xref: /qemu/hw/arm/armsse.c (revision 4eb1770988397354ed95dec2bd63c09348ebf707)
1 /*
2  * Arm SSE (Subsystems for Embedded): IoTKit
3  *
4  * Copyright (c) 2018 Linaro Limited
5  * Written by Peter Maydell
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 or
9  * (at your option) any later version.
10  */
11 
12 #include "qemu/osdep.h"
13 #include "qemu/log.h"
14 #include "qemu/module.h"
15 #include "qemu/bitops.h"
16 #include "qapi/error.h"
17 #include "trace.h"
18 #include "hw/sysbus.h"
19 #include "migration/vmstate.h"
20 #include "hw/registerfields.h"
21 #include "hw/arm/armsse.h"
22 #include "hw/arm/armsse-version.h"
23 #include "hw/arm/boot.h"
24 #include "hw/irq.h"
25 #include "hw/qdev-clock.h"
26 
27 /*
28  * The SSE-300 puts some devices in different places to the
29  * SSE-200 (and original IoTKit). We use an array of these structs
30  * to define how each variant lays out these devices. (Parts of the
31  * SoC that are the same for all variants aren't handled via these
32  * data structures.)
33  */
34 
35 #define NO_IRQ -1
36 #define NO_PPC -1
37 /*
38  * Special values for ARMSSEDeviceInfo::irq to indicate that this
39  * device uses one of the inputs to the OR gate that feeds into the
40  * CPU NMI input.
41  */
42 #define NMI_0 10000
43 #define NMI_1 10001
44 
45 typedef struct ARMSSEDeviceInfo {
46     const char *name; /* name to use for the QOM object; NULL terminates list */
47     const char *type; /* QOM type name */
48     unsigned int index; /* Which of the N devices of this type is this ? */
49     hwaddr addr;
50     hwaddr size; /* only needed for TYPE_UNIMPLEMENTED_DEVICE */
51     int ppc; /* Index of APB PPC this device is wired up to, or NO_PPC */
52     int ppc_port; /* Port number of this device on the PPC */
53     int irq; /* NO_IRQ, or 0..NUM_SSE_IRQS-1, or NMI_0 or NMI_1 */
54     bool slowclk; /* true if device uses the slow 32KHz clock */
55 } ARMSSEDeviceInfo;
56 
57 struct ARMSSEInfo {
58     const char *name;
59     const char *cpu_type;
60     uint32_t sse_version;
61     int sram_banks;
62     uint32_t sram_bank_base;
63     int num_cpus;
64     uint32_t sys_version;
65     uint32_t iidr;
66     uint32_t cpuwait_rst;
67     bool has_mhus;
68     bool has_cachectrl;
69     bool has_cpusecctrl;
70     bool has_cpuid;
71     bool has_cpu_pwrctrl;
72     bool has_sse_counter;
73     Property *props;
74     const ARMSSEDeviceInfo *devinfo;
75     const bool *irq_is_common;
76 };
77 
78 static Property iotkit_properties[] = {
79     DEFINE_PROP_LINK("memory", ARMSSE, board_memory, TYPE_MEMORY_REGION,
80                      MemoryRegion *),
81     DEFINE_PROP_UINT32("EXP_NUMIRQ", ARMSSE, exp_numirq, 64),
82     DEFINE_PROP_UINT32("SRAM_ADDR_WIDTH", ARMSSE, sram_addr_width, 15),
83     DEFINE_PROP_UINT32("init-svtor", ARMSSE, init_svtor, 0x10000000),
84     DEFINE_PROP_BOOL("CPU0_FPU", ARMSSE, cpu_fpu[0], true),
85     DEFINE_PROP_BOOL("CPU0_DSP", ARMSSE, cpu_dsp[0], true),
86     DEFINE_PROP_END_OF_LIST()
87 };
88 
89 static Property sse200_properties[] = {
90     DEFINE_PROP_LINK("memory", ARMSSE, board_memory, TYPE_MEMORY_REGION,
91                      MemoryRegion *),
92     DEFINE_PROP_UINT32("EXP_NUMIRQ", ARMSSE, exp_numirq, 64),
93     DEFINE_PROP_UINT32("SRAM_ADDR_WIDTH", ARMSSE, sram_addr_width, 15),
94     DEFINE_PROP_UINT32("init-svtor", ARMSSE, init_svtor, 0x10000000),
95     DEFINE_PROP_BOOL("CPU0_FPU", ARMSSE, cpu_fpu[0], false),
96     DEFINE_PROP_BOOL("CPU0_DSP", ARMSSE, cpu_dsp[0], false),
97     DEFINE_PROP_BOOL("CPU1_FPU", ARMSSE, cpu_fpu[1], true),
98     DEFINE_PROP_BOOL("CPU1_DSP", ARMSSE, cpu_dsp[1], true),
99     DEFINE_PROP_END_OF_LIST()
100 };
101 
102 static Property sse300_properties[] = {
103     DEFINE_PROP_LINK("memory", ARMSSE, board_memory, TYPE_MEMORY_REGION,
104                      MemoryRegion *),
105     DEFINE_PROP_UINT32("EXP_NUMIRQ", ARMSSE, exp_numirq, 64),
106     DEFINE_PROP_UINT32("SRAM_ADDR_WIDTH", ARMSSE, sram_addr_width, 18),
107     DEFINE_PROP_UINT32("init-svtor", ARMSSE, init_svtor, 0x10000000),
108     DEFINE_PROP_BOOL("CPU0_FPU", ARMSSE, cpu_fpu[0], true),
109     DEFINE_PROP_BOOL("CPU0_DSP", ARMSSE, cpu_dsp[0], true),
110     DEFINE_PROP_END_OF_LIST()
111 };
112 
113 static const ARMSSEDeviceInfo iotkit_devices[] = {
114     {
115         .name = "timer0",
116         .type = TYPE_CMSDK_APB_TIMER,
117         .index = 0,
118         .addr = 0x40000000,
119         .ppc = 0,
120         .ppc_port = 0,
121         .irq = 3,
122     },
123     {
124         .name = "timer1",
125         .type = TYPE_CMSDK_APB_TIMER,
126         .index = 1,
127         .addr = 0x40001000,
128         .ppc = 0,
129         .ppc_port = 1,
130         .irq = 4,
131     },
132     {
133         .name = "s32ktimer",
134         .type = TYPE_CMSDK_APB_TIMER,
135         .index = 2,
136         .addr = 0x4002f000,
137         .ppc = 1,
138         .ppc_port = 0,
139         .irq = 2,
140         .slowclk = true,
141     },
142     {
143         .name = "dualtimer",
144         .type = TYPE_CMSDK_APB_DUALTIMER,
145         .index = 0,
146         .addr = 0x40002000,
147         .ppc = 0,
148         .ppc_port = 2,
149         .irq = 5,
150     },
151     {
152         .name = "s32kwatchdog",
153         .type = TYPE_CMSDK_APB_WATCHDOG,
154         .index = 0,
155         .addr = 0x5002e000,
156         .ppc = NO_PPC,
157         .irq = NMI_0,
158         .slowclk = true,
159     },
160     {
161         .name = "nswatchdog",
162         .type = TYPE_CMSDK_APB_WATCHDOG,
163         .index = 1,
164         .addr = 0x40081000,
165         .ppc = NO_PPC,
166         .irq = 1,
167     },
168     {
169         .name = "swatchdog",
170         .type = TYPE_CMSDK_APB_WATCHDOG,
171         .index = 2,
172         .addr = 0x50081000,
173         .ppc = NO_PPC,
174         .irq = NMI_1,
175     },
176     {
177         .name = "armsse-sysinfo",
178         .type = TYPE_IOTKIT_SYSINFO,
179         .index = 0,
180         .addr = 0x40020000,
181         .ppc = NO_PPC,
182         .irq = NO_IRQ,
183     },
184     {
185         .name = "armsse-sysctl",
186         .type = TYPE_IOTKIT_SYSCTL,
187         .index = 0,
188         .addr = 0x50021000,
189         .ppc = NO_PPC,
190         .irq = NO_IRQ,
191     },
192     {
193         .name = NULL,
194     }
195 };
196 
197 static const ARMSSEDeviceInfo sse200_devices[] = {
198     {
199         .name = "timer0",
200         .type = TYPE_CMSDK_APB_TIMER,
201         .index = 0,
202         .addr = 0x40000000,
203         .ppc = 0,
204         .ppc_port = 0,
205         .irq = 3,
206     },
207     {
208         .name = "timer1",
209         .type = TYPE_CMSDK_APB_TIMER,
210         .index = 1,
211         .addr = 0x40001000,
212         .ppc = 0,
213         .ppc_port = 1,
214         .irq = 4,
215     },
216     {
217         .name = "s32ktimer",
218         .type = TYPE_CMSDK_APB_TIMER,
219         .index = 2,
220         .addr = 0x4002f000,
221         .ppc = 1,
222         .ppc_port = 0,
223         .irq = 2,
224         .slowclk = true,
225     },
226     {
227         .name = "dualtimer",
228         .type = TYPE_CMSDK_APB_DUALTIMER,
229         .index = 0,
230         .addr = 0x40002000,
231         .ppc = 0,
232         .ppc_port = 2,
233         .irq = 5,
234     },
235     {
236         .name = "s32kwatchdog",
237         .type = TYPE_CMSDK_APB_WATCHDOG,
238         .index = 0,
239         .addr = 0x5002e000,
240         .ppc = NO_PPC,
241         .irq = NMI_0,
242         .slowclk = true,
243     },
244     {
245         .name = "nswatchdog",
246         .type = TYPE_CMSDK_APB_WATCHDOG,
247         .index = 1,
248         .addr = 0x40081000,
249         .ppc = NO_PPC,
250         .irq = 1,
251     },
252     {
253         .name = "swatchdog",
254         .type = TYPE_CMSDK_APB_WATCHDOG,
255         .index = 2,
256         .addr = 0x50081000,
257         .ppc = NO_PPC,
258         .irq = NMI_1,
259     },
260     {
261         .name = "armsse-sysinfo",
262         .type = TYPE_IOTKIT_SYSINFO,
263         .index = 0,
264         .addr = 0x40020000,
265         .ppc = NO_PPC,
266         .irq = NO_IRQ,
267     },
268     {
269         .name = "armsse-sysctl",
270         .type = TYPE_IOTKIT_SYSCTL,
271         .index = 0,
272         .addr = 0x50021000,
273         .ppc = NO_PPC,
274         .irq = NO_IRQ,
275     },
276     {
277         .name = "CPU0CORE_PPU",
278         .type = TYPE_UNIMPLEMENTED_DEVICE,
279         .index = 0,
280         .addr = 0x50023000,
281         .size = 0x1000,
282         .ppc = NO_PPC,
283         .irq = NO_IRQ,
284     },
285     {
286         .name = "CPU1CORE_PPU",
287         .type = TYPE_UNIMPLEMENTED_DEVICE,
288         .index = 1,
289         .addr = 0x50025000,
290         .size = 0x1000,
291         .ppc = NO_PPC,
292         .irq = NO_IRQ,
293     },
294     {
295         .name = "DBG_PPU",
296         .type = TYPE_UNIMPLEMENTED_DEVICE,
297         .index = 2,
298         .addr = 0x50029000,
299         .size = 0x1000,
300         .ppc = NO_PPC,
301         .irq = NO_IRQ,
302     },
303     {
304         .name = "RAM0_PPU",
305         .type = TYPE_UNIMPLEMENTED_DEVICE,
306         .index = 3,
307         .addr = 0x5002a000,
308         .size = 0x1000,
309         .ppc = NO_PPC,
310         .irq = NO_IRQ,
311     },
312     {
313         .name = "RAM1_PPU",
314         .type = TYPE_UNIMPLEMENTED_DEVICE,
315         .index = 4,
316         .addr = 0x5002b000,
317         .size = 0x1000,
318         .ppc = NO_PPC,
319         .irq = NO_IRQ,
320     },
321     {
322         .name = "RAM2_PPU",
323         .type = TYPE_UNIMPLEMENTED_DEVICE,
324         .index = 5,
325         .addr = 0x5002c000,
326         .size = 0x1000,
327         .ppc = NO_PPC,
328         .irq = NO_IRQ,
329     },
330     {
331         .name = "RAM3_PPU",
332         .type = TYPE_UNIMPLEMENTED_DEVICE,
333         .index = 6,
334         .addr = 0x5002d000,
335         .size = 0x1000,
336         .ppc = NO_PPC,
337         .irq = NO_IRQ,
338     },
339     {
340         .name = "SYS_PPU",
341         .type = TYPE_UNIMPLEMENTED_DEVICE,
342         .index = 7,
343         .addr = 0x50022000,
344         .size = 0x1000,
345         .ppc = NO_PPC,
346         .irq = NO_IRQ,
347     },
348     {
349         .name = NULL,
350     }
351 };
352 
353 static const ARMSSEDeviceInfo sse300_devices[] = {
354     {
355         .name = "timer0",
356         .type = TYPE_SSE_TIMER,
357         .index = 0,
358         .addr = 0x48000000,
359         .ppc = 0,
360         .ppc_port = 0,
361         .irq = 3,
362     },
363     {
364         .name = "timer1",
365         .type = TYPE_SSE_TIMER,
366         .index = 1,
367         .addr = 0x48001000,
368         .ppc = 0,
369         .ppc_port = 1,
370         .irq = 4,
371     },
372     {
373         .name = "timer2",
374         .type = TYPE_SSE_TIMER,
375         .index = 2,
376         .addr = 0x48002000,
377         .ppc = 0,
378         .ppc_port = 2,
379         .irq = 5,
380     },
381     {
382         .name = "timer3",
383         .type = TYPE_SSE_TIMER,
384         .index = 3,
385         .addr = 0x48003000,
386         .ppc = 0,
387         .ppc_port = 5,
388         .irq = 27,
389     },
390     {
391         .name = "s32ktimer",
392         .type = TYPE_CMSDK_APB_TIMER,
393         .index = 0,
394         .addr = 0x4802f000,
395         .ppc = 1,
396         .ppc_port = 0,
397         .irq = 2,
398         .slowclk = true,
399     },
400     {
401         .name = "s32kwatchdog",
402         .type = TYPE_CMSDK_APB_WATCHDOG,
403         .index = 0,
404         .addr = 0x4802e000,
405         .ppc = NO_PPC,
406         .irq = NMI_0,
407         .slowclk = true,
408     },
409     {
410         .name = "watchdog",
411         .type = TYPE_UNIMPLEMENTED_DEVICE,
412         .index = 0,
413         .addr = 0x48040000,
414         .size = 0x2000,
415         .ppc = NO_PPC,
416         .irq = NO_IRQ,
417     },
418     {
419         .name = "armsse-sysinfo",
420         .type = TYPE_IOTKIT_SYSINFO,
421         .index = 0,
422         .addr = 0x48020000,
423         .ppc = NO_PPC,
424         .irq = NO_IRQ,
425     },
426     {
427         .name = "armsse-sysctl",
428         .type = TYPE_IOTKIT_SYSCTL,
429         .index = 0,
430         .addr = 0x58021000,
431         .ppc = NO_PPC,
432         .irq = NO_IRQ,
433     },
434     {
435         .name = "SYS_PPU",
436         .type = TYPE_UNIMPLEMENTED_DEVICE,
437         .index = 1,
438         .addr = 0x58022000,
439         .size = 0x1000,
440         .ppc = NO_PPC,
441         .irq = NO_IRQ,
442     },
443     {
444         .name = "CPU0CORE_PPU",
445         .type = TYPE_UNIMPLEMENTED_DEVICE,
446         .index = 2,
447         .addr = 0x50023000,
448         .size = 0x1000,
449         .ppc = NO_PPC,
450         .irq = NO_IRQ,
451     },
452     {
453         .name = "MGMT_PPU",
454         .type = TYPE_UNIMPLEMENTED_DEVICE,
455         .index = 3,
456         .addr = 0x50028000,
457         .size = 0x1000,
458         .ppc = NO_PPC,
459         .irq = NO_IRQ,
460     },
461     {
462         .name = "DEBUG_PPU",
463         .type = TYPE_UNIMPLEMENTED_DEVICE,
464         .index = 4,
465         .addr = 0x50029000,
466         .size = 0x1000,
467         .ppc = NO_PPC,
468         .irq = NO_IRQ,
469     },
470     {
471         .name = NULL,
472     }
473 };
474 
475 /* Is internal IRQ n shared between CPUs in a multi-core SSE ? */
476 static const bool sse200_irq_is_common[32] = {
477     [0 ... 5] = true,
478     /* 6, 7: per-CPU MHU interrupts */
479     [8 ... 12] = true,
480     /* 13: per-CPU icache interrupt */
481     /* 14: reserved */
482     [15 ... 20] = true,
483     /* 21: reserved */
484     [22 ... 26] = true,
485     /* 27: reserved */
486     /* 28, 29: per-CPU CTI interrupts */
487     /* 30, 31: reserved */
488 };
489 
490 static const bool sse300_irq_is_common[32] = {
491     [0 ... 5] = true,
492     /* 6, 7: per-CPU MHU interrupts */
493     [8 ... 12] = true,
494     /* 13: reserved */
495     [14 ... 16] = true,
496     /* 17-25: reserved */
497     [26 ... 27] = true,
498     /* 28, 29: per-CPU CTI interrupts */
499     /* 30, 31: reserved */
500 };
501 
502 static const ARMSSEInfo armsse_variants[] = {
503     {
504         .name = TYPE_IOTKIT,
505         .sse_version = ARMSSE_IOTKIT,
506         .cpu_type = ARM_CPU_TYPE_NAME("cortex-m33"),
507         .sram_banks = 1,
508         .sram_bank_base = 0x20000000,
509         .num_cpus = 1,
510         .sys_version = 0x41743,
511         .iidr = 0,
512         .cpuwait_rst = 0,
513         .has_mhus = false,
514         .has_cachectrl = false,
515         .has_cpusecctrl = false,
516         .has_cpuid = false,
517         .has_cpu_pwrctrl = false,
518         .has_sse_counter = false,
519         .props = iotkit_properties,
520         .devinfo = iotkit_devices,
521         .irq_is_common = sse200_irq_is_common,
522     },
523     {
524         .name = TYPE_SSE200,
525         .sse_version = ARMSSE_SSE200,
526         .cpu_type = ARM_CPU_TYPE_NAME("cortex-m33"),
527         .sram_banks = 4,
528         .sram_bank_base = 0x20000000,
529         .num_cpus = 2,
530         .sys_version = 0x22041743,
531         .iidr = 0,
532         .cpuwait_rst = 2,
533         .has_mhus = true,
534         .has_cachectrl = true,
535         .has_cpusecctrl = true,
536         .has_cpuid = true,
537         .has_cpu_pwrctrl = false,
538         .has_sse_counter = false,
539         .props = sse200_properties,
540         .devinfo = sse200_devices,
541         .irq_is_common = sse200_irq_is_common,
542     },
543     {
544         .name = TYPE_SSE300,
545         .sse_version = ARMSSE_SSE300,
546         .cpu_type = ARM_CPU_TYPE_NAME("cortex-m55"),
547         .sram_banks = 2,
548         .sram_bank_base = 0x21000000,
549         .num_cpus = 1,
550         .sys_version = 0x7e00043b,
551         .iidr = 0x74a0043b,
552         .cpuwait_rst = 0,
553         .has_mhus = false,
554         .has_cachectrl = false,
555         .has_cpusecctrl = true,
556         .has_cpuid = true,
557         .has_cpu_pwrctrl = true,
558         .has_sse_counter = true,
559         .props = sse300_properties,
560         .devinfo = sse300_devices,
561         .irq_is_common = sse300_irq_is_common,
562     },
563 };
564 
565 static uint32_t armsse_sys_config_value(ARMSSE *s, const ARMSSEInfo *info)
566 {
567     /* Return the SYS_CONFIG value for this SSE */
568     uint32_t sys_config;
569 
570     switch (info->sse_version) {
571     case ARMSSE_IOTKIT:
572         sys_config = 0;
573         sys_config = deposit32(sys_config, 0, 4, info->sram_banks);
574         sys_config = deposit32(sys_config, 4, 4, s->sram_addr_width - 12);
575         break;
576     case ARMSSE_SSE200:
577         sys_config = 0;
578         sys_config = deposit32(sys_config, 0, 4, info->sram_banks);
579         sys_config = deposit32(sys_config, 4, 5, s->sram_addr_width);
580         sys_config = deposit32(sys_config, 24, 4, 2);
581         if (info->num_cpus > 1) {
582             sys_config = deposit32(sys_config, 10, 1, 1);
583             sys_config = deposit32(sys_config, 20, 4, info->sram_banks - 1);
584             sys_config = deposit32(sys_config, 28, 4, 2);
585         }
586         break;
587     case ARMSSE_SSE300:
588         sys_config = 0;
589         sys_config = deposit32(sys_config, 0, 4, info->sram_banks);
590         sys_config = deposit32(sys_config, 4, 5, s->sram_addr_width);
591         sys_config = deposit32(sys_config, 16, 3, 3); /* CPU0 = Cortex-M55 */
592         break;
593     default:
594         g_assert_not_reached();
595     }
596     return sys_config;
597 }
598 
599 /* Clock frequency in HZ of the 32KHz "slow clock" */
600 #define S32KCLK (32 * 1000)
601 
602 /*
603  * Create an alias region in @container of @size bytes starting at @base
604  * which mirrors the memory starting at @orig.
605  */
606 static void make_alias(ARMSSE *s, MemoryRegion *mr, MemoryRegion *container,
607                        const char *name, hwaddr base, hwaddr size, hwaddr orig)
608 {
609     memory_region_init_alias(mr, NULL, name, container, orig, size);
610     /* The alias is even lower priority than unimplemented_device regions */
611     memory_region_add_subregion_overlap(container, base, mr, -1500);
612 }
613 
614 static void irq_status_forwarder(void *opaque, int n, int level)
615 {
616     qemu_irq destirq = opaque;
617 
618     qemu_set_irq(destirq, level);
619 }
620 
621 static void nsccfg_handler(void *opaque, int n, int level)
622 {
623     ARMSSE *s = ARM_SSE(opaque);
624 
625     s->nsccfg = level;
626 }
627 
628 static void armsse_forward_ppc(ARMSSE *s, const char *ppcname, int ppcnum)
629 {
630     /* Each of the 4 AHB and 4 APB PPCs that might be present in a
631      * system using the ARMSSE has a collection of control lines which
632      * are provided by the security controller and which we want to
633      * expose as control lines on the ARMSSE device itself, so the
634      * code using the ARMSSE can wire them up to the PPCs.
635      */
636     SplitIRQ *splitter = &s->ppc_irq_splitter[ppcnum];
637     DeviceState *armssedev = DEVICE(s);
638     DeviceState *dev_secctl = DEVICE(&s->secctl);
639     DeviceState *dev_splitter = DEVICE(splitter);
640     char *name;
641 
642     name = g_strdup_printf("%s_nonsec", ppcname);
643     qdev_pass_gpios(dev_secctl, armssedev, name);
644     g_free(name);
645     name = g_strdup_printf("%s_ap", ppcname);
646     qdev_pass_gpios(dev_secctl, armssedev, name);
647     g_free(name);
648     name = g_strdup_printf("%s_irq_enable", ppcname);
649     qdev_pass_gpios(dev_secctl, armssedev, name);
650     g_free(name);
651     name = g_strdup_printf("%s_irq_clear", ppcname);
652     qdev_pass_gpios(dev_secctl, armssedev, name);
653     g_free(name);
654 
655     /* irq_status is a little more tricky, because we need to
656      * split it so we can send it both to the security controller
657      * and to our OR gate for the NVIC interrupt line.
658      * Connect up the splitter's outputs, and create a GPIO input
659      * which will pass the line state to the input splitter.
660      */
661     name = g_strdup_printf("%s_irq_status", ppcname);
662     qdev_connect_gpio_out(dev_splitter, 0,
663                           qdev_get_gpio_in_named(dev_secctl,
664                                                  name, 0));
665     qdev_connect_gpio_out(dev_splitter, 1,
666                           qdev_get_gpio_in(DEVICE(&s->ppc_irq_orgate), ppcnum));
667     s->irq_status_in[ppcnum] = qdev_get_gpio_in(dev_splitter, 0);
668     qdev_init_gpio_in_named_with_opaque(armssedev, irq_status_forwarder,
669                                         s->irq_status_in[ppcnum], name, 1);
670     g_free(name);
671 }
672 
673 static void armsse_forward_sec_resp_cfg(ARMSSE *s)
674 {
675     /* Forward the 3rd output from the splitter device as a
676      * named GPIO output of the armsse object.
677      */
678     DeviceState *dev = DEVICE(s);
679     DeviceState *dev_splitter = DEVICE(&s->sec_resp_splitter);
680 
681     qdev_init_gpio_out_named(dev, &s->sec_resp_cfg, "sec_resp_cfg", 1);
682     s->sec_resp_cfg_in = qemu_allocate_irq(irq_status_forwarder,
683                                            s->sec_resp_cfg, 1);
684     qdev_connect_gpio_out(dev_splitter, 2, s->sec_resp_cfg_in);
685 }
686 
687 static void armsse_mainclk_update(void *opaque, ClockEvent event)
688 {
689     ARMSSE *s = ARM_SSE(opaque);
690 
691     /*
692      * Set system_clock_scale from our Clock input; this is what
693      * controls the tick rate of the CPU SysTick timer.
694      */
695     system_clock_scale = clock_ticks_to_ns(s->mainclk, 1);
696 }
697 
698 static void armsse_init(Object *obj)
699 {
700     ARMSSE *s = ARM_SSE(obj);
701     ARMSSEClass *asc = ARM_SSE_GET_CLASS(obj);
702     const ARMSSEInfo *info = asc->info;
703     const ARMSSEDeviceInfo *devinfo;
704     int i;
705 
706     assert(info->sram_banks <= MAX_SRAM_BANKS);
707     assert(info->num_cpus <= SSE_MAX_CPUS);
708 
709     s->mainclk = qdev_init_clock_in(DEVICE(s), "MAINCLK",
710                                     armsse_mainclk_update, s, ClockUpdate);
711     s->s32kclk = qdev_init_clock_in(DEVICE(s), "S32KCLK", NULL, NULL, 0);
712 
713     memory_region_init(&s->container, obj, "armsse-container", UINT64_MAX);
714 
715     for (i = 0; i < info->num_cpus; i++) {
716         /*
717          * We put each CPU in its own cluster as they are logically
718          * distinct and may be configured differently.
719          */
720         char *name;
721 
722         name = g_strdup_printf("cluster%d", i);
723         object_initialize_child(obj, name, &s->cluster[i], TYPE_CPU_CLUSTER);
724         qdev_prop_set_uint32(DEVICE(&s->cluster[i]), "cluster-id", i);
725         g_free(name);
726 
727         name = g_strdup_printf("armv7m%d", i);
728         object_initialize_child(OBJECT(&s->cluster[i]), name, &s->armv7m[i],
729                                 TYPE_ARMV7M);
730         qdev_prop_set_string(DEVICE(&s->armv7m[i]), "cpu-type", info->cpu_type);
731         g_free(name);
732         name = g_strdup_printf("arm-sse-cpu-container%d", i);
733         memory_region_init(&s->cpu_container[i], obj, name, UINT64_MAX);
734         g_free(name);
735         if (i > 0) {
736             name = g_strdup_printf("arm-sse-container-alias%d", i);
737             memory_region_init_alias(&s->container_alias[i - 1], obj,
738                                      name, &s->container, 0, UINT64_MAX);
739             g_free(name);
740         }
741     }
742 
743     for (devinfo = info->devinfo; devinfo->name; devinfo++) {
744         assert(devinfo->ppc == NO_PPC || devinfo->ppc < ARRAY_SIZE(s->apb_ppc));
745         if (!strcmp(devinfo->type, TYPE_CMSDK_APB_TIMER)) {
746             assert(devinfo->index < ARRAY_SIZE(s->timer));
747             object_initialize_child(obj, devinfo->name,
748                                     &s->timer[devinfo->index],
749                                     TYPE_CMSDK_APB_TIMER);
750         } else if (!strcmp(devinfo->type, TYPE_CMSDK_APB_DUALTIMER)) {
751             assert(devinfo->index == 0);
752             object_initialize_child(obj, devinfo->name, &s->dualtimer,
753                                     TYPE_CMSDK_APB_DUALTIMER);
754         } else if (!strcmp(devinfo->type, TYPE_SSE_TIMER)) {
755             assert(devinfo->index < ARRAY_SIZE(s->sse_timer));
756             object_initialize_child(obj, devinfo->name,
757                                     &s->sse_timer[devinfo->index],
758                                     TYPE_SSE_TIMER);
759         } else if (!strcmp(devinfo->type, TYPE_CMSDK_APB_WATCHDOG)) {
760             assert(devinfo->index < ARRAY_SIZE(s->cmsdk_watchdog));
761             object_initialize_child(obj, devinfo->name,
762                                     &s->cmsdk_watchdog[devinfo->index],
763                                     TYPE_CMSDK_APB_WATCHDOG);
764         } else if (!strcmp(devinfo->type, TYPE_IOTKIT_SYSINFO)) {
765             assert(devinfo->index == 0);
766             object_initialize_child(obj, devinfo->name, &s->sysinfo,
767                                     TYPE_IOTKIT_SYSINFO);
768         } else if (!strcmp(devinfo->type, TYPE_IOTKIT_SYSCTL)) {
769             assert(devinfo->index == 0);
770             object_initialize_child(obj, devinfo->name, &s->sysctl,
771                                     TYPE_IOTKIT_SYSCTL);
772         } else if (!strcmp(devinfo->type, TYPE_UNIMPLEMENTED_DEVICE)) {
773             assert(devinfo->index < ARRAY_SIZE(s->unimp));
774             object_initialize_child(obj, devinfo->name,
775                                     &s->unimp[devinfo->index],
776                                     TYPE_UNIMPLEMENTED_DEVICE);
777         } else {
778             g_assert_not_reached();
779         }
780     }
781 
782     object_initialize_child(obj, "secctl", &s->secctl, TYPE_IOTKIT_SECCTL);
783 
784     for (i = 0; i < ARRAY_SIZE(s->apb_ppc); i++) {
785         g_autofree char *name = g_strdup_printf("apb-ppc%d", i);
786         object_initialize_child(obj, name, &s->apb_ppc[i], TYPE_TZ_PPC);
787     }
788 
789     for (i = 0; i < info->sram_banks; i++) {
790         char *name = g_strdup_printf("mpc%d", i);
791         object_initialize_child(obj, name, &s->mpc[i], TYPE_TZ_MPC);
792         g_free(name);
793     }
794     object_initialize_child(obj, "mpc-irq-orgate", &s->mpc_irq_orgate,
795                             TYPE_OR_IRQ);
796 
797     for (i = 0; i < IOTS_NUM_EXP_MPC + info->sram_banks; i++) {
798         char *name = g_strdup_printf("mpc-irq-splitter-%d", i);
799         SplitIRQ *splitter = &s->mpc_irq_splitter[i];
800 
801         object_initialize_child(obj, name, splitter, TYPE_SPLIT_IRQ);
802         g_free(name);
803     }
804 
805     if (info->has_mhus) {
806         object_initialize_child(obj, "mhu0", &s->mhu[0], TYPE_ARMSSE_MHU);
807         object_initialize_child(obj, "mhu1", &s->mhu[1], TYPE_ARMSSE_MHU);
808     }
809     if (info->has_cachectrl) {
810         for (i = 0; i < info->num_cpus; i++) {
811             char *name = g_strdup_printf("cachectrl%d", i);
812 
813             object_initialize_child(obj, name, &s->cachectrl[i],
814                                     TYPE_UNIMPLEMENTED_DEVICE);
815             g_free(name);
816         }
817     }
818     if (info->has_cpusecctrl) {
819         for (i = 0; i < info->num_cpus; i++) {
820             char *name = g_strdup_printf("cpusecctrl%d", i);
821 
822             object_initialize_child(obj, name, &s->cpusecctrl[i],
823                                     TYPE_UNIMPLEMENTED_DEVICE);
824             g_free(name);
825         }
826     }
827     if (info->has_cpuid) {
828         for (i = 0; i < info->num_cpus; i++) {
829             char *name = g_strdup_printf("cpuid%d", i);
830 
831             object_initialize_child(obj, name, &s->cpuid[i],
832                                     TYPE_ARMSSE_CPUID);
833             g_free(name);
834         }
835     }
836     if (info->has_cpu_pwrctrl) {
837         for (i = 0; i < info->num_cpus; i++) {
838             char *name = g_strdup_printf("cpu_pwrctrl%d", i);
839 
840             object_initialize_child(obj, name, &s->cpu_pwrctrl[i],
841                                     TYPE_ARMSSE_CPU_PWRCTRL);
842             g_free(name);
843         }
844     }
845     if (info->has_sse_counter) {
846         object_initialize_child(obj, "sse-counter", &s->sse_counter,
847                                 TYPE_SSE_COUNTER);
848     }
849 
850     object_initialize_child(obj, "nmi-orgate", &s->nmi_orgate, TYPE_OR_IRQ);
851     object_initialize_child(obj, "ppc-irq-orgate", &s->ppc_irq_orgate,
852                             TYPE_OR_IRQ);
853     object_initialize_child(obj, "sec-resp-splitter", &s->sec_resp_splitter,
854                             TYPE_SPLIT_IRQ);
855     for (i = 0; i < ARRAY_SIZE(s->ppc_irq_splitter); i++) {
856         char *name = g_strdup_printf("ppc-irq-splitter-%d", i);
857         SplitIRQ *splitter = &s->ppc_irq_splitter[i];
858 
859         object_initialize_child(obj, name, splitter, TYPE_SPLIT_IRQ);
860         g_free(name);
861     }
862     if (info->num_cpus > 1) {
863         for (i = 0; i < ARRAY_SIZE(s->cpu_irq_splitter); i++) {
864             if (info->irq_is_common[i]) {
865                 char *name = g_strdup_printf("cpu-irq-splitter%d", i);
866                 SplitIRQ *splitter = &s->cpu_irq_splitter[i];
867 
868                 object_initialize_child(obj, name, splitter, TYPE_SPLIT_IRQ);
869                 g_free(name);
870             }
871         }
872     }
873 }
874 
875 static void armsse_exp_irq(void *opaque, int n, int level)
876 {
877     qemu_irq *irqarray = opaque;
878 
879     qemu_set_irq(irqarray[n], level);
880 }
881 
882 static void armsse_mpcexp_status(void *opaque, int n, int level)
883 {
884     ARMSSE *s = ARM_SSE(opaque);
885     qemu_set_irq(s->mpcexp_status_in[n], level);
886 }
887 
888 static qemu_irq armsse_get_common_irq_in(ARMSSE *s, int irqno)
889 {
890     /*
891      * Return a qemu_irq which can be used to signal IRQ n to
892      * all CPUs in the SSE.
893      */
894     ARMSSEClass *asc = ARM_SSE_GET_CLASS(s);
895     const ARMSSEInfo *info = asc->info;
896 
897     assert(info->irq_is_common[irqno]);
898 
899     if (info->num_cpus == 1) {
900         /* Only one CPU -- just connect directly to it */
901         return qdev_get_gpio_in(DEVICE(&s->armv7m[0]), irqno);
902     } else {
903         /* Connect to the splitter which feeds all CPUs */
904         return qdev_get_gpio_in(DEVICE(&s->cpu_irq_splitter[irqno]), 0);
905     }
906 }
907 
908 static void armsse_realize(DeviceState *dev, Error **errp)
909 {
910     ARMSSE *s = ARM_SSE(dev);
911     ARMSSEClass *asc = ARM_SSE_GET_CLASS(dev);
912     const ARMSSEInfo *info = asc->info;
913     const ARMSSEDeviceInfo *devinfo;
914     int i;
915     MemoryRegion *mr;
916     Error *err = NULL;
917     SysBusDevice *sbd_apb_ppc0;
918     SysBusDevice *sbd_secctl;
919     DeviceState *dev_apb_ppc0;
920     DeviceState *dev_apb_ppc1;
921     DeviceState *dev_secctl;
922     DeviceState *dev_splitter;
923     uint32_t addr_width_max;
924 
925     if (!s->board_memory) {
926         error_setg(errp, "memory property was not set");
927         return;
928     }
929 
930     if (!clock_has_source(s->mainclk)) {
931         error_setg(errp, "MAINCLK clock was not connected");
932     }
933     if (!clock_has_source(s->s32kclk)) {
934         error_setg(errp, "S32KCLK clock was not connected");
935     }
936 
937     assert(info->num_cpus <= SSE_MAX_CPUS);
938 
939     /* max SRAM_ADDR_WIDTH: 24 - log2(SRAM_NUM_BANK) */
940     assert(is_power_of_2(info->sram_banks));
941     addr_width_max = 24 - ctz32(info->sram_banks);
942     if (s->sram_addr_width < 1 || s->sram_addr_width > addr_width_max) {
943         error_setg(errp, "SRAM_ADDR_WIDTH must be between 1 and %d",
944                    addr_width_max);
945         return;
946     }
947 
948     /* Handling of which devices should be available only to secure
949      * code is usually done differently for M profile than for A profile.
950      * Instead of putting some devices only into the secure address space,
951      * devices exist in both address spaces but with hard-wired security
952      * permissions that will cause the CPU to fault for non-secure accesses.
953      *
954      * The ARMSSE has an IDAU (Implementation Defined Access Unit),
955      * which specifies hard-wired security permissions for different
956      * areas of the physical address space. For the ARMSSE IDAU, the
957      * top 4 bits of the physical address are the IDAU region ID, and
958      * if bit 28 (ie the lowest bit of the ID) is 0 then this is an NS
959      * region, otherwise it is an S region.
960      *
961      * The various devices and RAMs are generally all mapped twice,
962      * once into a region that the IDAU defines as secure and once
963      * into a non-secure region. They sit behind either a Memory
964      * Protection Controller (for RAM) or a Peripheral Protection
965      * Controller (for devices), which allow a more fine grained
966      * configuration of whether non-secure accesses are permitted.
967      *
968      * (The other place that guest software can configure security
969      * permissions is in the architected SAU (Security Attribution
970      * Unit), which is entirely inside the CPU. The IDAU can upgrade
971      * the security attributes for a region to more restrictive than
972      * the SAU specifies, but cannot downgrade them.)
973      *
974      * 0x10000000..0x1fffffff  alias of 0x00000000..0x0fffffff
975      * 0x20000000..0x2007ffff  32KB FPGA block RAM
976      * 0x30000000..0x3fffffff  alias of 0x20000000..0x2fffffff
977      * 0x40000000..0x4000ffff  base peripheral region 1
978      * 0x40010000..0x4001ffff  CPU peripherals (none for ARMSSE)
979      * 0x40020000..0x4002ffff  system control element peripherals
980      * 0x40080000..0x400fffff  base peripheral region 2
981      * 0x50000000..0x5fffffff  alias of 0x40000000..0x4fffffff
982      */
983 
984     memory_region_add_subregion_overlap(&s->container, 0, s->board_memory, -2);
985 
986     for (i = 0; i < info->num_cpus; i++) {
987         DeviceState *cpudev = DEVICE(&s->armv7m[i]);
988         Object *cpuobj = OBJECT(&s->armv7m[i]);
989         int j;
990         char *gpioname;
991 
992         qdev_prop_set_uint32(cpudev, "num-irq", s->exp_numirq + NUM_SSE_IRQS);
993         /*
994          * In real hardware the initial Secure VTOR is set from the INITSVTOR*
995          * registers in the IoT Kit System Control Register block. In QEMU
996          * we set the initial value here, and also the reset value of the
997          * sysctl register, from this object's QOM init-svtor property.
998          * If the guest changes the INITSVTOR* registers at runtime then the
999          * code in iotkit-sysctl.c will update the CPU init-svtor property
1000          * (which will then take effect on the next CPU warm-reset).
1001          *
1002          * Note that typically a board using the SSE-200 will have a system
1003          * control processor whose boot firmware initializes the INITSVTOR*
1004          * registers before powering up the CPUs. QEMU doesn't emulate
1005          * the control processor, so instead we behave in the way that the
1006          * firmware does: the initial value should be set by the board code
1007          * (using the init-svtor property on the ARMSSE object) to match
1008          * whatever its firmware does.
1009          */
1010         qdev_prop_set_uint32(cpudev, "init-svtor", s->init_svtor);
1011         /*
1012          * CPUs start powered down if the corresponding bit in the CPUWAIT
1013          * register is 1. In real hardware the CPUWAIT register reset value is
1014          * a configurable property of the SSE-200 (via the CPUWAIT0_RST and
1015          * CPUWAIT1_RST parameters), but since all the boards we care about
1016          * start CPU0 and leave CPU1 powered off, we hard-code that in
1017          * info->cpuwait_rst for now. We can add QOM properties for this
1018          * later if necessary.
1019          */
1020         if (extract32(info->cpuwait_rst, i, 1)) {
1021             if (!object_property_set_bool(cpuobj, "start-powered-off", true,
1022                                           errp)) {
1023                 return;
1024             }
1025         }
1026         if (!s->cpu_fpu[i]) {
1027             if (!object_property_set_bool(cpuobj, "vfp", false, errp)) {
1028                 return;
1029             }
1030         }
1031         if (!s->cpu_dsp[i]) {
1032             if (!object_property_set_bool(cpuobj, "dsp", false, errp)) {
1033                 return;
1034             }
1035         }
1036 
1037         if (i > 0) {
1038             memory_region_add_subregion_overlap(&s->cpu_container[i], 0,
1039                                                 &s->container_alias[i - 1], -1);
1040         } else {
1041             memory_region_add_subregion_overlap(&s->cpu_container[i], 0,
1042                                                 &s->container, -1);
1043         }
1044         object_property_set_link(cpuobj, "memory",
1045                                  OBJECT(&s->cpu_container[i]), &error_abort);
1046         object_property_set_link(cpuobj, "idau", OBJECT(s), &error_abort);
1047         if (!sysbus_realize(SYS_BUS_DEVICE(cpuobj), errp)) {
1048             return;
1049         }
1050         /*
1051          * The cluster must be realized after the armv7m container, as
1052          * the container's CPU object is only created on realize, and the
1053          * CPU must exist and have been parented into the cluster before
1054          * the cluster is realized.
1055          */
1056         if (!qdev_realize(DEVICE(&s->cluster[i]), NULL, errp)) {
1057             return;
1058         }
1059 
1060         /* Connect EXP_IRQ/EXP_CPUn_IRQ GPIOs to the NVIC's lines 32 and up */
1061         s->exp_irqs[i] = g_new(qemu_irq, s->exp_numirq);
1062         for (j = 0; j < s->exp_numirq; j++) {
1063             s->exp_irqs[i][j] = qdev_get_gpio_in(cpudev, j + NUM_SSE_IRQS);
1064         }
1065         if (i == 0) {
1066             gpioname = g_strdup("EXP_IRQ");
1067         } else {
1068             gpioname = g_strdup_printf("EXP_CPU%d_IRQ", i);
1069         }
1070         qdev_init_gpio_in_named_with_opaque(dev, armsse_exp_irq,
1071                                             s->exp_irqs[i],
1072                                             gpioname, s->exp_numirq);
1073         g_free(gpioname);
1074     }
1075 
1076     /* Wire up the splitters that connect common IRQs to all CPUs */
1077     if (info->num_cpus > 1) {
1078         for (i = 0; i < ARRAY_SIZE(s->cpu_irq_splitter); i++) {
1079             if (info->irq_is_common[i]) {
1080                 Object *splitter = OBJECT(&s->cpu_irq_splitter[i]);
1081                 DeviceState *devs = DEVICE(splitter);
1082                 int cpunum;
1083 
1084                 if (!object_property_set_int(splitter, "num-lines",
1085                                              info->num_cpus, errp)) {
1086                     return;
1087                 }
1088                 if (!qdev_realize(DEVICE(splitter), NULL, errp)) {
1089                     return;
1090                 }
1091                 for (cpunum = 0; cpunum < info->num_cpus; cpunum++) {
1092                     DeviceState *cpudev = DEVICE(&s->armv7m[cpunum]);
1093 
1094                     qdev_connect_gpio_out(devs, cpunum,
1095                                           qdev_get_gpio_in(cpudev, i));
1096                 }
1097             }
1098         }
1099     }
1100 
1101     /* Set up the big aliases first */
1102     make_alias(s, &s->alias1, &s->container, "alias 1",
1103                0x10000000, 0x10000000, 0x00000000);
1104     make_alias(s, &s->alias2, &s->container,
1105                "alias 2", 0x30000000, 0x10000000, 0x20000000);
1106     /* The 0x50000000..0x5fffffff region is not a pure alias: it has
1107      * a few extra devices that only appear there (generally the
1108      * control interfaces for the protection controllers).
1109      * We implement this by mapping those devices over the top of this
1110      * alias MR at a higher priority. Some of the devices in this range
1111      * are per-CPU, so we must put this alias in the per-cpu containers.
1112      */
1113     for (i = 0; i < info->num_cpus; i++) {
1114         make_alias(s, &s->alias3[i], &s->cpu_container[i],
1115                    "alias 3", 0x50000000, 0x10000000, 0x40000000);
1116     }
1117 
1118     /* Security controller */
1119     object_property_set_int(OBJECT(&s->secctl), "sse-version",
1120                             info->sse_version, &error_abort);
1121     if (!sysbus_realize(SYS_BUS_DEVICE(&s->secctl), errp)) {
1122         return;
1123     }
1124     sbd_secctl = SYS_BUS_DEVICE(&s->secctl);
1125     dev_secctl = DEVICE(&s->secctl);
1126     sysbus_mmio_map(sbd_secctl, 0, 0x50080000);
1127     sysbus_mmio_map(sbd_secctl, 1, 0x40080000);
1128 
1129     s->nsc_cfg_in = qemu_allocate_irq(nsccfg_handler, s, 1);
1130     qdev_connect_gpio_out_named(dev_secctl, "nsc_cfg", 0, s->nsc_cfg_in);
1131 
1132     /* The sec_resp_cfg output from the security controller must be split into
1133      * multiple lines, one for each of the PPCs within the ARMSSE and one
1134      * that will be an output from the ARMSSE to the system.
1135      */
1136     if (!object_property_set_int(OBJECT(&s->sec_resp_splitter),
1137                                  "num-lines", 3, errp)) {
1138         return;
1139     }
1140     if (!qdev_realize(DEVICE(&s->sec_resp_splitter), NULL, errp)) {
1141         return;
1142     }
1143     dev_splitter = DEVICE(&s->sec_resp_splitter);
1144     qdev_connect_gpio_out_named(dev_secctl, "sec_resp_cfg", 0,
1145                                 qdev_get_gpio_in(dev_splitter, 0));
1146 
1147     /* Each SRAM bank lives behind its own Memory Protection Controller */
1148     for (i = 0; i < info->sram_banks; i++) {
1149         char *ramname = g_strdup_printf("armsse.sram%d", i);
1150         SysBusDevice *sbd_mpc;
1151         uint32_t sram_bank_size = 1 << s->sram_addr_width;
1152 
1153         memory_region_init_ram(&s->sram[i], NULL, ramname,
1154                                sram_bank_size, &err);
1155         g_free(ramname);
1156         if (err) {
1157             error_propagate(errp, err);
1158             return;
1159         }
1160         object_property_set_link(OBJECT(&s->mpc[i]), "downstream",
1161                                  OBJECT(&s->sram[i]), &error_abort);
1162         if (!sysbus_realize(SYS_BUS_DEVICE(&s->mpc[i]), errp)) {
1163             return;
1164         }
1165         /* Map the upstream end of the MPC into the right place... */
1166         sbd_mpc = SYS_BUS_DEVICE(&s->mpc[i]);
1167         memory_region_add_subregion(&s->container,
1168                                     info->sram_bank_base + i * sram_bank_size,
1169                                     sysbus_mmio_get_region(sbd_mpc, 1));
1170         /* ...and its register interface */
1171         memory_region_add_subregion(&s->container, 0x50083000 + i * 0x1000,
1172                                     sysbus_mmio_get_region(sbd_mpc, 0));
1173     }
1174 
1175     /* We must OR together lines from the MPC splitters to go to the NVIC */
1176     if (!object_property_set_int(OBJECT(&s->mpc_irq_orgate), "num-lines",
1177                                  IOTS_NUM_EXP_MPC + info->sram_banks,
1178                                  errp)) {
1179         return;
1180     }
1181     if (!qdev_realize(DEVICE(&s->mpc_irq_orgate), NULL, errp)) {
1182         return;
1183     }
1184     qdev_connect_gpio_out(DEVICE(&s->mpc_irq_orgate), 0,
1185                           armsse_get_common_irq_in(s, 9));
1186 
1187     /* This OR gate wires together outputs from the secure watchdogs to NMI */
1188     if (!object_property_set_int(OBJECT(&s->nmi_orgate), "num-lines", 2,
1189                                  errp)) {
1190         return;
1191     }
1192     if (!qdev_realize(DEVICE(&s->nmi_orgate), NULL, errp)) {
1193         return;
1194     }
1195     qdev_connect_gpio_out(DEVICE(&s->nmi_orgate), 0,
1196                           qdev_get_gpio_in_named(DEVICE(&s->armv7m), "NMI", 0));
1197 
1198     /* The SSE-300 has a System Counter / System Timestamp Generator */
1199     if (info->has_sse_counter) {
1200         SysBusDevice *sbd = SYS_BUS_DEVICE(&s->sse_counter);
1201 
1202         qdev_connect_clock_in(DEVICE(sbd), "CLK", s->mainclk);
1203         if (!sysbus_realize(sbd, errp)) {
1204             return;
1205         }
1206         /*
1207          * The control frame is only in the Secure region;
1208          * the status frame is in the NS region (and visible in the
1209          * S region via the alias mapping).
1210          */
1211         memory_region_add_subregion(&s->container, 0x58100000,
1212                                     sysbus_mmio_get_region(sbd, 0));
1213         memory_region_add_subregion(&s->container, 0x48101000,
1214                                     sysbus_mmio_get_region(sbd, 1));
1215     }
1216 
1217     /* Devices behind APB PPC0:
1218      *   0x40000000: timer0
1219      *   0x40001000: timer1
1220      *   0x40002000: dual timer
1221      *   0x40003000: MHU0 (SSE-200 only)
1222      *   0x40004000: MHU1 (SSE-200 only)
1223      * We must configure and realize each downstream device and connect
1224      * it to the appropriate PPC port; then we can realize the PPC and
1225      * map its upstream ends to the right place in the container.
1226      */
1227     for (devinfo = info->devinfo; devinfo->name; devinfo++) {
1228         SysBusDevice *sbd;
1229         qemu_irq irq;
1230 
1231         if (!strcmp(devinfo->type, TYPE_CMSDK_APB_TIMER)) {
1232             sbd = SYS_BUS_DEVICE(&s->timer[devinfo->index]);
1233 
1234             qdev_connect_clock_in(DEVICE(sbd), "pclk",
1235                                   devinfo->slowclk ? s->s32kclk : s->mainclk);
1236             if (!sysbus_realize(sbd, errp)) {
1237                 return;
1238             }
1239             mr = sysbus_mmio_get_region(sbd, 0);
1240         } else if (!strcmp(devinfo->type, TYPE_CMSDK_APB_DUALTIMER)) {
1241             sbd = SYS_BUS_DEVICE(&s->dualtimer);
1242 
1243             qdev_connect_clock_in(DEVICE(sbd), "TIMCLK", s->mainclk);
1244             if (!sysbus_realize(sbd, errp)) {
1245                 return;
1246             }
1247             mr = sysbus_mmio_get_region(sbd, 0);
1248         } else if (!strcmp(devinfo->type, TYPE_SSE_TIMER)) {
1249             sbd = SYS_BUS_DEVICE(&s->sse_timer[devinfo->index]);
1250 
1251             assert(info->has_sse_counter);
1252             object_property_set_link(OBJECT(sbd), "counter",
1253                                      OBJECT(&s->sse_counter), &error_abort);
1254             if (!sysbus_realize(sbd, errp)) {
1255                 return;
1256             }
1257             mr = sysbus_mmio_get_region(sbd, 0);
1258         } else if (!strcmp(devinfo->type, TYPE_CMSDK_APB_WATCHDOG)) {
1259             sbd = SYS_BUS_DEVICE(&s->cmsdk_watchdog[devinfo->index]);
1260 
1261             qdev_connect_clock_in(DEVICE(sbd), "WDOGCLK",
1262                                   devinfo->slowclk ? s->s32kclk : s->mainclk);
1263             if (!sysbus_realize(sbd, errp)) {
1264                 return;
1265             }
1266             mr = sysbus_mmio_get_region(sbd, 0);
1267         } else if (!strcmp(devinfo->type, TYPE_IOTKIT_SYSINFO)) {
1268             sbd = SYS_BUS_DEVICE(&s->sysinfo);
1269 
1270             object_property_set_int(OBJECT(&s->sysinfo), "SYS_VERSION",
1271                                     info->sys_version, &error_abort);
1272             object_property_set_int(OBJECT(&s->sysinfo), "SYS_CONFIG",
1273                                     armsse_sys_config_value(s, info),
1274                                     &error_abort);
1275             object_property_set_int(OBJECT(&s->sysinfo), "sse-version",
1276                                     info->sse_version, &error_abort);
1277             object_property_set_int(OBJECT(&s->sysinfo), "IIDR",
1278                                     info->iidr, &error_abort);
1279             if (!sysbus_realize(sbd, errp)) {
1280                 return;
1281             }
1282             mr = sysbus_mmio_get_region(sbd, 0);
1283         } else if (!strcmp(devinfo->type, TYPE_IOTKIT_SYSCTL)) {
1284             /* System control registers */
1285             sbd = SYS_BUS_DEVICE(&s->sysctl);
1286 
1287             object_property_set_int(OBJECT(&s->sysctl), "sse-version",
1288                                     info->sse_version, &error_abort);
1289             object_property_set_int(OBJECT(&s->sysctl), "CPUWAIT_RST",
1290                                     info->cpuwait_rst, &error_abort);
1291             object_property_set_int(OBJECT(&s->sysctl), "INITSVTOR0_RST",
1292                                     s->init_svtor, &error_abort);
1293             object_property_set_int(OBJECT(&s->sysctl), "INITSVTOR1_RST",
1294                                     s->init_svtor, &error_abort);
1295             if (!sysbus_realize(sbd, errp)) {
1296                 return;
1297             }
1298             mr = sysbus_mmio_get_region(sbd, 0);
1299         } else if (!strcmp(devinfo->type, TYPE_UNIMPLEMENTED_DEVICE)) {
1300             sbd = SYS_BUS_DEVICE(&s->unimp[devinfo->index]);
1301 
1302             qdev_prop_set_string(DEVICE(sbd), "name", devinfo->name);
1303             qdev_prop_set_uint64(DEVICE(sbd), "size", devinfo->size);
1304             if (!sysbus_realize(sbd, errp)) {
1305                 return;
1306             }
1307             mr = sysbus_mmio_get_region(sbd, 0);
1308         } else {
1309             g_assert_not_reached();
1310         }
1311 
1312         switch (devinfo->irq) {
1313         case NO_IRQ:
1314             irq = NULL;
1315             break;
1316         case 0 ... NUM_SSE_IRQS - 1:
1317             irq = armsse_get_common_irq_in(s, devinfo->irq);
1318             break;
1319         case NMI_0:
1320         case NMI_1:
1321             irq = qdev_get_gpio_in(DEVICE(&s->nmi_orgate),
1322                                    devinfo->irq - NMI_0);
1323             break;
1324         default:
1325             g_assert_not_reached();
1326         }
1327 
1328         if (irq) {
1329             sysbus_connect_irq(sbd, 0, irq);
1330         }
1331 
1332         /*
1333          * Devices connected to a PPC are connected to the port here;
1334          * we will map the upstream end of that port to the right address
1335          * in the container later after the PPC has been realized.
1336          * Devices not connected to a PPC can be mapped immediately.
1337          */
1338         if (devinfo->ppc != NO_PPC) {
1339             TZPPC *ppc = &s->apb_ppc[devinfo->ppc];
1340             g_autofree char *portname = g_strdup_printf("port[%d]",
1341                                                         devinfo->ppc_port);
1342             object_property_set_link(OBJECT(ppc), portname, OBJECT(mr),
1343                                      &error_abort);
1344         } else {
1345             memory_region_add_subregion(&s->container, devinfo->addr, mr);
1346         }
1347     }
1348 
1349     if (info->has_mhus) {
1350         /*
1351          * An SSE-200 with only one CPU should have only one MHU created,
1352          * with the region where the second MHU usually is being RAZ/WI.
1353          * We don't implement that SSE-200 config; if we want to support
1354          * it then this code needs to be enhanced to handle creating the
1355          * RAZ/WI region instead of the second MHU.
1356          */
1357         assert(info->num_cpus == ARRAY_SIZE(s->mhu));
1358 
1359         for (i = 0; i < ARRAY_SIZE(s->mhu); i++) {
1360             char *port;
1361             int cpunum;
1362             SysBusDevice *mhu_sbd = SYS_BUS_DEVICE(&s->mhu[i]);
1363 
1364             if (!sysbus_realize(SYS_BUS_DEVICE(&s->mhu[i]), errp)) {
1365                 return;
1366             }
1367             port = g_strdup_printf("port[%d]", i + 3);
1368             mr = sysbus_mmio_get_region(mhu_sbd, 0);
1369             object_property_set_link(OBJECT(&s->apb_ppc[0]), port, OBJECT(mr),
1370                                      &error_abort);
1371             g_free(port);
1372 
1373             /*
1374              * Each MHU has an irq line for each CPU:
1375              *  MHU 0 irq line 0 -> CPU 0 IRQ 6
1376              *  MHU 0 irq line 1 -> CPU 1 IRQ 6
1377              *  MHU 1 irq line 0 -> CPU 0 IRQ 7
1378              *  MHU 1 irq line 1 -> CPU 1 IRQ 7
1379              */
1380             for (cpunum = 0; cpunum < info->num_cpus; cpunum++) {
1381                 DeviceState *cpudev = DEVICE(&s->armv7m[cpunum]);
1382 
1383                 sysbus_connect_irq(mhu_sbd, cpunum,
1384                                    qdev_get_gpio_in(cpudev, 6 + i));
1385             }
1386         }
1387     }
1388 
1389     if (!sysbus_realize(SYS_BUS_DEVICE(&s->apb_ppc[0]), errp)) {
1390         return;
1391     }
1392 
1393     sbd_apb_ppc0 = SYS_BUS_DEVICE(&s->apb_ppc[0]);
1394     dev_apb_ppc0 = DEVICE(&s->apb_ppc[0]);
1395 
1396     if (info->has_mhus) {
1397         mr = sysbus_mmio_get_region(sbd_apb_ppc0, 3);
1398         memory_region_add_subregion(&s->container, 0x40003000, mr);
1399         mr = sysbus_mmio_get_region(sbd_apb_ppc0, 4);
1400         memory_region_add_subregion(&s->container, 0x40004000, mr);
1401     }
1402     for (i = 0; i < IOTS_APB_PPC0_NUM_PORTS; i++) {
1403         qdev_connect_gpio_out_named(dev_secctl, "apb_ppc0_nonsec", i,
1404                                     qdev_get_gpio_in_named(dev_apb_ppc0,
1405                                                            "cfg_nonsec", i));
1406         qdev_connect_gpio_out_named(dev_secctl, "apb_ppc0_ap", i,
1407                                     qdev_get_gpio_in_named(dev_apb_ppc0,
1408                                                            "cfg_ap", i));
1409     }
1410     qdev_connect_gpio_out_named(dev_secctl, "apb_ppc0_irq_enable", 0,
1411                                 qdev_get_gpio_in_named(dev_apb_ppc0,
1412                                                        "irq_enable", 0));
1413     qdev_connect_gpio_out_named(dev_secctl, "apb_ppc0_irq_clear", 0,
1414                                 qdev_get_gpio_in_named(dev_apb_ppc0,
1415                                                        "irq_clear", 0));
1416     qdev_connect_gpio_out(dev_splitter, 0,
1417                           qdev_get_gpio_in_named(dev_apb_ppc0,
1418                                                  "cfg_sec_resp", 0));
1419 
1420     /* All the PPC irq lines (from the 2 internal PPCs and the 8 external
1421      * ones) are sent individually to the security controller, and also
1422      * ORed together to give a single combined PPC interrupt to the NVIC.
1423      */
1424     if (!object_property_set_int(OBJECT(&s->ppc_irq_orgate),
1425                                  "num-lines", NUM_PPCS, errp)) {
1426         return;
1427     }
1428     if (!qdev_realize(DEVICE(&s->ppc_irq_orgate), NULL, errp)) {
1429         return;
1430     }
1431     qdev_connect_gpio_out(DEVICE(&s->ppc_irq_orgate), 0,
1432                           armsse_get_common_irq_in(s, 10));
1433 
1434     /*
1435      * 0x40010000 .. 0x4001ffff (and the 0x5001000... secure-only alias):
1436      * private per-CPU region (all these devices are SSE-200 only):
1437      *  0x50010000: L1 icache control registers
1438      *  0x50011000: CPUSECCTRL (CPU local security control registers)
1439      *  0x4001f000 and 0x5001f000: CPU_IDENTITY register block
1440      * The SSE-300 has an extra:
1441      *  0x40012000 and 0x50012000: CPU_PWRCTRL register block
1442      */
1443     if (info->has_cachectrl) {
1444         for (i = 0; i < info->num_cpus; i++) {
1445             char *name = g_strdup_printf("cachectrl%d", i);
1446             MemoryRegion *mr;
1447 
1448             qdev_prop_set_string(DEVICE(&s->cachectrl[i]), "name", name);
1449             g_free(name);
1450             qdev_prop_set_uint64(DEVICE(&s->cachectrl[i]), "size", 0x1000);
1451             if (!sysbus_realize(SYS_BUS_DEVICE(&s->cachectrl[i]), errp)) {
1452                 return;
1453             }
1454 
1455             mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->cachectrl[i]), 0);
1456             memory_region_add_subregion(&s->cpu_container[i], 0x50010000, mr);
1457         }
1458     }
1459     if (info->has_cpusecctrl) {
1460         for (i = 0; i < info->num_cpus; i++) {
1461             char *name = g_strdup_printf("CPUSECCTRL%d", i);
1462             MemoryRegion *mr;
1463 
1464             qdev_prop_set_string(DEVICE(&s->cpusecctrl[i]), "name", name);
1465             g_free(name);
1466             qdev_prop_set_uint64(DEVICE(&s->cpusecctrl[i]), "size", 0x1000);
1467             if (!sysbus_realize(SYS_BUS_DEVICE(&s->cpusecctrl[i]), errp)) {
1468                 return;
1469             }
1470 
1471             mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->cpusecctrl[i]), 0);
1472             memory_region_add_subregion(&s->cpu_container[i], 0x50011000, mr);
1473         }
1474     }
1475     if (info->has_cpuid) {
1476         for (i = 0; i < info->num_cpus; i++) {
1477             MemoryRegion *mr;
1478 
1479             qdev_prop_set_uint32(DEVICE(&s->cpuid[i]), "CPUID", i);
1480             if (!sysbus_realize(SYS_BUS_DEVICE(&s->cpuid[i]), errp)) {
1481                 return;
1482             }
1483 
1484             mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->cpuid[i]), 0);
1485             memory_region_add_subregion(&s->cpu_container[i], 0x4001F000, mr);
1486         }
1487     }
1488     if (info->has_cpu_pwrctrl) {
1489         for (i = 0; i < info->num_cpus; i++) {
1490             MemoryRegion *mr;
1491 
1492             if (!sysbus_realize(SYS_BUS_DEVICE(&s->cpu_pwrctrl[i]), errp)) {
1493                 return;
1494             }
1495 
1496             mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->cpu_pwrctrl[i]), 0);
1497             memory_region_add_subregion(&s->cpu_container[i], 0x40012000, mr);
1498         }
1499     }
1500 
1501     if (!sysbus_realize(SYS_BUS_DEVICE(&s->apb_ppc[1]), errp)) {
1502         return;
1503     }
1504 
1505     dev_apb_ppc1 = DEVICE(&s->apb_ppc[1]);
1506     qdev_connect_gpio_out_named(dev_secctl, "apb_ppc1_nonsec", 0,
1507                                 qdev_get_gpio_in_named(dev_apb_ppc1,
1508                                                        "cfg_nonsec", 0));
1509     qdev_connect_gpio_out_named(dev_secctl, "apb_ppc1_ap", 0,
1510                                 qdev_get_gpio_in_named(dev_apb_ppc1,
1511                                                        "cfg_ap", 0));
1512     qdev_connect_gpio_out_named(dev_secctl, "apb_ppc1_irq_enable", 0,
1513                                 qdev_get_gpio_in_named(dev_apb_ppc1,
1514                                                        "irq_enable", 0));
1515     qdev_connect_gpio_out_named(dev_secctl, "apb_ppc1_irq_clear", 0,
1516                                 qdev_get_gpio_in_named(dev_apb_ppc1,
1517                                                        "irq_clear", 0));
1518     qdev_connect_gpio_out(dev_splitter, 1,
1519                           qdev_get_gpio_in_named(dev_apb_ppc1,
1520                                                  "cfg_sec_resp", 0));
1521 
1522     /*
1523      * Now both PPCs are realized we can map the upstream ends of
1524      * ports which correspond to entries in the devinfo array.
1525      * The ports which are connected to non-devinfo devices have
1526      * already been mapped.
1527      */
1528     for (devinfo = info->devinfo; devinfo->name; devinfo++) {
1529         SysBusDevice *ppc_sbd;
1530 
1531         if (devinfo->ppc == NO_PPC) {
1532             continue;
1533         }
1534         ppc_sbd = SYS_BUS_DEVICE(&s->apb_ppc[devinfo->ppc]);
1535         mr = sysbus_mmio_get_region(ppc_sbd, devinfo->ppc_port);
1536         memory_region_add_subregion(&s->container, devinfo->addr, mr);
1537     }
1538 
1539     for (i = 0; i < ARRAY_SIZE(s->ppc_irq_splitter); i++) {
1540         Object *splitter = OBJECT(&s->ppc_irq_splitter[i]);
1541 
1542         if (!object_property_set_int(splitter, "num-lines", 2, errp)) {
1543             return;
1544         }
1545         if (!qdev_realize(DEVICE(splitter), NULL, errp)) {
1546             return;
1547         }
1548     }
1549 
1550     for (i = 0; i < IOTS_NUM_AHB_EXP_PPC; i++) {
1551         char *ppcname = g_strdup_printf("ahb_ppcexp%d", i);
1552 
1553         armsse_forward_ppc(s, ppcname, i);
1554         g_free(ppcname);
1555     }
1556 
1557     for (i = 0; i < IOTS_NUM_APB_EXP_PPC; i++) {
1558         char *ppcname = g_strdup_printf("apb_ppcexp%d", i);
1559 
1560         armsse_forward_ppc(s, ppcname, i + IOTS_NUM_AHB_EXP_PPC);
1561         g_free(ppcname);
1562     }
1563 
1564     for (i = NUM_EXTERNAL_PPCS; i < NUM_PPCS; i++) {
1565         /* Wire up IRQ splitter for internal PPCs */
1566         DeviceState *devs = DEVICE(&s->ppc_irq_splitter[i]);
1567         char *gpioname = g_strdup_printf("apb_ppc%d_irq_status",
1568                                          i - NUM_EXTERNAL_PPCS);
1569         TZPPC *ppc = &s->apb_ppc[i - NUM_EXTERNAL_PPCS];
1570 
1571         qdev_connect_gpio_out(devs, 0,
1572                               qdev_get_gpio_in_named(dev_secctl, gpioname, 0));
1573         qdev_connect_gpio_out(devs, 1,
1574                               qdev_get_gpio_in(DEVICE(&s->ppc_irq_orgate), i));
1575         qdev_connect_gpio_out_named(DEVICE(ppc), "irq", 0,
1576                                     qdev_get_gpio_in(devs, 0));
1577         g_free(gpioname);
1578     }
1579 
1580     /* Wire up the splitters for the MPC IRQs */
1581     for (i = 0; i < IOTS_NUM_EXP_MPC + info->sram_banks; i++) {
1582         SplitIRQ *splitter = &s->mpc_irq_splitter[i];
1583         DeviceState *dev_splitter = DEVICE(splitter);
1584 
1585         if (!object_property_set_int(OBJECT(splitter), "num-lines", 2,
1586                                      errp)) {
1587             return;
1588         }
1589         if (!qdev_realize(DEVICE(splitter), NULL, errp)) {
1590             return;
1591         }
1592 
1593         if (i < IOTS_NUM_EXP_MPC) {
1594             /* Splitter input is from GPIO input line */
1595             s->mpcexp_status_in[i] = qdev_get_gpio_in(dev_splitter, 0);
1596             qdev_connect_gpio_out(dev_splitter, 0,
1597                                   qdev_get_gpio_in_named(dev_secctl,
1598                                                          "mpcexp_status", i));
1599         } else {
1600             /* Splitter input is from our own MPC */
1601             qdev_connect_gpio_out_named(DEVICE(&s->mpc[i - IOTS_NUM_EXP_MPC]),
1602                                         "irq", 0,
1603                                         qdev_get_gpio_in(dev_splitter, 0));
1604             qdev_connect_gpio_out(dev_splitter, 0,
1605                                   qdev_get_gpio_in_named(dev_secctl,
1606                                                          "mpc_status",
1607                                                          i - IOTS_NUM_EXP_MPC));
1608         }
1609 
1610         qdev_connect_gpio_out(dev_splitter, 1,
1611                               qdev_get_gpio_in(DEVICE(&s->mpc_irq_orgate), i));
1612     }
1613     /* Create GPIO inputs which will pass the line state for our
1614      * mpcexp_irq inputs to the correct splitter devices.
1615      */
1616     qdev_init_gpio_in_named(dev, armsse_mpcexp_status, "mpcexp_status",
1617                             IOTS_NUM_EXP_MPC);
1618 
1619     armsse_forward_sec_resp_cfg(s);
1620 
1621     /* Forward the MSC related signals */
1622     qdev_pass_gpios(dev_secctl, dev, "mscexp_status");
1623     qdev_pass_gpios(dev_secctl, dev, "mscexp_clear");
1624     qdev_pass_gpios(dev_secctl, dev, "mscexp_ns");
1625     qdev_connect_gpio_out_named(dev_secctl, "msc_irq", 0,
1626                                 armsse_get_common_irq_in(s, 11));
1627 
1628     /*
1629      * Expose our container region to the board model; this corresponds
1630      * to the AHB Slave Expansion ports which allow bus master devices
1631      * (eg DMA controllers) in the board model to make transactions into
1632      * devices in the ARMSSE.
1633      */
1634     sysbus_init_mmio(SYS_BUS_DEVICE(s), &s->container);
1635 
1636     /* Set initial system_clock_scale from MAINCLK */
1637     armsse_mainclk_update(s, ClockUpdate);
1638 }
1639 
1640 static void armsse_idau_check(IDAUInterface *ii, uint32_t address,
1641                               int *iregion, bool *exempt, bool *ns, bool *nsc)
1642 {
1643     /*
1644      * For ARMSSE systems the IDAU responses are simple logical functions
1645      * of the address bits. The NSC attribute is guest-adjustable via the
1646      * NSCCFG register in the security controller.
1647      */
1648     ARMSSE *s = ARM_SSE(ii);
1649     int region = extract32(address, 28, 4);
1650 
1651     *ns = !(region & 1);
1652     *nsc = (region == 1 && (s->nsccfg & 1)) || (region == 3 && (s->nsccfg & 2));
1653     /* 0xe0000000..0xe00fffff and 0xf0000000..0xf00fffff are exempt */
1654     *exempt = (address & 0xeff00000) == 0xe0000000;
1655     *iregion = region;
1656 }
1657 
1658 static const VMStateDescription armsse_vmstate = {
1659     .name = "iotkit",
1660     .version_id = 2,
1661     .minimum_version_id = 2,
1662     .fields = (VMStateField[]) {
1663         VMSTATE_CLOCK(mainclk, ARMSSE),
1664         VMSTATE_CLOCK(s32kclk, ARMSSE),
1665         VMSTATE_UINT32(nsccfg, ARMSSE),
1666         VMSTATE_END_OF_LIST()
1667     }
1668 };
1669 
1670 static void armsse_reset(DeviceState *dev)
1671 {
1672     ARMSSE *s = ARM_SSE(dev);
1673 
1674     s->nsccfg = 0;
1675 }
1676 
1677 static void armsse_class_init(ObjectClass *klass, void *data)
1678 {
1679     DeviceClass *dc = DEVICE_CLASS(klass);
1680     IDAUInterfaceClass *iic = IDAU_INTERFACE_CLASS(klass);
1681     ARMSSEClass *asc = ARM_SSE_CLASS(klass);
1682     const ARMSSEInfo *info = data;
1683 
1684     dc->realize = armsse_realize;
1685     dc->vmsd = &armsse_vmstate;
1686     device_class_set_props(dc, info->props);
1687     dc->reset = armsse_reset;
1688     iic->check = armsse_idau_check;
1689     asc->info = info;
1690 }
1691 
1692 static const TypeInfo armsse_info = {
1693     .name = TYPE_ARM_SSE,
1694     .parent = TYPE_SYS_BUS_DEVICE,
1695     .instance_size = sizeof(ARMSSE),
1696     .class_size = sizeof(ARMSSEClass),
1697     .instance_init = armsse_init,
1698     .abstract = true,
1699     .interfaces = (InterfaceInfo[]) {
1700         { TYPE_IDAU_INTERFACE },
1701         { }
1702     }
1703 };
1704 
1705 static void armsse_register_types(void)
1706 {
1707     int i;
1708 
1709     type_register_static(&armsse_info);
1710 
1711     for (i = 0; i < ARRAY_SIZE(armsse_variants); i++) {
1712         TypeInfo ti = {
1713             .name = armsse_variants[i].name,
1714             .parent = TYPE_ARM_SSE,
1715             .class_init = armsse_class_init,
1716             .class_data = (void *)&armsse_variants[i],
1717         };
1718         type_register(&ti);
1719     }
1720 }
1721 
1722 type_init(armsse_register_types);
1723