1 /* 2 * Emulation of BSD signals 3 * 4 * Copyright (c) 2003 - 2008 Fabrice Bellard 5 * Copyright (c) 2013 Stacey Son 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License as published by 9 * the Free Software Foundation; either version 2 of the License, or 10 * (at your option) any later version. 11 * 12 * This program is distributed in the hope that it will be useful, 13 * but WITHOUT ANY WARRANTY; without even the implied warranty of 14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 15 * GNU General Public License for more details. 16 * 17 * You should have received a copy of the GNU General Public License 18 * along with this program; if not, see <http://www.gnu.org/licenses/>. 19 */ 20 21 #include "qemu/osdep.h" 22 #include "qemu.h" 23 #include "signal-common.h" 24 #include "trace.h" 25 #include "hw/core/tcg-cpu-ops.h" 26 #include "host-signal.h" 27 28 static struct target_sigaction sigact_table[TARGET_NSIG]; 29 static void host_signal_handler(int host_sig, siginfo_t *info, void *puc); 30 static void target_to_host_sigset_internal(sigset_t *d, 31 const target_sigset_t *s); 32 33 static inline int on_sig_stack(TaskState *ts, unsigned long sp) 34 { 35 return sp - ts->sigaltstack_used.ss_sp < ts->sigaltstack_used.ss_size; 36 } 37 38 static inline int sas_ss_flags(TaskState *ts, unsigned long sp) 39 { 40 return ts->sigaltstack_used.ss_size == 0 ? SS_DISABLE : 41 on_sig_stack(ts, sp) ? SS_ONSTACK : 0; 42 } 43 44 /* 45 * The BSD ABIs use the same singal numbers across all the CPU architectures, so 46 * (unlike Linux) these functions are just the identity mapping. This might not 47 * be true for XyzBSD running on AbcBSD, which doesn't currently work. 48 */ 49 int host_to_target_signal(int sig) 50 { 51 return sig; 52 } 53 54 int target_to_host_signal(int sig) 55 { 56 return sig; 57 } 58 59 static inline void target_sigemptyset(target_sigset_t *set) 60 { 61 memset(set, 0, sizeof(*set)); 62 } 63 64 static inline void target_sigaddset(target_sigset_t *set, int signum) 65 { 66 signum--; 67 uint32_t mask = (uint32_t)1 << (signum % TARGET_NSIG_BPW); 68 set->__bits[signum / TARGET_NSIG_BPW] |= mask; 69 } 70 71 static inline int target_sigismember(const target_sigset_t *set, int signum) 72 { 73 signum--; 74 abi_ulong mask = (abi_ulong)1 << (signum % TARGET_NSIG_BPW); 75 return (set->__bits[signum / TARGET_NSIG_BPW] & mask) != 0; 76 } 77 78 /* Adjust the signal context to rewind out of safe-syscall if we're in it */ 79 static inline void rewind_if_in_safe_syscall(void *puc) 80 { 81 ucontext_t *uc = (ucontext_t *)puc; 82 uintptr_t pcreg = host_signal_pc(uc); 83 84 if (pcreg > (uintptr_t)safe_syscall_start 85 && pcreg < (uintptr_t)safe_syscall_end) { 86 host_signal_set_pc(uc, (uintptr_t)safe_syscall_start); 87 } 88 } 89 90 /* 91 * Note: The following take advantage of the BSD signal property that all 92 * signals are available on all architectures. 93 */ 94 static void host_to_target_sigset_internal(target_sigset_t *d, 95 const sigset_t *s) 96 { 97 int i; 98 99 target_sigemptyset(d); 100 for (i = 1; i <= NSIG; i++) { 101 if (sigismember(s, i)) { 102 target_sigaddset(d, host_to_target_signal(i)); 103 } 104 } 105 } 106 107 void host_to_target_sigset(target_sigset_t *d, const sigset_t *s) 108 { 109 target_sigset_t d1; 110 int i; 111 112 host_to_target_sigset_internal(&d1, s); 113 for (i = 0; i < _SIG_WORDS; i++) { 114 d->__bits[i] = tswap32(d1.__bits[i]); 115 } 116 } 117 118 static void target_to_host_sigset_internal(sigset_t *d, 119 const target_sigset_t *s) 120 { 121 int i; 122 123 sigemptyset(d); 124 for (i = 1; i <= TARGET_NSIG; i++) { 125 if (target_sigismember(s, i)) { 126 sigaddset(d, target_to_host_signal(i)); 127 } 128 } 129 } 130 131 void target_to_host_sigset(sigset_t *d, const target_sigset_t *s) 132 { 133 target_sigset_t s1; 134 int i; 135 136 for (i = 0; i < TARGET_NSIG_WORDS; i++) { 137 s1.__bits[i] = tswap32(s->__bits[i]); 138 } 139 target_to_host_sigset_internal(d, &s1); 140 } 141 142 static bool has_trapno(int tsig) 143 { 144 return tsig == TARGET_SIGILL || 145 tsig == TARGET_SIGFPE || 146 tsig == TARGET_SIGSEGV || 147 tsig == TARGET_SIGBUS || 148 tsig == TARGET_SIGTRAP; 149 } 150 151 /* Siginfo conversion. */ 152 153 /* 154 * Populate tinfo w/o swapping based on guessing which fields are valid. 155 */ 156 static inline void host_to_target_siginfo_noswap(target_siginfo_t *tinfo, 157 const siginfo_t *info) 158 { 159 int sig = host_to_target_signal(info->si_signo); 160 int si_code = info->si_code; 161 int si_type; 162 163 /* 164 * Make sure we that the variable portion of the target siginfo is zeroed 165 * out so we don't leak anything into that. 166 */ 167 memset(&tinfo->_reason, 0, sizeof(tinfo->_reason)); 168 169 /* 170 * This is awkward, because we have to use a combination of the si_code and 171 * si_signo to figure out which of the union's members are valid.o We 172 * therefore make our best guess. 173 * 174 * Once we have made our guess, we record it in the top 16 bits of 175 * the si_code, so that tswap_siginfo() later can use it. 176 * tswap_siginfo() will strip these top bits out before writing 177 * si_code to the guest (sign-extending the lower bits). 178 */ 179 tinfo->si_signo = sig; 180 tinfo->si_errno = info->si_errno; 181 tinfo->si_code = info->si_code; 182 tinfo->si_pid = info->si_pid; 183 tinfo->si_uid = info->si_uid; 184 tinfo->si_status = info->si_status; 185 tinfo->si_addr = (abi_ulong)(unsigned long)info->si_addr; 186 /* 187 * si_value is opaque to kernel. On all FreeBSD platforms, 188 * sizeof(sival_ptr) >= sizeof(sival_int) so the following 189 * always will copy the larger element. 190 */ 191 tinfo->si_value.sival_ptr = 192 (abi_ulong)(unsigned long)info->si_value.sival_ptr; 193 194 switch (si_code) { 195 /* 196 * All the SI_xxx codes that are defined here are global to 197 * all the signals (they have values that none of the other, 198 * more specific signal info will set). 199 */ 200 case SI_USER: 201 case SI_LWP: 202 case SI_KERNEL: 203 case SI_QUEUE: 204 case SI_ASYNCIO: 205 /* 206 * Only the fixed parts are valid (though FreeBSD doesn't always 207 * set all the fields to non-zero values. 208 */ 209 si_type = QEMU_SI_NOINFO; 210 break; 211 case SI_TIMER: 212 tinfo->_reason._timer._timerid = info->_reason._timer._timerid; 213 tinfo->_reason._timer._overrun = info->_reason._timer._overrun; 214 si_type = QEMU_SI_TIMER; 215 break; 216 case SI_MESGQ: 217 tinfo->_reason._mesgq._mqd = info->_reason._mesgq._mqd; 218 si_type = QEMU_SI_MESGQ; 219 break; 220 default: 221 /* 222 * We have to go based on the signal number now to figure out 223 * what's valid. 224 */ 225 if (has_trapno(sig)) { 226 tinfo->_reason._fault._trapno = info->_reason._fault._trapno; 227 si_type = QEMU_SI_FAULT; 228 } 229 #ifdef TARGET_SIGPOLL 230 /* 231 * FreeBSD never had SIGPOLL, but emulates it for Linux so there's 232 * a chance it may popup in the future. 233 */ 234 if (sig == TARGET_SIGPOLL) { 235 tinfo->_reason._poll._band = info->_reason._poll._band; 236 si_type = QEMU_SI_POLL; 237 } 238 #endif 239 /* 240 * Unsure that this can actually be generated, and our support for 241 * capsicum is somewhere between weak and non-existant, but if we get 242 * one, then we know what to save. 243 */ 244 if (sig == TARGET_SIGTRAP) { 245 tinfo->_reason._capsicum._syscall = 246 info->_reason._capsicum._syscall; 247 si_type = QEMU_SI_CAPSICUM; 248 } 249 break; 250 } 251 tinfo->si_code = deposit32(si_code, 24, 8, si_type); 252 } 253 254 static void tswap_siginfo(target_siginfo_t *tinfo, const target_siginfo_t *info) 255 { 256 int si_type = extract32(info->si_code, 24, 8); 257 int si_code = sextract32(info->si_code, 0, 24); 258 259 __put_user(info->si_signo, &tinfo->si_signo); 260 __put_user(info->si_errno, &tinfo->si_errno); 261 __put_user(si_code, &tinfo->si_code); /* Zero out si_type, it's internal */ 262 __put_user(info->si_pid, &tinfo->si_pid); 263 __put_user(info->si_uid, &tinfo->si_uid); 264 __put_user(info->si_status, &tinfo->si_status); 265 __put_user(info->si_addr, &tinfo->si_addr); 266 /* 267 * Unswapped, because we passed it through mostly untouched. si_value is 268 * opaque to the kernel, so we didn't bother with potentially wasting cycles 269 * to swap it into host byte order. 270 */ 271 tinfo->si_value.sival_ptr = info->si_value.sival_ptr; 272 273 /* 274 * We can use our internal marker of which fields in the structure 275 * are valid, rather than duplicating the guesswork of 276 * host_to_target_siginfo_noswap() here. 277 */ 278 switch (si_type) { 279 case QEMU_SI_NOINFO: /* No additional info */ 280 break; 281 case QEMU_SI_FAULT: 282 __put_user(info->_reason._fault._trapno, 283 &tinfo->_reason._fault._trapno); 284 break; 285 case QEMU_SI_TIMER: 286 __put_user(info->_reason._timer._timerid, 287 &tinfo->_reason._timer._timerid); 288 __put_user(info->_reason._timer._overrun, 289 &tinfo->_reason._timer._overrun); 290 break; 291 case QEMU_SI_MESGQ: 292 __put_user(info->_reason._mesgq._mqd, &tinfo->_reason._mesgq._mqd); 293 break; 294 case QEMU_SI_POLL: 295 /* Note: Not generated on FreeBSD */ 296 __put_user(info->_reason._poll._band, &tinfo->_reason._poll._band); 297 break; 298 case QEMU_SI_CAPSICUM: 299 __put_user(info->_reason._capsicum._syscall, 300 &tinfo->_reason._capsicum._syscall); 301 break; 302 default: 303 g_assert_not_reached(); 304 } 305 } 306 307 int block_signals(void) 308 { 309 TaskState *ts = (TaskState *)thread_cpu->opaque; 310 sigset_t set; 311 312 /* 313 * It's OK to block everything including SIGSEGV, because we won't run any 314 * further guest code before unblocking signals in 315 * process_pending_signals(). We depend on the FreeBSD behaivor here where 316 * this will only affect this thread's signal mask. We don't use 317 * pthread_sigmask which might seem more correct because that routine also 318 * does odd things with SIGCANCEL to implement pthread_cancel(). 319 */ 320 sigfillset(&set); 321 sigprocmask(SIG_SETMASK, &set, 0); 322 323 return qatomic_xchg(&ts->signal_pending, 1); 324 } 325 326 /* Returns 1 if given signal should dump core if not handled. */ 327 static int core_dump_signal(int sig) 328 { 329 switch (sig) { 330 case TARGET_SIGABRT: 331 case TARGET_SIGFPE: 332 case TARGET_SIGILL: 333 case TARGET_SIGQUIT: 334 case TARGET_SIGSEGV: 335 case TARGET_SIGTRAP: 336 case TARGET_SIGBUS: 337 return 1; 338 default: 339 return 0; 340 } 341 } 342 343 /* Abort execution with signal. */ 344 static void QEMU_NORETURN dump_core_and_abort(int target_sig) 345 { 346 CPUArchState *env = thread_cpu->env_ptr; 347 CPUState *cpu = env_cpu(env); 348 TaskState *ts = cpu->opaque; 349 int core_dumped = 0; 350 int host_sig; 351 struct sigaction act; 352 353 host_sig = target_to_host_signal(target_sig); 354 gdb_signalled(env, target_sig); 355 356 /* Dump core if supported by target binary format */ 357 if (core_dump_signal(target_sig) && (ts->bprm->core_dump != NULL)) { 358 stop_all_tasks(); 359 core_dumped = 360 ((*ts->bprm->core_dump)(target_sig, env) == 0); 361 } 362 if (core_dumped) { 363 struct rlimit nodump; 364 365 /* 366 * We already dumped the core of target process, we don't want 367 * a coredump of qemu itself. 368 */ 369 getrlimit(RLIMIT_CORE, &nodump); 370 nodump.rlim_cur = 0; 371 setrlimit(RLIMIT_CORE, &nodump); 372 (void) fprintf(stderr, "qemu: uncaught target signal %d (%s) " 373 "- %s\n", target_sig, strsignal(host_sig), "core dumped"); 374 } 375 376 /* 377 * The proper exit code for dying from an uncaught signal is 378 * -<signal>. The kernel doesn't allow exit() or _exit() to pass 379 * a negative value. To get the proper exit code we need to 380 * actually die from an uncaught signal. Here the default signal 381 * handler is installed, we send ourself a signal and we wait for 382 * it to arrive. 383 */ 384 memset(&act, 0, sizeof(act)); 385 sigfillset(&act.sa_mask); 386 act.sa_handler = SIG_DFL; 387 sigaction(host_sig, &act, NULL); 388 389 kill(getpid(), host_sig); 390 391 /* 392 * Make sure the signal isn't masked (just reuse the mask inside 393 * of act). 394 */ 395 sigdelset(&act.sa_mask, host_sig); 396 sigsuspend(&act.sa_mask); 397 398 /* unreachable */ 399 abort(); 400 } 401 402 /* 403 * Queue a signal so that it will be send to the virtual CPU as soon as 404 * possible. 405 */ 406 void queue_signal(CPUArchState *env, int sig, int si_type, 407 target_siginfo_t *info) 408 { 409 CPUState *cpu = env_cpu(env); 410 TaskState *ts = cpu->opaque; 411 412 trace_user_queue_signal(env, sig); 413 414 info->si_code = deposit32(info->si_code, 24, 8, si_type); 415 416 ts->sync_signal.info = *info; 417 ts->sync_signal.pending = sig; 418 /* Signal that a new signal is pending. */ 419 qatomic_set(&ts->signal_pending, 1); 420 return; 421 } 422 423 static int fatal_signal(int sig) 424 { 425 426 switch (sig) { 427 case TARGET_SIGCHLD: 428 case TARGET_SIGURG: 429 case TARGET_SIGWINCH: 430 case TARGET_SIGINFO: 431 /* Ignored by default. */ 432 return 0; 433 case TARGET_SIGCONT: 434 case TARGET_SIGSTOP: 435 case TARGET_SIGTSTP: 436 case TARGET_SIGTTIN: 437 case TARGET_SIGTTOU: 438 /* Job control signals. */ 439 return 0; 440 default: 441 return 1; 442 } 443 } 444 445 /* 446 * Force a synchronously taken QEMU_SI_FAULT signal. For QEMU the 447 * 'force' part is handled in process_pending_signals(). 448 */ 449 void force_sig_fault(int sig, int code, abi_ulong addr) 450 { 451 CPUState *cpu = thread_cpu; 452 CPUArchState *env = cpu->env_ptr; 453 target_siginfo_t info = {}; 454 455 info.si_signo = sig; 456 info.si_errno = 0; 457 info.si_code = code; 458 info.si_addr = addr; 459 queue_signal(env, sig, QEMU_SI_FAULT, &info); 460 } 461 462 static void host_signal_handler(int host_sig, siginfo_t *info, void *puc) 463 { 464 CPUArchState *env = thread_cpu->env_ptr; 465 CPUState *cpu = env_cpu(env); 466 TaskState *ts = cpu->opaque; 467 target_siginfo_t tinfo; 468 ucontext_t *uc = puc; 469 struct emulated_sigtable *k; 470 int guest_sig; 471 uintptr_t pc = 0; 472 bool sync_sig = false; 473 474 /* 475 * Non-spoofed SIGSEGV and SIGBUS are synchronous, and need special 476 * handling wrt signal blocking and unwinding. 477 */ 478 if ((host_sig == SIGSEGV || host_sig == SIGBUS) && info->si_code > 0) { 479 MMUAccessType access_type; 480 uintptr_t host_addr; 481 abi_ptr guest_addr; 482 bool is_write; 483 484 host_addr = (uintptr_t)info->si_addr; 485 486 /* 487 * Convert forcefully to guest address space: addresses outside 488 * reserved_va are still valid to report via SEGV_MAPERR. 489 */ 490 guest_addr = h2g_nocheck(host_addr); 491 492 pc = host_signal_pc(uc); 493 is_write = host_signal_write(info, uc); 494 access_type = adjust_signal_pc(&pc, is_write); 495 496 if (host_sig == SIGSEGV) { 497 bool maperr = true; 498 499 if (info->si_code == SEGV_ACCERR && h2g_valid(host_addr)) { 500 /* If this was a write to a TB protected page, restart. */ 501 if (is_write && 502 handle_sigsegv_accerr_write(cpu, &uc->uc_sigmask, 503 pc, guest_addr)) { 504 return; 505 } 506 507 /* 508 * With reserved_va, the whole address space is PROT_NONE, 509 * which means that we may get ACCERR when we want MAPERR. 510 */ 511 if (page_get_flags(guest_addr) & PAGE_VALID) { 512 maperr = false; 513 } else { 514 info->si_code = SEGV_MAPERR; 515 } 516 } 517 518 sigprocmask(SIG_SETMASK, &uc->uc_sigmask, NULL); 519 cpu_loop_exit_sigsegv(cpu, guest_addr, access_type, maperr, pc); 520 } else { 521 sigprocmask(SIG_SETMASK, &uc->uc_sigmask, NULL); 522 if (info->si_code == BUS_ADRALN) { 523 cpu_loop_exit_sigbus(cpu, guest_addr, access_type, pc); 524 } 525 } 526 527 sync_sig = true; 528 } 529 530 /* Get the target signal number. */ 531 guest_sig = host_to_target_signal(host_sig); 532 if (guest_sig < 1 || guest_sig > TARGET_NSIG) { 533 return; 534 } 535 trace_user_host_signal(cpu, host_sig, guest_sig); 536 537 host_to_target_siginfo_noswap(&tinfo, info); 538 539 k = &ts->sigtab[guest_sig - 1]; 540 k->info = tinfo; 541 k->pending = guest_sig; 542 ts->signal_pending = 1; 543 544 /* 545 * For synchronous signals, unwind the cpu state to the faulting 546 * insn and then exit back to the main loop so that the signal 547 * is delivered immediately. 548 */ 549 if (sync_sig) { 550 cpu->exception_index = EXCP_INTERRUPT; 551 cpu_loop_exit_restore(cpu, pc); 552 } 553 554 rewind_if_in_safe_syscall(puc); 555 556 /* 557 * Block host signals until target signal handler entered. We 558 * can't block SIGSEGV or SIGBUS while we're executing guest 559 * code in case the guest code provokes one in the window between 560 * now and it getting out to the main loop. Signals will be 561 * unblocked again in process_pending_signals(). 562 */ 563 sigfillset(&uc->uc_sigmask); 564 sigdelset(&uc->uc_sigmask, SIGSEGV); 565 sigdelset(&uc->uc_sigmask, SIGBUS); 566 567 /* Interrupt the virtual CPU as soon as possible. */ 568 cpu_exit(thread_cpu); 569 } 570 571 /* do_sigaltstack() returns target values and errnos. */ 572 /* compare to kern/kern_sig.c sys_sigaltstack() and kern_sigaltstack() */ 573 abi_long do_sigaltstack(abi_ulong uss_addr, abi_ulong uoss_addr, abi_ulong sp) 574 { 575 TaskState *ts = (TaskState *)thread_cpu->opaque; 576 int ret; 577 target_stack_t oss; 578 579 if (uoss_addr) { 580 /* Save current signal stack params */ 581 oss.ss_sp = tswapl(ts->sigaltstack_used.ss_sp); 582 oss.ss_size = tswapl(ts->sigaltstack_used.ss_size); 583 oss.ss_flags = tswapl(sas_ss_flags(ts, sp)); 584 } 585 586 if (uss_addr) { 587 target_stack_t *uss; 588 target_stack_t ss; 589 size_t minstacksize = TARGET_MINSIGSTKSZ; 590 591 ret = -TARGET_EFAULT; 592 if (!lock_user_struct(VERIFY_READ, uss, uss_addr, 1)) { 593 goto out; 594 } 595 __get_user(ss.ss_sp, &uss->ss_sp); 596 __get_user(ss.ss_size, &uss->ss_size); 597 __get_user(ss.ss_flags, &uss->ss_flags); 598 unlock_user_struct(uss, uss_addr, 0); 599 600 ret = -TARGET_EPERM; 601 if (on_sig_stack(ts, sp)) { 602 goto out; 603 } 604 605 ret = -TARGET_EINVAL; 606 if (ss.ss_flags != TARGET_SS_DISABLE 607 && ss.ss_flags != TARGET_SS_ONSTACK 608 && ss.ss_flags != 0) { 609 goto out; 610 } 611 612 if (ss.ss_flags == TARGET_SS_DISABLE) { 613 ss.ss_size = 0; 614 ss.ss_sp = 0; 615 } else { 616 ret = -TARGET_ENOMEM; 617 if (ss.ss_size < minstacksize) { 618 goto out; 619 } 620 } 621 622 ts->sigaltstack_used.ss_sp = ss.ss_sp; 623 ts->sigaltstack_used.ss_size = ss.ss_size; 624 } 625 626 if (uoss_addr) { 627 ret = -TARGET_EFAULT; 628 if (copy_to_user(uoss_addr, &oss, sizeof(oss))) { 629 goto out; 630 } 631 } 632 633 ret = 0; 634 out: 635 return ret; 636 } 637 638 /* do_sigaction() return host values and errnos */ 639 int do_sigaction(int sig, const struct target_sigaction *act, 640 struct target_sigaction *oact) 641 { 642 struct target_sigaction *k; 643 struct sigaction act1; 644 int host_sig; 645 int ret = 0; 646 647 if (sig < 1 || sig > TARGET_NSIG) { 648 return -TARGET_EINVAL; 649 } 650 651 if ((sig == TARGET_SIGKILL || sig == TARGET_SIGSTOP) && 652 act != NULL && act->_sa_handler != TARGET_SIG_DFL) { 653 return -TARGET_EINVAL; 654 } 655 656 if (block_signals()) { 657 return -TARGET_ERESTART; 658 } 659 660 k = &sigact_table[sig - 1]; 661 if (oact) { 662 oact->_sa_handler = tswapal(k->_sa_handler); 663 oact->sa_flags = tswap32(k->sa_flags); 664 oact->sa_mask = k->sa_mask; 665 } 666 if (act) { 667 k->_sa_handler = tswapal(act->_sa_handler); 668 k->sa_flags = tswap32(act->sa_flags); 669 k->sa_mask = act->sa_mask; 670 671 /* Update the host signal state. */ 672 host_sig = target_to_host_signal(sig); 673 if (host_sig != SIGSEGV && host_sig != SIGBUS) { 674 memset(&act1, 0, sizeof(struct sigaction)); 675 sigfillset(&act1.sa_mask); 676 act1.sa_flags = SA_SIGINFO; 677 if (k->sa_flags & TARGET_SA_RESTART) { 678 act1.sa_flags |= SA_RESTART; 679 } 680 /* 681 * Note: It is important to update the host kernel signal mask to 682 * avoid getting unexpected interrupted system calls. 683 */ 684 if (k->_sa_handler == TARGET_SIG_IGN) { 685 act1.sa_sigaction = (void *)SIG_IGN; 686 } else if (k->_sa_handler == TARGET_SIG_DFL) { 687 if (fatal_signal(sig)) { 688 act1.sa_sigaction = host_signal_handler; 689 } else { 690 act1.sa_sigaction = (void *)SIG_DFL; 691 } 692 } else { 693 act1.sa_sigaction = host_signal_handler; 694 } 695 ret = sigaction(host_sig, &act1, NULL); 696 } 697 } 698 return ret; 699 } 700 701 static inline abi_ulong get_sigframe(struct target_sigaction *ka, 702 CPUArchState *env, size_t frame_size) 703 { 704 TaskState *ts = (TaskState *)thread_cpu->opaque; 705 abi_ulong sp; 706 707 /* Use default user stack */ 708 sp = get_sp_from_cpustate(env); 709 710 if ((ka->sa_flags & TARGET_SA_ONSTACK) && sas_ss_flags(ts, sp) == 0) { 711 sp = ts->sigaltstack_used.ss_sp + ts->sigaltstack_used.ss_size; 712 } 713 714 /* TODO: make this a target_arch function / define */ 715 #if defined(TARGET_ARM) 716 return (sp - frame_size) & ~7; 717 #elif defined(TARGET_AARCH64) 718 return (sp - frame_size) & ~15; 719 #else 720 return sp - frame_size; 721 #endif 722 } 723 724 /* compare to $M/$M/exec_machdep.c sendsig and sys/kern/kern_sig.c sigexit */ 725 726 static void setup_frame(int sig, int code, struct target_sigaction *ka, 727 target_sigset_t *set, target_siginfo_t *tinfo, CPUArchState *env) 728 { 729 struct target_sigframe *frame; 730 abi_ulong frame_addr; 731 int i; 732 733 frame_addr = get_sigframe(ka, env, sizeof(*frame)); 734 trace_user_setup_frame(env, frame_addr); 735 if (!lock_user_struct(VERIFY_WRITE, frame, frame_addr, 0)) { 736 unlock_user_struct(frame, frame_addr, 1); 737 dump_core_and_abort(TARGET_SIGILL); 738 return; 739 } 740 741 memset(frame, 0, sizeof(*frame)); 742 setup_sigframe_arch(env, frame_addr, frame, 0); 743 744 for (i = 0; i < TARGET_NSIG_WORDS; i++) { 745 __put_user(set->__bits[i], &frame->sf_uc.uc_sigmask.__bits[i]); 746 } 747 748 if (tinfo) { 749 frame->sf_si.si_signo = tinfo->si_signo; 750 frame->sf_si.si_errno = tinfo->si_errno; 751 frame->sf_si.si_code = tinfo->si_code; 752 frame->sf_si.si_pid = tinfo->si_pid; 753 frame->sf_si.si_uid = tinfo->si_uid; 754 frame->sf_si.si_status = tinfo->si_status; 755 frame->sf_si.si_addr = tinfo->si_addr; 756 /* see host_to_target_siginfo_noswap() for more details */ 757 frame->sf_si.si_value.sival_ptr = tinfo->si_value.sival_ptr; 758 /* 759 * At this point, whatever is in the _reason union is complete 760 * and in target order, so just copy the whole thing over, even 761 * if it's too large for this specific signal. 762 * host_to_target_siginfo_noswap() and tswap_siginfo() have ensured 763 * that's so. 764 */ 765 memcpy(&frame->sf_si._reason, &tinfo->_reason, 766 sizeof(tinfo->_reason)); 767 } 768 769 set_sigtramp_args(env, sig, frame, frame_addr, ka); 770 771 unlock_user_struct(frame, frame_addr, 1); 772 } 773 774 static int reset_signal_mask(target_ucontext_t *ucontext) 775 { 776 int i; 777 sigset_t blocked; 778 target_sigset_t target_set; 779 TaskState *ts = (TaskState *)thread_cpu->opaque; 780 781 for (i = 0; i < TARGET_NSIG_WORDS; i++) { 782 if (__get_user(target_set.__bits[i], 783 &ucontext->uc_sigmask.__bits[i])) { 784 return -TARGET_EFAULT; 785 } 786 } 787 target_to_host_sigset_internal(&blocked, &target_set); 788 ts->signal_mask = blocked; 789 790 return 0; 791 } 792 793 /* See sys/$M/$M/exec_machdep.c sigreturn() */ 794 long do_sigreturn(CPUArchState *env, abi_ulong addr) 795 { 796 long ret; 797 abi_ulong target_ucontext; 798 target_ucontext_t *ucontext = NULL; 799 800 /* Get the target ucontext address from the stack frame */ 801 ret = get_ucontext_sigreturn(env, addr, &target_ucontext); 802 if (is_error(ret)) { 803 return ret; 804 } 805 trace_user_do_sigreturn(env, addr); 806 if (!lock_user_struct(VERIFY_READ, ucontext, target_ucontext, 0)) { 807 goto badframe; 808 } 809 810 /* Set the register state back to before the signal. */ 811 if (set_mcontext(env, &ucontext->uc_mcontext, 1)) { 812 goto badframe; 813 } 814 815 /* And reset the signal mask. */ 816 if (reset_signal_mask(ucontext)) { 817 goto badframe; 818 } 819 820 unlock_user_struct(ucontext, target_ucontext, 0); 821 return -TARGET_EJUSTRETURN; 822 823 badframe: 824 if (ucontext != NULL) { 825 unlock_user_struct(ucontext, target_ucontext, 0); 826 } 827 return -TARGET_EFAULT; 828 } 829 830 void signal_init(void) 831 { 832 TaskState *ts = (TaskState *)thread_cpu->opaque; 833 struct sigaction act; 834 struct sigaction oact; 835 int i; 836 int host_sig; 837 838 /* Set the signal mask from the host mask. */ 839 sigprocmask(0, 0, &ts->signal_mask); 840 841 sigfillset(&act.sa_mask); 842 act.sa_sigaction = host_signal_handler; 843 act.sa_flags = SA_SIGINFO; 844 845 for (i = 1; i <= TARGET_NSIG; i++) { 846 #ifdef CONFIG_GPROF 847 if (i == TARGET_SIGPROF) { 848 continue; 849 } 850 #endif 851 host_sig = target_to_host_signal(i); 852 sigaction(host_sig, NULL, &oact); 853 if (oact.sa_sigaction == (void *)SIG_IGN) { 854 sigact_table[i - 1]._sa_handler = TARGET_SIG_IGN; 855 } else if (oact.sa_sigaction == (void *)SIG_DFL) { 856 sigact_table[i - 1]._sa_handler = TARGET_SIG_DFL; 857 } 858 /* 859 * If there's already a handler installed then something has 860 * gone horribly wrong, so don't even try to handle that case. 861 * Install some handlers for our own use. We need at least 862 * SIGSEGV and SIGBUS, to detect exceptions. We can not just 863 * trap all signals because it affects syscall interrupt 864 * behavior. But do trap all default-fatal signals. 865 */ 866 if (fatal_signal(i)) { 867 sigaction(host_sig, &act, NULL); 868 } 869 } 870 } 871 872 static void handle_pending_signal(CPUArchState *env, int sig, 873 struct emulated_sigtable *k) 874 { 875 CPUState *cpu = env_cpu(env); 876 TaskState *ts = cpu->opaque; 877 struct target_sigaction *sa; 878 int code; 879 sigset_t set; 880 abi_ulong handler; 881 target_siginfo_t tinfo; 882 target_sigset_t target_old_set; 883 884 trace_user_handle_signal(env, sig); 885 886 k->pending = 0; 887 888 sig = gdb_handlesig(cpu, sig); 889 if (!sig) { 890 sa = NULL; 891 handler = TARGET_SIG_IGN; 892 } else { 893 sa = &sigact_table[sig - 1]; 894 handler = sa->_sa_handler; 895 } 896 897 if (do_strace) { 898 print_taken_signal(sig, &k->info); 899 } 900 901 if (handler == TARGET_SIG_DFL) { 902 /* 903 * default handler : ignore some signal. The other are job 904 * control or fatal. 905 */ 906 if (sig == TARGET_SIGTSTP || sig == TARGET_SIGTTIN || 907 sig == TARGET_SIGTTOU) { 908 kill(getpid(), SIGSTOP); 909 } else if (sig != TARGET_SIGCHLD && sig != TARGET_SIGURG && 910 sig != TARGET_SIGINFO && sig != TARGET_SIGWINCH && 911 sig != TARGET_SIGCONT) { 912 dump_core_and_abort(sig); 913 } 914 } else if (handler == TARGET_SIG_IGN) { 915 /* ignore sig */ 916 } else if (handler == TARGET_SIG_ERR) { 917 dump_core_and_abort(sig); 918 } else { 919 /* compute the blocked signals during the handler execution */ 920 sigset_t *blocked_set; 921 922 target_to_host_sigset(&set, &sa->sa_mask); 923 /* 924 * SA_NODEFER indicates that the current signal should not be 925 * blocked during the handler. 926 */ 927 if (!(sa->sa_flags & TARGET_SA_NODEFER)) { 928 sigaddset(&set, target_to_host_signal(sig)); 929 } 930 931 /* 932 * Save the previous blocked signal state to restore it at the 933 * end of the signal execution (see do_sigreturn). 934 */ 935 host_to_target_sigset_internal(&target_old_set, &ts->signal_mask); 936 937 blocked_set = ts->in_sigsuspend ? 938 &ts->sigsuspend_mask : &ts->signal_mask; 939 sigorset(&ts->signal_mask, blocked_set, &set); 940 ts->in_sigsuspend = false; 941 sigprocmask(SIG_SETMASK, &ts->signal_mask, NULL); 942 943 /* XXX VM86 on x86 ??? */ 944 945 code = k->info.si_code; /* From host, so no si_type */ 946 /* prepare the stack frame of the virtual CPU */ 947 if (sa->sa_flags & TARGET_SA_SIGINFO) { 948 tswap_siginfo(&tinfo, &k->info); 949 setup_frame(sig, code, sa, &target_old_set, &tinfo, env); 950 } else { 951 setup_frame(sig, code, sa, &target_old_set, NULL, env); 952 } 953 if (sa->sa_flags & TARGET_SA_RESETHAND) { 954 sa->_sa_handler = TARGET_SIG_DFL; 955 } 956 } 957 } 958 959 void process_pending_signals(CPUArchState *env) 960 { 961 CPUState *cpu = env_cpu(env); 962 int sig; 963 sigset_t *blocked_set, set; 964 struct emulated_sigtable *k; 965 TaskState *ts = cpu->opaque; 966 967 while (qatomic_read(&ts->signal_pending)) { 968 sigfillset(&set); 969 sigprocmask(SIG_SETMASK, &set, 0); 970 971 restart_scan: 972 sig = ts->sync_signal.pending; 973 if (sig) { 974 /* 975 * Synchronous signals are forced by the emulated CPU in some way. 976 * If they are set to ignore, restore the default handler (see 977 * sys/kern_sig.c trapsignal() and execsigs() for this behavior) 978 * though maybe this is done only when forcing exit for non SIGCHLD. 979 */ 980 if (sigismember(&ts->signal_mask, target_to_host_signal(sig)) || 981 sigact_table[sig - 1]._sa_handler == TARGET_SIG_IGN) { 982 sigdelset(&ts->signal_mask, target_to_host_signal(sig)); 983 sigact_table[sig - 1]._sa_handler = TARGET_SIG_DFL; 984 } 985 handle_pending_signal(env, sig, &ts->sync_signal); 986 } 987 988 k = ts->sigtab; 989 for (sig = 1; sig <= TARGET_NSIG; sig++, k++) { 990 blocked_set = ts->in_sigsuspend ? 991 &ts->sigsuspend_mask : &ts->signal_mask; 992 if (k->pending && 993 !sigismember(blocked_set, target_to_host_signal(sig))) { 994 handle_pending_signal(env, sig, k); 995 /* 996 * Restart scan from the beginning, as handle_pending_signal 997 * might have resulted in a new synchronous signal (eg SIGSEGV). 998 */ 999 goto restart_scan; 1000 } 1001 } 1002 1003 /* 1004 * Unblock signals and check one more time. Unblocking signals may cause 1005 * us to take another host signal, which will set signal_pending again. 1006 */ 1007 qatomic_set(&ts->signal_pending, 0); 1008 ts->in_sigsuspend = false; 1009 set = ts->signal_mask; 1010 sigdelset(&set, SIGSEGV); 1011 sigdelset(&set, SIGBUS); 1012 sigprocmask(SIG_SETMASK, &set, 0); 1013 } 1014 ts->in_sigsuspend = false; 1015 } 1016 1017 void cpu_loop_exit_sigsegv(CPUState *cpu, target_ulong addr, 1018 MMUAccessType access_type, bool maperr, uintptr_t ra) 1019 { 1020 const struct TCGCPUOps *tcg_ops = CPU_GET_CLASS(cpu)->tcg_ops; 1021 1022 if (tcg_ops->record_sigsegv) { 1023 tcg_ops->record_sigsegv(cpu, addr, access_type, maperr, ra); 1024 } 1025 1026 force_sig_fault(TARGET_SIGSEGV, 1027 maperr ? TARGET_SEGV_MAPERR : TARGET_SEGV_ACCERR, 1028 addr); 1029 cpu->exception_index = EXCP_INTERRUPT; 1030 cpu_loop_exit_restore(cpu, ra); 1031 } 1032 1033 void cpu_loop_exit_sigbus(CPUState *cpu, target_ulong addr, 1034 MMUAccessType access_type, uintptr_t ra) 1035 { 1036 const struct TCGCPUOps *tcg_ops = CPU_GET_CLASS(cpu)->tcg_ops; 1037 1038 if (tcg_ops->record_sigbus) { 1039 tcg_ops->record_sigbus(cpu, addr, access_type, ra); 1040 } 1041 1042 force_sig_fault(TARGET_SIGBUS, TARGET_BUS_ADRALN, addr); 1043 cpu->exception_index = EXCP_INTERRUPT; 1044 cpu_loop_exit_restore(cpu, ra); 1045 } 1046