xref: /qemu/hw/acpi/cpu_hotplug.c (revision a6af54434400099b8afd59ba036cf9a662006d1e)
1  /*
2   * QEMU ACPI hotplug utilities
3   *
4   * Copyright (C) 2013 Red Hat Inc
5   *
6   * Authors:
7   *   Igor Mammedov <imammedo@redhat.com>
8   *
9   * This work is licensed under the terms of the GNU GPL, version 2 or later.
10   * See the COPYING file in the top-level directory.
11   */
12  #include "qemu/osdep.h"
13  #include "hw/acpi/cpu_hotplug.h"
14  #include "qapi/error.h"
15  #include "hw/core/cpu.h"
16  #include "hw/i386/x86.h"
17  #include "hw/pci/pci_device.h"
18  #include "qemu/error-report.h"
19  
20  #define CPU_EJECT_METHOD "CPEJ"
21  #define CPU_MAT_METHOD "CPMA"
22  #define CPU_ON_BITMAP "CPON"
23  #define CPU_STATUS_METHOD "CPST"
24  #define CPU_STATUS_MAP "PRS"
25  #define CPU_SCAN_METHOD "PRSC"
26  
27  static uint64_t cpu_status_read(void *opaque, hwaddr addr, unsigned int size)
28  {
29      AcpiCpuHotplug *cpus = opaque;
30      uint64_t val = cpus->sts[addr];
31  
32      return val;
33  }
34  
35  static void cpu_status_write(void *opaque, hwaddr addr, uint64_t data,
36                               unsigned int size)
37  {
38      /* firmware never used to write in CPU present bitmap so use
39         this fact as means to switch QEMU into modern CPU hotplug
40         mode by writing 0 at the beginning of legacy CPU bitmap
41       */
42      if (addr == 0 && data == 0) {
43          AcpiCpuHotplug *cpus = opaque;
44          object_property_set_bool(cpus->device, "cpu-hotplug-legacy", false,
45                                   &error_abort);
46      }
47  }
48  
49  static const MemoryRegionOps AcpiCpuHotplug_ops = {
50      .read = cpu_status_read,
51      .write = cpu_status_write,
52      .endianness = DEVICE_LITTLE_ENDIAN,
53      .valid = {
54          .min_access_size = 1,
55          .max_access_size = 4,
56      },
57      .impl = {
58          .max_access_size = 1,
59      },
60  };
61  
62  static void acpi_set_cpu_present_bit(AcpiCpuHotplug *g, CPUState *cpu,
63                                       bool *swtchd_to_modern)
64  {
65      int64_t cpu_id;
66  
67      cpu_id = cpu->cc->get_arch_id(cpu);
68      if ((cpu_id / 8) >= ACPI_GPE_PROC_LEN) {
69          object_property_set_bool(g->device, "cpu-hotplug-legacy", false,
70                                   &error_abort);
71          *swtchd_to_modern = true;
72          return;
73      }
74  
75      *swtchd_to_modern = false;
76      g->sts[cpu_id / 8] |= (1 << (cpu_id % 8));
77  }
78  
79  void legacy_acpi_cpu_plug_cb(HotplugHandler *hotplug_dev,
80                               AcpiCpuHotplug *g, DeviceState *dev, Error **errp)
81  {
82      bool swtchd_to_modern;
83      Error *local_err = NULL;
84  
85      acpi_set_cpu_present_bit(g, CPU(dev), &swtchd_to_modern);
86      if (swtchd_to_modern) {
87          /* propagate the hotplug to the modern interface */
88          hotplug_handler_plug(hotplug_dev, dev, &local_err);
89      } else {
90          acpi_send_event(DEVICE(hotplug_dev), ACPI_CPU_HOTPLUG_STATUS);
91      }
92  }
93  
94  void legacy_acpi_cpu_hotplug_init(MemoryRegion *parent, Object *owner,
95                                    AcpiCpuHotplug *gpe_cpu, uint16_t base)
96  {
97      CPUState *cpu;
98      bool swtchd_to_modern;
99  
100      memory_region_init_io(&gpe_cpu->io, owner, &AcpiCpuHotplug_ops,
101                            gpe_cpu, "acpi-cpu-hotplug", ACPI_GPE_PROC_LEN);
102      memory_region_add_subregion(parent, base, &gpe_cpu->io);
103      gpe_cpu->device = owner;
104  
105      CPU_FOREACH(cpu) {
106          acpi_set_cpu_present_bit(gpe_cpu, cpu, &swtchd_to_modern);
107      }
108  }
109  
110  void acpi_switch_to_modern_cphp(AcpiCpuHotplug *gpe_cpu,
111                                  CPUHotplugState *cpuhp_state,
112                                  uint16_t io_port)
113  {
114      MemoryRegion *parent = pci_address_space_io(PCI_DEVICE(gpe_cpu->device));
115  
116      memory_region_del_subregion(parent, &gpe_cpu->io);
117      cpu_hotplug_hw_init(parent, gpe_cpu->device, cpuhp_state, io_port);
118  }
119  
120  void build_legacy_cpu_hotplug_aml(Aml *ctx, MachineState *machine,
121                                    uint16_t io_base)
122  {
123      Aml *dev;
124      Aml *crs;
125      Aml *pkg;
126      Aml *field;
127      Aml *method;
128      Aml *if_ctx;
129      Aml *else_ctx;
130      int i, apic_idx;
131      Aml *sb_scope = aml_scope("_SB");
132      uint8_t madt_tmpl[8] = {0x00, 0x08, 0x00, 0x00, 0x00, 0, 0, 0};
133      Aml *cpu_id = aml_arg(1);
134      Aml *apic_id = aml_arg(0);
135      Aml *cpu_on = aml_local(0);
136      Aml *madt = aml_local(1);
137      Aml *cpus_map = aml_name(CPU_ON_BITMAP);
138      Aml *zero = aml_int(0);
139      Aml *one = aml_int(1);
140      MachineClass *mc = MACHINE_GET_CLASS(machine);
141      const CPUArchIdList *apic_ids = mc->possible_cpu_arch_ids(machine);
142      X86MachineState *x86ms = X86_MACHINE(machine);
143  
144      /*
145       * _MAT method - creates an madt apic buffer
146       * apic_id = Arg0 = Local APIC ID
147       * cpu_id  = Arg1 = Processor ID
148       * cpu_on = Local0 = CPON flag for this cpu
149       * madt = Local1 = Buffer (in madt apic form) to return
150       */
151      method = aml_method(CPU_MAT_METHOD, 2, AML_NOTSERIALIZED);
152      aml_append(method,
153          aml_store(aml_derefof(aml_index(cpus_map, apic_id)), cpu_on));
154      aml_append(method,
155          aml_store(aml_buffer(sizeof(madt_tmpl), madt_tmpl), madt));
156      /* Update the processor id, lapic id, and enable/disable status */
157      aml_append(method, aml_store(cpu_id, aml_index(madt, aml_int(2))));
158      aml_append(method, aml_store(apic_id, aml_index(madt, aml_int(3))));
159      aml_append(method, aml_store(cpu_on, aml_index(madt, aml_int(4))));
160      aml_append(method, aml_return(madt));
161      aml_append(sb_scope, method);
162  
163      /*
164       * _STA method - return ON status of cpu
165       * apic_id = Arg0 = Local APIC ID
166       * cpu_on = Local0 = CPON flag for this cpu
167       */
168      method = aml_method(CPU_STATUS_METHOD, 1, AML_NOTSERIALIZED);
169      aml_append(method,
170          aml_store(aml_derefof(aml_index(cpus_map, apic_id)), cpu_on));
171      if_ctx = aml_if(cpu_on);
172      {
173          aml_append(if_ctx, aml_return(aml_int(0xF)));
174      }
175      aml_append(method, if_ctx);
176      else_ctx = aml_else();
177      {
178          aml_append(else_ctx, aml_return(zero));
179      }
180      aml_append(method, else_ctx);
181      aml_append(sb_scope, method);
182  
183      method = aml_method(CPU_EJECT_METHOD, 2, AML_NOTSERIALIZED);
184      aml_append(method, aml_sleep(200));
185      aml_append(sb_scope, method);
186  
187      method = aml_method(CPU_SCAN_METHOD, 0, AML_NOTSERIALIZED);
188      {
189          Aml *while_ctx, *if_ctx2, *else_ctx2;
190          Aml *bus_check_evt = aml_int(1);
191          Aml *remove_evt = aml_int(3);
192          Aml *status_map = aml_local(5); /* Local5 = active cpu bitmap */
193          Aml *byte = aml_local(2); /* Local2 = last read byte from bitmap */
194          Aml *idx = aml_local(0); /* Processor ID / APIC ID iterator */
195          Aml *is_cpu_on = aml_local(1); /* Local1 = CPON flag for cpu */
196          Aml *status = aml_local(3); /* Local3 = active state for cpu */
197  
198          aml_append(method, aml_store(aml_name(CPU_STATUS_MAP), status_map));
199          aml_append(method, aml_store(zero, byte));
200          aml_append(method, aml_store(zero, idx));
201  
202          /* While (idx < SizeOf(CPON)) */
203          while_ctx = aml_while(aml_lless(idx, aml_sizeof(cpus_map)));
204          aml_append(while_ctx,
205              aml_store(aml_derefof(aml_index(cpus_map, idx)), is_cpu_on));
206  
207          if_ctx = aml_if(aml_and(idx, aml_int(0x07), NULL));
208          {
209              /* Shift down previously read bitmap byte */
210              aml_append(if_ctx, aml_shiftright(byte, one, byte));
211          }
212          aml_append(while_ctx, if_ctx);
213  
214          else_ctx = aml_else();
215          {
216              /* Read next byte from cpu bitmap */
217              aml_append(else_ctx, aml_store(aml_derefof(aml_index(status_map,
218                         aml_shiftright(idx, aml_int(3), NULL))), byte));
219          }
220          aml_append(while_ctx, else_ctx);
221  
222          aml_append(while_ctx, aml_store(aml_and(byte, one, NULL), status));
223          if_ctx = aml_if(aml_lnot(aml_equal(is_cpu_on, status)));
224          {
225              /* State change - update CPON with new state */
226              aml_append(if_ctx, aml_store(status, aml_index(cpus_map, idx)));
227              if_ctx2 = aml_if(aml_equal(status, one));
228              {
229                  aml_append(if_ctx2,
230                      aml_call2(AML_NOTIFY_METHOD, idx, bus_check_evt));
231              }
232              aml_append(if_ctx, if_ctx2);
233              else_ctx2 = aml_else();
234              {
235                  aml_append(else_ctx2,
236                      aml_call2(AML_NOTIFY_METHOD, idx, remove_evt));
237              }
238          }
239          aml_append(if_ctx, else_ctx2);
240          aml_append(while_ctx, if_ctx);
241  
242          aml_append(while_ctx, aml_increment(idx)); /* go to next cpu */
243          aml_append(method, while_ctx);
244      }
245      aml_append(sb_scope, method);
246  
247      /* The current AML generator can cover the APIC ID range [0..255],
248       * inclusive, for VCPU hotplug. */
249      QEMU_BUILD_BUG_ON(ACPI_CPU_HOTPLUG_ID_LIMIT > 256);
250      if (x86ms->apic_id_limit > ACPI_CPU_HOTPLUG_ID_LIMIT) {
251          error_report("max_cpus is too large. APIC ID of last CPU is %u",
252                       x86ms->apic_id_limit - 1);
253          exit(1);
254      }
255  
256      /* create PCI0.PRES device and its _CRS to reserve CPU hotplug MMIO */
257      dev = aml_device("PCI0." stringify(CPU_HOTPLUG_RESOURCE_DEVICE));
258      aml_append(dev, aml_name_decl("_HID", aml_eisaid("PNP0A06")));
259      aml_append(dev,
260          aml_name_decl("_UID", aml_string("CPU Hotplug resources"))
261      );
262      /* device present, functioning, decoding, not shown in UI */
263      aml_append(dev, aml_name_decl("_STA", aml_int(0xB)));
264      crs = aml_resource_template();
265      aml_append(crs,
266          aml_io(AML_DECODE16, io_base, io_base, 1, ACPI_GPE_PROC_LEN)
267      );
268      aml_append(dev, aml_name_decl("_CRS", crs));
269      aml_append(sb_scope, dev);
270      /* declare CPU hotplug MMIO region and PRS field to access it */
271      aml_append(sb_scope, aml_operation_region(
272          "PRST", AML_SYSTEM_IO, aml_int(io_base), ACPI_GPE_PROC_LEN));
273      field = aml_field("PRST", AML_BYTE_ACC, AML_NOLOCK, AML_PRESERVE);
274      aml_append(field, aml_named_field("PRS", 256));
275      aml_append(sb_scope, field);
276  
277      /* build Processor object for each processor */
278      for (i = 0; i < apic_ids->len; i++) {
279          int cpu_apic_id = apic_ids->cpus[i].arch_id;
280  
281          assert(cpu_apic_id < ACPI_CPU_HOTPLUG_ID_LIMIT);
282  
283          dev = aml_processor(i, 0, 0, "CP%.02X", cpu_apic_id);
284  
285          method = aml_method("_MAT", 0, AML_NOTSERIALIZED);
286          aml_append(method,
287              aml_return(aml_call2(CPU_MAT_METHOD,
288                                   aml_int(cpu_apic_id), aml_int(i))
289          ));
290          aml_append(dev, method);
291  
292          method = aml_method("_STA", 0, AML_NOTSERIALIZED);
293          aml_append(method,
294              aml_return(aml_call1(CPU_STATUS_METHOD, aml_int(cpu_apic_id))));
295          aml_append(dev, method);
296  
297          method = aml_method("_EJ0", 1, AML_NOTSERIALIZED);
298          aml_append(method,
299              aml_return(aml_call2(CPU_EJECT_METHOD, aml_int(cpu_apic_id),
300                  aml_arg(0)))
301          );
302          aml_append(dev, method);
303  
304          aml_append(sb_scope, dev);
305      }
306  
307      /* build this code:
308       *   Method(NTFY, 2) {If (LEqual(Arg0, 0x00)) {Notify(CP00, Arg1)} ...}
309       */
310      /* Arg0 = APIC ID */
311      method = aml_method(AML_NOTIFY_METHOD, 2, AML_NOTSERIALIZED);
312      for (i = 0; i < apic_ids->len; i++) {
313          int cpu_apic_id = apic_ids->cpus[i].arch_id;
314  
315          if_ctx = aml_if(aml_equal(aml_arg(0), aml_int(cpu_apic_id)));
316          aml_append(if_ctx,
317              aml_notify(aml_name("CP%.02X", cpu_apic_id), aml_arg(1))
318          );
319          aml_append(method, if_ctx);
320      }
321      aml_append(sb_scope, method);
322  
323      /* build "Name(CPON, Package() { One, One, ..., Zero, Zero, ... })"
324       *
325       * Note: The ability to create variable-sized packages was first
326       * introduced in ACPI 2.0. ACPI 1.0 only allowed fixed-size packages
327       * ith up to 255 elements. Windows guests up to win2k8 fail when
328       * VarPackageOp is used.
329       */
330      pkg = x86ms->apic_id_limit <= 255 ? aml_package(x86ms->apic_id_limit) :
331                                          aml_varpackage(x86ms->apic_id_limit);
332  
333      for (i = 0, apic_idx = 0; i < apic_ids->len; i++) {
334          int cpu_apic_id = apic_ids->cpus[i].arch_id;
335  
336          for (; apic_idx < cpu_apic_id; apic_idx++) {
337              aml_append(pkg, aml_int(0));
338          }
339          aml_append(pkg, aml_int(apic_ids->cpus[i].cpu ? 1 : 0));
340          apic_idx = cpu_apic_id + 1;
341      }
342      aml_append(sb_scope, aml_name_decl(CPU_ON_BITMAP, pkg));
343      aml_append(ctx, sb_scope);
344  
345      method = aml_method("\\_GPE._E02", 0, AML_NOTSERIALIZED);
346      aml_append(method, aml_call0("\\_SB." CPU_SCAN_METHOD));
347      aml_append(ctx, method);
348  }
349