xref: /qemu/bsd-user/signal.c (revision d64db833d6e3cbe9ea5f36342480f920f3675cea)
1 /*
2  *  Emulation of BSD signals
3  *
4  *  Copyright (c) 2003 - 2008 Fabrice Bellard
5  *  Copyright (c) 2013 Stacey Son
6  *
7  *  This program is free software; you can redistribute it and/or modify
8  *  it under the terms of the GNU General Public License as published by
9  *  the Free Software Foundation; either version 2 of the License, or
10  *  (at your option) any later version.
11  *
12  *  This program is distributed in the hope that it will be useful,
13  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
14  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15  *  GNU General Public License for more details.
16  *
17  *  You should have received a copy of the GNU General Public License
18  *  along with this program; if not, see <http://www.gnu.org/licenses/>.
19  */
20 
21 #include "qemu/osdep.h"
22 #include "qemu/log.h"
23 #include "qemu.h"
24 #include "user/cpu_loop.h"
25 #include "exec/page-protection.h"
26 #include "user/page-protection.h"
27 #include "user/signal.h"
28 #include "user/tswap-target.h"
29 #include "gdbstub/user.h"
30 #include "signal-common.h"
31 #include "trace.h"
32 #include "accel/tcg/cpu-ops.h"
33 #include "host-signal.h"
34 
35 /* target_siginfo_t must fit in gdbstub's siginfo save area. */
36 QEMU_BUILD_BUG_ON(sizeof(target_siginfo_t) > MAX_SIGINFO_LENGTH);
37 
38 static struct target_sigaction sigact_table[TARGET_NSIG];
39 static void host_signal_handler(int host_sig, siginfo_t *info, void *puc);
40 static void target_to_host_sigset_internal(sigset_t *d,
41         const target_sigset_t *s);
42 
43 static inline int on_sig_stack(TaskState *ts, unsigned long sp)
44 {
45     return sp - ts->sigaltstack_used.ss_sp < ts->sigaltstack_used.ss_size;
46 }
47 
48 static inline int sas_ss_flags(TaskState *ts, unsigned long sp)
49 {
50     return ts->sigaltstack_used.ss_size == 0 ? SS_DISABLE :
51         on_sig_stack(ts, sp) ? SS_ONSTACK : 0;
52 }
53 
54 int host_interrupt_signal = SIGRTMAX;
55 
56 /*
57  * The BSD ABIs use the same signal numbers across all the CPU architectures, so
58  * (unlike Linux) these functions are just the identity mapping. This might not
59  * be true for XyzBSD running on AbcBSD, which doesn't currently work.
60  */
61 int host_to_target_signal(int sig)
62 {
63     return sig;
64 }
65 
66 int target_to_host_signal(int sig)
67 {
68     return sig;
69 }
70 
71 static inline void target_sigemptyset(target_sigset_t *set)
72 {
73     memset(set, 0, sizeof(*set));
74 }
75 
76 static inline void target_sigaddset(target_sigset_t *set, int signum)
77 {
78     signum--;
79     uint32_t mask = (uint32_t)1 << (signum % TARGET_NSIG_BPW);
80     set->__bits[signum / TARGET_NSIG_BPW] |= mask;
81 }
82 
83 static inline int target_sigismember(const target_sigset_t *set, int signum)
84 {
85     signum--;
86     abi_ulong mask = (abi_ulong)1 << (signum % TARGET_NSIG_BPW);
87     return (set->__bits[signum / TARGET_NSIG_BPW] & mask) != 0;
88 }
89 
90 /* Adjust the signal context to rewind out of safe-syscall if we're in it */
91 static inline void rewind_if_in_safe_syscall(void *puc)
92 {
93     ucontext_t *uc = (ucontext_t *)puc;
94     uintptr_t pcreg = host_signal_pc(uc);
95 
96     if (pcreg > (uintptr_t)safe_syscall_start
97         && pcreg < (uintptr_t)safe_syscall_end) {
98         host_signal_set_pc(uc, (uintptr_t)safe_syscall_start);
99     }
100 }
101 
102 /*
103  * Note: The following take advantage of the BSD signal property that all
104  * signals are available on all architectures.
105  */
106 static void host_to_target_sigset_internal(target_sigset_t *d,
107         const sigset_t *s)
108 {
109     int i;
110 
111     target_sigemptyset(d);
112     for (i = 1; i <= NSIG; i++) {
113         if (sigismember(s, i)) {
114             target_sigaddset(d, host_to_target_signal(i));
115         }
116     }
117 }
118 
119 void host_to_target_sigset(target_sigset_t *d, const sigset_t *s)
120 {
121     target_sigset_t d1;
122     int i;
123 
124     host_to_target_sigset_internal(&d1, s);
125     for (i = 0; i < _SIG_WORDS; i++) {
126         d->__bits[i] = tswap32(d1.__bits[i]);
127     }
128 }
129 
130 static void target_to_host_sigset_internal(sigset_t *d,
131         const target_sigset_t *s)
132 {
133     int i;
134 
135     sigemptyset(d);
136     for (i = 1; i <= TARGET_NSIG; i++) {
137         if (target_sigismember(s, i)) {
138             sigaddset(d, target_to_host_signal(i));
139         }
140     }
141 }
142 
143 void target_to_host_sigset(sigset_t *d, const target_sigset_t *s)
144 {
145     target_sigset_t s1;
146     int i;
147 
148     for (i = 0; i < TARGET_NSIG_WORDS; i++) {
149         s1.__bits[i] = tswap32(s->__bits[i]);
150     }
151     target_to_host_sigset_internal(d, &s1);
152 }
153 
154 static bool has_trapno(int tsig)
155 {
156     return tsig == TARGET_SIGILL ||
157         tsig == TARGET_SIGFPE ||
158         tsig == TARGET_SIGSEGV ||
159         tsig == TARGET_SIGBUS ||
160         tsig == TARGET_SIGTRAP;
161 }
162 
163 /* Siginfo conversion. */
164 
165 /*
166  * Populate tinfo w/o swapping based on guessing which fields are valid.
167  */
168 static inline void host_to_target_siginfo_noswap(target_siginfo_t *tinfo,
169         const siginfo_t *info)
170 {
171     int sig = host_to_target_signal(info->si_signo);
172     int si_code = info->si_code;
173     int si_type;
174 
175     /*
176      * Make sure we that the variable portion of the target siginfo is zeroed
177      * out so we don't leak anything into that.
178      */
179     memset(&tinfo->_reason, 0, sizeof(tinfo->_reason));
180 
181     /*
182      * This is awkward, because we have to use a combination of the si_code and
183      * si_signo to figure out which of the union's members are valid.o We
184      * therefore make our best guess.
185      *
186      * Once we have made our guess, we record it in the top 16 bits of
187      * the si_code, so that tswap_siginfo() later can use it.
188      * tswap_siginfo() will strip these top bits out before writing
189      * si_code to the guest (sign-extending the lower bits).
190      */
191     tinfo->si_signo = sig;
192     tinfo->si_errno = info->si_errno;
193     tinfo->si_code = info->si_code;
194     tinfo->si_pid = info->si_pid;
195     tinfo->si_uid = info->si_uid;
196     tinfo->si_status = info->si_status;
197     tinfo->si_addr = (abi_ulong)(unsigned long)info->si_addr;
198     /*
199      * si_value is opaque to kernel. On all FreeBSD platforms,
200      * sizeof(sival_ptr) >= sizeof(sival_int) so the following
201      * always will copy the larger element.
202      */
203     tinfo->si_value.sival_ptr =
204         (abi_ulong)(unsigned long)info->si_value.sival_ptr;
205 
206     switch (si_code) {
207         /*
208          * All the SI_xxx codes that are defined here are global to
209          * all the signals (they have values that none of the other,
210          * more specific signal info will set).
211          */
212     case SI_USER:
213     case SI_LWP:
214     case SI_KERNEL:
215     case SI_QUEUE:
216     case SI_ASYNCIO:
217         /*
218          * Only the fixed parts are valid (though FreeBSD doesn't always
219          * set all the fields to non-zero values.
220          */
221         si_type = QEMU_SI_NOINFO;
222         break;
223     case SI_TIMER:
224         tinfo->_reason._timer._timerid = info->_reason._timer._timerid;
225         tinfo->_reason._timer._overrun = info->_reason._timer._overrun;
226         si_type = QEMU_SI_TIMER;
227         break;
228     case SI_MESGQ:
229         tinfo->_reason._mesgq._mqd = info->_reason._mesgq._mqd;
230         si_type = QEMU_SI_MESGQ;
231         break;
232     default:
233         /*
234          * We have to go based on the signal number now to figure out
235          * what's valid.
236          */
237         si_type = QEMU_SI_NOINFO;
238         if (has_trapno(sig)) {
239             tinfo->_reason._fault._trapno = info->_reason._fault._trapno;
240             si_type = QEMU_SI_FAULT;
241         }
242 #ifdef TARGET_SIGPOLL
243         /*
244          * FreeBSD never had SIGPOLL, but emulates it for Linux so there's
245          * a chance it may popup in the future.
246          */
247         if (sig == TARGET_SIGPOLL) {
248             tinfo->_reason._poll._band = info->_reason._poll._band;
249             si_type = QEMU_SI_POLL;
250         }
251 #endif
252         /*
253          * Unsure that this can actually be generated, and our support for
254          * capsicum is somewhere between weak and non-existent, but if we get
255          * one, then we know what to save.
256          */
257 #ifdef QEMU_SI_CAPSICUM
258         if (sig == TARGET_SIGTRAP) {
259             tinfo->_reason._capsicum._syscall =
260                 info->_reason._capsicum._syscall;
261             si_type = QEMU_SI_CAPSICUM;
262         }
263 #endif
264         break;
265     }
266     tinfo->si_code = deposit32(si_code, 24, 8, si_type);
267 }
268 
269 static void tswap_siginfo(target_siginfo_t *tinfo, const target_siginfo_t *info)
270 {
271     int si_type = extract32(info->si_code, 24, 8);
272     int si_code = sextract32(info->si_code, 0, 24);
273 
274     __put_user(info->si_signo, &tinfo->si_signo);
275     __put_user(info->si_errno, &tinfo->si_errno);
276     __put_user(si_code, &tinfo->si_code); /* Zero out si_type, it's internal */
277     __put_user(info->si_pid, &tinfo->si_pid);
278     __put_user(info->si_uid, &tinfo->si_uid);
279     __put_user(info->si_status, &tinfo->si_status);
280     __put_user(info->si_addr, &tinfo->si_addr);
281     /*
282      * Unswapped, because we passed it through mostly untouched.  si_value is
283      * opaque to the kernel, so we didn't bother with potentially wasting cycles
284      * to swap it into host byte order.
285      */
286     tinfo->si_value.sival_ptr = info->si_value.sival_ptr;
287 
288     /*
289      * We can use our internal marker of which fields in the structure
290      * are valid, rather than duplicating the guesswork of
291      * host_to_target_siginfo_noswap() here.
292      */
293     switch (si_type) {
294     case QEMU_SI_NOINFO:        /* No additional info */
295         break;
296     case QEMU_SI_FAULT:
297         __put_user(info->_reason._fault._trapno,
298                    &tinfo->_reason._fault._trapno);
299         break;
300     case QEMU_SI_TIMER:
301         __put_user(info->_reason._timer._timerid,
302                    &tinfo->_reason._timer._timerid);
303         __put_user(info->_reason._timer._overrun,
304                    &tinfo->_reason._timer._overrun);
305         break;
306     case QEMU_SI_MESGQ:
307         __put_user(info->_reason._mesgq._mqd, &tinfo->_reason._mesgq._mqd);
308         break;
309     case QEMU_SI_POLL:
310         /* Note: Not generated on FreeBSD */
311         __put_user(info->_reason._poll._band, &tinfo->_reason._poll._band);
312         break;
313 #ifdef QEMU_SI_CAPSICUM
314     case QEMU_SI_CAPSICUM:
315         __put_user(info->_reason._capsicum._syscall,
316                    &tinfo->_reason._capsicum._syscall);
317         break;
318 #endif
319     default:
320         g_assert_not_reached();
321     }
322 }
323 
324 void host_to_target_siginfo(target_siginfo_t *tinfo, const siginfo_t *info)
325 {
326     host_to_target_siginfo_noswap(tinfo, info);
327     tswap_siginfo(tinfo, tinfo);
328 }
329 
330 int block_signals(void)
331 {
332     TaskState *ts = get_task_state(thread_cpu);
333     sigset_t set;
334 
335     /*
336      * It's OK to block everything including SIGSEGV, because we won't run any
337      * further guest code before unblocking signals in
338      * process_pending_signals(). We depend on the FreeBSD behavior here where
339      * this will only affect this thread's signal mask. We don't use
340      * pthread_sigmask which might seem more correct because that routine also
341      * does odd things with SIGCANCEL to implement pthread_cancel().
342      */
343     sigfillset(&set);
344     sigprocmask(SIG_SETMASK, &set, 0);
345 
346     return qatomic_xchg(&ts->signal_pending, 1);
347 }
348 
349 /* Returns 1 if given signal should dump core if not handled. */
350 static int core_dump_signal(int sig)
351 {
352     switch (sig) {
353     case TARGET_SIGABRT:
354     case TARGET_SIGFPE:
355     case TARGET_SIGILL:
356     case TARGET_SIGQUIT:
357     case TARGET_SIGSEGV:
358     case TARGET_SIGTRAP:
359     case TARGET_SIGBUS:
360         return 1;
361     default:
362         return 0;
363     }
364 }
365 
366 /* Abort execution with signal. */
367 static G_NORETURN
368 void dump_core_and_abort(int target_sig)
369 {
370     CPUState *cpu = thread_cpu;
371     CPUArchState *env = cpu_env(cpu);
372     TaskState *ts = get_task_state(cpu);
373     int core_dumped = 0;
374     int host_sig;
375     struct sigaction act;
376 
377     host_sig = target_to_host_signal(target_sig);
378     gdb_signalled(env, target_sig);
379 
380     /* Dump core if supported by target binary format */
381     if (core_dump_signal(target_sig) && (ts->bprm->core_dump != NULL)) {
382         stop_all_tasks();
383         core_dumped =
384             ((*ts->bprm->core_dump)(target_sig, env) == 0);
385     }
386     if (core_dumped) {
387         struct rlimit nodump;
388 
389         /*
390          * We already dumped the core of target process, we don't want
391          * a coredump of qemu itself.
392          */
393          getrlimit(RLIMIT_CORE, &nodump);
394          nodump.rlim_cur = 0;
395          setrlimit(RLIMIT_CORE, &nodump);
396          (void) fprintf(stderr, "qemu: uncaught target signal %d (%s) "
397              "- %s\n", target_sig, strsignal(host_sig), "core dumped");
398     }
399 
400     /*
401      * The proper exit code for dying from an uncaught signal is
402      * -<signal>.  The kernel doesn't allow exit() or _exit() to pass
403      * a negative value.  To get the proper exit code we need to
404      * actually die from an uncaught signal.  Here the default signal
405      * handler is installed, we send ourself a signal and we wait for
406      * it to arrive.
407      */
408     memset(&act, 0, sizeof(act));
409     sigfillset(&act.sa_mask);
410     act.sa_handler = SIG_DFL;
411     sigaction(host_sig, &act, NULL);
412 
413     kill(getpid(), host_sig);
414 
415     /*
416      * Make sure the signal isn't masked (just reuse the mask inside
417      * of act).
418      */
419     sigdelset(&act.sa_mask, host_sig);
420     sigsuspend(&act.sa_mask);
421 
422     /* unreachable */
423     abort();
424 }
425 
426 /*
427  * Queue a signal so that it will be send to the virtual CPU as soon as
428  * possible.
429  */
430 void queue_signal(CPUArchState *env, int sig, int si_type,
431                   target_siginfo_t *info)
432 {
433     CPUState *cpu = env_cpu(env);
434     TaskState *ts = get_task_state(cpu);
435 
436     trace_user_queue_signal(env, sig);
437 
438     info->si_code = deposit32(info->si_code, 24, 8, si_type);
439 
440     ts->sync_signal.info = *info;
441     ts->sync_signal.pending = sig;
442     /* Signal that a new signal is pending. */
443     qatomic_set(&ts->signal_pending, 1);
444 }
445 
446 static int fatal_signal(int sig)
447 {
448 
449     switch (sig) {
450     case TARGET_SIGCHLD:
451     case TARGET_SIGURG:
452     case TARGET_SIGWINCH:
453     case TARGET_SIGINFO:
454         /* Ignored by default. */
455         return 0;
456     case TARGET_SIGCONT:
457     case TARGET_SIGSTOP:
458     case TARGET_SIGTSTP:
459     case TARGET_SIGTTIN:
460     case TARGET_SIGTTOU:
461         /* Job control signals.  */
462         return 0;
463     default:
464         return 1;
465     }
466 }
467 
468 /*
469  * Force a synchronously taken QEMU_SI_FAULT signal. For QEMU the
470  * 'force' part is handled in process_pending_signals().
471  */
472 void force_sig_fault(int sig, int code, abi_ulong addr)
473 {
474     CPUState *cpu = thread_cpu;
475     target_siginfo_t info = {};
476 
477     info.si_signo = sig;
478     info.si_errno = 0;
479     info.si_code = code;
480     info.si_addr = addr;
481     queue_signal(cpu_env(cpu), sig, QEMU_SI_FAULT, &info);
482 }
483 
484 static void host_signal_handler(int host_sig, siginfo_t *info, void *puc)
485 {
486     CPUState *cpu = thread_cpu;
487     TaskState *ts = get_task_state(cpu);
488     target_siginfo_t tinfo;
489     ucontext_t *uc = puc;
490     struct emulated_sigtable *k;
491     int guest_sig;
492     uintptr_t pc = 0;
493     bool sync_sig = false;
494 
495     if (host_sig == host_interrupt_signal) {
496         ts->signal_pending = 1;
497         cpu_exit(thread_cpu);
498         return;
499     }
500 
501     /*
502      * Non-spoofed SIGSEGV and SIGBUS are synchronous, and need special
503      * handling wrt signal blocking and unwinding.
504      */
505     if ((host_sig == SIGSEGV || host_sig == SIGBUS) && info->si_code > 0) {
506         MMUAccessType access_type;
507         uintptr_t host_addr;
508         abi_ptr guest_addr;
509         bool is_write;
510 
511         host_addr = (uintptr_t)info->si_addr;
512 
513         /*
514          * Convert forcefully to guest address space: addresses outside
515          * reserved_va are still valid to report via SEGV_MAPERR.
516          */
517         guest_addr = h2g_nocheck(host_addr);
518 
519         pc = host_signal_pc(uc);
520         is_write = host_signal_write(info, uc);
521         access_type = adjust_signal_pc(&pc, is_write);
522 
523         if (host_sig == SIGSEGV) {
524             bool maperr = true;
525 
526             if (info->si_code == SEGV_ACCERR && h2g_valid(host_addr)) {
527                 /* If this was a write to a TB protected page, restart. */
528                 if (is_write &&
529                     handle_sigsegv_accerr_write(cpu, &uc->uc_sigmask,
530                                                 pc, guest_addr)) {
531                     return;
532                 }
533 
534                 /*
535                  * With reserved_va, the whole address space is PROT_NONE,
536                  * which means that we may get ACCERR when we want MAPERR.
537                  */
538                 if (page_get_flags(guest_addr) & PAGE_VALID) {
539                     maperr = false;
540                 } else {
541                     info->si_code = SEGV_MAPERR;
542                 }
543             }
544 
545             sigprocmask(SIG_SETMASK, &uc->uc_sigmask, NULL);
546             cpu_loop_exit_sigsegv(cpu, guest_addr, access_type, maperr, pc);
547         } else {
548             sigprocmask(SIG_SETMASK, &uc->uc_sigmask, NULL);
549             if (info->si_code == BUS_ADRALN) {
550                 cpu_loop_exit_sigbus(cpu, guest_addr, access_type, pc);
551             }
552         }
553 
554         sync_sig = true;
555     }
556 
557     /* Get the target signal number. */
558     guest_sig = host_to_target_signal(host_sig);
559     if (guest_sig < 1 || guest_sig > TARGET_NSIG) {
560         return;
561     }
562     trace_user_host_signal(cpu, host_sig, guest_sig);
563 
564     host_to_target_siginfo_noswap(&tinfo, info);
565 
566     k = &ts->sigtab[guest_sig - 1];
567     k->info = tinfo;
568     k->pending = guest_sig;
569     ts->signal_pending = 1;
570 
571     /*
572      * For synchronous signals, unwind the cpu state to the faulting
573      * insn and then exit back to the main loop so that the signal
574      * is delivered immediately.
575      */
576     if (sync_sig) {
577         cpu->exception_index = EXCP_INTERRUPT;
578         cpu_loop_exit_restore(cpu, pc);
579     }
580 
581     rewind_if_in_safe_syscall(puc);
582 
583     /*
584      * Block host signals until target signal handler entered. We
585      * can't block SIGSEGV or SIGBUS while we're executing guest
586      * code in case the guest code provokes one in the window between
587      * now and it getting out to the main loop. Signals will be
588      * unblocked again in process_pending_signals().
589      */
590     sigfillset(&uc->uc_sigmask);
591     sigdelset(&uc->uc_sigmask, SIGSEGV);
592     sigdelset(&uc->uc_sigmask, SIGBUS);
593 
594     /* Interrupt the virtual CPU as soon as possible. */
595     cpu_exit(thread_cpu);
596 }
597 
598 /* do_sigaltstack() returns target values and errnos. */
599 /* compare to kern/kern_sig.c sys_sigaltstack() and kern_sigaltstack() */
600 abi_long do_sigaltstack(abi_ulong uss_addr, abi_ulong uoss_addr, abi_ulong sp)
601 {
602     TaskState *ts = get_task_state(thread_cpu);
603     int ret;
604     target_stack_t oss;
605 
606     if (uoss_addr) {
607         /* Save current signal stack params */
608         oss.ss_sp = tswapl(ts->sigaltstack_used.ss_sp);
609         oss.ss_size = tswapl(ts->sigaltstack_used.ss_size);
610         oss.ss_flags = tswapl(sas_ss_flags(ts, sp));
611     }
612 
613     if (uss_addr) {
614         target_stack_t *uss;
615         target_stack_t ss;
616         size_t minstacksize = TARGET_MINSIGSTKSZ;
617 
618         ret = -TARGET_EFAULT;
619         if (!lock_user_struct(VERIFY_READ, uss, uss_addr, 1)) {
620             goto out;
621         }
622         __get_user(ss.ss_sp, &uss->ss_sp);
623         __get_user(ss.ss_size, &uss->ss_size);
624         __get_user(ss.ss_flags, &uss->ss_flags);
625         unlock_user_struct(uss, uss_addr, 0);
626 
627         ret = -TARGET_EPERM;
628         if (on_sig_stack(ts, sp)) {
629             goto out;
630         }
631 
632         ret = -TARGET_EINVAL;
633         if (ss.ss_flags != TARGET_SS_DISABLE
634             && ss.ss_flags != TARGET_SS_ONSTACK
635             && ss.ss_flags != 0) {
636             goto out;
637         }
638 
639         if (ss.ss_flags == TARGET_SS_DISABLE) {
640             ss.ss_size = 0;
641             ss.ss_sp = 0;
642         } else {
643             ret = -TARGET_ENOMEM;
644             if (ss.ss_size < minstacksize) {
645                 goto out;
646             }
647         }
648 
649         ts->sigaltstack_used.ss_sp = ss.ss_sp;
650         ts->sigaltstack_used.ss_size = ss.ss_size;
651     }
652 
653     if (uoss_addr) {
654         ret = -TARGET_EFAULT;
655         if (copy_to_user(uoss_addr, &oss, sizeof(oss))) {
656             goto out;
657         }
658     }
659 
660     ret = 0;
661 out:
662     return ret;
663 }
664 
665 /* do_sigaction() return host values and errnos */
666 int do_sigaction(int sig, const struct target_sigaction *act,
667         struct target_sigaction *oact)
668 {
669     struct target_sigaction *k;
670     struct sigaction act1;
671     int host_sig;
672     int ret = 0;
673 
674     if (sig < 1 || sig > TARGET_NSIG) {
675         return -TARGET_EINVAL;
676     }
677 
678     if ((sig == TARGET_SIGKILL || sig == TARGET_SIGSTOP) &&
679         act != NULL && act->_sa_handler != TARGET_SIG_DFL) {
680         return -TARGET_EINVAL;
681     }
682 
683     if (block_signals()) {
684         return -TARGET_ERESTART;
685     }
686 
687     k = &sigact_table[sig - 1];
688     if (oact) {
689         oact->_sa_handler = tswapal(k->_sa_handler);
690         oact->sa_flags = tswap32(k->sa_flags);
691         oact->sa_mask = k->sa_mask;
692     }
693     if (act) {
694         k->_sa_handler = tswapal(act->_sa_handler);
695         k->sa_flags = tswap32(act->sa_flags);
696         k->sa_mask = act->sa_mask;
697 
698         /* Update the host signal state. */
699         host_sig = target_to_host_signal(sig);
700         if (host_sig != SIGSEGV && host_sig != SIGBUS) {
701             memset(&act1, 0, sizeof(struct sigaction));
702             sigfillset(&act1.sa_mask);
703             act1.sa_flags = SA_SIGINFO;
704             if (k->sa_flags & TARGET_SA_RESTART) {
705                 act1.sa_flags |= SA_RESTART;
706             }
707             /*
708              *  Note: It is important to update the host kernel signal mask to
709              *  avoid getting unexpected interrupted system calls.
710              */
711             if (k->_sa_handler == TARGET_SIG_IGN) {
712                 act1.sa_sigaction = (void *)SIG_IGN;
713             } else if (k->_sa_handler == TARGET_SIG_DFL) {
714                 if (fatal_signal(sig)) {
715                     act1.sa_sigaction = host_signal_handler;
716                 } else {
717                     act1.sa_sigaction = (void *)SIG_DFL;
718                 }
719             } else {
720                 act1.sa_sigaction = host_signal_handler;
721             }
722             ret = sigaction(host_sig, &act1, NULL);
723         }
724     }
725     return ret;
726 }
727 
728 static inline abi_ulong get_sigframe(struct target_sigaction *ka,
729         CPUArchState *env, size_t frame_size)
730 {
731     TaskState *ts = get_task_state(thread_cpu);
732     abi_ulong sp;
733 
734     /* Use default user stack */
735     sp = get_sp_from_cpustate(env);
736 
737     if ((ka->sa_flags & TARGET_SA_ONSTACK) && sas_ss_flags(ts, sp) == 0) {
738         sp = ts->sigaltstack_used.ss_sp + ts->sigaltstack_used.ss_size;
739     }
740 
741     return ROUND_DOWN(sp - frame_size, TARGET_SIGSTACK_ALIGN);
742 }
743 
744 /* compare to $M/$M/exec_machdep.c sendsig and sys/kern/kern_sig.c sigexit */
745 
746 static void setup_frame(int sig, int code, struct target_sigaction *ka,
747     target_sigset_t *set, target_siginfo_t *tinfo, CPUArchState *env)
748 {
749     struct target_sigframe *frame;
750     abi_ulong frame_addr;
751     int i;
752 
753     frame_addr = get_sigframe(ka, env, sizeof(*frame));
754     trace_user_setup_frame(env, frame_addr);
755     if (!lock_user_struct(VERIFY_WRITE, frame, frame_addr, 0)) {
756         unlock_user_struct(frame, frame_addr, 1);
757         dump_core_and_abort(TARGET_SIGILL);
758         return;
759     }
760 
761     memset(frame, 0, sizeof(*frame));
762     setup_sigframe_arch(env, frame_addr, frame, 0);
763 
764     for (i = 0; i < TARGET_NSIG_WORDS; i++) {
765         __put_user(set->__bits[i], &frame->sf_uc.uc_sigmask.__bits[i]);
766     }
767 
768     if (tinfo) {
769         frame->sf_si.si_signo = tinfo->si_signo;
770         frame->sf_si.si_errno = tinfo->si_errno;
771         frame->sf_si.si_code = tinfo->si_code;
772         frame->sf_si.si_pid = tinfo->si_pid;
773         frame->sf_si.si_uid = tinfo->si_uid;
774         frame->sf_si.si_status = tinfo->si_status;
775         frame->sf_si.si_addr = tinfo->si_addr;
776         /* see host_to_target_siginfo_noswap() for more details */
777         frame->sf_si.si_value.sival_ptr = tinfo->si_value.sival_ptr;
778         /*
779          * At this point, whatever is in the _reason union is complete
780          * and in target order, so just copy the whole thing over, even
781          * if it's too large for this specific signal.
782          * host_to_target_siginfo_noswap() and tswap_siginfo() have ensured
783          * that's so.
784          */
785         memcpy(&frame->sf_si._reason, &tinfo->_reason,
786                sizeof(tinfo->_reason));
787     }
788 
789     set_sigtramp_args(env, sig, frame, frame_addr, ka);
790 
791     unlock_user_struct(frame, frame_addr, 1);
792 }
793 
794 static int reset_signal_mask(target_ucontext_t *ucontext)
795 {
796     int i;
797     sigset_t blocked;
798     target_sigset_t target_set;
799     TaskState *ts = get_task_state(thread_cpu);
800 
801     for (i = 0; i < TARGET_NSIG_WORDS; i++) {
802         __get_user(target_set.__bits[i], &ucontext->uc_sigmask.__bits[i]);
803     }
804     target_to_host_sigset_internal(&blocked, &target_set);
805     ts->signal_mask = blocked;
806 
807     return 0;
808 }
809 
810 /* See sys/$M/$M/exec_machdep.c sigreturn() */
811 long do_sigreturn(CPUArchState *env, abi_ulong addr)
812 {
813     long ret;
814     abi_ulong target_ucontext;
815     target_ucontext_t *ucontext = NULL;
816 
817     /* Get the target ucontext address from the stack frame */
818     ret = get_ucontext_sigreturn(env, addr, &target_ucontext);
819     if (is_error(ret)) {
820         return ret;
821     }
822     trace_user_do_sigreturn(env, addr);
823     if (!lock_user_struct(VERIFY_READ, ucontext, target_ucontext, 0)) {
824         goto badframe;
825     }
826 
827     /* Set the register state back to before the signal. */
828     if (set_mcontext(env, &ucontext->uc_mcontext, 1)) {
829         goto badframe;
830     }
831 
832     /* And reset the signal mask. */
833     if (reset_signal_mask(ucontext)) {
834         goto badframe;
835     }
836 
837     unlock_user_struct(ucontext, target_ucontext, 0);
838     return -TARGET_EJUSTRETURN;
839 
840 badframe:
841     if (ucontext != NULL) {
842         unlock_user_struct(ucontext, target_ucontext, 0);
843     }
844     return -TARGET_EFAULT;
845 }
846 
847 void signal_init(void)
848 {
849     TaskState *ts = get_task_state(thread_cpu);
850     struct sigaction act;
851     struct sigaction oact;
852     int i;
853     int host_sig;
854 
855     /* Set the signal mask from the host mask. */
856     sigprocmask(0, 0, &ts->signal_mask);
857 
858     sigfillset(&act.sa_mask);
859     act.sa_sigaction = host_signal_handler;
860     act.sa_flags = SA_SIGINFO;
861 
862     for (i = 1; i <= TARGET_NSIG; i++) {
863         host_sig = target_to_host_signal(i);
864         if (host_sig == host_interrupt_signal) {
865             continue;
866         }
867         sigaction(host_sig, NULL, &oact);
868         if (oact.sa_sigaction == (void *)SIG_IGN) {
869             sigact_table[i - 1]._sa_handler = TARGET_SIG_IGN;
870         } else if (oact.sa_sigaction == (void *)SIG_DFL) {
871             sigact_table[i - 1]._sa_handler = TARGET_SIG_DFL;
872         }
873         /*
874          * If there's already a handler installed then something has
875          * gone horribly wrong, so don't even try to handle that case.
876          * Install some handlers for our own use.  We need at least
877          * SIGSEGV and SIGBUS, to detect exceptions.  We can not just
878          * trap all signals because it affects syscall interrupt
879          * behavior.  But do trap all default-fatal signals.
880          */
881         if (fatal_signal(i)) {
882             sigaction(host_sig, &act, NULL);
883         }
884     }
885     sigaction(host_interrupt_signal, &act, NULL);
886 }
887 
888 static void handle_pending_signal(CPUArchState *env, int sig,
889                                   struct emulated_sigtable *k)
890 {
891     CPUState *cpu = env_cpu(env);
892     TaskState *ts = get_task_state(cpu);
893     struct target_sigaction *sa;
894     int code;
895     sigset_t set;
896     abi_ulong handler;
897     target_siginfo_t tinfo;
898     target_sigset_t target_old_set;
899 
900     trace_user_handle_signal(env, sig);
901 
902     k->pending = 0;
903 
904     sig = gdb_handlesig(cpu, sig, NULL, &k->info, sizeof(k->info));
905     if (!sig) {
906         sa = NULL;
907         handler = TARGET_SIG_IGN;
908     } else {
909         sa = &sigact_table[sig - 1];
910         handler = sa->_sa_handler;
911     }
912 
913     if (do_strace) {
914         print_taken_signal(sig, &k->info);
915     }
916 
917     if (handler == TARGET_SIG_DFL) {
918         /*
919          * default handler : ignore some signal. The other are job
920          * control or fatal.
921          */
922         if (sig == TARGET_SIGTSTP || sig == TARGET_SIGTTIN ||
923             sig == TARGET_SIGTTOU) {
924             kill(getpid(), SIGSTOP);
925         } else if (sig != TARGET_SIGCHLD && sig != TARGET_SIGURG &&
926                    sig != TARGET_SIGINFO && sig != TARGET_SIGWINCH &&
927                    sig != TARGET_SIGCONT) {
928             dump_core_and_abort(sig);
929         }
930     } else if (handler == TARGET_SIG_IGN) {
931         /* ignore sig */
932     } else if (handler == TARGET_SIG_ERR) {
933         dump_core_and_abort(sig);
934     } else {
935         /* compute the blocked signals during the handler execution */
936         sigset_t *blocked_set;
937 
938         target_to_host_sigset(&set, &sa->sa_mask);
939         /*
940          * SA_NODEFER indicates that the current signal should not be
941          * blocked during the handler.
942          */
943         if (!(sa->sa_flags & TARGET_SA_NODEFER)) {
944             sigaddset(&set, target_to_host_signal(sig));
945         }
946 
947         /*
948          * Save the previous blocked signal state to restore it at the
949          * end of the signal execution (see do_sigreturn).
950          */
951         host_to_target_sigset_internal(&target_old_set, &ts->signal_mask);
952 
953         blocked_set = ts->in_sigsuspend ?
954             &ts->sigsuspend_mask : &ts->signal_mask;
955         sigorset(&ts->signal_mask, blocked_set, &set);
956         ts->in_sigsuspend = false;
957         sigprocmask(SIG_SETMASK, &ts->signal_mask, NULL);
958 
959         /* XXX VM86 on x86 ??? */
960 
961         code = k->info.si_code; /* From host, so no si_type */
962         /* prepare the stack frame of the virtual CPU */
963         if (sa->sa_flags & TARGET_SA_SIGINFO) {
964             tswap_siginfo(&tinfo, &k->info);
965             setup_frame(sig, code, sa, &target_old_set, &tinfo, env);
966         } else {
967             setup_frame(sig, code, sa, &target_old_set, NULL, env);
968         }
969         if (sa->sa_flags & TARGET_SA_RESETHAND) {
970             sa->_sa_handler = TARGET_SIG_DFL;
971         }
972     }
973 }
974 
975 void process_pending_signals(CPUArchState *env)
976 {
977     CPUState *cpu = env_cpu(env);
978     int sig;
979     sigset_t *blocked_set, set;
980     struct emulated_sigtable *k;
981     TaskState *ts = get_task_state(cpu);
982 
983     while (qatomic_read(&ts->signal_pending)) {
984         sigfillset(&set);
985         sigprocmask(SIG_SETMASK, &set, 0);
986 
987     restart_scan:
988         sig = ts->sync_signal.pending;
989         if (sig) {
990             /*
991              * Synchronous signals are forced by the emulated CPU in some way.
992              * If they are set to ignore, restore the default handler (see
993              * sys/kern_sig.c trapsignal() and execsigs() for this behavior)
994              * though maybe this is done only when forcing exit for non SIGCHLD.
995              */
996             if (sigismember(&ts->signal_mask, target_to_host_signal(sig)) ||
997                 sigact_table[sig - 1]._sa_handler == TARGET_SIG_IGN) {
998                 sigdelset(&ts->signal_mask, target_to_host_signal(sig));
999                 sigact_table[sig - 1]._sa_handler = TARGET_SIG_DFL;
1000             }
1001             handle_pending_signal(env, sig, &ts->sync_signal);
1002         }
1003 
1004         k = ts->sigtab;
1005         for (sig = 1; sig <= TARGET_NSIG; sig++, k++) {
1006             blocked_set = ts->in_sigsuspend ?
1007                 &ts->sigsuspend_mask : &ts->signal_mask;
1008             if (k->pending &&
1009                 !sigismember(blocked_set, target_to_host_signal(sig))) {
1010                 handle_pending_signal(env, sig, k);
1011                 /*
1012                  * Restart scan from the beginning, as handle_pending_signal
1013                  * might have resulted in a new synchronous signal (eg SIGSEGV).
1014                  */
1015                 goto restart_scan;
1016             }
1017         }
1018 
1019         /*
1020          * Unblock signals and check one more time. Unblocking signals may cause
1021          * us to take another host signal, which will set signal_pending again.
1022          */
1023         qatomic_set(&ts->signal_pending, 0);
1024         ts->in_sigsuspend = false;
1025         set = ts->signal_mask;
1026         sigdelset(&set, SIGSEGV);
1027         sigdelset(&set, SIGBUS);
1028         sigprocmask(SIG_SETMASK, &set, 0);
1029     }
1030     ts->in_sigsuspend = false;
1031 }
1032 
1033 void cpu_loop_exit_sigsegv(CPUState *cpu, target_ulong addr,
1034                            MMUAccessType access_type, bool maperr, uintptr_t ra)
1035 {
1036     const TCGCPUOps *tcg_ops = cpu->cc->tcg_ops;
1037 
1038     if (tcg_ops->record_sigsegv) {
1039         tcg_ops->record_sigsegv(cpu, addr, access_type, maperr, ra);
1040     }
1041 
1042     force_sig_fault(TARGET_SIGSEGV,
1043                     maperr ? TARGET_SEGV_MAPERR : TARGET_SEGV_ACCERR,
1044                     addr);
1045     cpu->exception_index = EXCP_INTERRUPT;
1046     cpu_loop_exit_restore(cpu, ra);
1047 }
1048 
1049 void cpu_loop_exit_sigbus(CPUState *cpu, target_ulong addr,
1050                           MMUAccessType access_type, uintptr_t ra)
1051 {
1052     const TCGCPUOps *tcg_ops = cpu->cc->tcg_ops;
1053 
1054     if (tcg_ops->record_sigbus) {
1055         tcg_ops->record_sigbus(cpu, addr, access_type, ra);
1056     }
1057 
1058     force_sig_fault(TARGET_SIGBUS, TARGET_BUS_ADRALN, addr);
1059     cpu->exception_index = EXCP_INTERRUPT;
1060     cpu_loop_exit_restore(cpu, ra);
1061 }
1062