xref: /qemu/bsd-user/signal.c (revision b7edbbf4321fea9efefda2a5d6bcea4f7140f866)
1 /*
2  *  Emulation of BSD signals
3  *
4  *  Copyright (c) 2003 - 2008 Fabrice Bellard
5  *  Copyright (c) 2013 Stacey Son
6  *
7  *  This program is free software; you can redistribute it and/or modify
8  *  it under the terms of the GNU General Public License as published by
9  *  the Free Software Foundation; either version 2 of the License, or
10  *  (at your option) any later version.
11  *
12  *  This program is distributed in the hope that it will be useful,
13  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
14  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15  *  GNU General Public License for more details.
16  *
17  *  You should have received a copy of the GNU General Public License
18  *  along with this program; if not, see <http://www.gnu.org/licenses/>.
19  */
20 
21 #include "qemu/osdep.h"
22 #include "qemu/log.h"
23 #include "qemu.h"
24 #include "user/cpu_loop.h"
25 #include "exec/page-protection.h"
26 #include "user/page-protection.h"
27 #include "user/tswap-target.h"
28 #include "gdbstub/user.h"
29 #include "signal-common.h"
30 #include "trace.h"
31 #include "hw/core/tcg-cpu-ops.h"
32 #include "host-signal.h"
33 
34 /* target_siginfo_t must fit in gdbstub's siginfo save area. */
35 QEMU_BUILD_BUG_ON(sizeof(target_siginfo_t) > MAX_SIGINFO_LENGTH);
36 
37 static struct target_sigaction sigact_table[TARGET_NSIG];
38 static void host_signal_handler(int host_sig, siginfo_t *info, void *puc);
39 static void target_to_host_sigset_internal(sigset_t *d,
40         const target_sigset_t *s);
41 
42 static inline int on_sig_stack(TaskState *ts, unsigned long sp)
43 {
44     return sp - ts->sigaltstack_used.ss_sp < ts->sigaltstack_used.ss_size;
45 }
46 
47 static inline int sas_ss_flags(TaskState *ts, unsigned long sp)
48 {
49     return ts->sigaltstack_used.ss_size == 0 ? SS_DISABLE :
50         on_sig_stack(ts, sp) ? SS_ONSTACK : 0;
51 }
52 
53 /*
54  * The BSD ABIs use the same signal numbers across all the CPU architectures, so
55  * (unlike Linux) these functions are just the identity mapping. This might not
56  * be true for XyzBSD running on AbcBSD, which doesn't currently work.
57  */
58 int host_to_target_signal(int sig)
59 {
60     return sig;
61 }
62 
63 int target_to_host_signal(int sig)
64 {
65     return sig;
66 }
67 
68 static inline void target_sigemptyset(target_sigset_t *set)
69 {
70     memset(set, 0, sizeof(*set));
71 }
72 
73 static inline void target_sigaddset(target_sigset_t *set, int signum)
74 {
75     signum--;
76     uint32_t mask = (uint32_t)1 << (signum % TARGET_NSIG_BPW);
77     set->__bits[signum / TARGET_NSIG_BPW] |= mask;
78 }
79 
80 static inline int target_sigismember(const target_sigset_t *set, int signum)
81 {
82     signum--;
83     abi_ulong mask = (abi_ulong)1 << (signum % TARGET_NSIG_BPW);
84     return (set->__bits[signum / TARGET_NSIG_BPW] & mask) != 0;
85 }
86 
87 /* Adjust the signal context to rewind out of safe-syscall if we're in it */
88 static inline void rewind_if_in_safe_syscall(void *puc)
89 {
90     ucontext_t *uc = (ucontext_t *)puc;
91     uintptr_t pcreg = host_signal_pc(uc);
92 
93     if (pcreg > (uintptr_t)safe_syscall_start
94         && pcreg < (uintptr_t)safe_syscall_end) {
95         host_signal_set_pc(uc, (uintptr_t)safe_syscall_start);
96     }
97 }
98 
99 /*
100  * Note: The following take advantage of the BSD signal property that all
101  * signals are available on all architectures.
102  */
103 static void host_to_target_sigset_internal(target_sigset_t *d,
104         const sigset_t *s)
105 {
106     int i;
107 
108     target_sigemptyset(d);
109     for (i = 1; i <= NSIG; i++) {
110         if (sigismember(s, i)) {
111             target_sigaddset(d, host_to_target_signal(i));
112         }
113     }
114 }
115 
116 void host_to_target_sigset(target_sigset_t *d, const sigset_t *s)
117 {
118     target_sigset_t d1;
119     int i;
120 
121     host_to_target_sigset_internal(&d1, s);
122     for (i = 0; i < _SIG_WORDS; i++) {
123         d->__bits[i] = tswap32(d1.__bits[i]);
124     }
125 }
126 
127 static void target_to_host_sigset_internal(sigset_t *d,
128         const target_sigset_t *s)
129 {
130     int i;
131 
132     sigemptyset(d);
133     for (i = 1; i <= TARGET_NSIG; i++) {
134         if (target_sigismember(s, i)) {
135             sigaddset(d, target_to_host_signal(i));
136         }
137     }
138 }
139 
140 void target_to_host_sigset(sigset_t *d, const target_sigset_t *s)
141 {
142     target_sigset_t s1;
143     int i;
144 
145     for (i = 0; i < TARGET_NSIG_WORDS; i++) {
146         s1.__bits[i] = tswap32(s->__bits[i]);
147     }
148     target_to_host_sigset_internal(d, &s1);
149 }
150 
151 static bool has_trapno(int tsig)
152 {
153     return tsig == TARGET_SIGILL ||
154         tsig == TARGET_SIGFPE ||
155         tsig == TARGET_SIGSEGV ||
156         tsig == TARGET_SIGBUS ||
157         tsig == TARGET_SIGTRAP;
158 }
159 
160 /* Siginfo conversion. */
161 
162 /*
163  * Populate tinfo w/o swapping based on guessing which fields are valid.
164  */
165 static inline void host_to_target_siginfo_noswap(target_siginfo_t *tinfo,
166         const siginfo_t *info)
167 {
168     int sig = host_to_target_signal(info->si_signo);
169     int si_code = info->si_code;
170     int si_type;
171 
172     /*
173      * Make sure we that the variable portion of the target siginfo is zeroed
174      * out so we don't leak anything into that.
175      */
176     memset(&tinfo->_reason, 0, sizeof(tinfo->_reason));
177 
178     /*
179      * This is awkward, because we have to use a combination of the si_code and
180      * si_signo to figure out which of the union's members are valid.o We
181      * therefore make our best guess.
182      *
183      * Once we have made our guess, we record it in the top 16 bits of
184      * the si_code, so that tswap_siginfo() later can use it.
185      * tswap_siginfo() will strip these top bits out before writing
186      * si_code to the guest (sign-extending the lower bits).
187      */
188     tinfo->si_signo = sig;
189     tinfo->si_errno = info->si_errno;
190     tinfo->si_code = info->si_code;
191     tinfo->si_pid = info->si_pid;
192     tinfo->si_uid = info->si_uid;
193     tinfo->si_status = info->si_status;
194     tinfo->si_addr = (abi_ulong)(unsigned long)info->si_addr;
195     /*
196      * si_value is opaque to kernel. On all FreeBSD platforms,
197      * sizeof(sival_ptr) >= sizeof(sival_int) so the following
198      * always will copy the larger element.
199      */
200     tinfo->si_value.sival_ptr =
201         (abi_ulong)(unsigned long)info->si_value.sival_ptr;
202 
203     switch (si_code) {
204         /*
205          * All the SI_xxx codes that are defined here are global to
206          * all the signals (they have values that none of the other,
207          * more specific signal info will set).
208          */
209     case SI_USER:
210     case SI_LWP:
211     case SI_KERNEL:
212     case SI_QUEUE:
213     case SI_ASYNCIO:
214         /*
215          * Only the fixed parts are valid (though FreeBSD doesn't always
216          * set all the fields to non-zero values.
217          */
218         si_type = QEMU_SI_NOINFO;
219         break;
220     case SI_TIMER:
221         tinfo->_reason._timer._timerid = info->_reason._timer._timerid;
222         tinfo->_reason._timer._overrun = info->_reason._timer._overrun;
223         si_type = QEMU_SI_TIMER;
224         break;
225     case SI_MESGQ:
226         tinfo->_reason._mesgq._mqd = info->_reason._mesgq._mqd;
227         si_type = QEMU_SI_MESGQ;
228         break;
229     default:
230         /*
231          * We have to go based on the signal number now to figure out
232          * what's valid.
233          */
234         si_type = QEMU_SI_NOINFO;
235         if (has_trapno(sig)) {
236             tinfo->_reason._fault._trapno = info->_reason._fault._trapno;
237             si_type = QEMU_SI_FAULT;
238         }
239 #ifdef TARGET_SIGPOLL
240         /*
241          * FreeBSD never had SIGPOLL, but emulates it for Linux so there's
242          * a chance it may popup in the future.
243          */
244         if (sig == TARGET_SIGPOLL) {
245             tinfo->_reason._poll._band = info->_reason._poll._band;
246             si_type = QEMU_SI_POLL;
247         }
248 #endif
249         /*
250          * Unsure that this can actually be generated, and our support for
251          * capsicum is somewhere between weak and non-existent, but if we get
252          * one, then we know what to save.
253          */
254 #ifdef QEMU_SI_CAPSICUM
255         if (sig == TARGET_SIGTRAP) {
256             tinfo->_reason._capsicum._syscall =
257                 info->_reason._capsicum._syscall;
258             si_type = QEMU_SI_CAPSICUM;
259         }
260 #endif
261         break;
262     }
263     tinfo->si_code = deposit32(si_code, 24, 8, si_type);
264 }
265 
266 static void tswap_siginfo(target_siginfo_t *tinfo, const target_siginfo_t *info)
267 {
268     int si_type = extract32(info->si_code, 24, 8);
269     int si_code = sextract32(info->si_code, 0, 24);
270 
271     __put_user(info->si_signo, &tinfo->si_signo);
272     __put_user(info->si_errno, &tinfo->si_errno);
273     __put_user(si_code, &tinfo->si_code); /* Zero out si_type, it's internal */
274     __put_user(info->si_pid, &tinfo->si_pid);
275     __put_user(info->si_uid, &tinfo->si_uid);
276     __put_user(info->si_status, &tinfo->si_status);
277     __put_user(info->si_addr, &tinfo->si_addr);
278     /*
279      * Unswapped, because we passed it through mostly untouched.  si_value is
280      * opaque to the kernel, so we didn't bother with potentially wasting cycles
281      * to swap it into host byte order.
282      */
283     tinfo->si_value.sival_ptr = info->si_value.sival_ptr;
284 
285     /*
286      * We can use our internal marker of which fields in the structure
287      * are valid, rather than duplicating the guesswork of
288      * host_to_target_siginfo_noswap() here.
289      */
290     switch (si_type) {
291     case QEMU_SI_NOINFO:        /* No additional info */
292         break;
293     case QEMU_SI_FAULT:
294         __put_user(info->_reason._fault._trapno,
295                    &tinfo->_reason._fault._trapno);
296         break;
297     case QEMU_SI_TIMER:
298         __put_user(info->_reason._timer._timerid,
299                    &tinfo->_reason._timer._timerid);
300         __put_user(info->_reason._timer._overrun,
301                    &tinfo->_reason._timer._overrun);
302         break;
303     case QEMU_SI_MESGQ:
304         __put_user(info->_reason._mesgq._mqd, &tinfo->_reason._mesgq._mqd);
305         break;
306     case QEMU_SI_POLL:
307         /* Note: Not generated on FreeBSD */
308         __put_user(info->_reason._poll._band, &tinfo->_reason._poll._band);
309         break;
310 #ifdef QEMU_SI_CAPSICUM
311     case QEMU_SI_CAPSICUM:
312         __put_user(info->_reason._capsicum._syscall,
313                    &tinfo->_reason._capsicum._syscall);
314         break;
315 #endif
316     default:
317         g_assert_not_reached();
318     }
319 }
320 
321 void host_to_target_siginfo(target_siginfo_t *tinfo, const siginfo_t *info)
322 {
323     host_to_target_siginfo_noswap(tinfo, info);
324     tswap_siginfo(tinfo, tinfo);
325 }
326 
327 int block_signals(void)
328 {
329     TaskState *ts = get_task_state(thread_cpu);
330     sigset_t set;
331 
332     /*
333      * It's OK to block everything including SIGSEGV, because we won't run any
334      * further guest code before unblocking signals in
335      * process_pending_signals(). We depend on the FreeBSD behavior here where
336      * this will only affect this thread's signal mask. We don't use
337      * pthread_sigmask which might seem more correct because that routine also
338      * does odd things with SIGCANCEL to implement pthread_cancel().
339      */
340     sigfillset(&set);
341     sigprocmask(SIG_SETMASK, &set, 0);
342 
343     return qatomic_xchg(&ts->signal_pending, 1);
344 }
345 
346 /* Returns 1 if given signal should dump core if not handled. */
347 static int core_dump_signal(int sig)
348 {
349     switch (sig) {
350     case TARGET_SIGABRT:
351     case TARGET_SIGFPE:
352     case TARGET_SIGILL:
353     case TARGET_SIGQUIT:
354     case TARGET_SIGSEGV:
355     case TARGET_SIGTRAP:
356     case TARGET_SIGBUS:
357         return 1;
358     default:
359         return 0;
360     }
361 }
362 
363 /* Abort execution with signal. */
364 static G_NORETURN
365 void dump_core_and_abort(int target_sig)
366 {
367     CPUState *cpu = thread_cpu;
368     CPUArchState *env = cpu_env(cpu);
369     TaskState *ts = get_task_state(cpu);
370     int core_dumped = 0;
371     int host_sig;
372     struct sigaction act;
373 
374     host_sig = target_to_host_signal(target_sig);
375     gdb_signalled(env, target_sig);
376 
377     /* Dump core if supported by target binary format */
378     if (core_dump_signal(target_sig) && (ts->bprm->core_dump != NULL)) {
379         stop_all_tasks();
380         core_dumped =
381             ((*ts->bprm->core_dump)(target_sig, env) == 0);
382     }
383     if (core_dumped) {
384         struct rlimit nodump;
385 
386         /*
387          * We already dumped the core of target process, we don't want
388          * a coredump of qemu itself.
389          */
390          getrlimit(RLIMIT_CORE, &nodump);
391          nodump.rlim_cur = 0;
392          setrlimit(RLIMIT_CORE, &nodump);
393          (void) fprintf(stderr, "qemu: uncaught target signal %d (%s) "
394              "- %s\n", target_sig, strsignal(host_sig), "core dumped");
395     }
396 
397     /*
398      * The proper exit code for dying from an uncaught signal is
399      * -<signal>.  The kernel doesn't allow exit() or _exit() to pass
400      * a negative value.  To get the proper exit code we need to
401      * actually die from an uncaught signal.  Here the default signal
402      * handler is installed, we send ourself a signal and we wait for
403      * it to arrive.
404      */
405     memset(&act, 0, sizeof(act));
406     sigfillset(&act.sa_mask);
407     act.sa_handler = SIG_DFL;
408     sigaction(host_sig, &act, NULL);
409 
410     kill(getpid(), host_sig);
411 
412     /*
413      * Make sure the signal isn't masked (just reuse the mask inside
414      * of act).
415      */
416     sigdelset(&act.sa_mask, host_sig);
417     sigsuspend(&act.sa_mask);
418 
419     /* unreachable */
420     abort();
421 }
422 
423 /*
424  * Queue a signal so that it will be send to the virtual CPU as soon as
425  * possible.
426  */
427 void queue_signal(CPUArchState *env, int sig, int si_type,
428                   target_siginfo_t *info)
429 {
430     CPUState *cpu = env_cpu(env);
431     TaskState *ts = get_task_state(cpu);
432 
433     trace_user_queue_signal(env, sig);
434 
435     info->si_code = deposit32(info->si_code, 24, 8, si_type);
436 
437     ts->sync_signal.info = *info;
438     ts->sync_signal.pending = sig;
439     /* Signal that a new signal is pending. */
440     qatomic_set(&ts->signal_pending, 1);
441     return;
442 }
443 
444 static int fatal_signal(int sig)
445 {
446 
447     switch (sig) {
448     case TARGET_SIGCHLD:
449     case TARGET_SIGURG:
450     case TARGET_SIGWINCH:
451     case TARGET_SIGINFO:
452         /* Ignored by default. */
453         return 0;
454     case TARGET_SIGCONT:
455     case TARGET_SIGSTOP:
456     case TARGET_SIGTSTP:
457     case TARGET_SIGTTIN:
458     case TARGET_SIGTTOU:
459         /* Job control signals.  */
460         return 0;
461     default:
462         return 1;
463     }
464 }
465 
466 /*
467  * Force a synchronously taken QEMU_SI_FAULT signal. For QEMU the
468  * 'force' part is handled in process_pending_signals().
469  */
470 void force_sig_fault(int sig, int code, abi_ulong addr)
471 {
472     CPUState *cpu = thread_cpu;
473     target_siginfo_t info = {};
474 
475     info.si_signo = sig;
476     info.si_errno = 0;
477     info.si_code = code;
478     info.si_addr = addr;
479     queue_signal(cpu_env(cpu), sig, QEMU_SI_FAULT, &info);
480 }
481 
482 static void host_signal_handler(int host_sig, siginfo_t *info, void *puc)
483 {
484     CPUState *cpu = thread_cpu;
485     TaskState *ts = get_task_state(cpu);
486     target_siginfo_t tinfo;
487     ucontext_t *uc = puc;
488     struct emulated_sigtable *k;
489     int guest_sig;
490     uintptr_t pc = 0;
491     bool sync_sig = false;
492 
493     /*
494      * Non-spoofed SIGSEGV and SIGBUS are synchronous, and need special
495      * handling wrt signal blocking and unwinding.
496      */
497     if ((host_sig == SIGSEGV || host_sig == SIGBUS) && info->si_code > 0) {
498         MMUAccessType access_type;
499         uintptr_t host_addr;
500         abi_ptr guest_addr;
501         bool is_write;
502 
503         host_addr = (uintptr_t)info->si_addr;
504 
505         /*
506          * Convert forcefully to guest address space: addresses outside
507          * reserved_va are still valid to report via SEGV_MAPERR.
508          */
509         guest_addr = h2g_nocheck(host_addr);
510 
511         pc = host_signal_pc(uc);
512         is_write = host_signal_write(info, uc);
513         access_type = adjust_signal_pc(&pc, is_write);
514 
515         if (host_sig == SIGSEGV) {
516             bool maperr = true;
517 
518             if (info->si_code == SEGV_ACCERR && h2g_valid(host_addr)) {
519                 /* If this was a write to a TB protected page, restart. */
520                 if (is_write &&
521                     handle_sigsegv_accerr_write(cpu, &uc->uc_sigmask,
522                                                 pc, guest_addr)) {
523                     return;
524                 }
525 
526                 /*
527                  * With reserved_va, the whole address space is PROT_NONE,
528                  * which means that we may get ACCERR when we want MAPERR.
529                  */
530                 if (page_get_flags(guest_addr) & PAGE_VALID) {
531                     maperr = false;
532                 } else {
533                     info->si_code = SEGV_MAPERR;
534                 }
535             }
536 
537             sigprocmask(SIG_SETMASK, &uc->uc_sigmask, NULL);
538             cpu_loop_exit_sigsegv(cpu, guest_addr, access_type, maperr, pc);
539         } else {
540             sigprocmask(SIG_SETMASK, &uc->uc_sigmask, NULL);
541             if (info->si_code == BUS_ADRALN) {
542                 cpu_loop_exit_sigbus(cpu, guest_addr, access_type, pc);
543             }
544         }
545 
546         sync_sig = true;
547     }
548 
549     /* Get the target signal number. */
550     guest_sig = host_to_target_signal(host_sig);
551     if (guest_sig < 1 || guest_sig > TARGET_NSIG) {
552         return;
553     }
554     trace_user_host_signal(cpu, host_sig, guest_sig);
555 
556     host_to_target_siginfo_noswap(&tinfo, info);
557 
558     k = &ts->sigtab[guest_sig - 1];
559     k->info = tinfo;
560     k->pending = guest_sig;
561     ts->signal_pending = 1;
562 
563     /*
564      * For synchronous signals, unwind the cpu state to the faulting
565      * insn and then exit back to the main loop so that the signal
566      * is delivered immediately.
567      */
568     if (sync_sig) {
569         cpu->exception_index = EXCP_INTERRUPT;
570         cpu_loop_exit_restore(cpu, pc);
571     }
572 
573     rewind_if_in_safe_syscall(puc);
574 
575     /*
576      * Block host signals until target signal handler entered. We
577      * can't block SIGSEGV or SIGBUS while we're executing guest
578      * code in case the guest code provokes one in the window between
579      * now and it getting out to the main loop. Signals will be
580      * unblocked again in process_pending_signals().
581      */
582     sigfillset(&uc->uc_sigmask);
583     sigdelset(&uc->uc_sigmask, SIGSEGV);
584     sigdelset(&uc->uc_sigmask, SIGBUS);
585 
586     /* Interrupt the virtual CPU as soon as possible. */
587     cpu_exit(thread_cpu);
588 }
589 
590 /* do_sigaltstack() returns target values and errnos. */
591 /* compare to kern/kern_sig.c sys_sigaltstack() and kern_sigaltstack() */
592 abi_long do_sigaltstack(abi_ulong uss_addr, abi_ulong uoss_addr, abi_ulong sp)
593 {
594     TaskState *ts = get_task_state(thread_cpu);
595     int ret;
596     target_stack_t oss;
597 
598     if (uoss_addr) {
599         /* Save current signal stack params */
600         oss.ss_sp = tswapl(ts->sigaltstack_used.ss_sp);
601         oss.ss_size = tswapl(ts->sigaltstack_used.ss_size);
602         oss.ss_flags = tswapl(sas_ss_flags(ts, sp));
603     }
604 
605     if (uss_addr) {
606         target_stack_t *uss;
607         target_stack_t ss;
608         size_t minstacksize = TARGET_MINSIGSTKSZ;
609 
610         ret = -TARGET_EFAULT;
611         if (!lock_user_struct(VERIFY_READ, uss, uss_addr, 1)) {
612             goto out;
613         }
614         __get_user(ss.ss_sp, &uss->ss_sp);
615         __get_user(ss.ss_size, &uss->ss_size);
616         __get_user(ss.ss_flags, &uss->ss_flags);
617         unlock_user_struct(uss, uss_addr, 0);
618 
619         ret = -TARGET_EPERM;
620         if (on_sig_stack(ts, sp)) {
621             goto out;
622         }
623 
624         ret = -TARGET_EINVAL;
625         if (ss.ss_flags != TARGET_SS_DISABLE
626             && ss.ss_flags != TARGET_SS_ONSTACK
627             && ss.ss_flags != 0) {
628             goto out;
629         }
630 
631         if (ss.ss_flags == TARGET_SS_DISABLE) {
632             ss.ss_size = 0;
633             ss.ss_sp = 0;
634         } else {
635             ret = -TARGET_ENOMEM;
636             if (ss.ss_size < minstacksize) {
637                 goto out;
638             }
639         }
640 
641         ts->sigaltstack_used.ss_sp = ss.ss_sp;
642         ts->sigaltstack_used.ss_size = ss.ss_size;
643     }
644 
645     if (uoss_addr) {
646         ret = -TARGET_EFAULT;
647         if (copy_to_user(uoss_addr, &oss, sizeof(oss))) {
648             goto out;
649         }
650     }
651 
652     ret = 0;
653 out:
654     return ret;
655 }
656 
657 /* do_sigaction() return host values and errnos */
658 int do_sigaction(int sig, const struct target_sigaction *act,
659         struct target_sigaction *oact)
660 {
661     struct target_sigaction *k;
662     struct sigaction act1;
663     int host_sig;
664     int ret = 0;
665 
666     if (sig < 1 || sig > TARGET_NSIG) {
667         return -TARGET_EINVAL;
668     }
669 
670     if ((sig == TARGET_SIGKILL || sig == TARGET_SIGSTOP) &&
671         act != NULL && act->_sa_handler != TARGET_SIG_DFL) {
672         return -TARGET_EINVAL;
673     }
674 
675     if (block_signals()) {
676         return -TARGET_ERESTART;
677     }
678 
679     k = &sigact_table[sig - 1];
680     if (oact) {
681         oact->_sa_handler = tswapal(k->_sa_handler);
682         oact->sa_flags = tswap32(k->sa_flags);
683         oact->sa_mask = k->sa_mask;
684     }
685     if (act) {
686         k->_sa_handler = tswapal(act->_sa_handler);
687         k->sa_flags = tswap32(act->sa_flags);
688         k->sa_mask = act->sa_mask;
689 
690         /* Update the host signal state. */
691         host_sig = target_to_host_signal(sig);
692         if (host_sig != SIGSEGV && host_sig != SIGBUS) {
693             memset(&act1, 0, sizeof(struct sigaction));
694             sigfillset(&act1.sa_mask);
695             act1.sa_flags = SA_SIGINFO;
696             if (k->sa_flags & TARGET_SA_RESTART) {
697                 act1.sa_flags |= SA_RESTART;
698             }
699             /*
700              *  Note: It is important to update the host kernel signal mask to
701              *  avoid getting unexpected interrupted system calls.
702              */
703             if (k->_sa_handler == TARGET_SIG_IGN) {
704                 act1.sa_sigaction = (void *)SIG_IGN;
705             } else if (k->_sa_handler == TARGET_SIG_DFL) {
706                 if (fatal_signal(sig)) {
707                     act1.sa_sigaction = host_signal_handler;
708                 } else {
709                     act1.sa_sigaction = (void *)SIG_DFL;
710                 }
711             } else {
712                 act1.sa_sigaction = host_signal_handler;
713             }
714             ret = sigaction(host_sig, &act1, NULL);
715         }
716     }
717     return ret;
718 }
719 
720 static inline abi_ulong get_sigframe(struct target_sigaction *ka,
721         CPUArchState *env, size_t frame_size)
722 {
723     TaskState *ts = get_task_state(thread_cpu);
724     abi_ulong sp;
725 
726     /* Use default user stack */
727     sp = get_sp_from_cpustate(env);
728 
729     if ((ka->sa_flags & TARGET_SA_ONSTACK) && sas_ss_flags(ts, sp) == 0) {
730         sp = ts->sigaltstack_used.ss_sp + ts->sigaltstack_used.ss_size;
731     }
732 
733     return ROUND_DOWN(sp - frame_size, TARGET_SIGSTACK_ALIGN);
734 }
735 
736 /* compare to $M/$M/exec_machdep.c sendsig and sys/kern/kern_sig.c sigexit */
737 
738 static void setup_frame(int sig, int code, struct target_sigaction *ka,
739     target_sigset_t *set, target_siginfo_t *tinfo, CPUArchState *env)
740 {
741     struct target_sigframe *frame;
742     abi_ulong frame_addr;
743     int i;
744 
745     frame_addr = get_sigframe(ka, env, sizeof(*frame));
746     trace_user_setup_frame(env, frame_addr);
747     if (!lock_user_struct(VERIFY_WRITE, frame, frame_addr, 0)) {
748         unlock_user_struct(frame, frame_addr, 1);
749         dump_core_and_abort(TARGET_SIGILL);
750         return;
751     }
752 
753     memset(frame, 0, sizeof(*frame));
754     setup_sigframe_arch(env, frame_addr, frame, 0);
755 
756     for (i = 0; i < TARGET_NSIG_WORDS; i++) {
757         __put_user(set->__bits[i], &frame->sf_uc.uc_sigmask.__bits[i]);
758     }
759 
760     if (tinfo) {
761         frame->sf_si.si_signo = tinfo->si_signo;
762         frame->sf_si.si_errno = tinfo->si_errno;
763         frame->sf_si.si_code = tinfo->si_code;
764         frame->sf_si.si_pid = tinfo->si_pid;
765         frame->sf_si.si_uid = tinfo->si_uid;
766         frame->sf_si.si_status = tinfo->si_status;
767         frame->sf_si.si_addr = tinfo->si_addr;
768         /* see host_to_target_siginfo_noswap() for more details */
769         frame->sf_si.si_value.sival_ptr = tinfo->si_value.sival_ptr;
770         /*
771          * At this point, whatever is in the _reason union is complete
772          * and in target order, so just copy the whole thing over, even
773          * if it's too large for this specific signal.
774          * host_to_target_siginfo_noswap() and tswap_siginfo() have ensured
775          * that's so.
776          */
777         memcpy(&frame->sf_si._reason, &tinfo->_reason,
778                sizeof(tinfo->_reason));
779     }
780 
781     set_sigtramp_args(env, sig, frame, frame_addr, ka);
782 
783     unlock_user_struct(frame, frame_addr, 1);
784 }
785 
786 static int reset_signal_mask(target_ucontext_t *ucontext)
787 {
788     int i;
789     sigset_t blocked;
790     target_sigset_t target_set;
791     TaskState *ts = get_task_state(thread_cpu);
792 
793     for (i = 0; i < TARGET_NSIG_WORDS; i++) {
794         __get_user(target_set.__bits[i], &ucontext->uc_sigmask.__bits[i]);
795     }
796     target_to_host_sigset_internal(&blocked, &target_set);
797     ts->signal_mask = blocked;
798 
799     return 0;
800 }
801 
802 /* See sys/$M/$M/exec_machdep.c sigreturn() */
803 long do_sigreturn(CPUArchState *env, abi_ulong addr)
804 {
805     long ret;
806     abi_ulong target_ucontext;
807     target_ucontext_t *ucontext = NULL;
808 
809     /* Get the target ucontext address from the stack frame */
810     ret = get_ucontext_sigreturn(env, addr, &target_ucontext);
811     if (is_error(ret)) {
812         return ret;
813     }
814     trace_user_do_sigreturn(env, addr);
815     if (!lock_user_struct(VERIFY_READ, ucontext, target_ucontext, 0)) {
816         goto badframe;
817     }
818 
819     /* Set the register state back to before the signal. */
820     if (set_mcontext(env, &ucontext->uc_mcontext, 1)) {
821         goto badframe;
822     }
823 
824     /* And reset the signal mask. */
825     if (reset_signal_mask(ucontext)) {
826         goto badframe;
827     }
828 
829     unlock_user_struct(ucontext, target_ucontext, 0);
830     return -TARGET_EJUSTRETURN;
831 
832 badframe:
833     if (ucontext != NULL) {
834         unlock_user_struct(ucontext, target_ucontext, 0);
835     }
836     return -TARGET_EFAULT;
837 }
838 
839 void signal_init(void)
840 {
841     TaskState *ts = get_task_state(thread_cpu);
842     struct sigaction act;
843     struct sigaction oact;
844     int i;
845     int host_sig;
846 
847     /* Set the signal mask from the host mask. */
848     sigprocmask(0, 0, &ts->signal_mask);
849 
850     sigfillset(&act.sa_mask);
851     act.sa_sigaction = host_signal_handler;
852     act.sa_flags = SA_SIGINFO;
853 
854     for (i = 1; i <= TARGET_NSIG; i++) {
855         host_sig = target_to_host_signal(i);
856         sigaction(host_sig, NULL, &oact);
857         if (oact.sa_sigaction == (void *)SIG_IGN) {
858             sigact_table[i - 1]._sa_handler = TARGET_SIG_IGN;
859         } else if (oact.sa_sigaction == (void *)SIG_DFL) {
860             sigact_table[i - 1]._sa_handler = TARGET_SIG_DFL;
861         }
862         /*
863          * If there's already a handler installed then something has
864          * gone horribly wrong, so don't even try to handle that case.
865          * Install some handlers for our own use.  We need at least
866          * SIGSEGV and SIGBUS, to detect exceptions.  We can not just
867          * trap all signals because it affects syscall interrupt
868          * behavior.  But do trap all default-fatal signals.
869          */
870         if (fatal_signal(i)) {
871             sigaction(host_sig, &act, NULL);
872         }
873     }
874 }
875 
876 static void handle_pending_signal(CPUArchState *env, int sig,
877                                   struct emulated_sigtable *k)
878 {
879     CPUState *cpu = env_cpu(env);
880     TaskState *ts = get_task_state(cpu);
881     struct target_sigaction *sa;
882     int code;
883     sigset_t set;
884     abi_ulong handler;
885     target_siginfo_t tinfo;
886     target_sigset_t target_old_set;
887 
888     trace_user_handle_signal(env, sig);
889 
890     k->pending = 0;
891 
892     sig = gdb_handlesig(cpu, sig, NULL, &k->info, sizeof(k->info));
893     if (!sig) {
894         sa = NULL;
895         handler = TARGET_SIG_IGN;
896     } else {
897         sa = &sigact_table[sig - 1];
898         handler = sa->_sa_handler;
899     }
900 
901     if (do_strace) {
902         print_taken_signal(sig, &k->info);
903     }
904 
905     if (handler == TARGET_SIG_DFL) {
906         /*
907          * default handler : ignore some signal. The other are job
908          * control or fatal.
909          */
910         if (sig == TARGET_SIGTSTP || sig == TARGET_SIGTTIN ||
911             sig == TARGET_SIGTTOU) {
912             kill(getpid(), SIGSTOP);
913         } else if (sig != TARGET_SIGCHLD && sig != TARGET_SIGURG &&
914                    sig != TARGET_SIGINFO && sig != TARGET_SIGWINCH &&
915                    sig != TARGET_SIGCONT) {
916             dump_core_and_abort(sig);
917         }
918     } else if (handler == TARGET_SIG_IGN) {
919         /* ignore sig */
920     } else if (handler == TARGET_SIG_ERR) {
921         dump_core_and_abort(sig);
922     } else {
923         /* compute the blocked signals during the handler execution */
924         sigset_t *blocked_set;
925 
926         target_to_host_sigset(&set, &sa->sa_mask);
927         /*
928          * SA_NODEFER indicates that the current signal should not be
929          * blocked during the handler.
930          */
931         if (!(sa->sa_flags & TARGET_SA_NODEFER)) {
932             sigaddset(&set, target_to_host_signal(sig));
933         }
934 
935         /*
936          * Save the previous blocked signal state to restore it at the
937          * end of the signal execution (see do_sigreturn).
938          */
939         host_to_target_sigset_internal(&target_old_set, &ts->signal_mask);
940 
941         blocked_set = ts->in_sigsuspend ?
942             &ts->sigsuspend_mask : &ts->signal_mask;
943         sigorset(&ts->signal_mask, blocked_set, &set);
944         ts->in_sigsuspend = false;
945         sigprocmask(SIG_SETMASK, &ts->signal_mask, NULL);
946 
947         /* XXX VM86 on x86 ??? */
948 
949         code = k->info.si_code; /* From host, so no si_type */
950         /* prepare the stack frame of the virtual CPU */
951         if (sa->sa_flags & TARGET_SA_SIGINFO) {
952             tswap_siginfo(&tinfo, &k->info);
953             setup_frame(sig, code, sa, &target_old_set, &tinfo, env);
954         } else {
955             setup_frame(sig, code, sa, &target_old_set, NULL, env);
956         }
957         if (sa->sa_flags & TARGET_SA_RESETHAND) {
958             sa->_sa_handler = TARGET_SIG_DFL;
959         }
960     }
961 }
962 
963 void process_pending_signals(CPUArchState *env)
964 {
965     CPUState *cpu = env_cpu(env);
966     int sig;
967     sigset_t *blocked_set, set;
968     struct emulated_sigtable *k;
969     TaskState *ts = get_task_state(cpu);
970 
971     while (qatomic_read(&ts->signal_pending)) {
972         sigfillset(&set);
973         sigprocmask(SIG_SETMASK, &set, 0);
974 
975     restart_scan:
976         sig = ts->sync_signal.pending;
977         if (sig) {
978             /*
979              * Synchronous signals are forced by the emulated CPU in some way.
980              * If they are set to ignore, restore the default handler (see
981              * sys/kern_sig.c trapsignal() and execsigs() for this behavior)
982              * though maybe this is done only when forcing exit for non SIGCHLD.
983              */
984             if (sigismember(&ts->signal_mask, target_to_host_signal(sig)) ||
985                 sigact_table[sig - 1]._sa_handler == TARGET_SIG_IGN) {
986                 sigdelset(&ts->signal_mask, target_to_host_signal(sig));
987                 sigact_table[sig - 1]._sa_handler = TARGET_SIG_DFL;
988             }
989             handle_pending_signal(env, sig, &ts->sync_signal);
990         }
991 
992         k = ts->sigtab;
993         for (sig = 1; sig <= TARGET_NSIG; sig++, k++) {
994             blocked_set = ts->in_sigsuspend ?
995                 &ts->sigsuspend_mask : &ts->signal_mask;
996             if (k->pending &&
997                 !sigismember(blocked_set, target_to_host_signal(sig))) {
998                 handle_pending_signal(env, sig, k);
999                 /*
1000                  * Restart scan from the beginning, as handle_pending_signal
1001                  * might have resulted in a new synchronous signal (eg SIGSEGV).
1002                  */
1003                 goto restart_scan;
1004             }
1005         }
1006 
1007         /*
1008          * Unblock signals and check one more time. Unblocking signals may cause
1009          * us to take another host signal, which will set signal_pending again.
1010          */
1011         qatomic_set(&ts->signal_pending, 0);
1012         ts->in_sigsuspend = false;
1013         set = ts->signal_mask;
1014         sigdelset(&set, SIGSEGV);
1015         sigdelset(&set, SIGBUS);
1016         sigprocmask(SIG_SETMASK, &set, 0);
1017     }
1018     ts->in_sigsuspend = false;
1019 }
1020 
1021 void cpu_loop_exit_sigsegv(CPUState *cpu, target_ulong addr,
1022                            MMUAccessType access_type, bool maperr, uintptr_t ra)
1023 {
1024     const TCGCPUOps *tcg_ops = CPU_GET_CLASS(cpu)->tcg_ops;
1025 
1026     if (tcg_ops->record_sigsegv) {
1027         tcg_ops->record_sigsegv(cpu, addr, access_type, maperr, ra);
1028     }
1029 
1030     force_sig_fault(TARGET_SIGSEGV,
1031                     maperr ? TARGET_SEGV_MAPERR : TARGET_SEGV_ACCERR,
1032                     addr);
1033     cpu->exception_index = EXCP_INTERRUPT;
1034     cpu_loop_exit_restore(cpu, ra);
1035 }
1036 
1037 void cpu_loop_exit_sigbus(CPUState *cpu, target_ulong addr,
1038                           MMUAccessType access_type, uintptr_t ra)
1039 {
1040     const TCGCPUOps *tcg_ops = CPU_GET_CLASS(cpu)->tcg_ops;
1041 
1042     if (tcg_ops->record_sigbus) {
1043         tcg_ops->record_sigbus(cpu, addr, access_type, ra);
1044     }
1045 
1046     force_sig_fault(TARGET_SIGBUS, TARGET_BUS_ADRALN, addr);
1047     cpu->exception_index = EXCP_INTERRUPT;
1048     cpu_loop_exit_restore(cpu, ra);
1049 }
1050