xref: /qemu/docs/system/riscv/virt.rst (revision 6ff5da16000f908140723e164d33a0b51a6c4162)
1'virt' Generic Virtual Platform (``virt``)
2==========================================
3
4The ``virt`` board is a platform which does not correspond to any real hardware;
5it is designed for use in virtual machines. It is the recommended board type
6if you simply want to run a guest such as Linux and do not care about
7reproducing the idiosyncrasies and limitations of a particular bit of
8real-world hardware.
9
10Supported devices
11-----------------
12
13The ``virt`` machine supports the following devices:
14
15* Up to 512 generic RV32GC/RV64GC cores, with optional extensions
16* Core Local Interruptor (CLINT)
17* Platform-Level Interrupt Controller (PLIC)
18* CFI parallel NOR flash memory
19* 1 NS16550 compatible UART
20* 1 Google Goldfish RTC
21* 1 SiFive Test device
22* 8 virtio-mmio transport devices
23* 1 generic PCIe host bridge
24* The fw_cfg device that allows a guest to obtain data from QEMU
25
26The hypervisor extension has been enabled for the default CPU, so virtual
27machines with hypervisor extension can simply be used without explicitly
28declaring.
29
30Hardware configuration information
31----------------------------------
32
33The ``virt`` machine automatically generates a device tree blob ("dtb")
34which it passes to the guest, if there is no ``-dtb`` option. This provides
35information about the addresses, interrupt lines and other configuration of
36the various devices in the system. Guest software should discover the devices
37that are present in the generated DTB.
38
39If users want to provide their own DTB, they can use the ``-dtb`` option.
40These DTBs should have the following requirements:
41
42* The number of subnodes of the /cpus node should match QEMU's ``-smp`` option
43* The /memory reg size should match QEMU’s selected ram_size via ``-m``
44* Should contain a node for the CLINT device with a compatible string
45  "riscv,clint0" if using with OpenSBI BIOS images
46
47Boot options
48------------
49
50The ``virt`` machine can start using the standard -kernel functionality
51for loading a Linux kernel, a VxWorks kernel, an S-mode U-Boot bootloader
52with the default OpenSBI firmware image as the -bios. It also supports
53the recommended RISC-V bootflow: U-Boot SPL (M-mode) loads OpenSBI fw_dynamic
54firmware and U-Boot proper (S-mode), using the standard -bios functionality.
55
56Using flash devices
57-------------------
58
59By default, the first flash device (pflash0) is expected to contain
60S-mode firmware code. It can be configured as read-only, with the
61second flash device (pflash1) available to store configuration data.
62
63For example, booting edk2 looks like
64
65.. code-block:: bash
66
67  $ qemu-system-riscv64 \
68     -blockdev node-name=pflash0,driver=file,read-only=on,filename=<edk2_code> \
69     -blockdev node-name=pflash1,driver=file,filename=<edk2_vars> \
70     -M virt,pflash0=pflash0,pflash1=pflash1 \
71     ... other args ....
72
73For TCG guests only, it is also possible to boot M-mode firmware from
74the first flash device (pflash0) by additionally passing ``-bios
75none``, as in
76
77.. code-block:: bash
78
79  $ qemu-system-riscv64 \
80     -bios none \
81     -blockdev node-name=pflash0,driver=file,read-only=on,filename=<m_mode_code> \
82     -M virt,pflash0=pflash0 \
83     ... other args ....
84
85Firmware images used for pflash must be exactly 32 MiB in size.
86
87riscv-iommu support
88-------------------
89
90The board has support for the riscv-iommu-pci device by using the following
91command line:
92
93.. code-block:: bash
94
95  $ qemu-system-riscv64 -M virt -device riscv-iommu-pci (...)
96
97It also has support for the riscv-iommu-sys platform device:
98
99.. code-block:: bash
100
101  $ qemu-system-riscv64 -M virt,iommu-sys=on (...)
102
103Refer to :ref:`riscv-iommu` for more information on how the RISC-V IOMMU support
104works.
105
106Machine-specific options
107------------------------
108
109The following machine-specific options are supported:
110
111- aclint=[on|off]
112
113  When this option is "on", ACLINT devices will be emulated instead of
114  SiFive CLINT. When not specified, this option is assumed to be "off".
115  This option is restricted to the TCG accelerator.
116
117- acpi=[on|off|auto]
118
119  When this option is "on" (which is the default), ACPI tables are generated and
120  exposed as firmware tables etc/acpi/rsdp and etc/acpi/tables.
121
122- aia=[none|aplic|aplic-imsic]
123
124  This option allows selecting interrupt controller defined by the AIA
125  (advanced interrupt architecture) specification. The "aia=aplic" selects
126  APLIC (advanced platform level interrupt controller) to handle wired
127  interrupts whereas the "aia=aplic-imsic" selects APLIC and IMSIC (incoming
128  message signaled interrupt controller) to handle both wired interrupts and
129  MSIs. When not specified, this option is assumed to be "none" which selects
130  SiFive PLIC to handle wired interrupts.
131
132  This option also interacts with '-accel kvm'.  When using "aia=aplic-imsic"
133  with KVM, it is possible to set the use of the kernel irqchip in split mode
134  by using "-accel kvm,kernel-irqchip=split".  In this case the ``virt`` machine
135  will emulate the APLIC controller instead of using the APLIC controller from
136  the irqchip.  See :ref:`riscv-aia` for more details on all available AIA
137  modes.
138
139- aia-guests=nnn
140
141  The number of per-HART VS-level AIA IMSIC pages to be emulated for a guest
142  having AIA IMSIC (i.e. "aia=aplic-imsic" selected). When not specified,
143  the default number of per-HART VS-level AIA IMSIC pages is 0.
144
145- iommu-sys=[on|off]
146
147  Enables the riscv-iommu-sys platform device. Defaults to 'off'.
148
149Running Linux kernel
150--------------------
151
152Linux mainline v5.12 release is tested at the time of writing. To build a
153Linux mainline kernel that can be booted by the ``virt`` machine in
15464-bit mode, simply configure the kernel using the defconfig configuration:
155
156.. code-block:: bash
157
158  $ export ARCH=riscv
159  $ export CROSS_COMPILE=riscv64-linux-
160  $ make defconfig
161  $ make
162
163To boot the newly built Linux kernel in QEMU with the ``virt`` machine:
164
165.. code-block:: bash
166
167  $ qemu-system-riscv64 -M virt -smp 4 -m 2G \
168      -display none -serial stdio \
169      -kernel arch/riscv/boot/Image \
170      -initrd /path/to/rootfs.cpio \
171      -append "root=/dev/ram"
172
173To build a Linux mainline kernel that can be booted by the ``virt`` machine
174in 32-bit mode, use the rv32_defconfig configuration. A patch is required to
175fix the 32-bit boot issue for Linux kernel v5.12.
176
177.. code-block:: bash
178
179  $ export ARCH=riscv
180  $ export CROSS_COMPILE=riscv64-linux-
181  $ curl https://patchwork.kernel.org/project/linux-riscv/patch/20210627135117.28641-1-bmeng.cn@gmail.com/mbox/ > riscv.patch
182  $ git am riscv.patch
183  $ make rv32_defconfig
184  $ make
185
186Replace ``qemu-system-riscv64`` with ``qemu-system-riscv32`` in the command
187line above to boot the 32-bit Linux kernel. A rootfs image containing 32-bit
188applications shall be used in order for kernel to boot to user space.
189
190Running U-Boot
191--------------
192
193U-Boot mainline v2021.04 release is tested at the time of writing. To build an
194S-mode U-Boot bootloader that can be booted by the ``virt`` machine, use
195the qemu-riscv64_smode_defconfig with similar commands as described above for Linux:
196
197.. code-block:: bash
198
199  $ export CROSS_COMPILE=riscv64-linux-
200  $ make qemu-riscv64_smode_defconfig
201
202Boot the 64-bit U-Boot S-mode image directly:
203
204.. code-block:: bash
205
206  $ qemu-system-riscv64 -M virt -smp 4 -m 2G \
207      -display none -serial stdio \
208      -kernel /path/to/u-boot.bin
209
210To test booting U-Boot SPL which in M-mode, which in turn loads a FIT image
211that bundles OpenSBI fw_dynamic firmware and U-Boot proper (S-mode) together,
212build the U-Boot images using riscv64_spl_defconfig:
213
214.. code-block:: bash
215
216  $ export CROSS_COMPILE=riscv64-linux-
217  $ export OPENSBI=/path/to/opensbi-riscv64-generic-fw_dynamic.bin
218  $ make qemu-riscv64_spl_defconfig
219
220The minimal QEMU commands to run U-Boot SPL are:
221
222.. code-block:: bash
223
224  $ qemu-system-riscv64 -M virt -smp 4 -m 2G \
225      -display none -serial stdio \
226      -bios /path/to/u-boot-spl \
227      -device loader,file=/path/to/u-boot.itb,addr=0x80200000
228
229To test 32-bit U-Boot images, switch to use qemu-riscv32_smode_defconfig and
230riscv32_spl_defconfig builds, and replace ``qemu-system-riscv64`` with
231``qemu-system-riscv32`` in the command lines above to boot the 32-bit U-Boot.
232
233Enabling TPM
234------------
235
236A TPM device can be connected to the virt board by following the steps below.
237
238First launch the TPM emulator:
239
240.. code-block:: bash
241
242  $ swtpm socket --tpm2 -t -d --tpmstate dir=/tmp/tpm \
243        --ctrl type=unixio,path=swtpm-sock
244
245Then launch QEMU with some additional arguments to link a TPM device to the backend:
246
247.. code-block:: bash
248
249  $ qemu-system-riscv64 \
250    ... other args .... \
251    -chardev socket,id=chrtpm,path=swtpm-sock \
252    -tpmdev emulator,id=tpm0,chardev=chrtpm \
253    -device tpm-tis-device,tpmdev=tpm0
254
255The TPM device can be seen in the memory tree and the generated device
256tree and should be accessible from the guest software.
257