xref: /qemu/bsd-user/signal.c (revision 70ce076fa6dff60585c229a4b641b13e64bf03cf)
1 /*
2  *  Emulation of BSD signals
3  *
4  *  Copyright (c) 2003 - 2008 Fabrice Bellard
5  *  Copyright (c) 2013 Stacey Son
6  *
7  *  This program is free software; you can redistribute it and/or modify
8  *  it under the terms of the GNU General Public License as published by
9  *  the Free Software Foundation; either version 2 of the License, or
10  *  (at your option) any later version.
11  *
12  *  This program is distributed in the hope that it will be useful,
13  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
14  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15  *  GNU General Public License for more details.
16  *
17  *  You should have received a copy of the GNU General Public License
18  *  along with this program; if not, see <http://www.gnu.org/licenses/>.
19  */
20 
21 #include "qemu/osdep.h"
22 #include "qemu/log.h"
23 #include "qemu.h"
24 #include "user/cpu_loop.h"
25 #include "exec/page-protection.h"
26 #include "user/page-protection.h"
27 #include "user/signal.h"
28 #include "user/tswap-target.h"
29 #include "gdbstub/user.h"
30 #include "signal-common.h"
31 #include "trace.h"
32 #include "hw/core/tcg-cpu-ops.h"
33 #include "host-signal.h"
34 
35 /* target_siginfo_t must fit in gdbstub's siginfo save area. */
36 QEMU_BUILD_BUG_ON(sizeof(target_siginfo_t) > MAX_SIGINFO_LENGTH);
37 
38 static struct target_sigaction sigact_table[TARGET_NSIG];
39 static void host_signal_handler(int host_sig, siginfo_t *info, void *puc);
40 static void target_to_host_sigset_internal(sigset_t *d,
41         const target_sigset_t *s);
42 
43 static inline int on_sig_stack(TaskState *ts, unsigned long sp)
44 {
45     return sp - ts->sigaltstack_used.ss_sp < ts->sigaltstack_used.ss_size;
46 }
47 
48 static inline int sas_ss_flags(TaskState *ts, unsigned long sp)
49 {
50     return ts->sigaltstack_used.ss_size == 0 ? SS_DISABLE :
51         on_sig_stack(ts, sp) ? SS_ONSTACK : 0;
52 }
53 
54 int host_interrupt_signal = SIGRTMAX;
55 
56 /*
57  * The BSD ABIs use the same signal numbers across all the CPU architectures, so
58  * (unlike Linux) these functions are just the identity mapping. This might not
59  * be true for XyzBSD running on AbcBSD, which doesn't currently work.
60  */
61 int host_to_target_signal(int sig)
62 {
63     return sig;
64 }
65 
66 int target_to_host_signal(int sig)
67 {
68     return sig;
69 }
70 
71 static inline void target_sigemptyset(target_sigset_t *set)
72 {
73     memset(set, 0, sizeof(*set));
74 }
75 
76 static inline void target_sigaddset(target_sigset_t *set, int signum)
77 {
78     signum--;
79     uint32_t mask = (uint32_t)1 << (signum % TARGET_NSIG_BPW);
80     set->__bits[signum / TARGET_NSIG_BPW] |= mask;
81 }
82 
83 static inline int target_sigismember(const target_sigset_t *set, int signum)
84 {
85     signum--;
86     abi_ulong mask = (abi_ulong)1 << (signum % TARGET_NSIG_BPW);
87     return (set->__bits[signum / TARGET_NSIG_BPW] & mask) != 0;
88 }
89 
90 /* Adjust the signal context to rewind out of safe-syscall if we're in it */
91 static inline void rewind_if_in_safe_syscall(void *puc)
92 {
93     ucontext_t *uc = (ucontext_t *)puc;
94     uintptr_t pcreg = host_signal_pc(uc);
95 
96     if (pcreg > (uintptr_t)safe_syscall_start
97         && pcreg < (uintptr_t)safe_syscall_end) {
98         host_signal_set_pc(uc, (uintptr_t)safe_syscall_start);
99     }
100 }
101 
102 /*
103  * Note: The following take advantage of the BSD signal property that all
104  * signals are available on all architectures.
105  */
106 static void host_to_target_sigset_internal(target_sigset_t *d,
107         const sigset_t *s)
108 {
109     int i;
110 
111     target_sigemptyset(d);
112     for (i = 1; i <= NSIG; i++) {
113         if (sigismember(s, i)) {
114             target_sigaddset(d, host_to_target_signal(i));
115         }
116     }
117 }
118 
119 void host_to_target_sigset(target_sigset_t *d, const sigset_t *s)
120 {
121     target_sigset_t d1;
122     int i;
123 
124     host_to_target_sigset_internal(&d1, s);
125     for (i = 0; i < _SIG_WORDS; i++) {
126         d->__bits[i] = tswap32(d1.__bits[i]);
127     }
128 }
129 
130 static void target_to_host_sigset_internal(sigset_t *d,
131         const target_sigset_t *s)
132 {
133     int i;
134 
135     sigemptyset(d);
136     for (i = 1; i <= TARGET_NSIG; i++) {
137         if (target_sigismember(s, i)) {
138             sigaddset(d, target_to_host_signal(i));
139         }
140     }
141 }
142 
143 void target_to_host_sigset(sigset_t *d, const target_sigset_t *s)
144 {
145     target_sigset_t s1;
146     int i;
147 
148     for (i = 0; i < TARGET_NSIG_WORDS; i++) {
149         s1.__bits[i] = tswap32(s->__bits[i]);
150     }
151     target_to_host_sigset_internal(d, &s1);
152 }
153 
154 static bool has_trapno(int tsig)
155 {
156     return tsig == TARGET_SIGILL ||
157         tsig == TARGET_SIGFPE ||
158         tsig == TARGET_SIGSEGV ||
159         tsig == TARGET_SIGBUS ||
160         tsig == TARGET_SIGTRAP;
161 }
162 
163 /* Siginfo conversion. */
164 
165 /*
166  * Populate tinfo w/o swapping based on guessing which fields are valid.
167  */
168 static inline void host_to_target_siginfo_noswap(target_siginfo_t *tinfo,
169         const siginfo_t *info)
170 {
171     int sig = host_to_target_signal(info->si_signo);
172     int si_code = info->si_code;
173     int si_type;
174 
175     /*
176      * Make sure we that the variable portion of the target siginfo is zeroed
177      * out so we don't leak anything into that.
178      */
179     memset(&tinfo->_reason, 0, sizeof(tinfo->_reason));
180 
181     /*
182      * This is awkward, because we have to use a combination of the si_code and
183      * si_signo to figure out which of the union's members are valid.o We
184      * therefore make our best guess.
185      *
186      * Once we have made our guess, we record it in the top 16 bits of
187      * the si_code, so that tswap_siginfo() later can use it.
188      * tswap_siginfo() will strip these top bits out before writing
189      * si_code to the guest (sign-extending the lower bits).
190      */
191     tinfo->si_signo = sig;
192     tinfo->si_errno = info->si_errno;
193     tinfo->si_code = info->si_code;
194     tinfo->si_pid = info->si_pid;
195     tinfo->si_uid = info->si_uid;
196     tinfo->si_status = info->si_status;
197     tinfo->si_addr = (abi_ulong)(unsigned long)info->si_addr;
198     /*
199      * si_value is opaque to kernel. On all FreeBSD platforms,
200      * sizeof(sival_ptr) >= sizeof(sival_int) so the following
201      * always will copy the larger element.
202      */
203     tinfo->si_value.sival_ptr =
204         (abi_ulong)(unsigned long)info->si_value.sival_ptr;
205 
206     switch (si_code) {
207         /*
208          * All the SI_xxx codes that are defined here are global to
209          * all the signals (they have values that none of the other,
210          * more specific signal info will set).
211          */
212     case SI_USER:
213     case SI_LWP:
214     case SI_KERNEL:
215     case SI_QUEUE:
216     case SI_ASYNCIO:
217         /*
218          * Only the fixed parts are valid (though FreeBSD doesn't always
219          * set all the fields to non-zero values.
220          */
221         si_type = QEMU_SI_NOINFO;
222         break;
223     case SI_TIMER:
224         tinfo->_reason._timer._timerid = info->_reason._timer._timerid;
225         tinfo->_reason._timer._overrun = info->_reason._timer._overrun;
226         si_type = QEMU_SI_TIMER;
227         break;
228     case SI_MESGQ:
229         tinfo->_reason._mesgq._mqd = info->_reason._mesgq._mqd;
230         si_type = QEMU_SI_MESGQ;
231         break;
232     default:
233         /*
234          * We have to go based on the signal number now to figure out
235          * what's valid.
236          */
237         si_type = QEMU_SI_NOINFO;
238         if (has_trapno(sig)) {
239             tinfo->_reason._fault._trapno = info->_reason._fault._trapno;
240             si_type = QEMU_SI_FAULT;
241         }
242 #ifdef TARGET_SIGPOLL
243         /*
244          * FreeBSD never had SIGPOLL, but emulates it for Linux so there's
245          * a chance it may popup in the future.
246          */
247         if (sig == TARGET_SIGPOLL) {
248             tinfo->_reason._poll._band = info->_reason._poll._band;
249             si_type = QEMU_SI_POLL;
250         }
251 #endif
252         /*
253          * Unsure that this can actually be generated, and our support for
254          * capsicum is somewhere between weak and non-existent, but if we get
255          * one, then we know what to save.
256          */
257 #ifdef QEMU_SI_CAPSICUM
258         if (sig == TARGET_SIGTRAP) {
259             tinfo->_reason._capsicum._syscall =
260                 info->_reason._capsicum._syscall;
261             si_type = QEMU_SI_CAPSICUM;
262         }
263 #endif
264         break;
265     }
266     tinfo->si_code = deposit32(si_code, 24, 8, si_type);
267 }
268 
269 static void tswap_siginfo(target_siginfo_t *tinfo, const target_siginfo_t *info)
270 {
271     int si_type = extract32(info->si_code, 24, 8);
272     int si_code = sextract32(info->si_code, 0, 24);
273 
274     __put_user(info->si_signo, &tinfo->si_signo);
275     __put_user(info->si_errno, &tinfo->si_errno);
276     __put_user(si_code, &tinfo->si_code); /* Zero out si_type, it's internal */
277     __put_user(info->si_pid, &tinfo->si_pid);
278     __put_user(info->si_uid, &tinfo->si_uid);
279     __put_user(info->si_status, &tinfo->si_status);
280     __put_user(info->si_addr, &tinfo->si_addr);
281     /*
282      * Unswapped, because we passed it through mostly untouched.  si_value is
283      * opaque to the kernel, so we didn't bother with potentially wasting cycles
284      * to swap it into host byte order.
285      */
286     tinfo->si_value.sival_ptr = info->si_value.sival_ptr;
287 
288     /*
289      * We can use our internal marker of which fields in the structure
290      * are valid, rather than duplicating the guesswork of
291      * host_to_target_siginfo_noswap() here.
292      */
293     switch (si_type) {
294     case QEMU_SI_NOINFO:        /* No additional info */
295         break;
296     case QEMU_SI_FAULT:
297         __put_user(info->_reason._fault._trapno,
298                    &tinfo->_reason._fault._trapno);
299         break;
300     case QEMU_SI_TIMER:
301         __put_user(info->_reason._timer._timerid,
302                    &tinfo->_reason._timer._timerid);
303         __put_user(info->_reason._timer._overrun,
304                    &tinfo->_reason._timer._overrun);
305         break;
306     case QEMU_SI_MESGQ:
307         __put_user(info->_reason._mesgq._mqd, &tinfo->_reason._mesgq._mqd);
308         break;
309     case QEMU_SI_POLL:
310         /* Note: Not generated on FreeBSD */
311         __put_user(info->_reason._poll._band, &tinfo->_reason._poll._band);
312         break;
313 #ifdef QEMU_SI_CAPSICUM
314     case QEMU_SI_CAPSICUM:
315         __put_user(info->_reason._capsicum._syscall,
316                    &tinfo->_reason._capsicum._syscall);
317         break;
318 #endif
319     default:
320         g_assert_not_reached();
321     }
322 }
323 
324 void host_to_target_siginfo(target_siginfo_t *tinfo, const siginfo_t *info)
325 {
326     host_to_target_siginfo_noswap(tinfo, info);
327     tswap_siginfo(tinfo, tinfo);
328 }
329 
330 int block_signals(void)
331 {
332     TaskState *ts = get_task_state(thread_cpu);
333     sigset_t set;
334 
335     /*
336      * It's OK to block everything including SIGSEGV, because we won't run any
337      * further guest code before unblocking signals in
338      * process_pending_signals(). We depend on the FreeBSD behavior here where
339      * this will only affect this thread's signal mask. We don't use
340      * pthread_sigmask which might seem more correct because that routine also
341      * does odd things with SIGCANCEL to implement pthread_cancel().
342      */
343     sigfillset(&set);
344     sigprocmask(SIG_SETMASK, &set, 0);
345 
346     return qatomic_xchg(&ts->signal_pending, 1);
347 }
348 
349 /* Returns 1 if given signal should dump core if not handled. */
350 static int core_dump_signal(int sig)
351 {
352     switch (sig) {
353     case TARGET_SIGABRT:
354     case TARGET_SIGFPE:
355     case TARGET_SIGILL:
356     case TARGET_SIGQUIT:
357     case TARGET_SIGSEGV:
358     case TARGET_SIGTRAP:
359     case TARGET_SIGBUS:
360         return 1;
361     default:
362         return 0;
363     }
364 }
365 
366 /* Abort execution with signal. */
367 static G_NORETURN
368 void dump_core_and_abort(int target_sig)
369 {
370     CPUState *cpu = thread_cpu;
371     CPUArchState *env = cpu_env(cpu);
372     TaskState *ts = get_task_state(cpu);
373     int core_dumped = 0;
374     int host_sig;
375     struct sigaction act;
376 
377     host_sig = target_to_host_signal(target_sig);
378     gdb_signalled(env, target_sig);
379 
380     /* Dump core if supported by target binary format */
381     if (core_dump_signal(target_sig) && (ts->bprm->core_dump != NULL)) {
382         stop_all_tasks();
383         core_dumped =
384             ((*ts->bprm->core_dump)(target_sig, env) == 0);
385     }
386     if (core_dumped) {
387         struct rlimit nodump;
388 
389         /*
390          * We already dumped the core of target process, we don't want
391          * a coredump of qemu itself.
392          */
393          getrlimit(RLIMIT_CORE, &nodump);
394          nodump.rlim_cur = 0;
395          setrlimit(RLIMIT_CORE, &nodump);
396          (void) fprintf(stderr, "qemu: uncaught target signal %d (%s) "
397              "- %s\n", target_sig, strsignal(host_sig), "core dumped");
398     }
399 
400     /*
401      * The proper exit code for dying from an uncaught signal is
402      * -<signal>.  The kernel doesn't allow exit() or _exit() to pass
403      * a negative value.  To get the proper exit code we need to
404      * actually die from an uncaught signal.  Here the default signal
405      * handler is installed, we send ourself a signal and we wait for
406      * it to arrive.
407      */
408     memset(&act, 0, sizeof(act));
409     sigfillset(&act.sa_mask);
410     act.sa_handler = SIG_DFL;
411     sigaction(host_sig, &act, NULL);
412 
413     kill(getpid(), host_sig);
414 
415     /*
416      * Make sure the signal isn't masked (just reuse the mask inside
417      * of act).
418      */
419     sigdelset(&act.sa_mask, host_sig);
420     sigsuspend(&act.sa_mask);
421 
422     /* unreachable */
423     abort();
424 }
425 
426 /*
427  * Queue a signal so that it will be send to the virtual CPU as soon as
428  * possible.
429  */
430 void queue_signal(CPUArchState *env, int sig, int si_type,
431                   target_siginfo_t *info)
432 {
433     CPUState *cpu = env_cpu(env);
434     TaskState *ts = get_task_state(cpu);
435 
436     trace_user_queue_signal(env, sig);
437 
438     info->si_code = deposit32(info->si_code, 24, 8, si_type);
439 
440     ts->sync_signal.info = *info;
441     ts->sync_signal.pending = sig;
442     /* Signal that a new signal is pending. */
443     qatomic_set(&ts->signal_pending, 1);
444     return;
445 }
446 
447 static int fatal_signal(int sig)
448 {
449 
450     switch (sig) {
451     case TARGET_SIGCHLD:
452     case TARGET_SIGURG:
453     case TARGET_SIGWINCH:
454     case TARGET_SIGINFO:
455         /* Ignored by default. */
456         return 0;
457     case TARGET_SIGCONT:
458     case TARGET_SIGSTOP:
459     case TARGET_SIGTSTP:
460     case TARGET_SIGTTIN:
461     case TARGET_SIGTTOU:
462         /* Job control signals.  */
463         return 0;
464     default:
465         return 1;
466     }
467 }
468 
469 /*
470  * Force a synchronously taken QEMU_SI_FAULT signal. For QEMU the
471  * 'force' part is handled in process_pending_signals().
472  */
473 void force_sig_fault(int sig, int code, abi_ulong addr)
474 {
475     CPUState *cpu = thread_cpu;
476     target_siginfo_t info = {};
477 
478     info.si_signo = sig;
479     info.si_errno = 0;
480     info.si_code = code;
481     info.si_addr = addr;
482     queue_signal(cpu_env(cpu), sig, QEMU_SI_FAULT, &info);
483 }
484 
485 static void host_signal_handler(int host_sig, siginfo_t *info, void *puc)
486 {
487     CPUState *cpu = thread_cpu;
488     TaskState *ts = get_task_state(cpu);
489     target_siginfo_t tinfo;
490     ucontext_t *uc = puc;
491     struct emulated_sigtable *k;
492     int guest_sig;
493     uintptr_t pc = 0;
494     bool sync_sig = false;
495 
496     if (host_sig == host_interrupt_signal) {
497         ts->signal_pending = 1;
498         cpu_exit(thread_cpu);
499         return;
500     }
501 
502     /*
503      * Non-spoofed SIGSEGV and SIGBUS are synchronous, and need special
504      * handling wrt signal blocking and unwinding.
505      */
506     if ((host_sig == SIGSEGV || host_sig == SIGBUS) && info->si_code > 0) {
507         MMUAccessType access_type;
508         uintptr_t host_addr;
509         abi_ptr guest_addr;
510         bool is_write;
511 
512         host_addr = (uintptr_t)info->si_addr;
513 
514         /*
515          * Convert forcefully to guest address space: addresses outside
516          * reserved_va are still valid to report via SEGV_MAPERR.
517          */
518         guest_addr = h2g_nocheck(host_addr);
519 
520         pc = host_signal_pc(uc);
521         is_write = host_signal_write(info, uc);
522         access_type = adjust_signal_pc(&pc, is_write);
523 
524         if (host_sig == SIGSEGV) {
525             bool maperr = true;
526 
527             if (info->si_code == SEGV_ACCERR && h2g_valid(host_addr)) {
528                 /* If this was a write to a TB protected page, restart. */
529                 if (is_write &&
530                     handle_sigsegv_accerr_write(cpu, &uc->uc_sigmask,
531                                                 pc, guest_addr)) {
532                     return;
533                 }
534 
535                 /*
536                  * With reserved_va, the whole address space is PROT_NONE,
537                  * which means that we may get ACCERR when we want MAPERR.
538                  */
539                 if (page_get_flags(guest_addr) & PAGE_VALID) {
540                     maperr = false;
541                 } else {
542                     info->si_code = SEGV_MAPERR;
543                 }
544             }
545 
546             sigprocmask(SIG_SETMASK, &uc->uc_sigmask, NULL);
547             cpu_loop_exit_sigsegv(cpu, guest_addr, access_type, maperr, pc);
548         } else {
549             sigprocmask(SIG_SETMASK, &uc->uc_sigmask, NULL);
550             if (info->si_code == BUS_ADRALN) {
551                 cpu_loop_exit_sigbus(cpu, guest_addr, access_type, pc);
552             }
553         }
554 
555         sync_sig = true;
556     }
557 
558     /* Get the target signal number. */
559     guest_sig = host_to_target_signal(host_sig);
560     if (guest_sig < 1 || guest_sig > TARGET_NSIG) {
561         return;
562     }
563     trace_user_host_signal(cpu, host_sig, guest_sig);
564 
565     host_to_target_siginfo_noswap(&tinfo, info);
566 
567     k = &ts->sigtab[guest_sig - 1];
568     k->info = tinfo;
569     k->pending = guest_sig;
570     ts->signal_pending = 1;
571 
572     /*
573      * For synchronous signals, unwind the cpu state to the faulting
574      * insn and then exit back to the main loop so that the signal
575      * is delivered immediately.
576      */
577     if (sync_sig) {
578         cpu->exception_index = EXCP_INTERRUPT;
579         cpu_loop_exit_restore(cpu, pc);
580     }
581 
582     rewind_if_in_safe_syscall(puc);
583 
584     /*
585      * Block host signals until target signal handler entered. We
586      * can't block SIGSEGV or SIGBUS while we're executing guest
587      * code in case the guest code provokes one in the window between
588      * now and it getting out to the main loop. Signals will be
589      * unblocked again in process_pending_signals().
590      */
591     sigfillset(&uc->uc_sigmask);
592     sigdelset(&uc->uc_sigmask, SIGSEGV);
593     sigdelset(&uc->uc_sigmask, SIGBUS);
594 
595     /* Interrupt the virtual CPU as soon as possible. */
596     cpu_exit(thread_cpu);
597 }
598 
599 /* do_sigaltstack() returns target values and errnos. */
600 /* compare to kern/kern_sig.c sys_sigaltstack() and kern_sigaltstack() */
601 abi_long do_sigaltstack(abi_ulong uss_addr, abi_ulong uoss_addr, abi_ulong sp)
602 {
603     TaskState *ts = get_task_state(thread_cpu);
604     int ret;
605     target_stack_t oss;
606 
607     if (uoss_addr) {
608         /* Save current signal stack params */
609         oss.ss_sp = tswapl(ts->sigaltstack_used.ss_sp);
610         oss.ss_size = tswapl(ts->sigaltstack_used.ss_size);
611         oss.ss_flags = tswapl(sas_ss_flags(ts, sp));
612     }
613 
614     if (uss_addr) {
615         target_stack_t *uss;
616         target_stack_t ss;
617         size_t minstacksize = TARGET_MINSIGSTKSZ;
618 
619         ret = -TARGET_EFAULT;
620         if (!lock_user_struct(VERIFY_READ, uss, uss_addr, 1)) {
621             goto out;
622         }
623         __get_user(ss.ss_sp, &uss->ss_sp);
624         __get_user(ss.ss_size, &uss->ss_size);
625         __get_user(ss.ss_flags, &uss->ss_flags);
626         unlock_user_struct(uss, uss_addr, 0);
627 
628         ret = -TARGET_EPERM;
629         if (on_sig_stack(ts, sp)) {
630             goto out;
631         }
632 
633         ret = -TARGET_EINVAL;
634         if (ss.ss_flags != TARGET_SS_DISABLE
635             && ss.ss_flags != TARGET_SS_ONSTACK
636             && ss.ss_flags != 0) {
637             goto out;
638         }
639 
640         if (ss.ss_flags == TARGET_SS_DISABLE) {
641             ss.ss_size = 0;
642             ss.ss_sp = 0;
643         } else {
644             ret = -TARGET_ENOMEM;
645             if (ss.ss_size < minstacksize) {
646                 goto out;
647             }
648         }
649 
650         ts->sigaltstack_used.ss_sp = ss.ss_sp;
651         ts->sigaltstack_used.ss_size = ss.ss_size;
652     }
653 
654     if (uoss_addr) {
655         ret = -TARGET_EFAULT;
656         if (copy_to_user(uoss_addr, &oss, sizeof(oss))) {
657             goto out;
658         }
659     }
660 
661     ret = 0;
662 out:
663     return ret;
664 }
665 
666 /* do_sigaction() return host values and errnos */
667 int do_sigaction(int sig, const struct target_sigaction *act,
668         struct target_sigaction *oact)
669 {
670     struct target_sigaction *k;
671     struct sigaction act1;
672     int host_sig;
673     int ret = 0;
674 
675     if (sig < 1 || sig > TARGET_NSIG) {
676         return -TARGET_EINVAL;
677     }
678 
679     if ((sig == TARGET_SIGKILL || sig == TARGET_SIGSTOP) &&
680         act != NULL && act->_sa_handler != TARGET_SIG_DFL) {
681         return -TARGET_EINVAL;
682     }
683 
684     if (block_signals()) {
685         return -TARGET_ERESTART;
686     }
687 
688     k = &sigact_table[sig - 1];
689     if (oact) {
690         oact->_sa_handler = tswapal(k->_sa_handler);
691         oact->sa_flags = tswap32(k->sa_flags);
692         oact->sa_mask = k->sa_mask;
693     }
694     if (act) {
695         k->_sa_handler = tswapal(act->_sa_handler);
696         k->sa_flags = tswap32(act->sa_flags);
697         k->sa_mask = act->sa_mask;
698 
699         /* Update the host signal state. */
700         host_sig = target_to_host_signal(sig);
701         if (host_sig != SIGSEGV && host_sig != SIGBUS) {
702             memset(&act1, 0, sizeof(struct sigaction));
703             sigfillset(&act1.sa_mask);
704             act1.sa_flags = SA_SIGINFO;
705             if (k->sa_flags & TARGET_SA_RESTART) {
706                 act1.sa_flags |= SA_RESTART;
707             }
708             /*
709              *  Note: It is important to update the host kernel signal mask to
710              *  avoid getting unexpected interrupted system calls.
711              */
712             if (k->_sa_handler == TARGET_SIG_IGN) {
713                 act1.sa_sigaction = (void *)SIG_IGN;
714             } else if (k->_sa_handler == TARGET_SIG_DFL) {
715                 if (fatal_signal(sig)) {
716                     act1.sa_sigaction = host_signal_handler;
717                 } else {
718                     act1.sa_sigaction = (void *)SIG_DFL;
719                 }
720             } else {
721                 act1.sa_sigaction = host_signal_handler;
722             }
723             ret = sigaction(host_sig, &act1, NULL);
724         }
725     }
726     return ret;
727 }
728 
729 static inline abi_ulong get_sigframe(struct target_sigaction *ka,
730         CPUArchState *env, size_t frame_size)
731 {
732     TaskState *ts = get_task_state(thread_cpu);
733     abi_ulong sp;
734 
735     /* Use default user stack */
736     sp = get_sp_from_cpustate(env);
737 
738     if ((ka->sa_flags & TARGET_SA_ONSTACK) && sas_ss_flags(ts, sp) == 0) {
739         sp = ts->sigaltstack_used.ss_sp + ts->sigaltstack_used.ss_size;
740     }
741 
742     return ROUND_DOWN(sp - frame_size, TARGET_SIGSTACK_ALIGN);
743 }
744 
745 /* compare to $M/$M/exec_machdep.c sendsig and sys/kern/kern_sig.c sigexit */
746 
747 static void setup_frame(int sig, int code, struct target_sigaction *ka,
748     target_sigset_t *set, target_siginfo_t *tinfo, CPUArchState *env)
749 {
750     struct target_sigframe *frame;
751     abi_ulong frame_addr;
752     int i;
753 
754     frame_addr = get_sigframe(ka, env, sizeof(*frame));
755     trace_user_setup_frame(env, frame_addr);
756     if (!lock_user_struct(VERIFY_WRITE, frame, frame_addr, 0)) {
757         unlock_user_struct(frame, frame_addr, 1);
758         dump_core_and_abort(TARGET_SIGILL);
759         return;
760     }
761 
762     memset(frame, 0, sizeof(*frame));
763     setup_sigframe_arch(env, frame_addr, frame, 0);
764 
765     for (i = 0; i < TARGET_NSIG_WORDS; i++) {
766         __put_user(set->__bits[i], &frame->sf_uc.uc_sigmask.__bits[i]);
767     }
768 
769     if (tinfo) {
770         frame->sf_si.si_signo = tinfo->si_signo;
771         frame->sf_si.si_errno = tinfo->si_errno;
772         frame->sf_si.si_code = tinfo->si_code;
773         frame->sf_si.si_pid = tinfo->si_pid;
774         frame->sf_si.si_uid = tinfo->si_uid;
775         frame->sf_si.si_status = tinfo->si_status;
776         frame->sf_si.si_addr = tinfo->si_addr;
777         /* see host_to_target_siginfo_noswap() for more details */
778         frame->sf_si.si_value.sival_ptr = tinfo->si_value.sival_ptr;
779         /*
780          * At this point, whatever is in the _reason union is complete
781          * and in target order, so just copy the whole thing over, even
782          * if it's too large for this specific signal.
783          * host_to_target_siginfo_noswap() and tswap_siginfo() have ensured
784          * that's so.
785          */
786         memcpy(&frame->sf_si._reason, &tinfo->_reason,
787                sizeof(tinfo->_reason));
788     }
789 
790     set_sigtramp_args(env, sig, frame, frame_addr, ka);
791 
792     unlock_user_struct(frame, frame_addr, 1);
793 }
794 
795 static int reset_signal_mask(target_ucontext_t *ucontext)
796 {
797     int i;
798     sigset_t blocked;
799     target_sigset_t target_set;
800     TaskState *ts = get_task_state(thread_cpu);
801 
802     for (i = 0; i < TARGET_NSIG_WORDS; i++) {
803         __get_user(target_set.__bits[i], &ucontext->uc_sigmask.__bits[i]);
804     }
805     target_to_host_sigset_internal(&blocked, &target_set);
806     ts->signal_mask = blocked;
807 
808     return 0;
809 }
810 
811 /* See sys/$M/$M/exec_machdep.c sigreturn() */
812 long do_sigreturn(CPUArchState *env, abi_ulong addr)
813 {
814     long ret;
815     abi_ulong target_ucontext;
816     target_ucontext_t *ucontext = NULL;
817 
818     /* Get the target ucontext address from the stack frame */
819     ret = get_ucontext_sigreturn(env, addr, &target_ucontext);
820     if (is_error(ret)) {
821         return ret;
822     }
823     trace_user_do_sigreturn(env, addr);
824     if (!lock_user_struct(VERIFY_READ, ucontext, target_ucontext, 0)) {
825         goto badframe;
826     }
827 
828     /* Set the register state back to before the signal. */
829     if (set_mcontext(env, &ucontext->uc_mcontext, 1)) {
830         goto badframe;
831     }
832 
833     /* And reset the signal mask. */
834     if (reset_signal_mask(ucontext)) {
835         goto badframe;
836     }
837 
838     unlock_user_struct(ucontext, target_ucontext, 0);
839     return -TARGET_EJUSTRETURN;
840 
841 badframe:
842     if (ucontext != NULL) {
843         unlock_user_struct(ucontext, target_ucontext, 0);
844     }
845     return -TARGET_EFAULT;
846 }
847 
848 void signal_init(void)
849 {
850     TaskState *ts = get_task_state(thread_cpu);
851     struct sigaction act;
852     struct sigaction oact;
853     int i;
854     int host_sig;
855 
856     /* Set the signal mask from the host mask. */
857     sigprocmask(0, 0, &ts->signal_mask);
858 
859     sigfillset(&act.sa_mask);
860     act.sa_sigaction = host_signal_handler;
861     act.sa_flags = SA_SIGINFO;
862 
863     for (i = 1; i <= TARGET_NSIG; i++) {
864         host_sig = target_to_host_signal(i);
865         if (host_sig == host_interrupt_signal) {
866             continue;
867         }
868         sigaction(host_sig, NULL, &oact);
869         if (oact.sa_sigaction == (void *)SIG_IGN) {
870             sigact_table[i - 1]._sa_handler = TARGET_SIG_IGN;
871         } else if (oact.sa_sigaction == (void *)SIG_DFL) {
872             sigact_table[i - 1]._sa_handler = TARGET_SIG_DFL;
873         }
874         /*
875          * If there's already a handler installed then something has
876          * gone horribly wrong, so don't even try to handle that case.
877          * Install some handlers for our own use.  We need at least
878          * SIGSEGV and SIGBUS, to detect exceptions.  We can not just
879          * trap all signals because it affects syscall interrupt
880          * behavior.  But do trap all default-fatal signals.
881          */
882         if (fatal_signal(i)) {
883             sigaction(host_sig, &act, NULL);
884         }
885     }
886     sigaction(host_interrupt_signal, &act, NULL);
887 }
888 
889 static void handle_pending_signal(CPUArchState *env, int sig,
890                                   struct emulated_sigtable *k)
891 {
892     CPUState *cpu = env_cpu(env);
893     TaskState *ts = get_task_state(cpu);
894     struct target_sigaction *sa;
895     int code;
896     sigset_t set;
897     abi_ulong handler;
898     target_siginfo_t tinfo;
899     target_sigset_t target_old_set;
900 
901     trace_user_handle_signal(env, sig);
902 
903     k->pending = 0;
904 
905     sig = gdb_handlesig(cpu, sig, NULL, &k->info, sizeof(k->info));
906     if (!sig) {
907         sa = NULL;
908         handler = TARGET_SIG_IGN;
909     } else {
910         sa = &sigact_table[sig - 1];
911         handler = sa->_sa_handler;
912     }
913 
914     if (do_strace) {
915         print_taken_signal(sig, &k->info);
916     }
917 
918     if (handler == TARGET_SIG_DFL) {
919         /*
920          * default handler : ignore some signal. The other are job
921          * control or fatal.
922          */
923         if (sig == TARGET_SIGTSTP || sig == TARGET_SIGTTIN ||
924             sig == TARGET_SIGTTOU) {
925             kill(getpid(), SIGSTOP);
926         } else if (sig != TARGET_SIGCHLD && sig != TARGET_SIGURG &&
927                    sig != TARGET_SIGINFO && sig != TARGET_SIGWINCH &&
928                    sig != TARGET_SIGCONT) {
929             dump_core_and_abort(sig);
930         }
931     } else if (handler == TARGET_SIG_IGN) {
932         /* ignore sig */
933     } else if (handler == TARGET_SIG_ERR) {
934         dump_core_and_abort(sig);
935     } else {
936         /* compute the blocked signals during the handler execution */
937         sigset_t *blocked_set;
938 
939         target_to_host_sigset(&set, &sa->sa_mask);
940         /*
941          * SA_NODEFER indicates that the current signal should not be
942          * blocked during the handler.
943          */
944         if (!(sa->sa_flags & TARGET_SA_NODEFER)) {
945             sigaddset(&set, target_to_host_signal(sig));
946         }
947 
948         /*
949          * Save the previous blocked signal state to restore it at the
950          * end of the signal execution (see do_sigreturn).
951          */
952         host_to_target_sigset_internal(&target_old_set, &ts->signal_mask);
953 
954         blocked_set = ts->in_sigsuspend ?
955             &ts->sigsuspend_mask : &ts->signal_mask;
956         sigorset(&ts->signal_mask, blocked_set, &set);
957         ts->in_sigsuspend = false;
958         sigprocmask(SIG_SETMASK, &ts->signal_mask, NULL);
959 
960         /* XXX VM86 on x86 ??? */
961 
962         code = k->info.si_code; /* From host, so no si_type */
963         /* prepare the stack frame of the virtual CPU */
964         if (sa->sa_flags & TARGET_SA_SIGINFO) {
965             tswap_siginfo(&tinfo, &k->info);
966             setup_frame(sig, code, sa, &target_old_set, &tinfo, env);
967         } else {
968             setup_frame(sig, code, sa, &target_old_set, NULL, env);
969         }
970         if (sa->sa_flags & TARGET_SA_RESETHAND) {
971             sa->_sa_handler = TARGET_SIG_DFL;
972         }
973     }
974 }
975 
976 void process_pending_signals(CPUArchState *env)
977 {
978     CPUState *cpu = env_cpu(env);
979     int sig;
980     sigset_t *blocked_set, set;
981     struct emulated_sigtable *k;
982     TaskState *ts = get_task_state(cpu);
983 
984     while (qatomic_read(&ts->signal_pending)) {
985         sigfillset(&set);
986         sigprocmask(SIG_SETMASK, &set, 0);
987 
988     restart_scan:
989         sig = ts->sync_signal.pending;
990         if (sig) {
991             /*
992              * Synchronous signals are forced by the emulated CPU in some way.
993              * If they are set to ignore, restore the default handler (see
994              * sys/kern_sig.c trapsignal() and execsigs() for this behavior)
995              * though maybe this is done only when forcing exit for non SIGCHLD.
996              */
997             if (sigismember(&ts->signal_mask, target_to_host_signal(sig)) ||
998                 sigact_table[sig - 1]._sa_handler == TARGET_SIG_IGN) {
999                 sigdelset(&ts->signal_mask, target_to_host_signal(sig));
1000                 sigact_table[sig - 1]._sa_handler = TARGET_SIG_DFL;
1001             }
1002             handle_pending_signal(env, sig, &ts->sync_signal);
1003         }
1004 
1005         k = ts->sigtab;
1006         for (sig = 1; sig <= TARGET_NSIG; sig++, k++) {
1007             blocked_set = ts->in_sigsuspend ?
1008                 &ts->sigsuspend_mask : &ts->signal_mask;
1009             if (k->pending &&
1010                 !sigismember(blocked_set, target_to_host_signal(sig))) {
1011                 handle_pending_signal(env, sig, k);
1012                 /*
1013                  * Restart scan from the beginning, as handle_pending_signal
1014                  * might have resulted in a new synchronous signal (eg SIGSEGV).
1015                  */
1016                 goto restart_scan;
1017             }
1018         }
1019 
1020         /*
1021          * Unblock signals and check one more time. Unblocking signals may cause
1022          * us to take another host signal, which will set signal_pending again.
1023          */
1024         qatomic_set(&ts->signal_pending, 0);
1025         ts->in_sigsuspend = false;
1026         set = ts->signal_mask;
1027         sigdelset(&set, SIGSEGV);
1028         sigdelset(&set, SIGBUS);
1029         sigprocmask(SIG_SETMASK, &set, 0);
1030     }
1031     ts->in_sigsuspend = false;
1032 }
1033 
1034 void cpu_loop_exit_sigsegv(CPUState *cpu, target_ulong addr,
1035                            MMUAccessType access_type, bool maperr, uintptr_t ra)
1036 {
1037     const TCGCPUOps *tcg_ops = CPU_GET_CLASS(cpu)->tcg_ops;
1038 
1039     if (tcg_ops->record_sigsegv) {
1040         tcg_ops->record_sigsegv(cpu, addr, access_type, maperr, ra);
1041     }
1042 
1043     force_sig_fault(TARGET_SIGSEGV,
1044                     maperr ? TARGET_SEGV_MAPERR : TARGET_SEGV_ACCERR,
1045                     addr);
1046     cpu->exception_index = EXCP_INTERRUPT;
1047     cpu_loop_exit_restore(cpu, ra);
1048 }
1049 
1050 void cpu_loop_exit_sigbus(CPUState *cpu, target_ulong addr,
1051                           MMUAccessType access_type, uintptr_t ra)
1052 {
1053     const TCGCPUOps *tcg_ops = CPU_GET_CLASS(cpu)->tcg_ops;
1054 
1055     if (tcg_ops->record_sigbus) {
1056         tcg_ops->record_sigbus(cpu, addr, access_type, ra);
1057     }
1058 
1059     force_sig_fault(TARGET_SIGBUS, TARGET_BUS_ADRALN, addr);
1060     cpu->exception_index = EXCP_INTERRUPT;
1061     cpu_loop_exit_restore(cpu, ra);
1062 }
1063