4 AHB and 4 APB PPCs that might be present in a
177      * system using the ARMSSE has a collection of control lines which
178      * are provided by the security controller and which we want to
179      * expose as control lines on the ARMSSE device itself, so the
180      * code using the ARMSSE can wire them up to the PPCs.
181      */
182     SplitIRQ *splitter = &s->ppc_irq_splitter[ppcnum];
183     DeviceState *armssedev = DEVICE(s);
184     DeviceState *dev_secctl = DEVICE(&s->secctl);
185     DeviceState *dev_splitter = DEVICE(splitter);
186     char *name;
187 
188     name = g_strdup_printf("%s_nonsec", ppcname);
189     qdev_pass_gpios(dev_secctl, armssedev, name);
190     g_free(name);
191     name = g_strdup_printf("%s_ap", ppcname);
192     qdev_pass_gpios(dev_secctl, armssedev, name);
193     g_free(name);
194     name = g_strdup_printf("%s_irq_enable", ppcname);
195     qdev_pass_gpios(dev_secctl, armssedev, name);
196     g_free(name);
197     name = g_strdup_printf("%s_irq_clear", ppcname);
198     qdev_pass_gpios(dev_secctl, armssedev, name);
199     g_free(name);
200 
201     /* irq_status is a little more tricky, because we need to
202      * split it so we can send it both to the security controller
203      * and to our OR gate for the NVIC interrupt line.
204      * Connect up the splitter's outputs, and create a GPIO input
205      * which will pass the line state to the input splitter.
206      */
207     name = g_strdup_printf("%s_irq_status", ppcname);
208     qdev_connect_gpio_out(dev_splitter, 0,
209                           qdev_get_gpio_in_named(dev_secctl,
210                                                  name, 0));
211     qdev_connect_gpio_out(dev_splitter, 1,
212                           qdev_get_gpio_in(DEVICE(&s->ppc_irq_orgate), ppcnum));
213     s->irq_status_in[ppcnum] = qdev_get_gpio_in(dev_splitter, 0);
214     qdev_init_gpio_in_named_with_opaque(armssedev, irq_status_forwarder,
215                                         s->irq_status_in[ppcnum], name, 1);
216     g_free(name);
217 }
218 
219 static void armsse_forward_sec_resp_cfg(ARMSSE *s)
220 {
221     /* Forward the 3rd output from the splitter device as a
222      * named GPIO output of the armsse object.
223      */
224     DeviceState *dev = DEVICE(s);
225     DeviceState *dev_splitter = DEVICE(&s->sec_resp_splitter);
226 
227     qdev_init_gpio_out_named(dev, &s->sec_resp_cfg, "sec_resp_cfg", 1);
228     s->sec_resp_cfg_in = qemu_allocate_irq(irq_status_forwarder,
229                                            s->sec_resp_cfg, 1);
230     qdev_connect_gpio_out(dev_splitter, 2, s->sec_resp_cfg_in);
231 }
232 
233 static void armsse_mainclk_update(void *opaque, ClockEvent event)
234 {
235     ARMSSE *s = ARM_SSE(opaque);
236 
237     /*
238      * Set system_clock_scale from our Clock input; this is what
239      * controls the tick rate of the CPU SysTick timer.
240      */
241     system_clock_scale = clock_ticks_to_ns(s->mainclk, 1);
242 }
243 
244 static void armsse_init(Object *obj)
245 {
246     ARMSSE *s = ARM_SSE(obj);
247     ARMSSEClass *asc = ARM_SSE_GET_CLASS(obj);
248     const ARMSSEInfo *info = asc->info;
249     int i;
250 
251     assert(info->sram_banks <= MAX_SRAM_BANKS);
252     assert(info->num_cpus <= SSE_MAX_CPUS);
253 
254     s->mainclk = qdev_init_clock_in(DEVICE(s), "MAINCLK",
255                                     armsse_mainclk_update, s, ClockUpdate);
256     s->s32kclk = qdev_init_clock_in(DEVICE(s), "S32KCLK", NULL, NULL, 0);
257 
258     memory_region_init(&s->container, obj, "armsse-container", UINT64_MAX);
259 
260     for (i = 0; i < info->num_cpus; i++) {
261         /*
262          * We put each CPU in its own cluster as they are logically
263          * distinct and may be configured differently.
264          */
265         char *name;
266 
267         name = g_strdup_printf("cluster%d", i);
268         object_initialize_child(obj, name, &s->cluster[i], TYPE_CPU_CLUSTER);
269         qdev_prop_set_uint32(DEVICE(&s->cluster[i]), "cluster-id", i);
270         g_free(name);
271 
272         name = g_strdup_printf("armv7m%d", i);
273         object_initialize_child(OBJECT(&s->cluster[i]), name, &s->armv7m[i],
274                                 TYPE_ARMV7M);
275         qdev_prop_set_string(DEVICE(&s->armv7m[i]), "cpu-type",
276                              ARM_CPU_TYPE_NAME("cortex-m33"));
277         g_free(name);
278         name = g_strdup_printf("arm-sse-cpu-container%d", i);
279         memory_region_init(&s->cpu_container[i], obj, name, UINT64_MAX);
280         g_free(name);
281         if (i > 0) {
282             name = g_strdup_printf("arm-sse-container-alias%d", i);
283             memory_region_init_alias(&s->container_alias[i - 1], obj,
284                                      name, &s->container, 0, UINT64_MAX);
285             g_free(name);
286         }
287     }
288 
289     object_initialize_child(obj, "secctl", &s->secctl, TYPE_IOTKIT_SECCTL);
290     object_initialize_child(obj, "apb-ppc0", &s->apb_ppc0, TYPE_TZ_PPC);
291     object_initialize_child(obj, "apb-ppc1", &s->apb_ppc1, TYPE_TZ_PPC);
292     for (i = 0; i < info->sram_banks; i++) {
293         char *name = g_strdup_printf("mpc%d", i);
294         object_initialize_child(obj, name, &s->mpc[i], TYPE_TZ_MPC);
295         g_free(name);
296     }
297     object_initialize_child(obj, "mpc-irq-orgate", &s->mpc_irq_orgate,
298                             TYPE_OR_IRQ);
299 
300     for (i = 0; i < IOTS_NUM_EXP_MPC + info->sram_banks; i++) {
301         char *name = g_strdup_printf("mpc-irq-splitter-%d", i);
302         SplitIRQ *splitter = &s->mpc_irq_splitter[i];
303 
304         object_initialize_child(obj, name, splitter, TYPE_SPLIT_IRQ);
305         g_free(name);
306     }
307     object_initialize_child(obj, "timer0", &s->timer0, TYPE_CMSDK_APB_TIMER);
308     object_initialize_child(obj, "timer1", &s->timer1, TYPE_CMSDK_APB_TIMER);
309     object_initialize_child(obj, "s32ktimer", &s->s32ktimer,
310                             TYPE_CMSDK_APB_TIMER);
311     object_initialize_child(obj, "dualtimer", &s->dualtimer,
312                             TYPE_CMSDK_APB_DUALTIMER);
313     object_initialize_child(obj, "s32kwatchdog", &s->s32kwatchdog,
314                             TYPE_CMSDK_APB_WATCHDOG);
315     object_initialize_child(obj, "nswatchdog", &s->nswatchdog,
316                             TYPE_CMSDK_APB_WATCHDOG);
317     object_initialize_child(obj, "swatchdog", &s->swatchdog,
318                             TYPE_CMSDK_APB_WATCHDOG);
319     object_initialize_child(obj, "armsse-sysctl", &s->sysctl,
320                             TYPE_IOTKIT_SYSCTL);
321     object_initialize_child(obj, "armsse-sysinfo", &s->sysinfo,
322                             TYPE_IOTKIT_SYSINFO);
323     if (info->has_mhus) {
324         object_initialize_child(obj, "mhu0", &s->mhu[0], TYPE_ARMSSE_MHU);
325         object_initialize_child(obj, "mhu1", &s->mhu[1], TYPE_ARMSSE_MHU);
326     }
327     if (info->has_ppus) {
328         for (i = 0; i < info->num_cpus; i++) {
329             char *name = g_strdup_printf("CPU%dCORE_PPU", i);
330             int ppuidx = CPU0CORE_PPU + i;
331 
332             object_initialize_child(obj, name, &s->ppu[ppuidx],
333                                     TYPE_UNIMPLEMENTED_DEVICE);
334             g_free(name);
335         }
336         object_initialize_child(obj, "DBG_PPU", &s->ppu[DBG_PPU],
337                                 TYPE_UNIMPLEMENTED_DEVICE);
338         for (i = 0; i < info->sram_banks; i++) {
339             char *name = g_strdup_printf("RAM%d_PPU", i);
340             int ppuidx = RAM0_PPU + i;
341 
342             object_initialize_child(obj, name, &s->ppu[ppuidx],
343                                     TYPE_UNIMPLEMENTED_DEVICE);
344             g_free(name);
345         }
346     }
347     if (info->has_cachectrl) {
348         for (i = 0; i < info->num_cpus; i++) {
349             char *name = g_strdup_printf("cachectrl%d", i);
350 
351             object_initialize_child(obj, name, &s->cachectrl[i],
352                                     TYPE_UNIMPLEMENTED_DEVICE);
353             g_free(name);
354         }
355     }
356     if (info->has_cpusecctrl) {
357         for (i = 0; i < info->num_cpus; i++) {
358             char *name = g_strdup_printf("cpusecctrl%d", i);
359 
360             object_initialize_child(obj, name, &s->cpusecctrl[i],
361                                     TYPE_UNIMPLEMENTED_DEVICE);
362             g_free(name);
363         }
364     }
365     if (info->has_cpuid) {
366         for (i = 0; i < info->num_cpus; i++) {
367             char *name = g_strdup_printf("cpuid%d", i);
368 
369             object_initialize_child(obj, name, &s->cpuid[i],
370                                     TYPE_ARMSSE_CPUID);
371             g_free(name);
372         }
373     }
374     object_initialize_child(obj, "nmi-orgate", &s->nmi_orgate, TYPE_OR_IRQ);
375     object_initialize_child(obj, "ppc-irq-orgate", &s->ppc_irq_orgate,
376                             TYPE_OR_IRQ);
377     object_initialize_child(obj, "sec-resp-splitter", &s->sec_resp_splitter,
378                             TYPE_SPLIT_IRQ);
379     for (i = 0; i < ARRAY_SIZE(s->ppc_irq_splitter); i++) {
380         char *name = g_strdup_printf("ppc-irq-splitter-%d", i);
381         SplitIRQ *splitter = &s->ppc_irq_splitter[i];
382 
383         object_initialize_child(obj, name, splitter, TYPE_SPLIT_IRQ);
384         g_free(name);
385     }
386     if (info->num_cpus > 1) {
387         for (i = 0; i < ARRAY_SIZE(s->cpu_irq_splitter); i++) {
388             if (irq_is_common[i]) {
389                 char *name = g_strdup_printf("cpu-irq-splitter%d", i);
390                 SplitIRQ *splitter = &s->cpu_irq_splitter[i];
391 
392                 object_initialize_child(obj, name, splitter, TYPE_SPLIT_IRQ);
393                 g_free(name);
394             }
395         }
396     }
397 }
398 
399 static void armsse_exp_irq(void *opaque, int n, int level)
400 {
401     qemu_irq *irqarray = opaque;
402 
403     qemu_set_irq(irqarray[n], level);
404 }
405 
406 static void armsse_mpcexp_status(void *opaque, int n, int level)
407 {
408     ARMSSE *s = ARM_SSE(opaque);
409     qemu_set_irq(s->mpcexp_status_in[n], level);
410 }
411 
412 static qemu_irq armsse_get_common_irq_in(ARMSSE *s, int irqno)
413 {
414     /*
415      * Return a qemu_irq which can be used to signal IRQ n to
416      * all CPUs in the SSE.
417      */
418     ARMSSEClass *asc = ARM_SSE_GET_CLASS(s);
419     const ARMSSEInfo *info = asc->info;
420 
421     assert(irq_is_common[irqno]);
422 
423     if (info->num_cpus == 1) {
424         /* Only one CPU -- just connect directly to it */
425         return qdev_get_gpio_in(DEVICE(&s->armv7m[0]), irqno);
426     } else {
427         /* Connect to the splitter which feeds all CPUs */
428         return qdev_get_gpio_in(DEVICE(&s->cpu_irq_splitter[irqno]), 0);
429     }
430 }
431 
432 static void map_ppu(ARMSSE *s, int ppuidx, const char *name, hwaddr addr)
433 {
434     /* Map a PPU unimplemented device stub */
435     DeviceState *dev = DEVICE(&s->ppu[ppuidx]);
436 
437     qdev_prop_set_string(dev, "name", name);
438     qdev_prop_set_uint64(dev, "size", 0x1000);
439     sysbus_realize(SYS_BUS_DEVICE(dev), &error_fatal);
440     sysbus_mmio_map(SYS_BUS_DEVICE(&s->ppu[ppuidx]), 0, addr);
441 }
442 
443 static void armsse_realize(DeviceState *dev, Error **errp)
444 {
445     ARMSSE *s = ARM_SSE(dev);
446     ARMSSEClass *asc = ARM_SSE_GET_CLASS(dev);
447     const ARMSSEInfo *info = asc->info;
448     int i;
449     MemoryRegion *mr;
450     Error *err = NULL;
451     SysBusDevice *sbd_apb_ppc0;
452     SysBusDevice *sbd_secctl;
453     DeviceState *dev_apb_ppc0;
454     DeviceState *dev_apb_ppc1;
455     DeviceState *dev_secctl;
456     DeviceState *dev_splitter;
457     uint32_t addr_width_max;
458 
459     if (!s->board_memory) {
460         error_setg(errp, "memory property was not set");
461         return;
462     }
463 
464     if (!clock_has_source(s->mainclk)) {
465         error_setg(errp, "MAINCLK clock was not connected");
466     }
467     if (!clock_has_source(s->s32kclk)) {
468         error_setg(errp, "S32KCLK clock was not connected");
469     }
470 
471     assert(info->num_cpus <= SSE_MAX_CPUS);
472 
473     /* max SRAM_ADDR_WIDTH: 24 - log2(SRAM_NUM_BANK) */
474     assert(is_power_of_2(info->sram_banks));
475     addr_width_max = 24 - ctz32(info->sram_banks);
476     if (s->sram_addr_width < 1 || s->sram_addr_width > addr_width_max) {
477         error_setg(errp, "SRAM_ADDR_WIDTH must be between 1 and %d",
478                    addr_width_max);
479         return;
480     }
481 
482     /* Handling of which devices should be available only to secure
483      * code is usually done differently for M profile than for A profile.
484      * Instead of putting some devices only into the secure address space,
485      * devices exist in both address spaces but with hard-wired security
486      * permissions that will cause the CPU to fault for non-secure accesses.
487      *
488      * The ARMSSE has an IDAU (Implementation Defined Access Unit),
489      * which specifies hard-wired security permissions for different
490      * areas of the physical address space. For the ARMSSE IDAU, the
491      * top 4 bits of the physical address are the IDAU region ID, and
492      * if bit 28 (ie the lowest bit of the ID) is 0 then this is an NS
493      * region, otherwise it is an S region.
494      *
495      * The various devices and RAMs are generally all mapped twice,
496      * once into a region that the IDAU defines as secure and once
497      * into a non-secure region. They sit behind either a Memory
498      * Protection Controller (for RAM) or a Peripheral Protection
499      * Controller (for devices), which allow a more fine grained
500      * configuration of whether non-secure accesses are permitted.
501      *
502      * (The other place that guest software can configure security
503      * permissions is in the architected SAU (Security Attribution
504      * Unit), which is entirely inside the CPU. The IDAU can upgrade
505      * the security attributes for a region to more restrictive than
506      * the SAU specifies, but cannot downgrade them.)
507      *
508      * 0x10000000..0x1fffffff  alias of 0x00000000..0x0fffffff
509      * 0x20000000..0x2007ffff  32KB FPGA block RAM
510      * 0x30000000..0x3fffffff  alias of 0x20000000..0x2fffffff
511      * 0x40000000..0x4000ffff  base peripheral region 1
512      * 0x40010000..0x4001ffff  CPU peripherals (none for ARMSSE)
513      * 0x40020000..0x4002ffff  system control element peripherals
514      * 0x40080000..0x400fffff  base peripheral region 2
515      * 0x50000000..0x5fffffff  alias of 0x40000000..0x4fffffff
516      */
517 
518     memory_region_add_subregion_overlap(&s->container, 0, s->board_memory, -2);
519 
520     for (i = 0; i < info->num_cpus; i++) {
521         DeviceState *cpudev = DEVICE(&s->armv7m[i]);
522         Object *cpuobj = OBJECT(&s->armv7m[i]);
523         int j;
524         char *gpioname;
525 
526         qdev_prop_set_uint32(cpudev, "num-irq", s->exp_numirq + 32);
527         /*
528          * In real hardware the initial Secure VTOR is set from the INITSVTOR*
529          * registers in the IoT Kit System Control Register block. In QEMU
530          * we set the initial value here, and also the reset value of the
531          * sysctl register, from this object's QOM init-svtor property.
532          * If the guest changes the INITSVTOR* registers at runtime then the
533          * code in iotkit-sysctl.c will update the CPU init-svtor property
534          * (which will then take effect on the next CPU warm-reset).
535          *
536          * Note that typically a board using the SSE-200 will have a system
537          * control processor whose boot firmware initializes the INITSVTOR*
538          * registers before powering up the CPUs. QEMU doesn't emulate
539          * the control processor, so instead we behave in the way that the
540          * firmware does: the initial value should be set by the board code
541          * (using the init-svtor property on the ARMSSE object) to match
542          * whatever its firmware does.
543          */
544         qdev_prop_set_uint32(cpudev, "init-svtor", s->init_svtor);
545         /*
546          * CPUs start powered down if the corresponding bit in the CPUWAIT
547          * register is 1. In real hardware the CPUWAIT register reset value is
548          * a configurable property of the SSE-200 (via the CPUWAIT0_RST and
549          * CPUWAIT1_RST parameters), but since all the boards we care about
550          * start CPU0 and leave CPU1 powered off, we hard-code that in
551          * info->cpuwait_rst for now. We can add QOM properties for this
552          * later if necessary.
553          */
554         if (extract32(info->cpuwait_rst, i, 1)) {
555             if (!object_property_set_bool(cpuobj, "start-powered-off", true,
556                                           errp)) {
557                 return;
558             }
559         }
560         if (!s->cpu_fpu[i]) {
561             if (!object_property_set_bool(cpuobj, "vfp", false, errp)) {
562                 return;
563             }
564         }
565         if (!s->cpu_dsp[i]) {
566             if (!object_property_set_bool(cpuobj, "dsp", false, errp)) {
567                 return;
568             }
569         }
570 
571         if (i > 0) {
572             memory_region_add_subregion_overlap(&s->cpu_container[i], 0,
573                                                 &s->container_alias[i - 1], -1);
574         } else {
575             memory_region_add_subregion_overlap(&s->cpu_container[i], 0,
576                                                 &s->container, -1);
577         }
578         object_property_set_link(cpuobj, "memory",
579                                  OBJECT(&s->cpu_container[i]), &error_abort);
580         object_property_set_link(cpuobj, "idau", OBJECT(s), &error_abort);
581         if (!sysbus_realize(SYS_BUS_DEVICE(cpuobj), errp)) {
582             return;
583         }
584         /*
585          * The cluster must be realized after the armv7m container, as
586          * the container's CPU object is only created on realize, and the
587          * CPU must exist and have been parented into the cluster before
588          * the cluster is realized.
589          */
590         if (!qdev_realize(DEVICE(&s->cluster[i]), NULL, errp)) {
591             return;
592         }
593 
594         /* Connect EXP_IRQ/EXP_CPUn_IRQ GPIOs to the NVIC's lines 32 and up */
595         s->exp_irqs[i] = g_new(qemu_irq, s->exp_numirq);
596         for (j = 0; j < s->exp_numirq; j++) {
597             s->exp_irqs[i][j] = qdev_get_gpio_in(cpudev, j + 32);
598         }
599         if (i == 0) {
600             gpioname = g_strdup("EXP_IRQ");
601         } else {
602             gpioname = g_strdup_printf("EXP_CPU%d_IRQ", i);
603         }
604         qdev_init_gpio_in_named_with_opaque(dev, armsse_exp_irq,
605                                             s->exp_irqs[i],
606                                             gpioname, s->exp_numirq);
607         g_free(gpioname);
608     }
609 
610     /* Wire up the splitters that connect common IRQs to all CPUs */
611     if (info->num_cpus > 1) {
612         for (i = 0; i < ARRAY_SIZE(s->cpu_irq_splitter); i++) {
613             if (irq_is_common[i]) {
614                 Object *splitter = OBJECT(&s->cpu_irq_splitter[i]);
615                 DeviceState *devs = DEVICE(splitter);
616                 int cpunum;
617 
618                 if (!object_property_set_int(splitter, "num-lines",
619                                              info->num_cpus, errp)) {
620                     return;
621                 }
622                 if (!qdev_realize(DEVICE(splitter), NULL, errp)) {
623                     return;
624                 }
625                 for (cpunum = 0; cpunum < info->num_cpus; cpunum++) {
626                     DeviceState *cpudev = DEVICE(&s->armv7m[cpunum]);
627 
628                     qdev_connect_gpio_out(devs, cpunum,
629                                           qdev_get_gpio_in(cpudev, i));
630                 }
631             }
632         }
633     }
634 
635     /* Set up the big aliases first */
636     make_alias(s, &s->alias1, &s->container, "alias 1",
637                0x10000000, 0x10000000, 0x00000000);
638     make_alias(s, &s->alias2, &s->container,
639                "alias 2", 0x30000000, 0x10000000, 0x20000000);
640     /* The 0x50000000..0x5fffffff region is not a pure alias: it has
641      * a few extra devices that only appear there (generally the
642      * control interfaces for the protection controllers).
643      * We implement this by mapping those devices over the top of this
644      * alias MR at a higher priority. Some of the devices in this range
645      * are per-CPU, so we must put this alias in the per-cpu containers.
646      */
647     for (i = 0; i < info->num_cpus; i++) {
648         make_alias(s, &s->alias3[i], &s->cpu_container[i],
649                    "alias 3", 0x50000000, 0x10000000, 0x40000000);
650     }
651 
652     /* Security controller */
653     if (!sysbus_realize(SYS_BUS_DEVICE(&s->secctl), errp)) {
654         return;
655     }
656     sbd_secctl = SYS_BUS_DEVICE(&s->secctl);
657     dev_secctl = DEVICE(&s->secctl);
658     sysbus_mmio_map(sbd_secctl, 0, 0x50080000);
659     sysbus_mmio_map(sbd_secctl, 1, 0x40080000);
660 
661     s->nsc_cfg_in = qemu_allocate_irq(nsccfg_handler, s, 1);
662     qdev_connect_gpio_out_named(dev_secctl, "nsc_cfg", 0, s->nsc_cfg_in);
663 
664     /* The sec_resp_cfg output from the security controller must be split into
665      * multiple lines, one for each of the PPCs within the ARMSSE and one
666      * that will be an output from the ARMSSE to the system.
667      */
668     if (!object_property_set_int(OBJECT(&s->sec_resp_splitter),
669                                  "num-lines", 3, errp)) {
670         return;
671     }
672     if (!qdev_realize(DEVICE(&s->sec_resp_splitter), NULL, errp)) {
673         return;
674     }
675     dev_splitter = DEVICE(&s->sec_resp_splitter);
676     qdev_connect_gpio_out_named(dev_secctl, "sec_resp_cfg", 0,
677                                 qdev_get_gpio_in(dev_splitter, 0));
678 
679     /* Each SRAM bank lives behind its own Memory Protection Controller */
680     for (i = 0; i < info->sram_banks; i++) {
681         char *ramname = g_strdup_printf("armsse.sram%d", i);
682         SysBusDevice *sbd_mpc;
683         uint32_t sram_bank_size = 1 << s->sram_addr_width;
684 
685         memory_region_init_ram(&s->sram[i], NULL, ramname,
686                                sram_bank_size, &err);
687         g_free(ramname);
688         if (err) {
689             error_propagate(errp, err);
690             return;
691         }
692         object_property_set_link(OBJECT(&s->mpc[i]), "downstream",
693                                  OBJECT(&s->sram[i]), &error_abort);
694         if (!sysbus_realize(SYS_BUS_DEVICE(&s->mpc[i]), errp)) {
695             return;
696         }
697         /* Map the upstream end of the MPC into the right place... */
698         sbd_mpc = SYS_BUS_DEVICE(&s->mpc[i]);
699         memory_region_add_subregion(&s->container,
700                                     0x20000000 + i * sram_bank_size,
701                                     sysbus_mmio_get_region(sbd_mpc, 1));
702         /* ...and its register interface */
703         memory_region_add_subregion(&s->container, 0x50083000 + i * 0x1000,
704                                     sysbus_mmio_get_region(sbd_mpc, 0));
705     }
706 
707     /* We must OR together lines from the MPC splitters to go to the NVIC */
708     if (!object_property_set_int(OBJECT(&s->mpc_irq_orgate), "num-lines",
709                                  IOTS_NUM_EXP_MPC + info->sram_banks,
710                                  errp)) {
711         return;
712     }
713     if (!qdev_realize(DEVICE(&s->mpc_irq_orgate), NULL, errp)) {
714         return;
715     }
716     qdev_connect_gpio_out(DEVICE(&s->mpc_irq_orgate), 0,
717                           armsse_get_common_irq_in(s, 9));
718 
719     /* Devices behind APB PPC0:
720      *   0x40000000: timer0
721      *   0x40001000: timer1
722      *   0x40002000: dual timer
723      *   0x40003000: MHU0 (SSE-200 only)
724      *   0x40004000: MHU1 (SSE-200 only)
725      * We must configure and realize each downstream device and connect
726      * it to the appropriate PPC port; then we can realize the PPC and
727      * map its upstream ends to the right place in the container.
728      */
729     qdev_connect_clock_in(DEVICE(&s->timer0), "pclk", s->mainclk);
730     if (!sysbus_realize(SYS_BUS_DEVICE(&s->timer0), errp)) {
731         return;
732     }
733     sysbus_connect_irq(SYS_BUS_DEVICE(&s->timer0), 0,
734                        armsse_get_common_irq_in(s, 3));
735     mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->timer0), 0);
736     object_property_set_link(OBJECT(&s->apb_ppc0), "port[0]", OBJECT(mr),
737                              &error_abort);
738 
739     qdev_connect_clock_in(DEVICE(&s->timer1), "pclk", s->mainclk);
740     if (!sysbus_realize(SYS_BUS_DEVICE(&s->timer1), errp)) {
741         return;
742     }
743     sysbus_connect_irq(SYS_BUS_DEVICE(&s->timer1), 0,
744                        armsse_get_common_irq_in(s, 4));
745     mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->timer1), 0);
746     object_property_set_link(OBJECT(&s->apb_ppc0), "port[1]", OBJECT(mr),
747                              &error_abort);
748 
749     qdev_connect_clock_in(DEVICE(&s->dualtimer), "TIMCLK", s->mainclk);
750     if (!sysbus_realize(SYS_BUS_DEVICE(&s->dualtimer), errp)) {
751         return;
752     }
753     sysbus_connect_irq(SYS_BUS_DEVICE(&s->dualtimer), 0,
754                        armsse_get_common_irq_in(s, 5));
755     mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->dualtimer), 0);
756     object_property_set_link(OBJECT(&s->apb_ppc0), "port[2]", OBJECT(mr),
757                              &error_abort);
758 
759     if (info->has_mhus) {
760         /*
761          * An SSE-200 with only one CPU should have only one MHU created,
762          * with the region where the second MHU usually is being RAZ/WI.
763          * We don't implement that SSE-200 config; if we want to support
764          * it then this code needs to be enhanced to handle creating the
765          * RAZ/WI region instead of the second MHU.
766          */
767         assert(info->num_cpus == ARRAY_SIZE(s->mhu));
768 
769         for (i = 0; i < ARRAY_SIZE(s->mhu); i++) {
770             char *port;
771             int cpunum;
772             SysBusDevice *mhu_sbd = SYS_BUS_DEVICE(&s->mhu[i]);
773 
774             if (!sysbus_realize(SYS_BUS_DEVICE(&s->mhu[i]), errp)) {
775                 return;
776             }
777             port = g_strdup_printf("port[%d]", i + 3);
778             mr = sysbus_mmio_get_region(mhu_sbd, 0);
779             object_property_set_link(OBJECT(&s->apb_ppc0), port, OBJECT(mr),
780                                      &error_abort);
781             g_free(port);
782 
783             /*
784              * Each MHU has an irq line for each CPU:
785              *  MHU 0 irq line 0 -> CPU 0 IRQ 6
786              *  MHU 0 irq line 1 -> CPU 1 IRQ 6
787              *  MHU 1 irq line 0 -> CPU 0 IRQ 7
788              *  MHU 1 irq line 1 -> CPU 1 IRQ 7
789              */
790             for (cpunum = 0; cpunum < info->num_cpus; cpunum++) {
791                 DeviceState *cpudev = DEVICE(&s->armv7m[cpunum]);
792 
793                 sysbus_connect_irq(mhu_sbd, cpunum,
794                                    qdev_get_gpio_in(cpudev, 6 + i));
795             }
796         }
797     }
798 
799     if (!sysbus_realize(SYS_BUS_DEVICE(&s->apb_ppc0), errp)) {
800         return;
801     }
802 
803     sbd_apb_ppc0 = SYS_BUS_DEVICE(&s->apb_ppc0);
804     dev_apb_ppc0 = DEVICE(&s->apb_ppc0);
805 
806     mr = sysbus_mmio_get_region(sbd_apb_ppc0, 0);
807     memory_region_add_subregion(&s->container, 0x40000000, mr);
808     mr = sysbus_mmio_get_region(sbd_apb_ppc0, 1);
809     memory_region_add_subregion(&s->container, 0x40001000, mr);
810     mr = sysbus_mmio_get_region(sbd_apb_ppc0, 2);
811     memory_region_add_subregion(&s->container, 0x40002000, mr);
812     if (info->has_mhus) {
813         mr = sysbus_mmio_get_region(sbd_apb_ppc0, 3);
814         memory_region_add_subregion(&s->container, 0x40003000, mr);
815         mr = sysbus_mmio_get_region(sbd_apb_ppc0, 4);
816         memory_region_add_subregion(&s->container, 0x40004000, mr);
817     }
818     for (i = 0; i < IOTS_APB_PPC0_NUM_PORTS; i++) {
819         qdev_connect_gpio_out_named(dev_secctl, "apb_ppc0_nonsec", i,
820                                     qdev_get_gpio_in_named(dev_apb_ppc0,
821                                                            "cfg_nonsec", i));
822         qdev_connect_gpio_out_named(dev_secctl, "apb_ppc0_ap", i,
823                                     qdev_get_gpio_in_named(dev_apb_ppc0,
824                                                            "cfg_ap", i));
825     }
826     qdev_connect_gpio_out_named(dev_secctl, "apb_ppc0_irq_enable", 0,
827                                 qdev_get_gpio_in_named(dev_apb_ppc0,
828                                                        "irq_enable", 0));
829     qdev_connect_gpio_out_named(dev_secctl, "apb_ppc0_irq_clear", 0,
830                                 qdev_get_gpio_in_named(dev_apb_ppc0,
831                                                        "irq_clear", 0));
832     qdev_connect_gpio_out(dev_splitter, 0,
833                           qdev_get_gpio_in_named(dev_apb_ppc0,
834                                                  "cfg_sec_resp", 0));
835 
836     /* All the PPC irq lines (from the 2 internal PPCs and the 8 external
837      * ones) are sent individually to the security controller, and also
838      * ORed together to give a single combined PPC interrupt to the NVIC.
839      */
840     if (!object_property_set_int(OBJECT(&s->ppc_irq_orgate),
841                                  "num-lines", NUM_PPCS, errp)) {
842         return;
843     }
844     if (!qdev_realize(DEVICE(&s->ppc_irq_orgate), NULL, errp)) {
845         return;
846     }
847     qdev_connect_gpio_out(DEVICE(&s->ppc_irq_orgate), 0,
848                           armsse_get_common_irq_in(s, 10));
849 
850     /*
851      * 0x40010000 .. 0x4001ffff (and the 0x5001000... secure-only alias):
852      * private per-CPU region (all these devices are SSE-200 only):
853      *  0x50010000: L1 icache control registers
854      *  0x50011000: CPUSECCTRL (CPU local security control registers)
855      *  0x4001f000 and 0x5001f000: CPU_IDENTITY register block
856      */
857     if (info->has_cachectrl) {
858         for (i = 0; i < info->num_cpus; i++) {
859             char *name = g_strdup_printf("cachectrl%d", i);
860             MemoryRegion *mr;
861 
862             qdev_prop_set_string(DEVICE(&s->cachectrl[i]), "name", name);
863             g_free(name);
864             qdev_prop_set_uint64(DEVICE(&s->cachectrl[i]), "size", 0x1000);
865             if (!sysbus_realize(SYS_BUS_DEVICE(&s->cachectrl[i]), errp)) {
866                 return;
867             }
868 
869             mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->cachectrl[i]), 0);
870             memory_region_add_subregion(&s->cpu_container[i], 0x50010000, mr);
871         }
872     }
873     if (info->has_cpusecctrl) {
874         for (i = 0; i < info->num_cpus; i++) {
875             char *name = g_strdup_printf("CPUSECCTRL%d", i);
876             MemoryRegion *mr;
877 
878             qdev_prop_set_string(DEVICE(&s->cpusecctrl[i]), "name", name);
879             g_free(name);
880             qdev_prop_set_uint64(DEVICE(&s->cpusecctrl[i]), "size", 0x1000);
881             if (!sysbus_realize(SYS_BUS_DEVICE(&s->cpusecctrl[i]), errp)) {
882                 return;
883             }
884 
885             mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->cpusecctrl[i]), 0);
886             memory_region_add_subregion(&s->cpu_container[i], 0x50011000, mr);
887         }
888     }
889     if (info->has_cpuid) {
890         for (i = 0; i < info->num_cpus; i++) {
891             MemoryRegion *mr;
892 
893             qdev_prop_set_uint32(DEVICE(&s->cpuid[i]), "CPUID", i);
894             if (!sysbus_realize(SYS_BUS_DEVICE(&s->cpuid[i]), errp)) {
895                 return;
896             }
897 
898             mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->cpuid[i]), 0);
899             memory_region_add_subregion(&s->cpu_container[i], 0x4001F000, mr);
900         }
901     }
902 
903     /* 0x40020000 .. 0x4002ffff : ARMSSE system control peripheral region */
904     /* Devices behind APB PPC1:
905      *   0x4002f000: S32K timer
906      */
907     qdev_connect_clock_in(DEVICE(&s->s32ktimer), "pclk", s->s32kclk);
908     if (!sysbus_realize(SYS_BUS_DEVICE(&s->s32ktimer), errp)) {
909         return;
910     }
911     sysbus_connect_irq(SYS_BUS_DEVICE(&s->s32ktimer), 0,
912                        armsse_get_common_irq_in(s, 2));
913     mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->s32ktimer), 0);
914     object_property_set_link(OBJECT(&s->apb_ppc1), "port[0]", OBJECT(mr),
915                              &error_abort);
916 
917     if (!sysbus_realize(SYS_BUS_DEVICE(&s->apb_ppc1), errp)) {
918         return;
919     }
920     mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->apb_ppc1), 0);
921     memory_region_add_subregion(&s->container, 0x4002f000, mr);
922 
923     dev_apb_ppc1 = DEVICE(&s->apb_ppc1);
924     qdev_connect_gpio_out_named(dev_secctl, "apb_ppc1_nonsec", 0,
925                                 qdev_get_gpio_in_named(dev_apb_ppc1,
926                                                        "cfg_nonsec", 0));
927     qdev_connect_gpio_out_named(dev_secctl, "apb_ppc1_ap", 0,
928                                 qdev_get_gpio_in_named(dev_apb_ppc1,
929                                                        "cfg_ap", 0));
930     qdev_connect_gpio_out_named(dev_secctl, "apb_ppc1_irq_enable", 0,
931                                 qdev_get_gpio_in_named(dev_apb_ppc1,
932                                                        "irq_enable", 0));
933     qdev_connect_gpio_out_named(dev_secctl, "apb_ppc1_irq_clear", 0,
934                                 qdev_get_gpio_in_named(dev_apb_ppc1,
935                                                        "irq_clear", 0));
936     qdev_connect_gpio_out(dev_splitter, 1,
937                           qdev_get_gpio_in_named(dev_apb_ppc1,
938                                                  "cfg_sec_resp", 0));
939 
940     if (!object_property_set_int(OBJECT(&s->sysinfo), "SYS_VERSION",
941                                  info->sys_version, errp)) {
942         return;
943     }
944     if (!object_property_set_int(OBJECT(&s->sysinfo), "SYS_CONFIG",
945                                  armsse_sys_config_value(s, info), errp)) {
946         return;
947     }
948     if (!sysbus_realize(SYS_BUS_DEVICE(&s->sysinfo), errp)) {
949         return;
950     }
951     /* System information registers */
952     sysbus_mmio_map(SYS_BUS_DEVICE(&s->sysinfo), 0, 0x40020000);
953     /* System control registers */
954     object_property_set_int(OBJECT(&s->sysctl), "SYS_VERSION",
955                             info->sys_version, &error_abort);
956     object_property_set_int(OBJECT(&s->sysctl), "CPUWAIT_RST",
957                             info->cpuwait_rst, &error_abort);
958     object_property_set_int(OBJECT(&s->sysctl), "INITSVTOR0_RST",
959                             s->init_svtor, &error_abort);
960     object_property_set_int(OBJECT(&s->sysctl), "INITSVTOR1_RST",
961                             s->init_svtor, &error_abort);
962     if (!sysbus_realize(SYS_BUS_DEVICE(&s->sysctl), errp)) {
963         return;
964     }
965     sysbus_mmio_map(SYS_BUS_DEVICE(&s->sysctl), 0, 0x50021000);
966 
967     if (info->has_ppus) {
968         /* CPUnCORE_PPU for each CPU */
969         for (i = 0; i < info->num_cpus; i++) {
970             char *name = g_strdup_printf("CPU%dCORE_PPU", i);
971 
972             map_ppu(s, CPU0CORE_PPU + i, name, 0x50023000 + i * 0x2000);
973             /*
974              * We don't support CPU debug so don't create the
975              * CPU0DEBUG_PPU at 0x50024000 and 0x50026000.
976              */
977             g_free(name);
978         }
979         map_ppu(s, DBG_PPU, "DBG_PPU", 0x50029000);
980 
981         for (i = 0; i < info->sram_banks; i++) {
982             char *name = g_strdup_printf("RAM%d_PPU", i);
983 
984             map_ppu(s, RAM0_PPU + i, name, 0x5002a000 + i * 0x1000);
985             g_free(name);
986         }
987     }
988 
989     /* This OR gate wires together outputs from the secure watchdogs to NMI */
990     if (!object_property_set_int(OBJECT(&s->nmi_orgate), "num-lines", 2,
991                                  errp)) {
992         return;
993     }
994     if (!qdev_realize(DEVICE(&s->nmi_orgate), NULL, errp)) {
995         return;
996     }
997     qdev_connect_gpio_out(DEVICE(&s->nmi_orgate), 0,
998                           qdev_get_gpio_in_named(DEVICE(&s->armv7m), "NMI", 0));
999 
1000     qdev_connect_clock_in(DEVICE(&s->s32kwatchdog), "WDOGCLK", s->s32kclk);
1001     if (!sysbus_realize(SYS_BUS_DEVICE(&s->s32kwatchdog), errp)) {
1002         return;
1003     }
1004     sysbus_connect_irq(SYS_BUS_DEVICE(&s->s32kwatchdog), 0,
1005                        qdev_get_gpio_in(DEVICE(&s->nmi_orgate), 0));
1006     sysbus_mmio_map(SYS_BUS_DEVICE(&s->s32kwatchdog), 0, 0x5002e000);
1007 
1008     /* 0x40080000 .. 0x4008ffff : ARMSSE second Base peripheral region */
1009 
1010     qdev_connect_clock_in(DEVICE(&s->nswatchdog), "WDOGCLK", s->mainclk);
1011     if (!sysbus_realize(SYS_BUS_DEVICE(&s->nswatchdog), errp)) {
1012         return;
1013     }
1014     sysbus_connect_irq(SYS_BUS_DEVICE(&s->nswatchdog), 0,
1015                        armsse_get_common_irq_in(s, 1));
1016     sysbus_mmio_map(SYS_BUS_DEVICE(&s->nswatchdog), 0, 0x40081000);
1017 
1018     qdev_connect_clock_in(DEVICE(&s->swatchdog), "WDOGCLK", s->mainclk);
1019     if (!sysbus_realize(SYS_BUS_DEVICE(&s->swatchdog), errp)) {
1020         return;
1021     }
1022     sysbus_connect_irq(SYS_BUS_DEVICE(&s->swatchdog), 0,
1023                        qdev_get_gpio_in(DEVICE(&s->nmi_orgate), 1));
1024     sysbus_mmio_map(SYS_BUS_DEVICE(&s->swatchdog), 0, 0x50081000);
1025 
1026     for (i = 0; i < ARRAY_SIZE(s->ppc_irq_splitter); i++) {
1027         Object *splitter = OBJECT(&s->ppc_irq_splitter[i]);
1028 
1029         if (!object_property_set_int(splitter, "num-lines", 2, errp)) {
1030             return;
1031         }
1032         if (!qdev_realize(DEVICE(splitter), NULL, errp)) {
1033             return;
1034         }
1035     }
1036 
1037     for (i = 0; i < IOTS_NUM_AHB_EXP_PPC; i++) {
1038         char *ppcname = g_strdup_printf("ahb_ppcexp%d", i);
1039 
1040         armsse_forward_ppc(s, ppcname, i);
1041         g_free(ppcname);
1042     }
1043 
1044     for (i = 0; i < IOTS_NUM_APB_EXP_PPC; i++) {
1045         char *ppcname = g_strdup_printf("apb_ppcexp%d", i);
1046 
1047         armsse_forward_ppc(s, ppcname, i + IOTS_NUM_AHB_EXP_PPC);
1048         g_free(ppcname);
1049     }
1050 
1051     for (i = NUM_EXTERNAL_PPCS; i < NUM_PPCS; i++) {
1052         /* Wire up IRQ splitter for internal PPCs */
1053         DeviceState *devs = DEVICE(&s->ppc_irq_splitter[i]);
1054         char *gpioname = g_strdup_printf("apb_ppc%d_irq_status",
1055                                          i - NUM_EXTERNAL_PPCS);
1056         TZPPC *ppc = (i == NUM_EXTERNAL_PPCS) ? &s->apb_ppc0 : &s->apb_ppc1;
1057 
1058         qdev_connect_gpio_out(devs, 0,
1059                               qdev_get_gpio_in_named(dev_secctl, gpioname, 0));
1060         qdev_connect_gpio_out(devs, 1,
1061                               qdev_get_gpio_in(DEVICE(&s->ppc_irq_orgate), i));
1062         qdev_connect_gpio_out_named(DEVICE(ppc), "irq", 0,
1063                                     qdev_get_gpio_in(devs, 0));
1064         g_free(gpioname);
1065     }
1066 
1067     /* Wire up the splitters for the MPC IRQs */
1068     for (i = 0; i < IOTS_NUM_EXP_MPC + info->sram_banks; i++) {
1069         SplitIRQ *splitter = &s->mpc_irq_splitter[i];
1070         DeviceState *dev_splitter = DEVICE(splitter);
1071 
1072         if (!object_property_set_int(OBJECT(splitter), "num-lines", 2,
1073                                      errp)) {
1074             return;
1075         }
1076         if (!qdev_realize(DEVICE(splitter), NULL, errp)) {
1077             return;
1078         }
1079 
1080         if (i < IOTS_NUM_EXP_MPC) {
1081             /* Splitter input is from GPIO input line */
1082             s->mpcexp_status_in[i] = qdev_get_gpio_in(dev_splitter, 0);
1083             qdev_connect_gpio_out(dev_splitter, 0,
1084                                   qdev_get_gpio_in_named(dev_secctl,
1085                                                          "mpcexp_status", i));
1086         } else {
1087             /* Splitter input is from our own MPC */
1088             qdev_connect_gpio_out_named(DEVICE(&s->mpc[i - IOTS_NUM_EXP_MPC]),
1089                                         "irq", 0,
1090                                         qdev_get_gpio_in(dev_splitter, 0));
1091             qdev_connect_gpio_out(dev_splitter, 0,
1092                                   qdev_get_gpio_in_named(dev_secctl,
1093                                                          "mpc_status",
1094                                                          i - IOTS_NUM_EXP_MPC));
1095         }
1096 
1097         qdev_connect_gpio_out(dev_splitter, 1,
1098                               qdev_get_gpio_in(DEVICE(&s->mpc_irq_orgate), i));
1099     }
1100     /* Create GPIO inputs which will pass the line state for our
1101      * mpcexp_irq inputs to the correct splitter devices.
1102      */
1103     qdev_init_gpio_in_named(dev, armsse_mpcexp_status, "mpcexp_status",
1104                             IOTS_NUM_EXP_MPC);
1105 
1106     armsse_forward_sec_resp_cfg(s);
1107 
1108     /* Forward the MSC related signals */
1109     qdev_pass_gpios(dev_secctl, dev, "mscexp_status");
1110     qdev_pass_gpios(dev_secctl, dev, "mscexp_clear");
1111     qdev_pass_gpios(dev_secctl, dev, "mscexp_ns");
1112     qdev_connect_gpio_out_named(dev_secctl, "msc_irq", 0,
1113                                 armsse_get_common_irq_in(s, 11));
1114 
1115     /*
1116      * Expose our container region to the board model; this corresponds
1117      * to the AHB Slave Expansion ports which allow bus master devices
1118      * (eg DMA controllers) in the board model to make transactions into
1119      * devices in the ARMSSE.
1120      */
1121     sysbus_init_mmio(SYS_BUS_DEVICE(s), &s->container);
1122 
1123     /* Set initial system_clock_scale from MAINCLK */
1124     armsse_mainclk_update(s, ClockUpdate);
1125 }
1126 
1127 static void armsse_idau_check(IDAUInterface *ii, uint32_t address,
1128                               int *iregion, bool *exempt, bool *ns, bool *nsc)
1129 {
1130     /*
1131      * For ARMSSE systems the IDAU responses are simple logical functions
1132      * of the address bits. The NSC attribute is guest-adjustable via the
1133      * NSCCFG register in the security controller.
1134      */
1135     ARMSSE *s = ARM_SSE(ii);
1136     int region = extract32(address, 28, 4);
1137 
1138     *ns = !(region & 1);
1139     *nsc = (region == 1 && (s->nsccfg & 1)) || (region == 3 && (s->nsccfg & 2));
1140     /* 0xe0000000..0xe00fffff and 0xf0000000..0xf00fffff are exempt */
1141     *exempt = (address & 0xeff00000) == 0xe0000000;
1142     *iregion = region;
1143 }
1144 
1145 static const VMStateDescription armsse_vmstate = {
1146     .name = "iotkit",
1147     .version_id = 2,
1148     .minimum_version_id = 2,
1149     .fields = (VMStateField[]) {
1150         VMSTATE_CLOCK(mainclk, ARMSSE),
1151         VMSTATE_CLOCK(s32kclk, ARMSSE),
1152         VMSTATE_UINT32(nsccfg, ARMSSE),
1153         VMSTATE_END_OF_LIST()
1154     }
1155 };
1156 
1157 static void armsse_reset(DeviceState *dev)
1158 {
1159     ARMSSE *s = ARM_SSE(dev);
1160 
1161     s->nsccfg = 0;
1162 }
1163 
1164 static void armsse_class_init(ObjectClass *klass, void *data)
1165 {
1166     DeviceClass *dc = DEVICE_CLASS(klass);
1167     IDAUInterfaceClass *iic = IDAU_INTERFACE_CLASS(klass);
1168     ARMSSEClass *asc = ARM_SSE_CLASS(klass);
1169     const ARMSSEInfo *info = data;
1170 
1171     dc->realize = armsse_realize;
1172     dc->vmsd = &armsse_vmstate;
1173     device_class_set_props(dc, info->props);
1174     dc->reset = armsse_reset;
1175     iic->check = armsse_idau_check;
1176     asc->info = info;
1177 }
1178 
1179 static const TypeInfo armsse_info = {
1180     .name = TYPE_ARM_SSE,
1181     .parent = TYPE_SYS_BUS_DEVICE,
1182     .instance_size = sizeof(ARMSSE),
1183     .class_size = sizeof(ARMSSEClass),
1184     .instance_init = armsse_init,
1185     .abstract = true,
1186     .interfaces = (InterfaceInfo[]) {
1187         { TYPE_IDAU_INTERFACE },
1188         { }
1189     }
1190 };
1191 
1192 static void armsse_register_types(void)
1193 {
1194     int i;
1195 
1196     type_register_static(&armsse_info);
1197 
1198     for (i = 0; i < ARRAY_SIZE(armsse_variants); i++) {
1199         TypeInfo ti = {
1200             .name = armsse_variants[i].name,
1201             .parent = TYPE_ARM_SSE,
1202             .class_init = armsse_class_init,
1203             .class_data = (void *)&armsse_variants[i],
1204         };
1205         type_register(&ti);
1206     }
1207 }
1208 
1209 type_init(armsse_register_types);
1210