1 /* 2 * Emulation of BSD signals 3 * 4 * Copyright (c) 2003 - 2008 Fabrice Bellard 5 * Copyright (c) 2013 Stacey Son 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License as published by 9 * the Free Software Foundation; either version 2 of the License, or 10 * (at your option) any later version. 11 * 12 * This program is distributed in the hope that it will be useful, 13 * but WITHOUT ANY WARRANTY; without even the implied warranty of 14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 15 * GNU General Public License for more details. 16 * 17 * You should have received a copy of the GNU General Public License 18 * along with this program; if not, see <http://www.gnu.org/licenses/>. 19 */ 20 21 #include "qemu/osdep.h" 22 #include "qemu/log.h" 23 #include "qemu.h" 24 #include "user/cpu_loop.h" 25 #include "exec/page-protection.h" 26 #include "user/page-protection.h" 27 #include "user/signal.h" 28 #include "user/tswap-target.h" 29 #include "gdbstub/user.h" 30 #include "signal-common.h" 31 #include "trace.h" 32 #include "accel/tcg/cpu-ops.h" 33 #include "host-signal.h" 34 35 /* target_siginfo_t must fit in gdbstub's siginfo save area. */ 36 QEMU_BUILD_BUG_ON(sizeof(target_siginfo_t) > MAX_SIGINFO_LENGTH); 37 38 static struct target_sigaction sigact_table[TARGET_NSIG]; 39 static void host_signal_handler(int host_sig, siginfo_t *info, void *puc); 40 static void target_to_host_sigset_internal(sigset_t *d, 41 const target_sigset_t *s); 42 43 static inline int on_sig_stack(TaskState *ts, unsigned long sp) 44 { 45 return sp - ts->sigaltstack_used.ss_sp < ts->sigaltstack_used.ss_size; 46 } 47 48 static inline int sas_ss_flags(TaskState *ts, unsigned long sp) 49 { 50 return ts->sigaltstack_used.ss_size == 0 ? SS_DISABLE : 51 on_sig_stack(ts, sp) ? SS_ONSTACK : 0; 52 } 53 54 int host_interrupt_signal = SIGRTMAX; 55 56 /* 57 * The BSD ABIs use the same signal numbers across all the CPU architectures, so 58 * (unlike Linux) these functions are just the identity mapping. This might not 59 * be true for XyzBSD running on AbcBSD, which doesn't currently work. 60 */ 61 int host_to_target_signal(int sig) 62 { 63 return sig; 64 } 65 66 int target_to_host_signal(int sig) 67 { 68 return sig; 69 } 70 71 static inline void target_sigemptyset(target_sigset_t *set) 72 { 73 memset(set, 0, sizeof(*set)); 74 } 75 76 static inline void target_sigaddset(target_sigset_t *set, int signum) 77 { 78 signum--; 79 uint32_t mask = (uint32_t)1 << (signum % TARGET_NSIG_BPW); 80 set->__bits[signum / TARGET_NSIG_BPW] |= mask; 81 } 82 83 static inline int target_sigismember(const target_sigset_t *set, int signum) 84 { 85 signum--; 86 abi_ulong mask = (abi_ulong)1 << (signum % TARGET_NSIG_BPW); 87 return (set->__bits[signum / TARGET_NSIG_BPW] & mask) != 0; 88 } 89 90 /* Adjust the signal context to rewind out of safe-syscall if we're in it */ 91 static inline void rewind_if_in_safe_syscall(void *puc) 92 { 93 ucontext_t *uc = (ucontext_t *)puc; 94 uintptr_t pcreg = host_signal_pc(uc); 95 96 if (pcreg > (uintptr_t)safe_syscall_start 97 && pcreg < (uintptr_t)safe_syscall_end) { 98 host_signal_set_pc(uc, (uintptr_t)safe_syscall_start); 99 } 100 } 101 102 /* 103 * Note: The following take advantage of the BSD signal property that all 104 * signals are available on all architectures. 105 */ 106 static void host_to_target_sigset_internal(target_sigset_t *d, 107 const sigset_t *s) 108 { 109 int i; 110 111 target_sigemptyset(d); 112 for (i = 1; i <= NSIG; i++) { 113 if (sigismember(s, i)) { 114 target_sigaddset(d, host_to_target_signal(i)); 115 } 116 } 117 } 118 119 void host_to_target_sigset(target_sigset_t *d, const sigset_t *s) 120 { 121 target_sigset_t d1; 122 int i; 123 124 host_to_target_sigset_internal(&d1, s); 125 for (i = 0; i < _SIG_WORDS; i++) { 126 d->__bits[i] = tswap32(d1.__bits[i]); 127 } 128 } 129 130 static void target_to_host_sigset_internal(sigset_t *d, 131 const target_sigset_t *s) 132 { 133 int i; 134 135 sigemptyset(d); 136 for (i = 1; i <= TARGET_NSIG; i++) { 137 if (target_sigismember(s, i)) { 138 sigaddset(d, target_to_host_signal(i)); 139 } 140 } 141 } 142 143 void target_to_host_sigset(sigset_t *d, const target_sigset_t *s) 144 { 145 target_sigset_t s1; 146 int i; 147 148 for (i = 0; i < TARGET_NSIG_WORDS; i++) { 149 s1.__bits[i] = tswap32(s->__bits[i]); 150 } 151 target_to_host_sigset_internal(d, &s1); 152 } 153 154 static bool has_trapno(int tsig) 155 { 156 return tsig == TARGET_SIGILL || 157 tsig == TARGET_SIGFPE || 158 tsig == TARGET_SIGSEGV || 159 tsig == TARGET_SIGBUS || 160 tsig == TARGET_SIGTRAP; 161 } 162 163 /* Siginfo conversion. */ 164 165 /* 166 * Populate tinfo w/o swapping based on guessing which fields are valid. 167 */ 168 static inline void host_to_target_siginfo_noswap(target_siginfo_t *tinfo, 169 const siginfo_t *info) 170 { 171 int sig = host_to_target_signal(info->si_signo); 172 int si_code = info->si_code; 173 int si_type; 174 175 /* 176 * Make sure we that the variable portion of the target siginfo is zeroed 177 * out so we don't leak anything into that. 178 */ 179 memset(&tinfo->_reason, 0, sizeof(tinfo->_reason)); 180 181 /* 182 * This is awkward, because we have to use a combination of the si_code and 183 * si_signo to figure out which of the union's members are valid.o We 184 * therefore make our best guess. 185 * 186 * Once we have made our guess, we record it in the top 16 bits of 187 * the si_code, so that tswap_siginfo() later can use it. 188 * tswap_siginfo() will strip these top bits out before writing 189 * si_code to the guest (sign-extending the lower bits). 190 */ 191 tinfo->si_signo = sig; 192 tinfo->si_errno = info->si_errno; 193 tinfo->si_code = info->si_code; 194 tinfo->si_pid = info->si_pid; 195 tinfo->si_uid = info->si_uid; 196 tinfo->si_status = info->si_status; 197 tinfo->si_addr = (abi_ulong)(unsigned long)info->si_addr; 198 /* 199 * si_value is opaque to kernel. On all FreeBSD platforms, 200 * sizeof(sival_ptr) >= sizeof(sival_int) so the following 201 * always will copy the larger element. 202 */ 203 tinfo->si_value.sival_ptr = 204 (abi_ulong)(unsigned long)info->si_value.sival_ptr; 205 206 switch (si_code) { 207 /* 208 * All the SI_xxx codes that are defined here are global to 209 * all the signals (they have values that none of the other, 210 * more specific signal info will set). 211 */ 212 case SI_USER: 213 case SI_LWP: 214 case SI_KERNEL: 215 case SI_QUEUE: 216 case SI_ASYNCIO: 217 /* 218 * Only the fixed parts are valid (though FreeBSD doesn't always 219 * set all the fields to non-zero values. 220 */ 221 si_type = QEMU_SI_NOINFO; 222 break; 223 case SI_TIMER: 224 tinfo->_reason._timer._timerid = info->_reason._timer._timerid; 225 tinfo->_reason._timer._overrun = info->_reason._timer._overrun; 226 si_type = QEMU_SI_TIMER; 227 break; 228 case SI_MESGQ: 229 tinfo->_reason._mesgq._mqd = info->_reason._mesgq._mqd; 230 si_type = QEMU_SI_MESGQ; 231 break; 232 default: 233 /* 234 * We have to go based on the signal number now to figure out 235 * what's valid. 236 */ 237 si_type = QEMU_SI_NOINFO; 238 if (has_trapno(sig)) { 239 tinfo->_reason._fault._trapno = info->_reason._fault._trapno; 240 si_type = QEMU_SI_FAULT; 241 } 242 #ifdef TARGET_SIGPOLL 243 /* 244 * FreeBSD never had SIGPOLL, but emulates it for Linux so there's 245 * a chance it may popup in the future. 246 */ 247 if (sig == TARGET_SIGPOLL) { 248 tinfo->_reason._poll._band = info->_reason._poll._band; 249 si_type = QEMU_SI_POLL; 250 } 251 #endif 252 /* 253 * Unsure that this can actually be generated, and our support for 254 * capsicum is somewhere between weak and non-existent, but if we get 255 * one, then we know what to save. 256 */ 257 #ifdef QEMU_SI_CAPSICUM 258 if (sig == TARGET_SIGTRAP) { 259 tinfo->_reason._capsicum._syscall = 260 info->_reason._capsicum._syscall; 261 si_type = QEMU_SI_CAPSICUM; 262 } 263 #endif 264 break; 265 } 266 tinfo->si_code = deposit32(si_code, 24, 8, si_type); 267 } 268 269 static void tswap_siginfo(target_siginfo_t *tinfo, const target_siginfo_t *info) 270 { 271 int si_type = extract32(info->si_code, 24, 8); 272 int si_code = sextract32(info->si_code, 0, 24); 273 274 __put_user(info->si_signo, &tinfo->si_signo); 275 __put_user(info->si_errno, &tinfo->si_errno); 276 __put_user(si_code, &tinfo->si_code); /* Zero out si_type, it's internal */ 277 __put_user(info->si_pid, &tinfo->si_pid); 278 __put_user(info->si_uid, &tinfo->si_uid); 279 __put_user(info->si_status, &tinfo->si_status); 280 __put_user(info->si_addr, &tinfo->si_addr); 281 /* 282 * Unswapped, because we passed it through mostly untouched. si_value is 283 * opaque to the kernel, so we didn't bother with potentially wasting cycles 284 * to swap it into host byte order. 285 */ 286 tinfo->si_value.sival_ptr = info->si_value.sival_ptr; 287 288 /* 289 * We can use our internal marker of which fields in the structure 290 * are valid, rather than duplicating the guesswork of 291 * host_to_target_siginfo_noswap() here. 292 */ 293 switch (si_type) { 294 case QEMU_SI_NOINFO: /* No additional info */ 295 break; 296 case QEMU_SI_FAULT: 297 __put_user(info->_reason._fault._trapno, 298 &tinfo->_reason._fault._trapno); 299 break; 300 case QEMU_SI_TIMER: 301 __put_user(info->_reason._timer._timerid, 302 &tinfo->_reason._timer._timerid); 303 __put_user(info->_reason._timer._overrun, 304 &tinfo->_reason._timer._overrun); 305 break; 306 case QEMU_SI_MESGQ: 307 __put_user(info->_reason._mesgq._mqd, &tinfo->_reason._mesgq._mqd); 308 break; 309 case QEMU_SI_POLL: 310 /* Note: Not generated on FreeBSD */ 311 __put_user(info->_reason._poll._band, &tinfo->_reason._poll._band); 312 break; 313 #ifdef QEMU_SI_CAPSICUM 314 case QEMU_SI_CAPSICUM: 315 __put_user(info->_reason._capsicum._syscall, 316 &tinfo->_reason._capsicum._syscall); 317 break; 318 #endif 319 default: 320 g_assert_not_reached(); 321 } 322 } 323 324 void host_to_target_siginfo(target_siginfo_t *tinfo, const siginfo_t *info) 325 { 326 host_to_target_siginfo_noswap(tinfo, info); 327 tswap_siginfo(tinfo, tinfo); 328 } 329 330 int block_signals(void) 331 { 332 TaskState *ts = get_task_state(thread_cpu); 333 sigset_t set; 334 335 /* 336 * It's OK to block everything including SIGSEGV, because we won't run any 337 * further guest code before unblocking signals in 338 * process_pending_signals(). We depend on the FreeBSD behavior here where 339 * this will only affect this thread's signal mask. We don't use 340 * pthread_sigmask which might seem more correct because that routine also 341 * does odd things with SIGCANCEL to implement pthread_cancel(). 342 */ 343 sigfillset(&set); 344 sigprocmask(SIG_SETMASK, &set, 0); 345 346 return qatomic_xchg(&ts->signal_pending, 1); 347 } 348 349 /* Returns 1 if given signal should dump core if not handled. */ 350 static int core_dump_signal(int sig) 351 { 352 switch (sig) { 353 case TARGET_SIGABRT: 354 case TARGET_SIGFPE: 355 case TARGET_SIGILL: 356 case TARGET_SIGQUIT: 357 case TARGET_SIGSEGV: 358 case TARGET_SIGTRAP: 359 case TARGET_SIGBUS: 360 return 1; 361 default: 362 return 0; 363 } 364 } 365 366 /* Abort execution with signal. */ 367 static G_NORETURN 368 void dump_core_and_abort(int target_sig) 369 { 370 CPUState *cpu = thread_cpu; 371 CPUArchState *env = cpu_env(cpu); 372 TaskState *ts = get_task_state(cpu); 373 int core_dumped = 0; 374 int host_sig; 375 struct sigaction act; 376 377 host_sig = target_to_host_signal(target_sig); 378 gdb_signalled(env, target_sig); 379 380 /* Dump core if supported by target binary format */ 381 if (core_dump_signal(target_sig) && (ts->bprm->core_dump != NULL)) { 382 stop_all_tasks(); 383 core_dumped = 384 ((*ts->bprm->core_dump)(target_sig, env) == 0); 385 } 386 if (core_dumped) { 387 struct rlimit nodump; 388 389 /* 390 * We already dumped the core of target process, we don't want 391 * a coredump of qemu itself. 392 */ 393 getrlimit(RLIMIT_CORE, &nodump); 394 nodump.rlim_cur = 0; 395 setrlimit(RLIMIT_CORE, &nodump); 396 (void) fprintf(stderr, "qemu: uncaught target signal %d (%s) " 397 "- %s\n", target_sig, strsignal(host_sig), "core dumped"); 398 } 399 400 /* 401 * The proper exit code for dying from an uncaught signal is 402 * -<signal>. The kernel doesn't allow exit() or _exit() to pass 403 * a negative value. To get the proper exit code we need to 404 * actually die from an uncaught signal. Here the default signal 405 * handler is installed, we send ourself a signal and we wait for 406 * it to arrive. 407 */ 408 memset(&act, 0, sizeof(act)); 409 sigfillset(&act.sa_mask); 410 act.sa_handler = SIG_DFL; 411 sigaction(host_sig, &act, NULL); 412 413 kill(getpid(), host_sig); 414 415 /* 416 * Make sure the signal isn't masked (just reuse the mask inside 417 * of act). 418 */ 419 sigdelset(&act.sa_mask, host_sig); 420 sigsuspend(&act.sa_mask); 421 422 /* unreachable */ 423 abort(); 424 } 425 426 /* 427 * Queue a signal so that it will be send to the virtual CPU as soon as 428 * possible. 429 */ 430 void queue_signal(CPUArchState *env, int sig, int si_type, 431 target_siginfo_t *info) 432 { 433 CPUState *cpu = env_cpu(env); 434 TaskState *ts = get_task_state(cpu); 435 436 trace_user_queue_signal(env, sig); 437 438 info->si_code = deposit32(info->si_code, 24, 8, si_type); 439 440 ts->sync_signal.info = *info; 441 ts->sync_signal.pending = sig; 442 /* Signal that a new signal is pending. */ 443 qatomic_set(&ts->signal_pending, 1); 444 } 445 446 static int fatal_signal(int sig) 447 { 448 449 switch (sig) { 450 case TARGET_SIGCHLD: 451 case TARGET_SIGURG: 452 case TARGET_SIGWINCH: 453 case TARGET_SIGINFO: 454 /* Ignored by default. */ 455 return 0; 456 case TARGET_SIGCONT: 457 case TARGET_SIGSTOP: 458 case TARGET_SIGTSTP: 459 case TARGET_SIGTTIN: 460 case TARGET_SIGTTOU: 461 /* Job control signals. */ 462 return 0; 463 default: 464 return 1; 465 } 466 } 467 468 /* 469 * Force a synchronously taken QEMU_SI_FAULT signal. For QEMU the 470 * 'force' part is handled in process_pending_signals(). 471 */ 472 void force_sig_fault(int sig, int code, abi_ulong addr) 473 { 474 CPUState *cpu = thread_cpu; 475 target_siginfo_t info = {}; 476 477 info.si_signo = sig; 478 info.si_errno = 0; 479 info.si_code = code; 480 info.si_addr = addr; 481 queue_signal(cpu_env(cpu), sig, QEMU_SI_FAULT, &info); 482 } 483 484 static void host_signal_handler(int host_sig, siginfo_t *info, void *puc) 485 { 486 CPUState *cpu = thread_cpu; 487 TaskState *ts = get_task_state(cpu); 488 target_siginfo_t tinfo; 489 ucontext_t *uc = puc; 490 struct emulated_sigtable *k; 491 int guest_sig; 492 uintptr_t pc = 0; 493 bool sync_sig = false; 494 495 if (host_sig == host_interrupt_signal) { 496 ts->signal_pending = 1; 497 cpu_exit(thread_cpu); 498 return; 499 } 500 501 /* 502 * Non-spoofed SIGSEGV and SIGBUS are synchronous, and need special 503 * handling wrt signal blocking and unwinding. 504 */ 505 if ((host_sig == SIGSEGV || host_sig == SIGBUS) && info->si_code > 0) { 506 MMUAccessType access_type; 507 uintptr_t host_addr; 508 abi_ptr guest_addr; 509 bool is_write; 510 511 host_addr = (uintptr_t)info->si_addr; 512 513 /* 514 * Convert forcefully to guest address space: addresses outside 515 * reserved_va are still valid to report via SEGV_MAPERR. 516 */ 517 guest_addr = h2g_nocheck(host_addr); 518 519 pc = host_signal_pc(uc); 520 is_write = host_signal_write(info, uc); 521 access_type = adjust_signal_pc(&pc, is_write); 522 523 if (host_sig == SIGSEGV) { 524 bool maperr = true; 525 526 if (info->si_code == SEGV_ACCERR && h2g_valid(host_addr)) { 527 /* If this was a write to a TB protected page, restart. */ 528 if (is_write && 529 handle_sigsegv_accerr_write(cpu, &uc->uc_sigmask, 530 pc, guest_addr)) { 531 return; 532 } 533 534 /* 535 * With reserved_va, the whole address space is PROT_NONE, 536 * which means that we may get ACCERR when we want MAPERR. 537 */ 538 if (page_get_flags(guest_addr) & PAGE_VALID) { 539 maperr = false; 540 } else { 541 info->si_code = SEGV_MAPERR; 542 } 543 } 544 545 sigprocmask(SIG_SETMASK, &uc->uc_sigmask, NULL); 546 cpu_loop_exit_sigsegv(cpu, guest_addr, access_type, maperr, pc); 547 } else { 548 sigprocmask(SIG_SETMASK, &uc->uc_sigmask, NULL); 549 if (info->si_code == BUS_ADRALN) { 550 cpu_loop_exit_sigbus(cpu, guest_addr, access_type, pc); 551 } 552 } 553 554 sync_sig = true; 555 } 556 557 /* Get the target signal number. */ 558 guest_sig = host_to_target_signal(host_sig); 559 if (guest_sig < 1 || guest_sig > TARGET_NSIG) { 560 return; 561 } 562 trace_user_host_signal(cpu, host_sig, guest_sig); 563 564 host_to_target_siginfo_noswap(&tinfo, info); 565 566 k = &ts->sigtab[guest_sig - 1]; 567 k->info = tinfo; 568 k->pending = guest_sig; 569 ts->signal_pending = 1; 570 571 /* 572 * For synchronous signals, unwind the cpu state to the faulting 573 * insn and then exit back to the main loop so that the signal 574 * is delivered immediately. 575 */ 576 if (sync_sig) { 577 cpu->exception_index = EXCP_INTERRUPT; 578 cpu_loop_exit_restore(cpu, pc); 579 } 580 581 rewind_if_in_safe_syscall(puc); 582 583 /* 584 * Block host signals until target signal handler entered. We 585 * can't block SIGSEGV or SIGBUS while we're executing guest 586 * code in case the guest code provokes one in the window between 587 * now and it getting out to the main loop. Signals will be 588 * unblocked again in process_pending_signals(). 589 */ 590 sigfillset(&uc->uc_sigmask); 591 sigdelset(&uc->uc_sigmask, SIGSEGV); 592 sigdelset(&uc->uc_sigmask, SIGBUS); 593 594 /* Interrupt the virtual CPU as soon as possible. */ 595 cpu_exit(thread_cpu); 596 } 597 598 /* do_sigaltstack() returns target values and errnos. */ 599 /* compare to kern/kern_sig.c sys_sigaltstack() and kern_sigaltstack() */ 600 abi_long do_sigaltstack(abi_ulong uss_addr, abi_ulong uoss_addr, abi_ulong sp) 601 { 602 TaskState *ts = get_task_state(thread_cpu); 603 int ret; 604 target_stack_t oss; 605 606 if (uoss_addr) { 607 /* Save current signal stack params */ 608 oss.ss_sp = tswapl(ts->sigaltstack_used.ss_sp); 609 oss.ss_size = tswapl(ts->sigaltstack_used.ss_size); 610 oss.ss_flags = tswapl(sas_ss_flags(ts, sp)); 611 } 612 613 if (uss_addr) { 614 target_stack_t *uss; 615 target_stack_t ss; 616 size_t minstacksize = TARGET_MINSIGSTKSZ; 617 618 ret = -TARGET_EFAULT; 619 if (!lock_user_struct(VERIFY_READ, uss, uss_addr, 1)) { 620 goto out; 621 } 622 __get_user(ss.ss_sp, &uss->ss_sp); 623 __get_user(ss.ss_size, &uss->ss_size); 624 __get_user(ss.ss_flags, &uss->ss_flags); 625 unlock_user_struct(uss, uss_addr, 0); 626 627 ret = -TARGET_EPERM; 628 if (on_sig_stack(ts, sp)) { 629 goto out; 630 } 631 632 ret = -TARGET_EINVAL; 633 if (ss.ss_flags != TARGET_SS_DISABLE 634 && ss.ss_flags != TARGET_SS_ONSTACK 635 && ss.ss_flags != 0) { 636 goto out; 637 } 638 639 if (ss.ss_flags == TARGET_SS_DISABLE) { 640 ss.ss_size = 0; 641 ss.ss_sp = 0; 642 } else { 643 ret = -TARGET_ENOMEM; 644 if (ss.ss_size < minstacksize) { 645 goto out; 646 } 647 } 648 649 ts->sigaltstack_used.ss_sp = ss.ss_sp; 650 ts->sigaltstack_used.ss_size = ss.ss_size; 651 } 652 653 if (uoss_addr) { 654 ret = -TARGET_EFAULT; 655 if (copy_to_user(uoss_addr, &oss, sizeof(oss))) { 656 goto out; 657 } 658 } 659 660 ret = 0; 661 out: 662 return ret; 663 } 664 665 /* do_sigaction() return host values and errnos */ 666 int do_sigaction(int sig, const struct target_sigaction *act, 667 struct target_sigaction *oact) 668 { 669 struct target_sigaction *k; 670 struct sigaction act1; 671 int host_sig; 672 int ret = 0; 673 674 if (sig < 1 || sig > TARGET_NSIG) { 675 return -TARGET_EINVAL; 676 } 677 678 if ((sig == TARGET_SIGKILL || sig == TARGET_SIGSTOP) && 679 act != NULL && act->_sa_handler != TARGET_SIG_DFL) { 680 return -TARGET_EINVAL; 681 } 682 683 if (block_signals()) { 684 return -TARGET_ERESTART; 685 } 686 687 k = &sigact_table[sig - 1]; 688 if (oact) { 689 oact->_sa_handler = tswapal(k->_sa_handler); 690 oact->sa_flags = tswap32(k->sa_flags); 691 oact->sa_mask = k->sa_mask; 692 } 693 if (act) { 694 k->_sa_handler = tswapal(act->_sa_handler); 695 k->sa_flags = tswap32(act->sa_flags); 696 k->sa_mask = act->sa_mask; 697 698 /* Update the host signal state. */ 699 host_sig = target_to_host_signal(sig); 700 if (host_sig != SIGSEGV && host_sig != SIGBUS) { 701 memset(&act1, 0, sizeof(struct sigaction)); 702 sigfillset(&act1.sa_mask); 703 act1.sa_flags = SA_SIGINFO; 704 if (k->sa_flags & TARGET_SA_RESTART) { 705 act1.sa_flags |= SA_RESTART; 706 } 707 /* 708 * Note: It is important to update the host kernel signal mask to 709 * avoid getting unexpected interrupted system calls. 710 */ 711 if (k->_sa_handler == TARGET_SIG_IGN) { 712 act1.sa_sigaction = (void *)SIG_IGN; 713 } else if (k->_sa_handler == TARGET_SIG_DFL) { 714 if (fatal_signal(sig)) { 715 act1.sa_sigaction = host_signal_handler; 716 } else { 717 act1.sa_sigaction = (void *)SIG_DFL; 718 } 719 } else { 720 act1.sa_sigaction = host_signal_handler; 721 } 722 ret = sigaction(host_sig, &act1, NULL); 723 } 724 } 725 return ret; 726 } 727 728 static inline abi_ulong get_sigframe(struct target_sigaction *ka, 729 CPUArchState *env, size_t frame_size) 730 { 731 TaskState *ts = get_task_state(thread_cpu); 732 abi_ulong sp; 733 734 /* Use default user stack */ 735 sp = get_sp_from_cpustate(env); 736 737 if ((ka->sa_flags & TARGET_SA_ONSTACK) && sas_ss_flags(ts, sp) == 0) { 738 sp = ts->sigaltstack_used.ss_sp + ts->sigaltstack_used.ss_size; 739 } 740 741 return ROUND_DOWN(sp - frame_size, TARGET_SIGSTACK_ALIGN); 742 } 743 744 /* compare to $M/$M/exec_machdep.c sendsig and sys/kern/kern_sig.c sigexit */ 745 746 static void setup_frame(int sig, int code, struct target_sigaction *ka, 747 target_sigset_t *set, target_siginfo_t *tinfo, CPUArchState *env) 748 { 749 struct target_sigframe *frame; 750 abi_ulong frame_addr; 751 int i; 752 753 frame_addr = get_sigframe(ka, env, sizeof(*frame)); 754 trace_user_setup_frame(env, frame_addr); 755 if (!lock_user_struct(VERIFY_WRITE, frame, frame_addr, 0)) { 756 unlock_user_struct(frame, frame_addr, 1); 757 dump_core_and_abort(TARGET_SIGILL); 758 return; 759 } 760 761 memset(frame, 0, sizeof(*frame)); 762 setup_sigframe_arch(env, frame_addr, frame, 0); 763 764 for (i = 0; i < TARGET_NSIG_WORDS; i++) { 765 __put_user(set->__bits[i], &frame->sf_uc.uc_sigmask.__bits[i]); 766 } 767 768 if (tinfo) { 769 frame->sf_si.si_signo = tinfo->si_signo; 770 frame->sf_si.si_errno = tinfo->si_errno; 771 frame->sf_si.si_code = tinfo->si_code; 772 frame->sf_si.si_pid = tinfo->si_pid; 773 frame->sf_si.si_uid = tinfo->si_uid; 774 frame->sf_si.si_status = tinfo->si_status; 775 frame->sf_si.si_addr = tinfo->si_addr; 776 /* see host_to_target_siginfo_noswap() for more details */ 777 frame->sf_si.si_value.sival_ptr = tinfo->si_value.sival_ptr; 778 /* 779 * At this point, whatever is in the _reason union is complete 780 * and in target order, so just copy the whole thing over, even 781 * if it's too large for this specific signal. 782 * host_to_target_siginfo_noswap() and tswap_siginfo() have ensured 783 * that's so. 784 */ 785 memcpy(&frame->sf_si._reason, &tinfo->_reason, 786 sizeof(tinfo->_reason)); 787 } 788 789 set_sigtramp_args(env, sig, frame, frame_addr, ka); 790 791 unlock_user_struct(frame, frame_addr, 1); 792 } 793 794 static int reset_signal_mask(target_ucontext_t *ucontext) 795 { 796 int i; 797 sigset_t blocked; 798 target_sigset_t target_set; 799 TaskState *ts = get_task_state(thread_cpu); 800 801 for (i = 0; i < TARGET_NSIG_WORDS; i++) { 802 __get_user(target_set.__bits[i], &ucontext->uc_sigmask.__bits[i]); 803 } 804 target_to_host_sigset_internal(&blocked, &target_set); 805 ts->signal_mask = blocked; 806 807 return 0; 808 } 809 810 /* See sys/$M/$M/exec_machdep.c sigreturn() */ 811 long do_sigreturn(CPUArchState *env, abi_ulong addr) 812 { 813 long ret; 814 abi_ulong target_ucontext; 815 target_ucontext_t *ucontext = NULL; 816 817 /* Get the target ucontext address from the stack frame */ 818 ret = get_ucontext_sigreturn(env, addr, &target_ucontext); 819 if (is_error(ret)) { 820 return ret; 821 } 822 trace_user_do_sigreturn(env, addr); 823 if (!lock_user_struct(VERIFY_READ, ucontext, target_ucontext, 0)) { 824 goto badframe; 825 } 826 827 /* Set the register state back to before the signal. */ 828 if (set_mcontext(env, &ucontext->uc_mcontext, 1)) { 829 goto badframe; 830 } 831 832 /* And reset the signal mask. */ 833 if (reset_signal_mask(ucontext)) { 834 goto badframe; 835 } 836 837 unlock_user_struct(ucontext, target_ucontext, 0); 838 return -TARGET_EJUSTRETURN; 839 840 badframe: 841 if (ucontext != NULL) { 842 unlock_user_struct(ucontext, target_ucontext, 0); 843 } 844 return -TARGET_EFAULT; 845 } 846 847 void signal_init(void) 848 { 849 TaskState *ts = get_task_state(thread_cpu); 850 struct sigaction act; 851 struct sigaction oact; 852 int i; 853 int host_sig; 854 855 /* Set the signal mask from the host mask. */ 856 sigprocmask(0, 0, &ts->signal_mask); 857 858 sigfillset(&act.sa_mask); 859 act.sa_sigaction = host_signal_handler; 860 act.sa_flags = SA_SIGINFO; 861 862 for (i = 1; i <= TARGET_NSIG; i++) { 863 host_sig = target_to_host_signal(i); 864 if (host_sig == host_interrupt_signal) { 865 continue; 866 } 867 sigaction(host_sig, NULL, &oact); 868 if (oact.sa_sigaction == (void *)SIG_IGN) { 869 sigact_table[i - 1]._sa_handler = TARGET_SIG_IGN; 870 } else if (oact.sa_sigaction == (void *)SIG_DFL) { 871 sigact_table[i - 1]._sa_handler = TARGET_SIG_DFL; 872 } 873 /* 874 * If there's already a handler installed then something has 875 * gone horribly wrong, so don't even try to handle that case. 876 * Install some handlers for our own use. We need at least 877 * SIGSEGV and SIGBUS, to detect exceptions. We can not just 878 * trap all signals because it affects syscall interrupt 879 * behavior. But do trap all default-fatal signals. 880 */ 881 if (fatal_signal(i)) { 882 sigaction(host_sig, &act, NULL); 883 } 884 } 885 sigaction(host_interrupt_signal, &act, NULL); 886 } 887 888 static void handle_pending_signal(CPUArchState *env, int sig, 889 struct emulated_sigtable *k) 890 { 891 CPUState *cpu = env_cpu(env); 892 TaskState *ts = get_task_state(cpu); 893 struct target_sigaction *sa; 894 int code; 895 sigset_t set; 896 abi_ulong handler; 897 target_siginfo_t tinfo; 898 target_sigset_t target_old_set; 899 900 trace_user_handle_signal(env, sig); 901 902 k->pending = 0; 903 904 sig = gdb_handlesig(cpu, sig, NULL, &k->info, sizeof(k->info)); 905 if (!sig) { 906 sa = NULL; 907 handler = TARGET_SIG_IGN; 908 } else { 909 sa = &sigact_table[sig - 1]; 910 handler = sa->_sa_handler; 911 } 912 913 if (do_strace) { 914 print_taken_signal(sig, &k->info); 915 } 916 917 if (handler == TARGET_SIG_DFL) { 918 /* 919 * default handler : ignore some signal. The other are job 920 * control or fatal. 921 */ 922 if (sig == TARGET_SIGTSTP || sig == TARGET_SIGTTIN || 923 sig == TARGET_SIGTTOU) { 924 kill(getpid(), SIGSTOP); 925 } else if (sig != TARGET_SIGCHLD && sig != TARGET_SIGURG && 926 sig != TARGET_SIGINFO && sig != TARGET_SIGWINCH && 927 sig != TARGET_SIGCONT) { 928 dump_core_and_abort(sig); 929 } 930 } else if (handler == TARGET_SIG_IGN) { 931 /* ignore sig */ 932 } else if (handler == TARGET_SIG_ERR) { 933 dump_core_and_abort(sig); 934 } else { 935 /* compute the blocked signals during the handler execution */ 936 sigset_t *blocked_set; 937 938 target_to_host_sigset(&set, &sa->sa_mask); 939 /* 940 * SA_NODEFER indicates that the current signal should not be 941 * blocked during the handler. 942 */ 943 if (!(sa->sa_flags & TARGET_SA_NODEFER)) { 944 sigaddset(&set, target_to_host_signal(sig)); 945 } 946 947 /* 948 * Save the previous blocked signal state to restore it at the 949 * end of the signal execution (see do_sigreturn). 950 */ 951 host_to_target_sigset_internal(&target_old_set, &ts->signal_mask); 952 953 blocked_set = ts->in_sigsuspend ? 954 &ts->sigsuspend_mask : &ts->signal_mask; 955 sigorset(&ts->signal_mask, blocked_set, &set); 956 ts->in_sigsuspend = false; 957 sigprocmask(SIG_SETMASK, &ts->signal_mask, NULL); 958 959 /* XXX VM86 on x86 ??? */ 960 961 code = k->info.si_code; /* From host, so no si_type */ 962 /* prepare the stack frame of the virtual CPU */ 963 if (sa->sa_flags & TARGET_SA_SIGINFO) { 964 tswap_siginfo(&tinfo, &k->info); 965 setup_frame(sig, code, sa, &target_old_set, &tinfo, env); 966 } else { 967 setup_frame(sig, code, sa, &target_old_set, NULL, env); 968 } 969 if (sa->sa_flags & TARGET_SA_RESETHAND) { 970 sa->_sa_handler = TARGET_SIG_DFL; 971 } 972 } 973 } 974 975 void process_pending_signals(CPUArchState *env) 976 { 977 CPUState *cpu = env_cpu(env); 978 int sig; 979 sigset_t *blocked_set, set; 980 struct emulated_sigtable *k; 981 TaskState *ts = get_task_state(cpu); 982 983 while (qatomic_read(&ts->signal_pending)) { 984 sigfillset(&set); 985 sigprocmask(SIG_SETMASK, &set, 0); 986 987 restart_scan: 988 sig = ts->sync_signal.pending; 989 if (sig) { 990 /* 991 * Synchronous signals are forced by the emulated CPU in some way. 992 * If they are set to ignore, restore the default handler (see 993 * sys/kern_sig.c trapsignal() and execsigs() for this behavior) 994 * though maybe this is done only when forcing exit for non SIGCHLD. 995 */ 996 if (sigismember(&ts->signal_mask, target_to_host_signal(sig)) || 997 sigact_table[sig - 1]._sa_handler == TARGET_SIG_IGN) { 998 sigdelset(&ts->signal_mask, target_to_host_signal(sig)); 999 sigact_table[sig - 1]._sa_handler = TARGET_SIG_DFL; 1000 } 1001 handle_pending_signal(env, sig, &ts->sync_signal); 1002 } 1003 1004 k = ts->sigtab; 1005 for (sig = 1; sig <= TARGET_NSIG; sig++, k++) { 1006 blocked_set = ts->in_sigsuspend ? 1007 &ts->sigsuspend_mask : &ts->signal_mask; 1008 if (k->pending && 1009 !sigismember(blocked_set, target_to_host_signal(sig))) { 1010 handle_pending_signal(env, sig, k); 1011 /* 1012 * Restart scan from the beginning, as handle_pending_signal 1013 * might have resulted in a new synchronous signal (eg SIGSEGV). 1014 */ 1015 goto restart_scan; 1016 } 1017 } 1018 1019 /* 1020 * Unblock signals and check one more time. Unblocking signals may cause 1021 * us to take another host signal, which will set signal_pending again. 1022 */ 1023 qatomic_set(&ts->signal_pending, 0); 1024 ts->in_sigsuspend = false; 1025 set = ts->signal_mask; 1026 sigdelset(&set, SIGSEGV); 1027 sigdelset(&set, SIGBUS); 1028 sigprocmask(SIG_SETMASK, &set, 0); 1029 } 1030 ts->in_sigsuspend = false; 1031 } 1032 1033 void cpu_loop_exit_sigsegv(CPUState *cpu, target_ulong addr, 1034 MMUAccessType access_type, bool maperr, uintptr_t ra) 1035 { 1036 const TCGCPUOps *tcg_ops = cpu->cc->tcg_ops; 1037 1038 if (tcg_ops->record_sigsegv) { 1039 tcg_ops->record_sigsegv(cpu, addr, access_type, maperr, ra); 1040 } 1041 1042 force_sig_fault(TARGET_SIGSEGV, 1043 maperr ? TARGET_SEGV_MAPERR : TARGET_SEGV_ACCERR, 1044 addr); 1045 cpu->exception_index = EXCP_INTERRUPT; 1046 cpu_loop_exit_restore(cpu, ra); 1047 } 1048 1049 void cpu_loop_exit_sigbus(CPUState *cpu, target_ulong addr, 1050 MMUAccessType access_type, uintptr_t ra) 1051 { 1052 const TCGCPUOps *tcg_ops = cpu->cc->tcg_ops; 1053 1054 if (tcg_ops->record_sigbus) { 1055 tcg_ops->record_sigbus(cpu, addr, access_type, ra); 1056 } 1057 1058 force_sig_fault(TARGET_SIGBUS, TARGET_BUS_ADRALN, addr); 1059 cpu->exception_index = EXCP_INTERRUPT; 1060 cpu_loop_exit_restore(cpu, ra); 1061 } 1062