xref: /qemu/hw/arm/armsse.c (revision 5a147c8c51d42fcdf5befc2982715b4b407f612e)
1 /*
2  * Arm SSE (Subsystems for Embedded): IoTKit
3  *
4  * Copyright (c) 2018 Linaro Limited
5  * Written by Peter Maydell
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 or
9  * (at your option) any later version.
10  */
11 
12 #include "qemu/osdep.h"
13 #include "qemu/log.h"
14 #include "qemu/module.h"
15 #include "qemu/bitops.h"
16 #include "qapi/error.h"
17 #include "trace.h"
18 #include "hw/sysbus.h"
19 #include "migration/vmstate.h"
20 #include "hw/registerfields.h"
21 #include "hw/arm/armsse.h"
22 #include "hw/arm/boot.h"
23 #include "hw/irq.h"
24 
25 /* Format of the System Information block SYS_CONFIG register */
26 typedef enum SysConfigFormat {
27     IoTKitFormat,
28     SSE200Format,
29 } SysConfigFormat;
30 
31 struct ARMSSEInfo {
32     const char *name;
33     int sram_banks;
34     int num_cpus;
35     uint32_t sys_version;
36     uint32_t cpuwait_rst;
37     SysConfigFormat sys_config_format;
38     bool has_mhus;
39     bool has_ppus;
40     bool has_cachectrl;
41     bool has_cpusecctrl;
42     bool has_cpuid;
43     Property *props;
44 };
45 
46 static Property iotkit_properties[] = {
47     DEFINE_PROP_LINK("memory", ARMSSE, board_memory, TYPE_MEMORY_REGION,
48                      MemoryRegion *),
49     DEFINE_PROP_UINT32("EXP_NUMIRQ", ARMSSE, exp_numirq, 64),
50     DEFINE_PROP_UINT32("MAINCLK", ARMSSE, mainclk_frq, 0),
51     DEFINE_PROP_UINT32("SRAM_ADDR_WIDTH", ARMSSE, sram_addr_width, 15),
52     DEFINE_PROP_UINT32("init-svtor", ARMSSE, init_svtor, 0x10000000),
53     DEFINE_PROP_BOOL("CPU0_FPU", ARMSSE, cpu_fpu[0], true),
54     DEFINE_PROP_BOOL("CPU0_DSP", ARMSSE, cpu_dsp[0], true),
55     DEFINE_PROP_END_OF_LIST()
56 };
57 
58 static Property armsse_properties[] = {
59     DEFINE_PROP_LINK("memory", ARMSSE, board_memory, TYPE_MEMORY_REGION,
60                      MemoryRegion *),
61     DEFINE_PROP_UINT32("EXP_NUMIRQ", ARMSSE, exp_numirq, 64),
62     DEFINE_PROP_UINT32("MAINCLK", ARMSSE, mainclk_frq, 0),
63     DEFINE_PROP_UINT32("SRAM_ADDR_WIDTH", ARMSSE, sram_addr_width, 15),
64     DEFINE_PROP_UINT32("init-svtor", ARMSSE, init_svtor, 0x10000000),
65     DEFINE_PROP_BOOL("CPU0_FPU", ARMSSE, cpu_fpu[0], false),
66     DEFINE_PROP_BOOL("CPU0_DSP", ARMSSE, cpu_dsp[0], false),
67     DEFINE_PROP_BOOL("CPU1_FPU", ARMSSE, cpu_fpu[1], true),
68     DEFINE_PROP_BOOL("CPU1_DSP", ARMSSE, cpu_dsp[1], true),
69     DEFINE_PROP_END_OF_LIST()
70 };
71 
72 static const ARMSSEInfo armsse_variants[] = {
73     {
74         .name = TYPE_IOTKIT,
75         .sram_banks = 1,
76         .num_cpus = 1,
77         .sys_version = 0x41743,
78         .cpuwait_rst = 0,
79         .sys_config_format = IoTKitFormat,
80         .has_mhus = false,
81         .has_ppus = false,
82         .has_cachectrl = false,
83         .has_cpusecctrl = false,
84         .has_cpuid = false,
85         .props = iotkit_properties,
86     },
87     {
88         .name = TYPE_SSE200,
89         .sram_banks = 4,
90         .num_cpus = 2,
91         .sys_version = 0x22041743,
92         .cpuwait_rst = 2,
93         .sys_config_format = SSE200Format,
94         .has_mhus = true,
95         .has_ppus = true,
96         .has_cachectrl = true,
97         .has_cpusecctrl = true,
98         .has_cpuid = true,
99         .props = armsse_properties,
100     },
101 };
102 
103 static uint32_t armsse_sys_config_value(ARMSSE *s, const ARMSSEInfo *info)
104 {
105     /* Return the SYS_CONFIG value for this SSE */
106     uint32_t sys_config;
107 
108     switch (info->sys_config_format) {
109     case IoTKitFormat:
110         sys_config = 0;
111         sys_config = deposit32(sys_config, 0, 4, info->sram_banks);
112         sys_config = deposit32(sys_config, 4, 4, s->sram_addr_width - 12);
113         break;
114     case SSE200Format:
115         sys_config = 0;
116         sys_config = deposit32(sys_config, 0, 4, info->sram_banks);
117         sys_config = deposit32(sys_config, 4, 5, s->sram_addr_width);
118         sys_config = deposit32(sys_config, 24, 4, 2);
119         if (info->num_cpus > 1) {
120             sys_config = deposit32(sys_config, 10, 1, 1);
121             sys_config = deposit32(sys_config, 20, 4, info->sram_banks - 1);
122             sys_config = deposit32(sys_config, 28, 4, 2);
123         }
124         break;
125     default:
126         g_assert_not_reached();
127     }
128     return sys_config;
129 }
130 
131 /* Clock frequency in HZ of the 32KHz "slow clock" */
132 #define S32KCLK (32 * 1000)
133 
134 /* Is internal IRQ n shared between CPUs in a multi-core SSE ? */
135 static bool irq_is_common[32] = {
136     [0 ... 5] = true,
137     /* 6, 7: per-CPU MHU interrupts */
138     [8 ... 12] = true,
139     /* 13: per-CPU icache interrupt */
140     /* 14: reserved */
141     [15 ... 20] = true,
142     /* 21: reserved */
143     [22 ... 26] = true,
144     /* 27: reserved */
145     /* 28, 29: per-CPU CTI interrupts */
146     /* 30, 31: reserved */
147 };
148 
149 /*
150  * Create an alias region in @container of @size bytes starting at @base
151  * which mirrors the memory starting at @orig.
152  */
153 static void make_alias(ARMSSE *s, MemoryRegion *mr, MemoryRegion *container,
154                        const char *name, hwaddr base, hwaddr size, hwaddr orig)
155 {
156     memory_region_init_alias(mr, NULL, name, container, orig, size);
157     /* The alias is even lower priority than unimplemented_device regions */
158     memory_region_add_subregion_overlap(container, base, mr, -1500);
159 }
160 
161 static void irq_status_forwarder(void *opaque, int n, int level)
162 {
163     qemu_irq destirq = opaque;
164 
165     qemu_set_irq(destirq, level);
166 }
167 
168 static void nsccfg_handler(void *opaque, int n, int level)
169 {
170     ARMSSE *s = ARMSSE(opaque);
171 
172     s->nsccfg = level;
173 }
174 
175 static void armsse_forward_ppc(ARMSSE *s, const char *ppcname, int ppcnum)
176 {
177     /* Each of the 4 AHB and 4 APB PPCs that might be present in a
178      * system using the ARMSSE has a collection of control lines which
179      * are provided by the security controller and which we want to
180      * expose as control lines on the ARMSSE device itself, so the
181      * code using the ARMSSE can wire them up to the PPCs.
182      */
183     SplitIRQ *splitter = &s->ppc_irq_splitter[ppcnum];
184     DeviceState *armssedev = DEVICE(s);
185     DeviceState *dev_secctl = DEVICE(&s->secctl);
186     DeviceState *dev_splitter = DEVICE(splitter);
187     char *name;
188 
189     name = g_strdup_printf("%s_nonsec", ppcname);
190     qdev_pass_gpios(dev_secctl, armssedev, name);
191     g_free(name);
192     name = g_strdup_printf("%s_ap", ppcname);
193     qdev_pass_gpios(dev_secctl, armssedev, name);
194     g_free(name);
195     name = g_strdup_printf("%s_irq_enable", ppcname);
196     qdev_pass_gpios(dev_secctl, armssedev, name);
197     g_free(name);
198     name = g_strdup_printf("%s_irq_clear", ppcname);
199     qdev_pass_gpios(dev_secctl, armssedev, name);
200     g_free(name);
201 
202     /* irq_status is a little more tricky, because we need to
203      * split it so we can send it both to the security controller
204      * and to our OR gate for the NVIC interrupt line.
205      * Connect up the splitter's outputs, and create a GPIO input
206      * which will pass the line state to the input splitter.
207      */
208     name = g_strdup_printf("%s_irq_status", ppcname);
209     qdev_connect_gpio_out(dev_splitter, 0,
210                           qdev_get_gpio_in_named(dev_secctl,
211                                                  name, 0));
212     qdev_connect_gpio_out(dev_splitter, 1,
213                           qdev_get_gpio_in(DEVICE(&s->ppc_irq_orgate), ppcnum));
214     s->irq_status_in[ppcnum] = qdev_get_gpio_in(dev_splitter, 0);
215     qdev_init_gpio_in_named_with_opaque(armssedev, irq_status_forwarder,
216                                         s->irq_status_in[ppcnum], name, 1);
217     g_free(name);
218 }
219 
220 static void armsse_forward_sec_resp_cfg(ARMSSE *s)
221 {
222     /* Forward the 3rd output from the splitter device as a
223      * named GPIO output of the armsse object.
224      */
225     DeviceState *dev = DEVICE(s);
226     DeviceState *dev_splitter = DEVICE(&s->sec_resp_splitter);
227 
228     qdev_init_gpio_out_named(dev, &s->sec_resp_cfg, "sec_resp_cfg", 1);
229     s->sec_resp_cfg_in = qemu_allocate_irq(irq_status_forwarder,
230                                            s->sec_resp_cfg, 1);
231     qdev_connect_gpio_out(dev_splitter, 2, s->sec_resp_cfg_in);
232 }
233 
234 static void armsse_init(Object *obj)
235 {
236     ARMSSE *s = ARMSSE(obj);
237     ARMSSEClass *asc = ARMSSE_GET_CLASS(obj);
238     const ARMSSEInfo *info = asc->info;
239     int i;
240 
241     assert(info->sram_banks <= MAX_SRAM_BANKS);
242     assert(info->num_cpus <= SSE_MAX_CPUS);
243 
244     memory_region_init(&s->container, obj, "armsse-container", UINT64_MAX);
245 
246     for (i = 0; i < info->num_cpus; i++) {
247         /*
248          * We put each CPU in its own cluster as they are logically
249          * distinct and may be configured differently.
250          */
251         char *name;
252 
253         name = g_strdup_printf("cluster%d", i);
254         object_initialize_child(obj, name, &s->cluster[i], TYPE_CPU_CLUSTER);
255         qdev_prop_set_uint32(DEVICE(&s->cluster[i]), "cluster-id", i);
256         g_free(name);
257 
258         name = g_strdup_printf("armv7m%d", i);
259         object_initialize_child(OBJECT(&s->cluster[i]), name, &s->armv7m[i],
260                                 TYPE_ARMV7M);
261         qdev_prop_set_string(DEVICE(&s->armv7m[i]), "cpu-type",
262                              ARM_CPU_TYPE_NAME("cortex-m33"));
263         g_free(name);
264         name = g_strdup_printf("arm-sse-cpu-container%d", i);
265         memory_region_init(&s->cpu_container[i], obj, name, UINT64_MAX);
266         g_free(name);
267         if (i > 0) {
268             name = g_strdup_printf("arm-sse-container-alias%d", i);
269             memory_region_init_alias(&s->container_alias[i - 1], obj,
270                                      name, &s->container, 0, UINT64_MAX);
271             g_free(name);
272         }
273     }
274 
275     object_initialize_child(obj, "secctl", &s->secctl, TYPE_IOTKIT_SECCTL);
276     object_initialize_child(obj, "apb-ppc0", &s->apb_ppc0, TYPE_TZ_PPC);
277     object_initialize_child(obj, "apb-ppc1", &s->apb_ppc1, TYPE_TZ_PPC);
278     for (i = 0; i < info->sram_banks; i++) {
279         char *name = g_strdup_printf("mpc%d", i);
280         object_initialize_child(obj, name, &s->mpc[i], TYPE_TZ_MPC);
281         g_free(name);
282     }
283     object_initialize_child(obj, "mpc-irq-orgate", &s->mpc_irq_orgate,
284                             TYPE_OR_IRQ);
285 
286     for (i = 0; i < IOTS_NUM_EXP_MPC + info->sram_banks; i++) {
287         char *name = g_strdup_printf("mpc-irq-splitter-%d", i);
288         SplitIRQ *splitter = &s->mpc_irq_splitter[i];
289 
290         object_initialize_child(obj, name, splitter, TYPE_SPLIT_IRQ);
291         g_free(name);
292     }
293     object_initialize_child(obj, "timer0", &s->timer0, TYPE_CMSDK_APB_TIMER);
294     object_initialize_child(obj, "timer1", &s->timer1, TYPE_CMSDK_APB_TIMER);
295     object_initialize_child(obj, "s32ktimer", &s->s32ktimer,
296                             TYPE_CMSDK_APB_TIMER);
297     object_initialize_child(obj, "dualtimer", &s->dualtimer,
298                             TYPE_CMSDK_APB_DUALTIMER);
299     object_initialize_child(obj, "s32kwatchdog", &s->s32kwatchdog,
300                             TYPE_CMSDK_APB_WATCHDOG);
301     object_initialize_child(obj, "nswatchdog", &s->nswatchdog,
302                             TYPE_CMSDK_APB_WATCHDOG);
303     object_initialize_child(obj, "swatchdog", &s->swatchdog,
304                             TYPE_CMSDK_APB_WATCHDOG);
305     object_initialize_child(obj, "armsse-sysctl", &s->sysctl,
306                             TYPE_IOTKIT_SYSCTL);
307     object_initialize_child(obj, "armsse-sysinfo", &s->sysinfo,
308                             TYPE_IOTKIT_SYSINFO);
309     if (info->has_mhus) {
310         object_initialize_child(obj, "mhu0", &s->mhu[0], TYPE_ARMSSE_MHU);
311         object_initialize_child(obj, "mhu1", &s->mhu[1], TYPE_ARMSSE_MHU);
312     }
313     if (info->has_ppus) {
314         for (i = 0; i < info->num_cpus; i++) {
315             char *name = g_strdup_printf("CPU%dCORE_PPU", i);
316             int ppuidx = CPU0CORE_PPU + i;
317 
318             object_initialize_child(obj, name, &s->ppu[ppuidx],
319                                     TYPE_UNIMPLEMENTED_DEVICE);
320             g_free(name);
321         }
322         object_initialize_child(obj, "DBG_PPU", &s->ppu[DBG_PPU],
323                                 TYPE_UNIMPLEMENTED_DEVICE);
324         for (i = 0; i < info->sram_banks; i++) {
325             char *name = g_strdup_printf("RAM%d_PPU", i);
326             int ppuidx = RAM0_PPU + i;
327 
328             object_initialize_child(obj, name, &s->ppu[ppuidx],
329                                     TYPE_UNIMPLEMENTED_DEVICE);
330             g_free(name);
331         }
332     }
333     if (info->has_cachectrl) {
334         for (i = 0; i < info->num_cpus; i++) {
335             char *name = g_strdup_printf("cachectrl%d", i);
336 
337             object_initialize_child(obj, name, &s->cachectrl[i],
338                                     TYPE_UNIMPLEMENTED_DEVICE);
339             g_free(name);
340         }
341     }
342     if (info->has_cpusecctrl) {
343         for (i = 0; i < info->num_cpus; i++) {
344             char *name = g_strdup_printf("cpusecctrl%d", i);
345 
346             object_initialize_child(obj, name, &s->cpusecctrl[i],
347                                     TYPE_UNIMPLEMENTED_DEVICE);
348             g_free(name);
349         }
350     }
351     if (info->has_cpuid) {
352         for (i = 0; i < info->num_cpus; i++) {
353             char *name = g_strdup_printf("cpuid%d", i);
354 
355             object_initialize_child(obj, name, &s->cpuid[i],
356                                     TYPE_ARMSSE_CPUID);
357             g_free(name);
358         }
359     }
360     object_initialize_child(obj, "nmi-orgate", &s->nmi_orgate, TYPE_OR_IRQ);
361     object_initialize_child(obj, "ppc-irq-orgate", &s->ppc_irq_orgate,
362                             TYPE_OR_IRQ);
363     object_initialize_child(obj, "sec-resp-splitter", &s->sec_resp_splitter,
364                             TYPE_SPLIT_IRQ);
365     for (i = 0; i < ARRAY_SIZE(s->ppc_irq_splitter); i++) {
366         char *name = g_strdup_printf("ppc-irq-splitter-%d", i);
367         SplitIRQ *splitter = &s->ppc_irq_splitter[i];
368 
369         object_initialize_child(obj, name, splitter, TYPE_SPLIT_IRQ);
370         g_free(name);
371     }
372     if (info->num_cpus > 1) {
373         for (i = 0; i < ARRAY_SIZE(s->cpu_irq_splitter); i++) {
374             if (irq_is_common[i]) {
375                 char *name = g_strdup_printf("cpu-irq-splitter%d", i);
376                 SplitIRQ *splitter = &s->cpu_irq_splitter[i];
377 
378                 object_initialize_child(obj, name, splitter, TYPE_SPLIT_IRQ);
379                 g_free(name);
380             }
381         }
382     }
383 }
384 
385 static void armsse_exp_irq(void *opaque, int n, int level)
386 {
387     qemu_irq *irqarray = opaque;
388 
389     qemu_set_irq(irqarray[n], level);
390 }
391 
392 static void armsse_mpcexp_status(void *opaque, int n, int level)
393 {
394     ARMSSE *s = ARMSSE(opaque);
395     qemu_set_irq(s->mpcexp_status_in[n], level);
396 }
397 
398 static qemu_irq armsse_get_common_irq_in(ARMSSE *s, int irqno)
399 {
400     /*
401      * Return a qemu_irq which can be used to signal IRQ n to
402      * all CPUs in the SSE.
403      */
404     ARMSSEClass *asc = ARMSSE_GET_CLASS(s);
405     const ARMSSEInfo *info = asc->info;
406 
407     assert(irq_is_common[irqno]);
408 
409     if (info->num_cpus == 1) {
410         /* Only one CPU -- just connect directly to it */
411         return qdev_get_gpio_in(DEVICE(&s->armv7m[0]), irqno);
412     } else {
413         /* Connect to the splitter which feeds all CPUs */
414         return qdev_get_gpio_in(DEVICE(&s->cpu_irq_splitter[irqno]), 0);
415     }
416 }
417 
418 static void map_ppu(ARMSSE *s, int ppuidx, const char *name, hwaddr addr)
419 {
420     /* Map a PPU unimplemented device stub */
421     DeviceState *dev = DEVICE(&s->ppu[ppuidx]);
422 
423     qdev_prop_set_string(dev, "name", name);
424     qdev_prop_set_uint64(dev, "size", 0x1000);
425     sysbus_realize(SYS_BUS_DEVICE(dev), &error_fatal);
426     sysbus_mmio_map(SYS_BUS_DEVICE(&s->ppu[ppuidx]), 0, addr);
427 }
428 
429 static void armsse_realize(DeviceState *dev, Error **errp)
430 {
431     ARMSSE *s = ARMSSE(dev);
432     ARMSSEClass *asc = ARMSSE_GET_CLASS(dev);
433     const ARMSSEInfo *info = asc->info;
434     int i;
435     MemoryRegion *mr;
436     Error *err = NULL;
437     SysBusDevice *sbd_apb_ppc0;
438     SysBusDevice *sbd_secctl;
439     DeviceState *dev_apb_ppc0;
440     DeviceState *dev_apb_ppc1;
441     DeviceState *dev_secctl;
442     DeviceState *dev_splitter;
443     uint32_t addr_width_max;
444 
445     if (!s->board_memory) {
446         error_setg(errp, "memory property was not set");
447         return;
448     }
449 
450     if (!s->mainclk_frq) {
451         error_setg(errp, "MAINCLK property was not set");
452         return;
453     }
454 
455     /* max SRAM_ADDR_WIDTH: 24 - log2(SRAM_NUM_BANK) */
456     assert(is_power_of_2(info->sram_banks));
457     addr_width_max = 24 - ctz32(info->sram_banks);
458     if (s->sram_addr_width < 1 || s->sram_addr_width > addr_width_max) {
459         error_setg(errp, "SRAM_ADDR_WIDTH must be between 1 and %d",
460                    addr_width_max);
461         return;
462     }
463 
464     /* Handling of which devices should be available only to secure
465      * code is usually done differently for M profile than for A profile.
466      * Instead of putting some devices only into the secure address space,
467      * devices exist in both address spaces but with hard-wired security
468      * permissions that will cause the CPU to fault for non-secure accesses.
469      *
470      * The ARMSSE has an IDAU (Implementation Defined Access Unit),
471      * which specifies hard-wired security permissions for different
472      * areas of the physical address space. For the ARMSSE IDAU, the
473      * top 4 bits of the physical address are the IDAU region ID, and
474      * if bit 28 (ie the lowest bit of the ID) is 0 then this is an NS
475      * region, otherwise it is an S region.
476      *
477      * The various devices and RAMs are generally all mapped twice,
478      * once into a region that the IDAU defines as secure and once
479      * into a non-secure region. They sit behind either a Memory
480      * Protection Controller (for RAM) or a Peripheral Protection
481      * Controller (for devices), which allow a more fine grained
482      * configuration of whether non-secure accesses are permitted.
483      *
484      * (The other place that guest software can configure security
485      * permissions is in the architected SAU (Security Attribution
486      * Unit), which is entirely inside the CPU. The IDAU can upgrade
487      * the security attributes for a region to more restrictive than
488      * the SAU specifies, but cannot downgrade them.)
489      *
490      * 0x10000000..0x1fffffff  alias of 0x00000000..0x0fffffff
491      * 0x20000000..0x2007ffff  32KB FPGA block RAM
492      * 0x30000000..0x3fffffff  alias of 0x20000000..0x2fffffff
493      * 0x40000000..0x4000ffff  base peripheral region 1
494      * 0x40010000..0x4001ffff  CPU peripherals (none for ARMSSE)
495      * 0x40020000..0x4002ffff  system control element peripherals
496      * 0x40080000..0x400fffff  base peripheral region 2
497      * 0x50000000..0x5fffffff  alias of 0x40000000..0x4fffffff
498      */
499 
500     memory_region_add_subregion_overlap(&s->container, 0, s->board_memory, -2);
501 
502     for (i = 0; i < info->num_cpus; i++) {
503         DeviceState *cpudev = DEVICE(&s->armv7m[i]);
504         Object *cpuobj = OBJECT(&s->armv7m[i]);
505         int j;
506         char *gpioname;
507 
508         qdev_prop_set_uint32(cpudev, "num-irq", s->exp_numirq + 32);
509         /*
510          * In real hardware the initial Secure VTOR is set from the INITSVTOR*
511          * registers in the IoT Kit System Control Register block. In QEMU
512          * we set the initial value here, and also the reset value of the
513          * sysctl register, from this object's QOM init-svtor property.
514          * If the guest changes the INITSVTOR* registers at runtime then the
515          * code in iotkit-sysctl.c will update the CPU init-svtor property
516          * (which will then take effect on the next CPU warm-reset).
517          *
518          * Note that typically a board using the SSE-200 will have a system
519          * control processor whose boot firmware initializes the INITSVTOR*
520          * registers before powering up the CPUs. QEMU doesn't emulate
521          * the control processor, so instead we behave in the way that the
522          * firmware does: the initial value should be set by the board code
523          * (using the init-svtor property on the ARMSSE object) to match
524          * whatever its firmware does.
525          */
526         qdev_prop_set_uint32(cpudev, "init-svtor", s->init_svtor);
527         /*
528          * CPUs start powered down if the corresponding bit in the CPUWAIT
529          * register is 1. In real hardware the CPUWAIT register reset value is
530          * a configurable property of the SSE-200 (via the CPUWAIT0_RST and
531          * CPUWAIT1_RST parameters), but since all the boards we care about
532          * start CPU0 and leave CPU1 powered off, we hard-code that in
533          * info->cpuwait_rst for now. We can add QOM properties for this
534          * later if necessary.
535          */
536         if (extract32(info->cpuwait_rst, i, 1)) {
537             object_property_set_bool(cpuobj, true, "start-powered-off", &err);
538             if (err) {
539                 error_propagate(errp, err);
540                 return;
541             }
542         }
543         if (!s->cpu_fpu[i]) {
544             object_property_set_bool(cpuobj, false, "vfp", &err);
545             if (err) {
546                 error_propagate(errp, err);
547                 return;
548             }
549         }
550         if (!s->cpu_dsp[i]) {
551             object_property_set_bool(cpuobj, false, "dsp", &err);
552             if (err) {
553                 error_propagate(errp, err);
554                 return;
555             }
556         }
557 
558         if (i > 0) {
559             memory_region_add_subregion_overlap(&s->cpu_container[i], 0,
560                                                 &s->container_alias[i - 1], -1);
561         } else {
562             memory_region_add_subregion_overlap(&s->cpu_container[i], 0,
563                                                 &s->container, -1);
564         }
565         object_property_set_link(cpuobj, OBJECT(&s->cpu_container[i]),
566                                  "memory", &err);
567         if (err) {
568             error_propagate(errp, err);
569             return;
570         }
571         object_property_set_link(cpuobj, OBJECT(s), "idau", &err);
572         if (err) {
573             error_propagate(errp, err);
574             return;
575         }
576         sysbus_realize(SYS_BUS_DEVICE(cpuobj), &err);
577         if (err) {
578             error_propagate(errp, err);
579             return;
580         }
581         /*
582          * The cluster must be realized after the armv7m container, as
583          * the container's CPU object is only created on realize, and the
584          * CPU must exist and have been parented into the cluster before
585          * the cluster is realized.
586          */
587         object_property_set_bool(OBJECT(&s->cluster[i]),
588                                  true, "realized", &err);
589         if (err) {
590             error_propagate(errp, err);
591             return;
592         }
593 
594         /* Connect EXP_IRQ/EXP_CPUn_IRQ GPIOs to the NVIC's lines 32 and up */
595         s->exp_irqs[i] = g_new(qemu_irq, s->exp_numirq);
596         for (j = 0; j < s->exp_numirq; j++) {
597             s->exp_irqs[i][j] = qdev_get_gpio_in(cpudev, j + 32);
598         }
599         if (i == 0) {
600             gpioname = g_strdup("EXP_IRQ");
601         } else {
602             gpioname = g_strdup_printf("EXP_CPU%d_IRQ", i);
603         }
604         qdev_init_gpio_in_named_with_opaque(dev, armsse_exp_irq,
605                                             s->exp_irqs[i],
606                                             gpioname, s->exp_numirq);
607         g_free(gpioname);
608     }
609 
610     /* Wire up the splitters that connect common IRQs to all CPUs */
611     if (info->num_cpus > 1) {
612         for (i = 0; i < ARRAY_SIZE(s->cpu_irq_splitter); i++) {
613             if (irq_is_common[i]) {
614                 Object *splitter = OBJECT(&s->cpu_irq_splitter[i]);
615                 DeviceState *devs = DEVICE(splitter);
616                 int cpunum;
617 
618                 object_property_set_int(splitter, info->num_cpus,
619                                         "num-lines", &err);
620                 if (err) {
621                     error_propagate(errp, err);
622                     return;
623                 }
624                 object_property_set_bool(splitter, true, "realized", &err);
625                 if (err) {
626                     error_propagate(errp, err);
627                     return;
628                 }
629                 for (cpunum = 0; cpunum < info->num_cpus; cpunum++) {
630                     DeviceState *cpudev = DEVICE(&s->armv7m[cpunum]);
631 
632                     qdev_connect_gpio_out(devs, cpunum,
633                                           qdev_get_gpio_in(cpudev, i));
634                 }
635             }
636         }
637     }
638 
639     /* Set up the big aliases first */
640     make_alias(s, &s->alias1, &s->container, "alias 1",
641                0x10000000, 0x10000000, 0x00000000);
642     make_alias(s, &s->alias2, &s->container,
643                "alias 2", 0x30000000, 0x10000000, 0x20000000);
644     /* The 0x50000000..0x5fffffff region is not a pure alias: it has
645      * a few extra devices that only appear there (generally the
646      * control interfaces for the protection controllers).
647      * We implement this by mapping those devices over the top of this
648      * alias MR at a higher priority. Some of the devices in this range
649      * are per-CPU, so we must put this alias in the per-cpu containers.
650      */
651     for (i = 0; i < info->num_cpus; i++) {
652         make_alias(s, &s->alias3[i], &s->cpu_container[i],
653                    "alias 3", 0x50000000, 0x10000000, 0x40000000);
654     }
655 
656     /* Security controller */
657     sysbus_realize(SYS_BUS_DEVICE(&s->secctl), &err);
658     if (err) {
659         error_propagate(errp, err);
660         return;
661     }
662     sbd_secctl = SYS_BUS_DEVICE(&s->secctl);
663     dev_secctl = DEVICE(&s->secctl);
664     sysbus_mmio_map(sbd_secctl, 0, 0x50080000);
665     sysbus_mmio_map(sbd_secctl, 1, 0x40080000);
666 
667     s->nsc_cfg_in = qemu_allocate_irq(nsccfg_handler, s, 1);
668     qdev_connect_gpio_out_named(dev_secctl, "nsc_cfg", 0, s->nsc_cfg_in);
669 
670     /* The sec_resp_cfg output from the security controller must be split into
671      * multiple lines, one for each of the PPCs within the ARMSSE and one
672      * that will be an output from the ARMSSE to the system.
673      */
674     object_property_set_int(OBJECT(&s->sec_resp_splitter), 3,
675                             "num-lines", &err);
676     if (err) {
677         error_propagate(errp, err);
678         return;
679     }
680     object_property_set_bool(OBJECT(&s->sec_resp_splitter), true,
681                              "realized", &err);
682     if (err) {
683         error_propagate(errp, err);
684         return;
685     }
686     dev_splitter = DEVICE(&s->sec_resp_splitter);
687     qdev_connect_gpio_out_named(dev_secctl, "sec_resp_cfg", 0,
688                                 qdev_get_gpio_in(dev_splitter, 0));
689 
690     /* Each SRAM bank lives behind its own Memory Protection Controller */
691     for (i = 0; i < info->sram_banks; i++) {
692         char *ramname = g_strdup_printf("armsse.sram%d", i);
693         SysBusDevice *sbd_mpc;
694         uint32_t sram_bank_size = 1 << s->sram_addr_width;
695 
696         memory_region_init_ram(&s->sram[i], NULL, ramname,
697                                sram_bank_size, &err);
698         g_free(ramname);
699         if (err) {
700             error_propagate(errp, err);
701             return;
702         }
703         object_property_set_link(OBJECT(&s->mpc[i]), OBJECT(&s->sram[i]),
704                                  "downstream", &err);
705         if (err) {
706             error_propagate(errp, err);
707             return;
708         }
709         sysbus_realize(SYS_BUS_DEVICE(&s->mpc[i]), &err);
710         if (err) {
711             error_propagate(errp, err);
712             return;
713         }
714         /* Map the upstream end of the MPC into the right place... */
715         sbd_mpc = SYS_BUS_DEVICE(&s->mpc[i]);
716         memory_region_add_subregion(&s->container,
717                                     0x20000000 + i * sram_bank_size,
718                                     sysbus_mmio_get_region(sbd_mpc, 1));
719         /* ...and its register interface */
720         memory_region_add_subregion(&s->container, 0x50083000 + i * 0x1000,
721                                     sysbus_mmio_get_region(sbd_mpc, 0));
722     }
723 
724     /* We must OR together lines from the MPC splitters to go to the NVIC */
725     object_property_set_int(OBJECT(&s->mpc_irq_orgate),
726                             IOTS_NUM_EXP_MPC + info->sram_banks,
727                             "num-lines", &err);
728     if (err) {
729         error_propagate(errp, err);
730         return;
731     }
732     object_property_set_bool(OBJECT(&s->mpc_irq_orgate), true,
733                              "realized", &err);
734     if (err) {
735         error_propagate(errp, err);
736         return;
737     }
738     qdev_connect_gpio_out(DEVICE(&s->mpc_irq_orgate), 0,
739                           armsse_get_common_irq_in(s, 9));
740 
741     /* Devices behind APB PPC0:
742      *   0x40000000: timer0
743      *   0x40001000: timer1
744      *   0x40002000: dual timer
745      *   0x40003000: MHU0 (SSE-200 only)
746      *   0x40004000: MHU1 (SSE-200 only)
747      * We must configure and realize each downstream device and connect
748      * it to the appropriate PPC port; then we can realize the PPC and
749      * map its upstream ends to the right place in the container.
750      */
751     qdev_prop_set_uint32(DEVICE(&s->timer0), "pclk-frq", s->mainclk_frq);
752     sysbus_realize(SYS_BUS_DEVICE(&s->timer0), &err);
753     if (err) {
754         error_propagate(errp, err);
755         return;
756     }
757     sysbus_connect_irq(SYS_BUS_DEVICE(&s->timer0), 0,
758                        armsse_get_common_irq_in(s, 3));
759     mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->timer0), 0);
760     object_property_set_link(OBJECT(&s->apb_ppc0), OBJECT(mr), "port[0]", &err);
761     if (err) {
762         error_propagate(errp, err);
763         return;
764     }
765 
766     qdev_prop_set_uint32(DEVICE(&s->timer1), "pclk-frq", s->mainclk_frq);
767     sysbus_realize(SYS_BUS_DEVICE(&s->timer1), &err);
768     if (err) {
769         error_propagate(errp, err);
770         return;
771     }
772     sysbus_connect_irq(SYS_BUS_DEVICE(&s->timer1), 0,
773                        armsse_get_common_irq_in(s, 4));
774     mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->timer1), 0);
775     object_property_set_link(OBJECT(&s->apb_ppc0), OBJECT(mr), "port[1]", &err);
776     if (err) {
777         error_propagate(errp, err);
778         return;
779     }
780 
781 
782     qdev_prop_set_uint32(DEVICE(&s->dualtimer), "pclk-frq", s->mainclk_frq);
783     sysbus_realize(SYS_BUS_DEVICE(&s->dualtimer), &err);
784     if (err) {
785         error_propagate(errp, err);
786         return;
787     }
788     sysbus_connect_irq(SYS_BUS_DEVICE(&s->dualtimer), 0,
789                        armsse_get_common_irq_in(s, 5));
790     mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->dualtimer), 0);
791     object_property_set_link(OBJECT(&s->apb_ppc0), OBJECT(mr), "port[2]", &err);
792     if (err) {
793         error_propagate(errp, err);
794         return;
795     }
796 
797     if (info->has_mhus) {
798         /*
799          * An SSE-200 with only one CPU should have only one MHU created,
800          * with the region where the second MHU usually is being RAZ/WI.
801          * We don't implement that SSE-200 config; if we want to support
802          * it then this code needs to be enhanced to handle creating the
803          * RAZ/WI region instead of the second MHU.
804          */
805         assert(info->num_cpus == ARRAY_SIZE(s->mhu));
806 
807         for (i = 0; i < ARRAY_SIZE(s->mhu); i++) {
808             char *port;
809             int cpunum;
810             SysBusDevice *mhu_sbd = SYS_BUS_DEVICE(&s->mhu[i]);
811 
812             sysbus_realize(SYS_BUS_DEVICE(&s->mhu[i]), &err);
813             if (err) {
814                 error_propagate(errp, err);
815                 return;
816             }
817             port = g_strdup_printf("port[%d]", i + 3);
818             mr = sysbus_mmio_get_region(mhu_sbd, 0);
819             object_property_set_link(OBJECT(&s->apb_ppc0), OBJECT(mr),
820                                      port, &err);
821             g_free(port);
822             if (err) {
823                 error_propagate(errp, err);
824                 return;
825             }
826 
827             /*
828              * Each MHU has an irq line for each CPU:
829              *  MHU 0 irq line 0 -> CPU 0 IRQ 6
830              *  MHU 0 irq line 1 -> CPU 1 IRQ 6
831              *  MHU 1 irq line 0 -> CPU 0 IRQ 7
832              *  MHU 1 irq line 1 -> CPU 1 IRQ 7
833              */
834             for (cpunum = 0; cpunum < info->num_cpus; cpunum++) {
835                 DeviceState *cpudev = DEVICE(&s->armv7m[cpunum]);
836 
837                 sysbus_connect_irq(mhu_sbd, cpunum,
838                                    qdev_get_gpio_in(cpudev, 6 + i));
839             }
840         }
841     }
842 
843     sysbus_realize(SYS_BUS_DEVICE(&s->apb_ppc0), &err);
844     if (err) {
845         error_propagate(errp, err);
846         return;
847     }
848 
849     sbd_apb_ppc0 = SYS_BUS_DEVICE(&s->apb_ppc0);
850     dev_apb_ppc0 = DEVICE(&s->apb_ppc0);
851 
852     mr = sysbus_mmio_get_region(sbd_apb_ppc0, 0);
853     memory_region_add_subregion(&s->container, 0x40000000, mr);
854     mr = sysbus_mmio_get_region(sbd_apb_ppc0, 1);
855     memory_region_add_subregion(&s->container, 0x40001000, mr);
856     mr = sysbus_mmio_get_region(sbd_apb_ppc0, 2);
857     memory_region_add_subregion(&s->container, 0x40002000, mr);
858     if (info->has_mhus) {
859         mr = sysbus_mmio_get_region(sbd_apb_ppc0, 3);
860         memory_region_add_subregion(&s->container, 0x40003000, mr);
861         mr = sysbus_mmio_get_region(sbd_apb_ppc0, 4);
862         memory_region_add_subregion(&s->container, 0x40004000, mr);
863     }
864     for (i = 0; i < IOTS_APB_PPC0_NUM_PORTS; i++) {
865         qdev_connect_gpio_out_named(dev_secctl, "apb_ppc0_nonsec", i,
866                                     qdev_get_gpio_in_named(dev_apb_ppc0,
867                                                            "cfg_nonsec", i));
868         qdev_connect_gpio_out_named(dev_secctl, "apb_ppc0_ap", i,
869                                     qdev_get_gpio_in_named(dev_apb_ppc0,
870                                                            "cfg_ap", i));
871     }
872     qdev_connect_gpio_out_named(dev_secctl, "apb_ppc0_irq_enable", 0,
873                                 qdev_get_gpio_in_named(dev_apb_ppc0,
874                                                        "irq_enable", 0));
875     qdev_connect_gpio_out_named(dev_secctl, "apb_ppc0_irq_clear", 0,
876                                 qdev_get_gpio_in_named(dev_apb_ppc0,
877                                                        "irq_clear", 0));
878     qdev_connect_gpio_out(dev_splitter, 0,
879                           qdev_get_gpio_in_named(dev_apb_ppc0,
880                                                  "cfg_sec_resp", 0));
881 
882     /* All the PPC irq lines (from the 2 internal PPCs and the 8 external
883      * ones) are sent individually to the security controller, and also
884      * ORed together to give a single combined PPC interrupt to the NVIC.
885      */
886     object_property_set_int(OBJECT(&s->ppc_irq_orgate),
887                             NUM_PPCS, "num-lines", &err);
888     if (err) {
889         error_propagate(errp, err);
890         return;
891     }
892     object_property_set_bool(OBJECT(&s->ppc_irq_orgate), true,
893                              "realized", &err);
894     if (err) {
895         error_propagate(errp, err);
896         return;
897     }
898     qdev_connect_gpio_out(DEVICE(&s->ppc_irq_orgate), 0,
899                           armsse_get_common_irq_in(s, 10));
900 
901     /*
902      * 0x40010000 .. 0x4001ffff (and the 0x5001000... secure-only alias):
903      * private per-CPU region (all these devices are SSE-200 only):
904      *  0x50010000: L1 icache control registers
905      *  0x50011000: CPUSECCTRL (CPU local security control registers)
906      *  0x4001f000 and 0x5001f000: CPU_IDENTITY register block
907      */
908     if (info->has_cachectrl) {
909         for (i = 0; i < info->num_cpus; i++) {
910             char *name = g_strdup_printf("cachectrl%d", i);
911             MemoryRegion *mr;
912 
913             qdev_prop_set_string(DEVICE(&s->cachectrl[i]), "name", name);
914             g_free(name);
915             qdev_prop_set_uint64(DEVICE(&s->cachectrl[i]), "size", 0x1000);
916             sysbus_realize(SYS_BUS_DEVICE(&s->cachectrl[i]), &err);
917             if (err) {
918                 error_propagate(errp, err);
919                 return;
920             }
921 
922             mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->cachectrl[i]), 0);
923             memory_region_add_subregion(&s->cpu_container[i], 0x50010000, mr);
924         }
925     }
926     if (info->has_cpusecctrl) {
927         for (i = 0; i < info->num_cpus; i++) {
928             char *name = g_strdup_printf("CPUSECCTRL%d", i);
929             MemoryRegion *mr;
930 
931             qdev_prop_set_string(DEVICE(&s->cpusecctrl[i]), "name", name);
932             g_free(name);
933             qdev_prop_set_uint64(DEVICE(&s->cpusecctrl[i]), "size", 0x1000);
934             sysbus_realize(SYS_BUS_DEVICE(&s->cpusecctrl[i]), &err);
935             if (err) {
936                 error_propagate(errp, err);
937                 return;
938             }
939 
940             mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->cpusecctrl[i]), 0);
941             memory_region_add_subregion(&s->cpu_container[i], 0x50011000, mr);
942         }
943     }
944     if (info->has_cpuid) {
945         for (i = 0; i < info->num_cpus; i++) {
946             MemoryRegion *mr;
947 
948             qdev_prop_set_uint32(DEVICE(&s->cpuid[i]), "CPUID", i);
949             sysbus_realize(SYS_BUS_DEVICE(&s->cpuid[i]), &err);
950             if (err) {
951                 error_propagate(errp, err);
952                 return;
953             }
954 
955             mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->cpuid[i]), 0);
956             memory_region_add_subregion(&s->cpu_container[i], 0x4001F000, mr);
957         }
958     }
959 
960     /* 0x40020000 .. 0x4002ffff : ARMSSE system control peripheral region */
961     /* Devices behind APB PPC1:
962      *   0x4002f000: S32K timer
963      */
964     qdev_prop_set_uint32(DEVICE(&s->s32ktimer), "pclk-frq", S32KCLK);
965     sysbus_realize(SYS_BUS_DEVICE(&s->s32ktimer), &err);
966     if (err) {
967         error_propagate(errp, err);
968         return;
969     }
970     sysbus_connect_irq(SYS_BUS_DEVICE(&s->s32ktimer), 0,
971                        armsse_get_common_irq_in(s, 2));
972     mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->s32ktimer), 0);
973     object_property_set_link(OBJECT(&s->apb_ppc1), OBJECT(mr), "port[0]", &err);
974     if (err) {
975         error_propagate(errp, err);
976         return;
977     }
978 
979     sysbus_realize(SYS_BUS_DEVICE(&s->apb_ppc1), &err);
980     if (err) {
981         error_propagate(errp, err);
982         return;
983     }
984     mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->apb_ppc1), 0);
985     memory_region_add_subregion(&s->container, 0x4002f000, mr);
986 
987     dev_apb_ppc1 = DEVICE(&s->apb_ppc1);
988     qdev_connect_gpio_out_named(dev_secctl, "apb_ppc1_nonsec", 0,
989                                 qdev_get_gpio_in_named(dev_apb_ppc1,
990                                                        "cfg_nonsec", 0));
991     qdev_connect_gpio_out_named(dev_secctl, "apb_ppc1_ap", 0,
992                                 qdev_get_gpio_in_named(dev_apb_ppc1,
993                                                        "cfg_ap", 0));
994     qdev_connect_gpio_out_named(dev_secctl, "apb_ppc1_irq_enable", 0,
995                                 qdev_get_gpio_in_named(dev_apb_ppc1,
996                                                        "irq_enable", 0));
997     qdev_connect_gpio_out_named(dev_secctl, "apb_ppc1_irq_clear", 0,
998                                 qdev_get_gpio_in_named(dev_apb_ppc1,
999                                                        "irq_clear", 0));
1000     qdev_connect_gpio_out(dev_splitter, 1,
1001                           qdev_get_gpio_in_named(dev_apb_ppc1,
1002                                                  "cfg_sec_resp", 0));
1003 
1004     object_property_set_int(OBJECT(&s->sysinfo), info->sys_version,
1005                             "SYS_VERSION", &err);
1006     if (err) {
1007         error_propagate(errp, err);
1008         return;
1009     }
1010     object_property_set_int(OBJECT(&s->sysinfo),
1011                             armsse_sys_config_value(s, info),
1012                             "SYS_CONFIG", &err);
1013     if (err) {
1014         error_propagate(errp, err);
1015         return;
1016     }
1017     sysbus_realize(SYS_BUS_DEVICE(&s->sysinfo), &err);
1018     if (err) {
1019         error_propagate(errp, err);
1020         return;
1021     }
1022     /* System information registers */
1023     sysbus_mmio_map(SYS_BUS_DEVICE(&s->sysinfo), 0, 0x40020000);
1024     /* System control registers */
1025     object_property_set_int(OBJECT(&s->sysctl), info->sys_version,
1026                             "SYS_VERSION", &err);
1027     object_property_set_int(OBJECT(&s->sysctl), info->cpuwait_rst,
1028                             "CPUWAIT_RST", &err);
1029     object_property_set_int(OBJECT(&s->sysctl), s->init_svtor,
1030                             "INITSVTOR0_RST", &err);
1031     object_property_set_int(OBJECT(&s->sysctl), s->init_svtor,
1032                             "INITSVTOR1_RST", &err);
1033     sysbus_realize(SYS_BUS_DEVICE(&s->sysctl), &err);
1034     if (err) {
1035         error_propagate(errp, err);
1036         return;
1037     }
1038     sysbus_mmio_map(SYS_BUS_DEVICE(&s->sysctl), 0, 0x50021000);
1039 
1040     if (info->has_ppus) {
1041         /* CPUnCORE_PPU for each CPU */
1042         for (i = 0; i < info->num_cpus; i++) {
1043             char *name = g_strdup_printf("CPU%dCORE_PPU", i);
1044 
1045             map_ppu(s, CPU0CORE_PPU + i, name, 0x50023000 + i * 0x2000);
1046             /*
1047              * We don't support CPU debug so don't create the
1048              * CPU0DEBUG_PPU at 0x50024000 and 0x50026000.
1049              */
1050             g_free(name);
1051         }
1052         map_ppu(s, DBG_PPU, "DBG_PPU", 0x50029000);
1053 
1054         for (i = 0; i < info->sram_banks; i++) {
1055             char *name = g_strdup_printf("RAM%d_PPU", i);
1056 
1057             map_ppu(s, RAM0_PPU + i, name, 0x5002a000 + i * 0x1000);
1058             g_free(name);
1059         }
1060     }
1061 
1062     /* This OR gate wires together outputs from the secure watchdogs to NMI */
1063     object_property_set_int(OBJECT(&s->nmi_orgate), 2, "num-lines", &err);
1064     if (err) {
1065         error_propagate(errp, err);
1066         return;
1067     }
1068     object_property_set_bool(OBJECT(&s->nmi_orgate), true, "realized", &err);
1069     if (err) {
1070         error_propagate(errp, err);
1071         return;
1072     }
1073     qdev_connect_gpio_out(DEVICE(&s->nmi_orgate), 0,
1074                           qdev_get_gpio_in_named(DEVICE(&s->armv7m), "NMI", 0));
1075 
1076     qdev_prop_set_uint32(DEVICE(&s->s32kwatchdog), "wdogclk-frq", S32KCLK);
1077     sysbus_realize(SYS_BUS_DEVICE(&s->s32kwatchdog), &err);
1078     if (err) {
1079         error_propagate(errp, err);
1080         return;
1081     }
1082     sysbus_connect_irq(SYS_BUS_DEVICE(&s->s32kwatchdog), 0,
1083                        qdev_get_gpio_in(DEVICE(&s->nmi_orgate), 0));
1084     sysbus_mmio_map(SYS_BUS_DEVICE(&s->s32kwatchdog), 0, 0x5002e000);
1085 
1086     /* 0x40080000 .. 0x4008ffff : ARMSSE second Base peripheral region */
1087 
1088     qdev_prop_set_uint32(DEVICE(&s->nswatchdog), "wdogclk-frq", s->mainclk_frq);
1089     sysbus_realize(SYS_BUS_DEVICE(&s->nswatchdog), &err);
1090     if (err) {
1091         error_propagate(errp, err);
1092         return;
1093     }
1094     sysbus_connect_irq(SYS_BUS_DEVICE(&s->nswatchdog), 0,
1095                        armsse_get_common_irq_in(s, 1));
1096     sysbus_mmio_map(SYS_BUS_DEVICE(&s->nswatchdog), 0, 0x40081000);
1097 
1098     qdev_prop_set_uint32(DEVICE(&s->swatchdog), "wdogclk-frq", s->mainclk_frq);
1099     sysbus_realize(SYS_BUS_DEVICE(&s->swatchdog), &err);
1100     if (err) {
1101         error_propagate(errp, err);
1102         return;
1103     }
1104     sysbus_connect_irq(SYS_BUS_DEVICE(&s->swatchdog), 0,
1105                        qdev_get_gpio_in(DEVICE(&s->nmi_orgate), 1));
1106     sysbus_mmio_map(SYS_BUS_DEVICE(&s->swatchdog), 0, 0x50081000);
1107 
1108     for (i = 0; i < ARRAY_SIZE(s->ppc_irq_splitter); i++) {
1109         Object *splitter = OBJECT(&s->ppc_irq_splitter[i]);
1110 
1111         object_property_set_int(splitter, 2, "num-lines", &err);
1112         if (err) {
1113             error_propagate(errp, err);
1114             return;
1115         }
1116         object_property_set_bool(splitter, true, "realized", &err);
1117         if (err) {
1118             error_propagate(errp, err);
1119             return;
1120         }
1121     }
1122 
1123     for (i = 0; i < IOTS_NUM_AHB_EXP_PPC; i++) {
1124         char *ppcname = g_strdup_printf("ahb_ppcexp%d", i);
1125 
1126         armsse_forward_ppc(s, ppcname, i);
1127         g_free(ppcname);
1128     }
1129 
1130     for (i = 0; i < IOTS_NUM_APB_EXP_PPC; i++) {
1131         char *ppcname = g_strdup_printf("apb_ppcexp%d", i);
1132 
1133         armsse_forward_ppc(s, ppcname, i + IOTS_NUM_AHB_EXP_PPC);
1134         g_free(ppcname);
1135     }
1136 
1137     for (i = NUM_EXTERNAL_PPCS; i < NUM_PPCS; i++) {
1138         /* Wire up IRQ splitter for internal PPCs */
1139         DeviceState *devs = DEVICE(&s->ppc_irq_splitter[i]);
1140         char *gpioname = g_strdup_printf("apb_ppc%d_irq_status",
1141                                          i - NUM_EXTERNAL_PPCS);
1142         TZPPC *ppc = (i == NUM_EXTERNAL_PPCS) ? &s->apb_ppc0 : &s->apb_ppc1;
1143 
1144         qdev_connect_gpio_out(devs, 0,
1145                               qdev_get_gpio_in_named(dev_secctl, gpioname, 0));
1146         qdev_connect_gpio_out(devs, 1,
1147                               qdev_get_gpio_in(DEVICE(&s->ppc_irq_orgate), i));
1148         qdev_connect_gpio_out_named(DEVICE(ppc), "irq", 0,
1149                                     qdev_get_gpio_in(devs, 0));
1150         g_free(gpioname);
1151     }
1152 
1153     /* Wire up the splitters for the MPC IRQs */
1154     for (i = 0; i < IOTS_NUM_EXP_MPC + info->sram_banks; i++) {
1155         SplitIRQ *splitter = &s->mpc_irq_splitter[i];
1156         DeviceState *dev_splitter = DEVICE(splitter);
1157 
1158         object_property_set_int(OBJECT(splitter), 2, "num-lines", &err);
1159         if (err) {
1160             error_propagate(errp, err);
1161             return;
1162         }
1163         object_property_set_bool(OBJECT(splitter), true, "realized", &err);
1164         if (err) {
1165             error_propagate(errp, err);
1166             return;
1167         }
1168 
1169         if (i < IOTS_NUM_EXP_MPC) {
1170             /* Splitter input is from GPIO input line */
1171             s->mpcexp_status_in[i] = qdev_get_gpio_in(dev_splitter, 0);
1172             qdev_connect_gpio_out(dev_splitter, 0,
1173                                   qdev_get_gpio_in_named(dev_secctl,
1174                                                          "mpcexp_status", i));
1175         } else {
1176             /* Splitter input is from our own MPC */
1177             qdev_connect_gpio_out_named(DEVICE(&s->mpc[i - IOTS_NUM_EXP_MPC]),
1178                                         "irq", 0,
1179                                         qdev_get_gpio_in(dev_splitter, 0));
1180             qdev_connect_gpio_out(dev_splitter, 0,
1181                                   qdev_get_gpio_in_named(dev_secctl,
1182                                                          "mpc_status", 0));
1183         }
1184 
1185         qdev_connect_gpio_out(dev_splitter, 1,
1186                               qdev_get_gpio_in(DEVICE(&s->mpc_irq_orgate), i));
1187     }
1188     /* Create GPIO inputs which will pass the line state for our
1189      * mpcexp_irq inputs to the correct splitter devices.
1190      */
1191     qdev_init_gpio_in_named(dev, armsse_mpcexp_status, "mpcexp_status",
1192                             IOTS_NUM_EXP_MPC);
1193 
1194     armsse_forward_sec_resp_cfg(s);
1195 
1196     /* Forward the MSC related signals */
1197     qdev_pass_gpios(dev_secctl, dev, "mscexp_status");
1198     qdev_pass_gpios(dev_secctl, dev, "mscexp_clear");
1199     qdev_pass_gpios(dev_secctl, dev, "mscexp_ns");
1200     qdev_connect_gpio_out_named(dev_secctl, "msc_irq", 0,
1201                                 armsse_get_common_irq_in(s, 11));
1202 
1203     /*
1204      * Expose our container region to the board model; this corresponds
1205      * to the AHB Slave Expansion ports which allow bus master devices
1206      * (eg DMA controllers) in the board model to make transactions into
1207      * devices in the ARMSSE.
1208      */
1209     sysbus_init_mmio(SYS_BUS_DEVICE(s), &s->container);
1210 
1211     system_clock_scale = NANOSECONDS_PER_SECOND / s->mainclk_frq;
1212 }
1213 
1214 static void armsse_idau_check(IDAUInterface *ii, uint32_t address,
1215                               int *iregion, bool *exempt, bool *ns, bool *nsc)
1216 {
1217     /*
1218      * For ARMSSE systems the IDAU responses are simple logical functions
1219      * of the address bits. The NSC attribute is guest-adjustable via the
1220      * NSCCFG register in the security controller.
1221      */
1222     ARMSSE *s = ARMSSE(ii);
1223     int region = extract32(address, 28, 4);
1224 
1225     *ns = !(region & 1);
1226     *nsc = (region == 1 && (s->nsccfg & 1)) || (region == 3 && (s->nsccfg & 2));
1227     /* 0xe0000000..0xe00fffff and 0xf0000000..0xf00fffff are exempt */
1228     *exempt = (address & 0xeff00000) == 0xe0000000;
1229     *iregion = region;
1230 }
1231 
1232 static const VMStateDescription armsse_vmstate = {
1233     .name = "iotkit",
1234     .version_id = 1,
1235     .minimum_version_id = 1,
1236     .fields = (VMStateField[]) {
1237         VMSTATE_UINT32(nsccfg, ARMSSE),
1238         VMSTATE_END_OF_LIST()
1239     }
1240 };
1241 
1242 static void armsse_reset(DeviceState *dev)
1243 {
1244     ARMSSE *s = ARMSSE(dev);
1245 
1246     s->nsccfg = 0;
1247 }
1248 
1249 static void armsse_class_init(ObjectClass *klass, void *data)
1250 {
1251     DeviceClass *dc = DEVICE_CLASS(klass);
1252     IDAUInterfaceClass *iic = IDAU_INTERFACE_CLASS(klass);
1253     ARMSSEClass *asc = ARMSSE_CLASS(klass);
1254     const ARMSSEInfo *info = data;
1255 
1256     dc->realize = armsse_realize;
1257     dc->vmsd = &armsse_vmstate;
1258     device_class_set_props(dc, info->props);
1259     dc->reset = armsse_reset;
1260     iic->check = armsse_idau_check;
1261     asc->info = info;
1262 }
1263 
1264 static const TypeInfo armsse_info = {
1265     .name = TYPE_ARMSSE,
1266     .parent = TYPE_SYS_BUS_DEVICE,
1267     .instance_size = sizeof(ARMSSE),
1268     .instance_init = armsse_init,
1269     .abstract = true,
1270     .interfaces = (InterfaceInfo[]) {
1271         { TYPE_IDAU_INTERFACE },
1272         { }
1273     }
1274 };
1275 
1276 static void armsse_register_types(void)
1277 {
1278     int i;
1279 
1280     type_register_static(&armsse_info);
1281 
1282     for (i = 0; i < ARRAY_SIZE(armsse_variants); i++) {
1283         TypeInfo ti = {
1284             .name = armsse_variants[i].name,
1285             .parent = TYPE_ARMSSE,
1286             .class_init = armsse_class_init,
1287             .class_data = (void *)&armsse_variants[i],
1288         };
1289         type_register(&ti);
1290     }
1291 }
1292 
1293 type_init(armsse_register_types);
1294