xref: /qemu/bsd-user/signal.c (revision e625c7ef5c07431a708f9fb0d98cbfeea1ad3ccc)
1 /*
2  *  Emulation of BSD signals
3  *
4  *  Copyright (c) 2003 - 2008 Fabrice Bellard
5  *  Copyright (c) 2013 Stacey Son
6  *
7  *  This program is free software; you can redistribute it and/or modify
8  *  it under the terms of the GNU General Public License as published by
9  *  the Free Software Foundation; either version 2 of the License, or
10  *  (at your option) any later version.
11  *
12  *  This program is distributed in the hope that it will be useful,
13  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
14  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15  *  GNU General Public License for more details.
16  *
17  *  You should have received a copy of the GNU General Public License
18  *  along with this program; if not, see <http://www.gnu.org/licenses/>.
19  */
20 
21 #include "qemu/osdep.h"
22 #include "qemu.h"
23 #include "signal-common.h"
24 #include "trace.h"
25 #include "hw/core/tcg-cpu-ops.h"
26 #include "host-signal.h"
27 
28 /*
29  * Stubbed out routines until we merge signal support from bsd-user
30  * fork.
31  */
32 
33 static struct target_sigaction sigact_table[TARGET_NSIG];
34 static void host_signal_handler(int host_sig, siginfo_t *info, void *puc);
35 
36 /*
37  * The BSD ABIs use the same singal numbers across all the CPU architectures, so
38  * (unlike Linux) these functions are just the identity mapping. This might not
39  * be true for XyzBSD running on AbcBSD, which doesn't currently work.
40  */
41 int host_to_target_signal(int sig)
42 {
43     return sig;
44 }
45 
46 int target_to_host_signal(int sig)
47 {
48     return sig;
49 }
50 
51 /* Adjust the signal context to rewind out of safe-syscall if we're in it */
52 static inline void rewind_if_in_safe_syscall(void *puc)
53 {
54     ucontext_t *uc = (ucontext_t *)puc;
55     uintptr_t pcreg = host_signal_pc(uc);
56 
57     if (pcreg > (uintptr_t)safe_syscall_start
58         && pcreg < (uintptr_t)safe_syscall_end) {
59         host_signal_set_pc(uc, (uintptr_t)safe_syscall_start);
60     }
61 }
62 
63 static bool has_trapno(int tsig)
64 {
65     return tsig == TARGET_SIGILL ||
66         tsig == TARGET_SIGFPE ||
67         tsig == TARGET_SIGSEGV ||
68         tsig == TARGET_SIGBUS ||
69         tsig == TARGET_SIGTRAP;
70 }
71 
72 /* Siginfo conversion. */
73 
74 /*
75  * Populate tinfo w/o swapping based on guessing which fields are valid.
76  */
77 static inline void host_to_target_siginfo_noswap(target_siginfo_t *tinfo,
78         const siginfo_t *info)
79 {
80     int sig = host_to_target_signal(info->si_signo);
81     int si_code = info->si_code;
82     int si_type;
83 
84     /*
85      * Make sure we that the variable portion of the target siginfo is zeroed
86      * out so we don't leak anything into that.
87      */
88     memset(&tinfo->_reason, 0, sizeof(tinfo->_reason));
89 
90     /*
91      * This is awkward, because we have to use a combination of the si_code and
92      * si_signo to figure out which of the union's members are valid.o We
93      * therefore make our best guess.
94      *
95      * Once we have made our guess, we record it in the top 16 bits of
96      * the si_code, so that tswap_siginfo() later can use it.
97      * tswap_siginfo() will strip these top bits out before writing
98      * si_code to the guest (sign-extending the lower bits).
99      */
100     tinfo->si_signo = sig;
101     tinfo->si_errno = info->si_errno;
102     tinfo->si_code = info->si_code;
103     tinfo->si_pid = info->si_pid;
104     tinfo->si_uid = info->si_uid;
105     tinfo->si_status = info->si_status;
106     tinfo->si_addr = (abi_ulong)(unsigned long)info->si_addr;
107     /*
108      * si_value is opaque to kernel. On all FreeBSD platforms,
109      * sizeof(sival_ptr) >= sizeof(sival_int) so the following
110      * always will copy the larger element.
111      */
112     tinfo->si_value.sival_ptr =
113         (abi_ulong)(unsigned long)info->si_value.sival_ptr;
114 
115     switch (si_code) {
116         /*
117          * All the SI_xxx codes that are defined here are global to
118          * all the signals (they have values that none of the other,
119          * more specific signal info will set).
120          */
121     case SI_USER:
122     case SI_LWP:
123     case SI_KERNEL:
124     case SI_QUEUE:
125     case SI_ASYNCIO:
126         /*
127          * Only the fixed parts are valid (though FreeBSD doesn't always
128          * set all the fields to non-zero values.
129          */
130         si_type = QEMU_SI_NOINFO;
131         break;
132     case SI_TIMER:
133         tinfo->_reason._timer._timerid = info->_reason._timer._timerid;
134         tinfo->_reason._timer._overrun = info->_reason._timer._overrun;
135         si_type = QEMU_SI_TIMER;
136         break;
137     case SI_MESGQ:
138         tinfo->_reason._mesgq._mqd = info->_reason._mesgq._mqd;
139         si_type = QEMU_SI_MESGQ;
140         break;
141     default:
142         /*
143          * We have to go based on the signal number now to figure out
144          * what's valid.
145          */
146         if (has_trapno(sig)) {
147             tinfo->_reason._fault._trapno = info->_reason._fault._trapno;
148             si_type = QEMU_SI_FAULT;
149         }
150 #ifdef TARGET_SIGPOLL
151         /*
152          * FreeBSD never had SIGPOLL, but emulates it for Linux so there's
153          * a chance it may popup in the future.
154          */
155         if (sig == TARGET_SIGPOLL) {
156             tinfo->_reason._poll._band = info->_reason._poll._band;
157             si_type = QEMU_SI_POLL;
158         }
159 #endif
160         /*
161          * Unsure that this can actually be generated, and our support for
162          * capsicum is somewhere between weak and non-existant, but if we get
163          * one, then we know what to save.
164          */
165         if (sig == TARGET_SIGTRAP) {
166             tinfo->_reason._capsicum._syscall =
167                 info->_reason._capsicum._syscall;
168             si_type = QEMU_SI_CAPSICUM;
169         }
170         break;
171     }
172     tinfo->si_code = deposit32(si_code, 24, 8, si_type);
173 }
174 
175 /*
176  * Queue a signal so that it will be send to the virtual CPU as soon as
177  * possible.
178  */
179 void queue_signal(CPUArchState *env, int sig, int si_type,
180                   target_siginfo_t *info)
181 {
182     qemu_log_mask(LOG_UNIMP, "No signal queueing, dropping signal %d\n", sig);
183 }
184 
185 static int fatal_signal(int sig)
186 {
187 
188     switch (sig) {
189     case TARGET_SIGCHLD:
190     case TARGET_SIGURG:
191     case TARGET_SIGWINCH:
192     case TARGET_SIGINFO:
193         /* Ignored by default. */
194         return 0;
195     case TARGET_SIGCONT:
196     case TARGET_SIGSTOP:
197     case TARGET_SIGTSTP:
198     case TARGET_SIGTTIN:
199     case TARGET_SIGTTOU:
200         /* Job control signals.  */
201         return 0;
202     default:
203         return 1;
204     }
205 }
206 
207 /*
208  * Force a synchronously taken QEMU_SI_FAULT signal. For QEMU the
209  * 'force' part is handled in process_pending_signals().
210  */
211 void force_sig_fault(int sig, int code, abi_ulong addr)
212 {
213     CPUState *cpu = thread_cpu;
214     CPUArchState *env = cpu->env_ptr;
215     target_siginfo_t info = {};
216 
217     info.si_signo = sig;
218     info.si_errno = 0;
219     info.si_code = code;
220     info.si_addr = addr;
221     queue_signal(env, sig, QEMU_SI_FAULT, &info);
222 }
223 
224 static void host_signal_handler(int host_sig, siginfo_t *info, void *puc)
225 {
226     CPUArchState *env = thread_cpu->env_ptr;
227     CPUState *cpu = env_cpu(env);
228     TaskState *ts = cpu->opaque;
229     target_siginfo_t tinfo;
230     ucontext_t *uc = puc;
231     struct emulated_sigtable *k;
232     int guest_sig;
233     uintptr_t pc = 0;
234     bool sync_sig = false;
235 
236     /*
237      * Non-spoofed SIGSEGV and SIGBUS are synchronous, and need special
238      * handling wrt signal blocking and unwinding.
239      */
240     if ((host_sig == SIGSEGV || host_sig == SIGBUS) && info->si_code > 0) {
241         MMUAccessType access_type;
242         uintptr_t host_addr;
243         abi_ptr guest_addr;
244         bool is_write;
245 
246         host_addr = (uintptr_t)info->si_addr;
247 
248         /*
249          * Convert forcefully to guest address space: addresses outside
250          * reserved_va are still valid to report via SEGV_MAPERR.
251          */
252         guest_addr = h2g_nocheck(host_addr);
253 
254         pc = host_signal_pc(uc);
255         is_write = host_signal_write(info, uc);
256         access_type = adjust_signal_pc(&pc, is_write);
257 
258         if (host_sig == SIGSEGV) {
259             bool maperr = true;
260 
261             if (info->si_code == SEGV_ACCERR && h2g_valid(host_addr)) {
262                 /* If this was a write to a TB protected page, restart. */
263                 if (is_write &&
264                     handle_sigsegv_accerr_write(cpu, &uc->uc_sigmask,
265                                                 pc, guest_addr)) {
266                     return;
267                 }
268 
269                 /*
270                  * With reserved_va, the whole address space is PROT_NONE,
271                  * which means that we may get ACCERR when we want MAPERR.
272                  */
273                 if (page_get_flags(guest_addr) & PAGE_VALID) {
274                     maperr = false;
275                 } else {
276                     info->si_code = SEGV_MAPERR;
277                 }
278             }
279 
280             sigprocmask(SIG_SETMASK, &uc->uc_sigmask, NULL);
281             cpu_loop_exit_sigsegv(cpu, guest_addr, access_type, maperr, pc);
282         } else {
283             sigprocmask(SIG_SETMASK, &uc->uc_sigmask, NULL);
284             if (info->si_code == BUS_ADRALN) {
285                 cpu_loop_exit_sigbus(cpu, guest_addr, access_type, pc);
286             }
287         }
288 
289         sync_sig = true;
290     }
291 
292     /* Get the target signal number. */
293     guest_sig = host_to_target_signal(host_sig);
294     if (guest_sig < 1 || guest_sig > TARGET_NSIG) {
295         return;
296     }
297     trace_user_host_signal(cpu, host_sig, guest_sig);
298 
299     host_to_target_siginfo_noswap(&tinfo, info);
300 
301     k = &ts->sigtab[guest_sig - 1];
302     k->info = tinfo;
303     k->pending = guest_sig;
304     ts->signal_pending = 1;
305 
306     /*
307      * For synchronous signals, unwind the cpu state to the faulting
308      * insn and then exit back to the main loop so that the signal
309      * is delivered immediately.
310      */
311     if (sync_sig) {
312         cpu->exception_index = EXCP_INTERRUPT;
313         cpu_loop_exit_restore(cpu, pc);
314     }
315 
316     rewind_if_in_safe_syscall(puc);
317 
318     /*
319      * Block host signals until target signal handler entered. We
320      * can't block SIGSEGV or SIGBUS while we're executing guest
321      * code in case the guest code provokes one in the window between
322      * now and it getting out to the main loop. Signals will be
323      * unblocked again in process_pending_signals().
324      */
325     sigfillset(&uc->uc_sigmask);
326     sigdelset(&uc->uc_sigmask, SIGSEGV);
327     sigdelset(&uc->uc_sigmask, SIGBUS);
328 
329     /* Interrupt the virtual CPU as soon as possible. */
330     cpu_exit(thread_cpu);
331 }
332 
333 void signal_init(void)
334 {
335     TaskState *ts = (TaskState *)thread_cpu->opaque;
336     struct sigaction act;
337     struct sigaction oact;
338     int i;
339     int host_sig;
340 
341     /* Set the signal mask from the host mask. */
342     sigprocmask(0, 0, &ts->signal_mask);
343 
344     sigfillset(&act.sa_mask);
345     act.sa_sigaction = host_signal_handler;
346     act.sa_flags = SA_SIGINFO;
347 
348     for (i = 1; i <= TARGET_NSIG; i++) {
349 #ifdef CONFIG_GPROF
350         if (i == TARGET_SIGPROF) {
351             continue;
352         }
353 #endif
354         host_sig = target_to_host_signal(i);
355         sigaction(host_sig, NULL, &oact);
356         if (oact.sa_sigaction == (void *)SIG_IGN) {
357             sigact_table[i - 1]._sa_handler = TARGET_SIG_IGN;
358         } else if (oact.sa_sigaction == (void *)SIG_DFL) {
359             sigact_table[i - 1]._sa_handler = TARGET_SIG_DFL;
360         }
361         /*
362          * If there's already a handler installed then something has
363          * gone horribly wrong, so don't even try to handle that case.
364          * Install some handlers for our own use.  We need at least
365          * SIGSEGV and SIGBUS, to detect exceptions.  We can not just
366          * trap all signals because it affects syscall interrupt
367          * behavior.  But do trap all default-fatal signals.
368          */
369         if (fatal_signal(i)) {
370             sigaction(host_sig, &act, NULL);
371         }
372     }
373 }
374 
375 void process_pending_signals(CPUArchState *cpu_env)
376 {
377 }
378 
379 void cpu_loop_exit_sigsegv(CPUState *cpu, target_ulong addr,
380                            MMUAccessType access_type, bool maperr, uintptr_t ra)
381 {
382     const struct TCGCPUOps *tcg_ops = CPU_GET_CLASS(cpu)->tcg_ops;
383 
384     if (tcg_ops->record_sigsegv) {
385         tcg_ops->record_sigsegv(cpu, addr, access_type, maperr, ra);
386     }
387 
388     force_sig_fault(TARGET_SIGSEGV,
389                     maperr ? TARGET_SEGV_MAPERR : TARGET_SEGV_ACCERR,
390                     addr);
391     cpu->exception_index = EXCP_INTERRUPT;
392     cpu_loop_exit_restore(cpu, ra);
393 }
394 
395 void cpu_loop_exit_sigbus(CPUState *cpu, target_ulong addr,
396                           MMUAccessType access_type, uintptr_t ra)
397 {
398     const struct TCGCPUOps *tcg_ops = CPU_GET_CLASS(cpu)->tcg_ops;
399 
400     if (tcg_ops->record_sigbus) {
401         tcg_ops->record_sigbus(cpu, addr, access_type, ra);
402     }
403 
404     force_sig_fault(TARGET_SIGBUS, TARGET_BUS_ADRALN, addr);
405     cpu->exception_index = EXCP_INTERRUPT;
406     cpu_loop_exit_restore(cpu, ra);
407 }
408