1 /* 2 * Emulation of BSD signals 3 * 4 * Copyright (c) 2003 - 2008 Fabrice Bellard 5 * Copyright (c) 2013 Stacey Son 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License as published by 9 * the Free Software Foundation; either version 2 of the License, or 10 * (at your option) any later version. 11 * 12 * This program is distributed in the hope that it will be useful, 13 * but WITHOUT ANY WARRANTY; without even the implied warranty of 14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 15 * GNU General Public License for more details. 16 * 17 * You should have received a copy of the GNU General Public License 18 * along with this program; if not, see <http://www.gnu.org/licenses/>. 19 */ 20 21 #include "qemu/osdep.h" 22 #include "qemu/log.h" 23 #include "qemu.h" 24 #include "exec/page-protection.h" 25 #include "user/page-protection.h" 26 #include "user/tswap-target.h" 27 #include "gdbstub/user.h" 28 #include "signal-common.h" 29 #include "trace.h" 30 #include "hw/core/tcg-cpu-ops.h" 31 #include "host-signal.h" 32 33 /* target_siginfo_t must fit in gdbstub's siginfo save area. */ 34 QEMU_BUILD_BUG_ON(sizeof(target_siginfo_t) > MAX_SIGINFO_LENGTH); 35 36 static struct target_sigaction sigact_table[TARGET_NSIG]; 37 static void host_signal_handler(int host_sig, siginfo_t *info, void *puc); 38 static void target_to_host_sigset_internal(sigset_t *d, 39 const target_sigset_t *s); 40 41 static inline int on_sig_stack(TaskState *ts, unsigned long sp) 42 { 43 return sp - ts->sigaltstack_used.ss_sp < ts->sigaltstack_used.ss_size; 44 } 45 46 static inline int sas_ss_flags(TaskState *ts, unsigned long sp) 47 { 48 return ts->sigaltstack_used.ss_size == 0 ? SS_DISABLE : 49 on_sig_stack(ts, sp) ? SS_ONSTACK : 0; 50 } 51 52 /* 53 * The BSD ABIs use the same signal numbers across all the CPU architectures, so 54 * (unlike Linux) these functions are just the identity mapping. This might not 55 * be true for XyzBSD running on AbcBSD, which doesn't currently work. 56 */ 57 int host_to_target_signal(int sig) 58 { 59 return sig; 60 } 61 62 int target_to_host_signal(int sig) 63 { 64 return sig; 65 } 66 67 static inline void target_sigemptyset(target_sigset_t *set) 68 { 69 memset(set, 0, sizeof(*set)); 70 } 71 72 static inline void target_sigaddset(target_sigset_t *set, int signum) 73 { 74 signum--; 75 uint32_t mask = (uint32_t)1 << (signum % TARGET_NSIG_BPW); 76 set->__bits[signum / TARGET_NSIG_BPW] |= mask; 77 } 78 79 static inline int target_sigismember(const target_sigset_t *set, int signum) 80 { 81 signum--; 82 abi_ulong mask = (abi_ulong)1 << (signum % TARGET_NSIG_BPW); 83 return (set->__bits[signum / TARGET_NSIG_BPW] & mask) != 0; 84 } 85 86 /* Adjust the signal context to rewind out of safe-syscall if we're in it */ 87 static inline void rewind_if_in_safe_syscall(void *puc) 88 { 89 ucontext_t *uc = (ucontext_t *)puc; 90 uintptr_t pcreg = host_signal_pc(uc); 91 92 if (pcreg > (uintptr_t)safe_syscall_start 93 && pcreg < (uintptr_t)safe_syscall_end) { 94 host_signal_set_pc(uc, (uintptr_t)safe_syscall_start); 95 } 96 } 97 98 /* 99 * Note: The following take advantage of the BSD signal property that all 100 * signals are available on all architectures. 101 */ 102 static void host_to_target_sigset_internal(target_sigset_t *d, 103 const sigset_t *s) 104 { 105 int i; 106 107 target_sigemptyset(d); 108 for (i = 1; i <= NSIG; i++) { 109 if (sigismember(s, i)) { 110 target_sigaddset(d, host_to_target_signal(i)); 111 } 112 } 113 } 114 115 void host_to_target_sigset(target_sigset_t *d, const sigset_t *s) 116 { 117 target_sigset_t d1; 118 int i; 119 120 host_to_target_sigset_internal(&d1, s); 121 for (i = 0; i < _SIG_WORDS; i++) { 122 d->__bits[i] = tswap32(d1.__bits[i]); 123 } 124 } 125 126 static void target_to_host_sigset_internal(sigset_t *d, 127 const target_sigset_t *s) 128 { 129 int i; 130 131 sigemptyset(d); 132 for (i = 1; i <= TARGET_NSIG; i++) { 133 if (target_sigismember(s, i)) { 134 sigaddset(d, target_to_host_signal(i)); 135 } 136 } 137 } 138 139 void target_to_host_sigset(sigset_t *d, const target_sigset_t *s) 140 { 141 target_sigset_t s1; 142 int i; 143 144 for (i = 0; i < TARGET_NSIG_WORDS; i++) { 145 s1.__bits[i] = tswap32(s->__bits[i]); 146 } 147 target_to_host_sigset_internal(d, &s1); 148 } 149 150 static bool has_trapno(int tsig) 151 { 152 return tsig == TARGET_SIGILL || 153 tsig == TARGET_SIGFPE || 154 tsig == TARGET_SIGSEGV || 155 tsig == TARGET_SIGBUS || 156 tsig == TARGET_SIGTRAP; 157 } 158 159 /* Siginfo conversion. */ 160 161 /* 162 * Populate tinfo w/o swapping based on guessing which fields are valid. 163 */ 164 static inline void host_to_target_siginfo_noswap(target_siginfo_t *tinfo, 165 const siginfo_t *info) 166 { 167 int sig = host_to_target_signal(info->si_signo); 168 int si_code = info->si_code; 169 int si_type; 170 171 /* 172 * Make sure we that the variable portion of the target siginfo is zeroed 173 * out so we don't leak anything into that. 174 */ 175 memset(&tinfo->_reason, 0, sizeof(tinfo->_reason)); 176 177 /* 178 * This is awkward, because we have to use a combination of the si_code and 179 * si_signo to figure out which of the union's members are valid.o We 180 * therefore make our best guess. 181 * 182 * Once we have made our guess, we record it in the top 16 bits of 183 * the si_code, so that tswap_siginfo() later can use it. 184 * tswap_siginfo() will strip these top bits out before writing 185 * si_code to the guest (sign-extending the lower bits). 186 */ 187 tinfo->si_signo = sig; 188 tinfo->si_errno = info->si_errno; 189 tinfo->si_code = info->si_code; 190 tinfo->si_pid = info->si_pid; 191 tinfo->si_uid = info->si_uid; 192 tinfo->si_status = info->si_status; 193 tinfo->si_addr = (abi_ulong)(unsigned long)info->si_addr; 194 /* 195 * si_value is opaque to kernel. On all FreeBSD platforms, 196 * sizeof(sival_ptr) >= sizeof(sival_int) so the following 197 * always will copy the larger element. 198 */ 199 tinfo->si_value.sival_ptr = 200 (abi_ulong)(unsigned long)info->si_value.sival_ptr; 201 202 switch (si_code) { 203 /* 204 * All the SI_xxx codes that are defined here are global to 205 * all the signals (they have values that none of the other, 206 * more specific signal info will set). 207 */ 208 case SI_USER: 209 case SI_LWP: 210 case SI_KERNEL: 211 case SI_QUEUE: 212 case SI_ASYNCIO: 213 /* 214 * Only the fixed parts are valid (though FreeBSD doesn't always 215 * set all the fields to non-zero values. 216 */ 217 si_type = QEMU_SI_NOINFO; 218 break; 219 case SI_TIMER: 220 tinfo->_reason._timer._timerid = info->_reason._timer._timerid; 221 tinfo->_reason._timer._overrun = info->_reason._timer._overrun; 222 si_type = QEMU_SI_TIMER; 223 break; 224 case SI_MESGQ: 225 tinfo->_reason._mesgq._mqd = info->_reason._mesgq._mqd; 226 si_type = QEMU_SI_MESGQ; 227 break; 228 default: 229 /* 230 * We have to go based on the signal number now to figure out 231 * what's valid. 232 */ 233 si_type = QEMU_SI_NOINFO; 234 if (has_trapno(sig)) { 235 tinfo->_reason._fault._trapno = info->_reason._fault._trapno; 236 si_type = QEMU_SI_FAULT; 237 } 238 #ifdef TARGET_SIGPOLL 239 /* 240 * FreeBSD never had SIGPOLL, but emulates it for Linux so there's 241 * a chance it may popup in the future. 242 */ 243 if (sig == TARGET_SIGPOLL) { 244 tinfo->_reason._poll._band = info->_reason._poll._band; 245 si_type = QEMU_SI_POLL; 246 } 247 #endif 248 /* 249 * Unsure that this can actually be generated, and our support for 250 * capsicum is somewhere between weak and non-existent, but if we get 251 * one, then we know what to save. 252 */ 253 #ifdef QEMU_SI_CAPSICUM 254 if (sig == TARGET_SIGTRAP) { 255 tinfo->_reason._capsicum._syscall = 256 info->_reason._capsicum._syscall; 257 si_type = QEMU_SI_CAPSICUM; 258 } 259 #endif 260 break; 261 } 262 tinfo->si_code = deposit32(si_code, 24, 8, si_type); 263 } 264 265 static void tswap_siginfo(target_siginfo_t *tinfo, const target_siginfo_t *info) 266 { 267 int si_type = extract32(info->si_code, 24, 8); 268 int si_code = sextract32(info->si_code, 0, 24); 269 270 __put_user(info->si_signo, &tinfo->si_signo); 271 __put_user(info->si_errno, &tinfo->si_errno); 272 __put_user(si_code, &tinfo->si_code); /* Zero out si_type, it's internal */ 273 __put_user(info->si_pid, &tinfo->si_pid); 274 __put_user(info->si_uid, &tinfo->si_uid); 275 __put_user(info->si_status, &tinfo->si_status); 276 __put_user(info->si_addr, &tinfo->si_addr); 277 /* 278 * Unswapped, because we passed it through mostly untouched. si_value is 279 * opaque to the kernel, so we didn't bother with potentially wasting cycles 280 * to swap it into host byte order. 281 */ 282 tinfo->si_value.sival_ptr = info->si_value.sival_ptr; 283 284 /* 285 * We can use our internal marker of which fields in the structure 286 * are valid, rather than duplicating the guesswork of 287 * host_to_target_siginfo_noswap() here. 288 */ 289 switch (si_type) { 290 case QEMU_SI_NOINFO: /* No additional info */ 291 break; 292 case QEMU_SI_FAULT: 293 __put_user(info->_reason._fault._trapno, 294 &tinfo->_reason._fault._trapno); 295 break; 296 case QEMU_SI_TIMER: 297 __put_user(info->_reason._timer._timerid, 298 &tinfo->_reason._timer._timerid); 299 __put_user(info->_reason._timer._overrun, 300 &tinfo->_reason._timer._overrun); 301 break; 302 case QEMU_SI_MESGQ: 303 __put_user(info->_reason._mesgq._mqd, &tinfo->_reason._mesgq._mqd); 304 break; 305 case QEMU_SI_POLL: 306 /* Note: Not generated on FreeBSD */ 307 __put_user(info->_reason._poll._band, &tinfo->_reason._poll._band); 308 break; 309 #ifdef QEMU_SI_CAPSICUM 310 case QEMU_SI_CAPSICUM: 311 __put_user(info->_reason._capsicum._syscall, 312 &tinfo->_reason._capsicum._syscall); 313 break; 314 #endif 315 default: 316 g_assert_not_reached(); 317 } 318 } 319 320 void host_to_target_siginfo(target_siginfo_t *tinfo, const siginfo_t *info) 321 { 322 host_to_target_siginfo_noswap(tinfo, info); 323 tswap_siginfo(tinfo, tinfo); 324 } 325 326 int block_signals(void) 327 { 328 TaskState *ts = get_task_state(thread_cpu); 329 sigset_t set; 330 331 /* 332 * It's OK to block everything including SIGSEGV, because we won't run any 333 * further guest code before unblocking signals in 334 * process_pending_signals(). We depend on the FreeBSD behavior here where 335 * this will only affect this thread's signal mask. We don't use 336 * pthread_sigmask which might seem more correct because that routine also 337 * does odd things with SIGCANCEL to implement pthread_cancel(). 338 */ 339 sigfillset(&set); 340 sigprocmask(SIG_SETMASK, &set, 0); 341 342 return qatomic_xchg(&ts->signal_pending, 1); 343 } 344 345 /* Returns 1 if given signal should dump core if not handled. */ 346 static int core_dump_signal(int sig) 347 { 348 switch (sig) { 349 case TARGET_SIGABRT: 350 case TARGET_SIGFPE: 351 case TARGET_SIGILL: 352 case TARGET_SIGQUIT: 353 case TARGET_SIGSEGV: 354 case TARGET_SIGTRAP: 355 case TARGET_SIGBUS: 356 return 1; 357 default: 358 return 0; 359 } 360 } 361 362 /* Abort execution with signal. */ 363 static G_NORETURN 364 void dump_core_and_abort(int target_sig) 365 { 366 CPUState *cpu = thread_cpu; 367 CPUArchState *env = cpu_env(cpu); 368 TaskState *ts = get_task_state(cpu); 369 int core_dumped = 0; 370 int host_sig; 371 struct sigaction act; 372 373 host_sig = target_to_host_signal(target_sig); 374 gdb_signalled(env, target_sig); 375 376 /* Dump core if supported by target binary format */ 377 if (core_dump_signal(target_sig) && (ts->bprm->core_dump != NULL)) { 378 stop_all_tasks(); 379 core_dumped = 380 ((*ts->bprm->core_dump)(target_sig, env) == 0); 381 } 382 if (core_dumped) { 383 struct rlimit nodump; 384 385 /* 386 * We already dumped the core of target process, we don't want 387 * a coredump of qemu itself. 388 */ 389 getrlimit(RLIMIT_CORE, &nodump); 390 nodump.rlim_cur = 0; 391 setrlimit(RLIMIT_CORE, &nodump); 392 (void) fprintf(stderr, "qemu: uncaught target signal %d (%s) " 393 "- %s\n", target_sig, strsignal(host_sig), "core dumped"); 394 } 395 396 /* 397 * The proper exit code for dying from an uncaught signal is 398 * -<signal>. The kernel doesn't allow exit() or _exit() to pass 399 * a negative value. To get the proper exit code we need to 400 * actually die from an uncaught signal. Here the default signal 401 * handler is installed, we send ourself a signal and we wait for 402 * it to arrive. 403 */ 404 memset(&act, 0, sizeof(act)); 405 sigfillset(&act.sa_mask); 406 act.sa_handler = SIG_DFL; 407 sigaction(host_sig, &act, NULL); 408 409 kill(getpid(), host_sig); 410 411 /* 412 * Make sure the signal isn't masked (just reuse the mask inside 413 * of act). 414 */ 415 sigdelset(&act.sa_mask, host_sig); 416 sigsuspend(&act.sa_mask); 417 418 /* unreachable */ 419 abort(); 420 } 421 422 /* 423 * Queue a signal so that it will be send to the virtual CPU as soon as 424 * possible. 425 */ 426 void queue_signal(CPUArchState *env, int sig, int si_type, 427 target_siginfo_t *info) 428 { 429 CPUState *cpu = env_cpu(env); 430 TaskState *ts = get_task_state(cpu); 431 432 trace_user_queue_signal(env, sig); 433 434 info->si_code = deposit32(info->si_code, 24, 8, si_type); 435 436 ts->sync_signal.info = *info; 437 ts->sync_signal.pending = sig; 438 /* Signal that a new signal is pending. */ 439 qatomic_set(&ts->signal_pending, 1); 440 return; 441 } 442 443 static int fatal_signal(int sig) 444 { 445 446 switch (sig) { 447 case TARGET_SIGCHLD: 448 case TARGET_SIGURG: 449 case TARGET_SIGWINCH: 450 case TARGET_SIGINFO: 451 /* Ignored by default. */ 452 return 0; 453 case TARGET_SIGCONT: 454 case TARGET_SIGSTOP: 455 case TARGET_SIGTSTP: 456 case TARGET_SIGTTIN: 457 case TARGET_SIGTTOU: 458 /* Job control signals. */ 459 return 0; 460 default: 461 return 1; 462 } 463 } 464 465 /* 466 * Force a synchronously taken QEMU_SI_FAULT signal. For QEMU the 467 * 'force' part is handled in process_pending_signals(). 468 */ 469 void force_sig_fault(int sig, int code, abi_ulong addr) 470 { 471 CPUState *cpu = thread_cpu; 472 target_siginfo_t info = {}; 473 474 info.si_signo = sig; 475 info.si_errno = 0; 476 info.si_code = code; 477 info.si_addr = addr; 478 queue_signal(cpu_env(cpu), sig, QEMU_SI_FAULT, &info); 479 } 480 481 static void host_signal_handler(int host_sig, siginfo_t *info, void *puc) 482 { 483 CPUState *cpu = thread_cpu; 484 TaskState *ts = get_task_state(cpu); 485 target_siginfo_t tinfo; 486 ucontext_t *uc = puc; 487 struct emulated_sigtable *k; 488 int guest_sig; 489 uintptr_t pc = 0; 490 bool sync_sig = false; 491 492 /* 493 * Non-spoofed SIGSEGV and SIGBUS are synchronous, and need special 494 * handling wrt signal blocking and unwinding. 495 */ 496 if ((host_sig == SIGSEGV || host_sig == SIGBUS) && info->si_code > 0) { 497 MMUAccessType access_type; 498 uintptr_t host_addr; 499 abi_ptr guest_addr; 500 bool is_write; 501 502 host_addr = (uintptr_t)info->si_addr; 503 504 /* 505 * Convert forcefully to guest address space: addresses outside 506 * reserved_va are still valid to report via SEGV_MAPERR. 507 */ 508 guest_addr = h2g_nocheck(host_addr); 509 510 pc = host_signal_pc(uc); 511 is_write = host_signal_write(info, uc); 512 access_type = adjust_signal_pc(&pc, is_write); 513 514 if (host_sig == SIGSEGV) { 515 bool maperr = true; 516 517 if (info->si_code == SEGV_ACCERR && h2g_valid(host_addr)) { 518 /* If this was a write to a TB protected page, restart. */ 519 if (is_write && 520 handle_sigsegv_accerr_write(cpu, &uc->uc_sigmask, 521 pc, guest_addr)) { 522 return; 523 } 524 525 /* 526 * With reserved_va, the whole address space is PROT_NONE, 527 * which means that we may get ACCERR when we want MAPERR. 528 */ 529 if (page_get_flags(guest_addr) & PAGE_VALID) { 530 maperr = false; 531 } else { 532 info->si_code = SEGV_MAPERR; 533 } 534 } 535 536 sigprocmask(SIG_SETMASK, &uc->uc_sigmask, NULL); 537 cpu_loop_exit_sigsegv(cpu, guest_addr, access_type, maperr, pc); 538 } else { 539 sigprocmask(SIG_SETMASK, &uc->uc_sigmask, NULL); 540 if (info->si_code == BUS_ADRALN) { 541 cpu_loop_exit_sigbus(cpu, guest_addr, access_type, pc); 542 } 543 } 544 545 sync_sig = true; 546 } 547 548 /* Get the target signal number. */ 549 guest_sig = host_to_target_signal(host_sig); 550 if (guest_sig < 1 || guest_sig > TARGET_NSIG) { 551 return; 552 } 553 trace_user_host_signal(cpu, host_sig, guest_sig); 554 555 host_to_target_siginfo_noswap(&tinfo, info); 556 557 k = &ts->sigtab[guest_sig - 1]; 558 k->info = tinfo; 559 k->pending = guest_sig; 560 ts->signal_pending = 1; 561 562 /* 563 * For synchronous signals, unwind the cpu state to the faulting 564 * insn and then exit back to the main loop so that the signal 565 * is delivered immediately. 566 */ 567 if (sync_sig) { 568 cpu->exception_index = EXCP_INTERRUPT; 569 cpu_loop_exit_restore(cpu, pc); 570 } 571 572 rewind_if_in_safe_syscall(puc); 573 574 /* 575 * Block host signals until target signal handler entered. We 576 * can't block SIGSEGV or SIGBUS while we're executing guest 577 * code in case the guest code provokes one in the window between 578 * now and it getting out to the main loop. Signals will be 579 * unblocked again in process_pending_signals(). 580 */ 581 sigfillset(&uc->uc_sigmask); 582 sigdelset(&uc->uc_sigmask, SIGSEGV); 583 sigdelset(&uc->uc_sigmask, SIGBUS); 584 585 /* Interrupt the virtual CPU as soon as possible. */ 586 cpu_exit(thread_cpu); 587 } 588 589 /* do_sigaltstack() returns target values and errnos. */ 590 /* compare to kern/kern_sig.c sys_sigaltstack() and kern_sigaltstack() */ 591 abi_long do_sigaltstack(abi_ulong uss_addr, abi_ulong uoss_addr, abi_ulong sp) 592 { 593 TaskState *ts = get_task_state(thread_cpu); 594 int ret; 595 target_stack_t oss; 596 597 if (uoss_addr) { 598 /* Save current signal stack params */ 599 oss.ss_sp = tswapl(ts->sigaltstack_used.ss_sp); 600 oss.ss_size = tswapl(ts->sigaltstack_used.ss_size); 601 oss.ss_flags = tswapl(sas_ss_flags(ts, sp)); 602 } 603 604 if (uss_addr) { 605 target_stack_t *uss; 606 target_stack_t ss; 607 size_t minstacksize = TARGET_MINSIGSTKSZ; 608 609 ret = -TARGET_EFAULT; 610 if (!lock_user_struct(VERIFY_READ, uss, uss_addr, 1)) { 611 goto out; 612 } 613 __get_user(ss.ss_sp, &uss->ss_sp); 614 __get_user(ss.ss_size, &uss->ss_size); 615 __get_user(ss.ss_flags, &uss->ss_flags); 616 unlock_user_struct(uss, uss_addr, 0); 617 618 ret = -TARGET_EPERM; 619 if (on_sig_stack(ts, sp)) { 620 goto out; 621 } 622 623 ret = -TARGET_EINVAL; 624 if (ss.ss_flags != TARGET_SS_DISABLE 625 && ss.ss_flags != TARGET_SS_ONSTACK 626 && ss.ss_flags != 0) { 627 goto out; 628 } 629 630 if (ss.ss_flags == TARGET_SS_DISABLE) { 631 ss.ss_size = 0; 632 ss.ss_sp = 0; 633 } else { 634 ret = -TARGET_ENOMEM; 635 if (ss.ss_size < minstacksize) { 636 goto out; 637 } 638 } 639 640 ts->sigaltstack_used.ss_sp = ss.ss_sp; 641 ts->sigaltstack_used.ss_size = ss.ss_size; 642 } 643 644 if (uoss_addr) { 645 ret = -TARGET_EFAULT; 646 if (copy_to_user(uoss_addr, &oss, sizeof(oss))) { 647 goto out; 648 } 649 } 650 651 ret = 0; 652 out: 653 return ret; 654 } 655 656 /* do_sigaction() return host values and errnos */ 657 int do_sigaction(int sig, const struct target_sigaction *act, 658 struct target_sigaction *oact) 659 { 660 struct target_sigaction *k; 661 struct sigaction act1; 662 int host_sig; 663 int ret = 0; 664 665 if (sig < 1 || sig > TARGET_NSIG) { 666 return -TARGET_EINVAL; 667 } 668 669 if ((sig == TARGET_SIGKILL || sig == TARGET_SIGSTOP) && 670 act != NULL && act->_sa_handler != TARGET_SIG_DFL) { 671 return -TARGET_EINVAL; 672 } 673 674 if (block_signals()) { 675 return -TARGET_ERESTART; 676 } 677 678 k = &sigact_table[sig - 1]; 679 if (oact) { 680 oact->_sa_handler = tswapal(k->_sa_handler); 681 oact->sa_flags = tswap32(k->sa_flags); 682 oact->sa_mask = k->sa_mask; 683 } 684 if (act) { 685 k->_sa_handler = tswapal(act->_sa_handler); 686 k->sa_flags = tswap32(act->sa_flags); 687 k->sa_mask = act->sa_mask; 688 689 /* Update the host signal state. */ 690 host_sig = target_to_host_signal(sig); 691 if (host_sig != SIGSEGV && host_sig != SIGBUS) { 692 memset(&act1, 0, sizeof(struct sigaction)); 693 sigfillset(&act1.sa_mask); 694 act1.sa_flags = SA_SIGINFO; 695 if (k->sa_flags & TARGET_SA_RESTART) { 696 act1.sa_flags |= SA_RESTART; 697 } 698 /* 699 * Note: It is important to update the host kernel signal mask to 700 * avoid getting unexpected interrupted system calls. 701 */ 702 if (k->_sa_handler == TARGET_SIG_IGN) { 703 act1.sa_sigaction = (void *)SIG_IGN; 704 } else if (k->_sa_handler == TARGET_SIG_DFL) { 705 if (fatal_signal(sig)) { 706 act1.sa_sigaction = host_signal_handler; 707 } else { 708 act1.sa_sigaction = (void *)SIG_DFL; 709 } 710 } else { 711 act1.sa_sigaction = host_signal_handler; 712 } 713 ret = sigaction(host_sig, &act1, NULL); 714 } 715 } 716 return ret; 717 } 718 719 static inline abi_ulong get_sigframe(struct target_sigaction *ka, 720 CPUArchState *env, size_t frame_size) 721 { 722 TaskState *ts = get_task_state(thread_cpu); 723 abi_ulong sp; 724 725 /* Use default user stack */ 726 sp = get_sp_from_cpustate(env); 727 728 if ((ka->sa_flags & TARGET_SA_ONSTACK) && sas_ss_flags(ts, sp) == 0) { 729 sp = ts->sigaltstack_used.ss_sp + ts->sigaltstack_used.ss_size; 730 } 731 732 return ROUND_DOWN(sp - frame_size, TARGET_SIGSTACK_ALIGN); 733 } 734 735 /* compare to $M/$M/exec_machdep.c sendsig and sys/kern/kern_sig.c sigexit */ 736 737 static void setup_frame(int sig, int code, struct target_sigaction *ka, 738 target_sigset_t *set, target_siginfo_t *tinfo, CPUArchState *env) 739 { 740 struct target_sigframe *frame; 741 abi_ulong frame_addr; 742 int i; 743 744 frame_addr = get_sigframe(ka, env, sizeof(*frame)); 745 trace_user_setup_frame(env, frame_addr); 746 if (!lock_user_struct(VERIFY_WRITE, frame, frame_addr, 0)) { 747 unlock_user_struct(frame, frame_addr, 1); 748 dump_core_and_abort(TARGET_SIGILL); 749 return; 750 } 751 752 memset(frame, 0, sizeof(*frame)); 753 setup_sigframe_arch(env, frame_addr, frame, 0); 754 755 for (i = 0; i < TARGET_NSIG_WORDS; i++) { 756 __put_user(set->__bits[i], &frame->sf_uc.uc_sigmask.__bits[i]); 757 } 758 759 if (tinfo) { 760 frame->sf_si.si_signo = tinfo->si_signo; 761 frame->sf_si.si_errno = tinfo->si_errno; 762 frame->sf_si.si_code = tinfo->si_code; 763 frame->sf_si.si_pid = tinfo->si_pid; 764 frame->sf_si.si_uid = tinfo->si_uid; 765 frame->sf_si.si_status = tinfo->si_status; 766 frame->sf_si.si_addr = tinfo->si_addr; 767 /* see host_to_target_siginfo_noswap() for more details */ 768 frame->sf_si.si_value.sival_ptr = tinfo->si_value.sival_ptr; 769 /* 770 * At this point, whatever is in the _reason union is complete 771 * and in target order, so just copy the whole thing over, even 772 * if it's too large for this specific signal. 773 * host_to_target_siginfo_noswap() and tswap_siginfo() have ensured 774 * that's so. 775 */ 776 memcpy(&frame->sf_si._reason, &tinfo->_reason, 777 sizeof(tinfo->_reason)); 778 } 779 780 set_sigtramp_args(env, sig, frame, frame_addr, ka); 781 782 unlock_user_struct(frame, frame_addr, 1); 783 } 784 785 static int reset_signal_mask(target_ucontext_t *ucontext) 786 { 787 int i; 788 sigset_t blocked; 789 target_sigset_t target_set; 790 TaskState *ts = get_task_state(thread_cpu); 791 792 for (i = 0; i < TARGET_NSIG_WORDS; i++) { 793 __get_user(target_set.__bits[i], &ucontext->uc_sigmask.__bits[i]); 794 } 795 target_to_host_sigset_internal(&blocked, &target_set); 796 ts->signal_mask = blocked; 797 798 return 0; 799 } 800 801 /* See sys/$M/$M/exec_machdep.c sigreturn() */ 802 long do_sigreturn(CPUArchState *env, abi_ulong addr) 803 { 804 long ret; 805 abi_ulong target_ucontext; 806 target_ucontext_t *ucontext = NULL; 807 808 /* Get the target ucontext address from the stack frame */ 809 ret = get_ucontext_sigreturn(env, addr, &target_ucontext); 810 if (is_error(ret)) { 811 return ret; 812 } 813 trace_user_do_sigreturn(env, addr); 814 if (!lock_user_struct(VERIFY_READ, ucontext, target_ucontext, 0)) { 815 goto badframe; 816 } 817 818 /* Set the register state back to before the signal. */ 819 if (set_mcontext(env, &ucontext->uc_mcontext, 1)) { 820 goto badframe; 821 } 822 823 /* And reset the signal mask. */ 824 if (reset_signal_mask(ucontext)) { 825 goto badframe; 826 } 827 828 unlock_user_struct(ucontext, target_ucontext, 0); 829 return -TARGET_EJUSTRETURN; 830 831 badframe: 832 if (ucontext != NULL) { 833 unlock_user_struct(ucontext, target_ucontext, 0); 834 } 835 return -TARGET_EFAULT; 836 } 837 838 void signal_init(void) 839 { 840 TaskState *ts = get_task_state(thread_cpu); 841 struct sigaction act; 842 struct sigaction oact; 843 int i; 844 int host_sig; 845 846 /* Set the signal mask from the host mask. */ 847 sigprocmask(0, 0, &ts->signal_mask); 848 849 sigfillset(&act.sa_mask); 850 act.sa_sigaction = host_signal_handler; 851 act.sa_flags = SA_SIGINFO; 852 853 for (i = 1; i <= TARGET_NSIG; i++) { 854 host_sig = target_to_host_signal(i); 855 sigaction(host_sig, NULL, &oact); 856 if (oact.sa_sigaction == (void *)SIG_IGN) { 857 sigact_table[i - 1]._sa_handler = TARGET_SIG_IGN; 858 } else if (oact.sa_sigaction == (void *)SIG_DFL) { 859 sigact_table[i - 1]._sa_handler = TARGET_SIG_DFL; 860 } 861 /* 862 * If there's already a handler installed then something has 863 * gone horribly wrong, so don't even try to handle that case. 864 * Install some handlers for our own use. We need at least 865 * SIGSEGV and SIGBUS, to detect exceptions. We can not just 866 * trap all signals because it affects syscall interrupt 867 * behavior. But do trap all default-fatal signals. 868 */ 869 if (fatal_signal(i)) { 870 sigaction(host_sig, &act, NULL); 871 } 872 } 873 } 874 875 static void handle_pending_signal(CPUArchState *env, int sig, 876 struct emulated_sigtable *k) 877 { 878 CPUState *cpu = env_cpu(env); 879 TaskState *ts = get_task_state(cpu); 880 struct target_sigaction *sa; 881 int code; 882 sigset_t set; 883 abi_ulong handler; 884 target_siginfo_t tinfo; 885 target_sigset_t target_old_set; 886 887 trace_user_handle_signal(env, sig); 888 889 k->pending = 0; 890 891 sig = gdb_handlesig(cpu, sig, NULL, &k->info, sizeof(k->info)); 892 if (!sig) { 893 sa = NULL; 894 handler = TARGET_SIG_IGN; 895 } else { 896 sa = &sigact_table[sig - 1]; 897 handler = sa->_sa_handler; 898 } 899 900 if (do_strace) { 901 print_taken_signal(sig, &k->info); 902 } 903 904 if (handler == TARGET_SIG_DFL) { 905 /* 906 * default handler : ignore some signal. The other are job 907 * control or fatal. 908 */ 909 if (sig == TARGET_SIGTSTP || sig == TARGET_SIGTTIN || 910 sig == TARGET_SIGTTOU) { 911 kill(getpid(), SIGSTOP); 912 } else if (sig != TARGET_SIGCHLD && sig != TARGET_SIGURG && 913 sig != TARGET_SIGINFO && sig != TARGET_SIGWINCH && 914 sig != TARGET_SIGCONT) { 915 dump_core_and_abort(sig); 916 } 917 } else if (handler == TARGET_SIG_IGN) { 918 /* ignore sig */ 919 } else if (handler == TARGET_SIG_ERR) { 920 dump_core_and_abort(sig); 921 } else { 922 /* compute the blocked signals during the handler execution */ 923 sigset_t *blocked_set; 924 925 target_to_host_sigset(&set, &sa->sa_mask); 926 /* 927 * SA_NODEFER indicates that the current signal should not be 928 * blocked during the handler. 929 */ 930 if (!(sa->sa_flags & TARGET_SA_NODEFER)) { 931 sigaddset(&set, target_to_host_signal(sig)); 932 } 933 934 /* 935 * Save the previous blocked signal state to restore it at the 936 * end of the signal execution (see do_sigreturn). 937 */ 938 host_to_target_sigset_internal(&target_old_set, &ts->signal_mask); 939 940 blocked_set = ts->in_sigsuspend ? 941 &ts->sigsuspend_mask : &ts->signal_mask; 942 sigorset(&ts->signal_mask, blocked_set, &set); 943 ts->in_sigsuspend = false; 944 sigprocmask(SIG_SETMASK, &ts->signal_mask, NULL); 945 946 /* XXX VM86 on x86 ??? */ 947 948 code = k->info.si_code; /* From host, so no si_type */ 949 /* prepare the stack frame of the virtual CPU */ 950 if (sa->sa_flags & TARGET_SA_SIGINFO) { 951 tswap_siginfo(&tinfo, &k->info); 952 setup_frame(sig, code, sa, &target_old_set, &tinfo, env); 953 } else { 954 setup_frame(sig, code, sa, &target_old_set, NULL, env); 955 } 956 if (sa->sa_flags & TARGET_SA_RESETHAND) { 957 sa->_sa_handler = TARGET_SIG_DFL; 958 } 959 } 960 } 961 962 void process_pending_signals(CPUArchState *env) 963 { 964 CPUState *cpu = env_cpu(env); 965 int sig; 966 sigset_t *blocked_set, set; 967 struct emulated_sigtable *k; 968 TaskState *ts = get_task_state(cpu); 969 970 while (qatomic_read(&ts->signal_pending)) { 971 sigfillset(&set); 972 sigprocmask(SIG_SETMASK, &set, 0); 973 974 restart_scan: 975 sig = ts->sync_signal.pending; 976 if (sig) { 977 /* 978 * Synchronous signals are forced by the emulated CPU in some way. 979 * If they are set to ignore, restore the default handler (see 980 * sys/kern_sig.c trapsignal() and execsigs() for this behavior) 981 * though maybe this is done only when forcing exit for non SIGCHLD. 982 */ 983 if (sigismember(&ts->signal_mask, target_to_host_signal(sig)) || 984 sigact_table[sig - 1]._sa_handler == TARGET_SIG_IGN) { 985 sigdelset(&ts->signal_mask, target_to_host_signal(sig)); 986 sigact_table[sig - 1]._sa_handler = TARGET_SIG_DFL; 987 } 988 handle_pending_signal(env, sig, &ts->sync_signal); 989 } 990 991 k = ts->sigtab; 992 for (sig = 1; sig <= TARGET_NSIG; sig++, k++) { 993 blocked_set = ts->in_sigsuspend ? 994 &ts->sigsuspend_mask : &ts->signal_mask; 995 if (k->pending && 996 !sigismember(blocked_set, target_to_host_signal(sig))) { 997 handle_pending_signal(env, sig, k); 998 /* 999 * Restart scan from the beginning, as handle_pending_signal 1000 * might have resulted in a new synchronous signal (eg SIGSEGV). 1001 */ 1002 goto restart_scan; 1003 } 1004 } 1005 1006 /* 1007 * Unblock signals and check one more time. Unblocking signals may cause 1008 * us to take another host signal, which will set signal_pending again. 1009 */ 1010 qatomic_set(&ts->signal_pending, 0); 1011 ts->in_sigsuspend = false; 1012 set = ts->signal_mask; 1013 sigdelset(&set, SIGSEGV); 1014 sigdelset(&set, SIGBUS); 1015 sigprocmask(SIG_SETMASK, &set, 0); 1016 } 1017 ts->in_sigsuspend = false; 1018 } 1019 1020 void cpu_loop_exit_sigsegv(CPUState *cpu, target_ulong addr, 1021 MMUAccessType access_type, bool maperr, uintptr_t ra) 1022 { 1023 const TCGCPUOps *tcg_ops = CPU_GET_CLASS(cpu)->tcg_ops; 1024 1025 if (tcg_ops->record_sigsegv) { 1026 tcg_ops->record_sigsegv(cpu, addr, access_type, maperr, ra); 1027 } 1028 1029 force_sig_fault(TARGET_SIGSEGV, 1030 maperr ? TARGET_SEGV_MAPERR : TARGET_SEGV_ACCERR, 1031 addr); 1032 cpu->exception_index = EXCP_INTERRUPT; 1033 cpu_loop_exit_restore(cpu, ra); 1034 } 1035 1036 void cpu_loop_exit_sigbus(CPUState *cpu, target_ulong addr, 1037 MMUAccessType access_type, uintptr_t ra) 1038 { 1039 const TCGCPUOps *tcg_ops = CPU_GET_CLASS(cpu)->tcg_ops; 1040 1041 if (tcg_ops->record_sigbus) { 1042 tcg_ops->record_sigbus(cpu, addr, access_type, ra); 1043 } 1044 1045 force_sig_fault(TARGET_SIGBUS, TARGET_BUS_ADRALN, addr); 1046 cpu->exception_index = EXCP_INTERRUPT; 1047 cpu_loop_exit_restore(cpu, ra); 1048 } 1049