1 /* 2 * Emulation of BSD signals 3 * 4 * Copyright (c) 2003 - 2008 Fabrice Bellard 5 * Copyright (c) 2013 Stacey Son 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License as published by 9 * the Free Software Foundation; either version 2 of the License, or 10 * (at your option) any later version. 11 * 12 * This program is distributed in the hope that it will be useful, 13 * but WITHOUT ANY WARRANTY; without even the implied warranty of 14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 15 * GNU General Public License for more details. 16 * 17 * You should have received a copy of the GNU General Public License 18 * along with this program; if not, see <http://www.gnu.org/licenses/>. 19 */ 20 21 #include "qemu/osdep.h" 22 #include "qemu.h" 23 #include "signal-common.h" 24 #include "trace.h" 25 #include "hw/core/tcg-cpu-ops.h" 26 #include "host-signal.h" 27 28 /* 29 * Stubbed out routines until we merge signal support from bsd-user 30 * fork. 31 */ 32 33 static struct target_sigaction sigact_table[TARGET_NSIG]; 34 static void host_signal_handler(int host_sig, siginfo_t *info, void *puc); 35 static void target_to_host_sigset_internal(sigset_t *d, 36 const target_sigset_t *s); 37 38 static inline int on_sig_stack(TaskState *ts, unsigned long sp) 39 { 40 return sp - ts->sigaltstack_used.ss_sp < ts->sigaltstack_used.ss_size; 41 } 42 43 static inline int sas_ss_flags(TaskState *ts, unsigned long sp) 44 { 45 return ts->sigaltstack_used.ss_size == 0 ? SS_DISABLE : 46 on_sig_stack(ts, sp) ? SS_ONSTACK : 0; 47 } 48 49 /* 50 * The BSD ABIs use the same singal numbers across all the CPU architectures, so 51 * (unlike Linux) these functions are just the identity mapping. This might not 52 * be true for XyzBSD running on AbcBSD, which doesn't currently work. 53 */ 54 int host_to_target_signal(int sig) 55 { 56 return sig; 57 } 58 59 int target_to_host_signal(int sig) 60 { 61 return sig; 62 } 63 64 static inline void target_sigemptyset(target_sigset_t *set) 65 { 66 memset(set, 0, sizeof(*set)); 67 } 68 69 static inline void target_sigaddset(target_sigset_t *set, int signum) 70 { 71 signum--; 72 uint32_t mask = (uint32_t)1 << (signum % TARGET_NSIG_BPW); 73 set->__bits[signum / TARGET_NSIG_BPW] |= mask; 74 } 75 76 static inline int target_sigismember(const target_sigset_t *set, int signum) 77 { 78 signum--; 79 abi_ulong mask = (abi_ulong)1 << (signum % TARGET_NSIG_BPW); 80 return (set->__bits[signum / TARGET_NSIG_BPW] & mask) != 0; 81 } 82 83 /* Adjust the signal context to rewind out of safe-syscall if we're in it */ 84 static inline void rewind_if_in_safe_syscall(void *puc) 85 { 86 ucontext_t *uc = (ucontext_t *)puc; 87 uintptr_t pcreg = host_signal_pc(uc); 88 89 if (pcreg > (uintptr_t)safe_syscall_start 90 && pcreg < (uintptr_t)safe_syscall_end) { 91 host_signal_set_pc(uc, (uintptr_t)safe_syscall_start); 92 } 93 } 94 95 /* 96 * Note: The following take advantage of the BSD signal property that all 97 * signals are available on all architectures. 98 */ 99 static void host_to_target_sigset_internal(target_sigset_t *d, 100 const sigset_t *s) 101 { 102 int i; 103 104 target_sigemptyset(d); 105 for (i = 1; i <= NSIG; i++) { 106 if (sigismember(s, i)) { 107 target_sigaddset(d, host_to_target_signal(i)); 108 } 109 } 110 } 111 112 void host_to_target_sigset(target_sigset_t *d, const sigset_t *s) 113 { 114 target_sigset_t d1; 115 int i; 116 117 host_to_target_sigset_internal(&d1, s); 118 for (i = 0; i < _SIG_WORDS; i++) { 119 d->__bits[i] = tswap32(d1.__bits[i]); 120 } 121 } 122 123 static void target_to_host_sigset_internal(sigset_t *d, 124 const target_sigset_t *s) 125 { 126 int i; 127 128 sigemptyset(d); 129 for (i = 1; i <= TARGET_NSIG; i++) { 130 if (target_sigismember(s, i)) { 131 sigaddset(d, target_to_host_signal(i)); 132 } 133 } 134 } 135 136 void target_to_host_sigset(sigset_t *d, const target_sigset_t *s) 137 { 138 target_sigset_t s1; 139 int i; 140 141 for (i = 0; i < TARGET_NSIG_WORDS; i++) { 142 s1.__bits[i] = tswap32(s->__bits[i]); 143 } 144 target_to_host_sigset_internal(d, &s1); 145 } 146 147 static bool has_trapno(int tsig) 148 { 149 return tsig == TARGET_SIGILL || 150 tsig == TARGET_SIGFPE || 151 tsig == TARGET_SIGSEGV || 152 tsig == TARGET_SIGBUS || 153 tsig == TARGET_SIGTRAP; 154 } 155 156 /* Siginfo conversion. */ 157 158 /* 159 * Populate tinfo w/o swapping based on guessing which fields are valid. 160 */ 161 static inline void host_to_target_siginfo_noswap(target_siginfo_t *tinfo, 162 const siginfo_t *info) 163 { 164 int sig = host_to_target_signal(info->si_signo); 165 int si_code = info->si_code; 166 int si_type; 167 168 /* 169 * Make sure we that the variable portion of the target siginfo is zeroed 170 * out so we don't leak anything into that. 171 */ 172 memset(&tinfo->_reason, 0, sizeof(tinfo->_reason)); 173 174 /* 175 * This is awkward, because we have to use a combination of the si_code and 176 * si_signo to figure out which of the union's members are valid.o We 177 * therefore make our best guess. 178 * 179 * Once we have made our guess, we record it in the top 16 bits of 180 * the si_code, so that tswap_siginfo() later can use it. 181 * tswap_siginfo() will strip these top bits out before writing 182 * si_code to the guest (sign-extending the lower bits). 183 */ 184 tinfo->si_signo = sig; 185 tinfo->si_errno = info->si_errno; 186 tinfo->si_code = info->si_code; 187 tinfo->si_pid = info->si_pid; 188 tinfo->si_uid = info->si_uid; 189 tinfo->si_status = info->si_status; 190 tinfo->si_addr = (abi_ulong)(unsigned long)info->si_addr; 191 /* 192 * si_value is opaque to kernel. On all FreeBSD platforms, 193 * sizeof(sival_ptr) >= sizeof(sival_int) so the following 194 * always will copy the larger element. 195 */ 196 tinfo->si_value.sival_ptr = 197 (abi_ulong)(unsigned long)info->si_value.sival_ptr; 198 199 switch (si_code) { 200 /* 201 * All the SI_xxx codes that are defined here are global to 202 * all the signals (they have values that none of the other, 203 * more specific signal info will set). 204 */ 205 case SI_USER: 206 case SI_LWP: 207 case SI_KERNEL: 208 case SI_QUEUE: 209 case SI_ASYNCIO: 210 /* 211 * Only the fixed parts are valid (though FreeBSD doesn't always 212 * set all the fields to non-zero values. 213 */ 214 si_type = QEMU_SI_NOINFO; 215 break; 216 case SI_TIMER: 217 tinfo->_reason._timer._timerid = info->_reason._timer._timerid; 218 tinfo->_reason._timer._overrun = info->_reason._timer._overrun; 219 si_type = QEMU_SI_TIMER; 220 break; 221 case SI_MESGQ: 222 tinfo->_reason._mesgq._mqd = info->_reason._mesgq._mqd; 223 si_type = QEMU_SI_MESGQ; 224 break; 225 default: 226 /* 227 * We have to go based on the signal number now to figure out 228 * what's valid. 229 */ 230 if (has_trapno(sig)) { 231 tinfo->_reason._fault._trapno = info->_reason._fault._trapno; 232 si_type = QEMU_SI_FAULT; 233 } 234 #ifdef TARGET_SIGPOLL 235 /* 236 * FreeBSD never had SIGPOLL, but emulates it for Linux so there's 237 * a chance it may popup in the future. 238 */ 239 if (sig == TARGET_SIGPOLL) { 240 tinfo->_reason._poll._band = info->_reason._poll._band; 241 si_type = QEMU_SI_POLL; 242 } 243 #endif 244 /* 245 * Unsure that this can actually be generated, and our support for 246 * capsicum is somewhere between weak and non-existant, but if we get 247 * one, then we know what to save. 248 */ 249 if (sig == TARGET_SIGTRAP) { 250 tinfo->_reason._capsicum._syscall = 251 info->_reason._capsicum._syscall; 252 si_type = QEMU_SI_CAPSICUM; 253 } 254 break; 255 } 256 tinfo->si_code = deposit32(si_code, 24, 8, si_type); 257 } 258 259 /* Returns 1 if given signal should dump core if not handled. */ 260 static int core_dump_signal(int sig) 261 { 262 switch (sig) { 263 case TARGET_SIGABRT: 264 case TARGET_SIGFPE: 265 case TARGET_SIGILL: 266 case TARGET_SIGQUIT: 267 case TARGET_SIGSEGV: 268 case TARGET_SIGTRAP: 269 case TARGET_SIGBUS: 270 return 1; 271 default: 272 return 0; 273 } 274 } 275 276 /* Abort execution with signal. */ 277 static void QEMU_NORETURN dump_core_and_abort(int target_sig) 278 { 279 CPUArchState *env = thread_cpu->env_ptr; 280 CPUState *cpu = env_cpu(env); 281 TaskState *ts = cpu->opaque; 282 int core_dumped = 0; 283 int host_sig; 284 struct sigaction act; 285 286 host_sig = target_to_host_signal(target_sig); 287 gdb_signalled(env, target_sig); 288 289 /* Dump core if supported by target binary format */ 290 if (core_dump_signal(target_sig) && (ts->bprm->core_dump != NULL)) { 291 stop_all_tasks(); 292 core_dumped = 293 ((*ts->bprm->core_dump)(target_sig, env) == 0); 294 } 295 if (core_dumped) { 296 struct rlimit nodump; 297 298 /* 299 * We already dumped the core of target process, we don't want 300 * a coredump of qemu itself. 301 */ 302 getrlimit(RLIMIT_CORE, &nodump); 303 nodump.rlim_cur = 0; 304 setrlimit(RLIMIT_CORE, &nodump); 305 (void) fprintf(stderr, "qemu: uncaught target signal %d (%s) " 306 "- %s\n", target_sig, strsignal(host_sig), "core dumped"); 307 } 308 309 /* 310 * The proper exit code for dying from an uncaught signal is 311 * -<signal>. The kernel doesn't allow exit() or _exit() to pass 312 * a negative value. To get the proper exit code we need to 313 * actually die from an uncaught signal. Here the default signal 314 * handler is installed, we send ourself a signal and we wait for 315 * it to arrive. 316 */ 317 memset(&act, 0, sizeof(act)); 318 sigfillset(&act.sa_mask); 319 act.sa_handler = SIG_DFL; 320 sigaction(host_sig, &act, NULL); 321 322 kill(getpid(), host_sig); 323 324 /* 325 * Make sure the signal isn't masked (just reuse the mask inside 326 * of act). 327 */ 328 sigdelset(&act.sa_mask, host_sig); 329 sigsuspend(&act.sa_mask); 330 331 /* unreachable */ 332 abort(); 333 } 334 335 /* 336 * Queue a signal so that it will be send to the virtual CPU as soon as 337 * possible. 338 */ 339 void queue_signal(CPUArchState *env, int sig, int si_type, 340 target_siginfo_t *info) 341 { 342 CPUState *cpu = env_cpu(env); 343 TaskState *ts = cpu->opaque; 344 345 trace_user_queue_signal(env, sig); 346 347 info->si_code = deposit32(info->si_code, 24, 8, si_type); 348 349 ts->sync_signal.info = *info; 350 ts->sync_signal.pending = sig; 351 /* Signal that a new signal is pending. */ 352 qatomic_set(&ts->signal_pending, 1); 353 return; 354 } 355 356 static int fatal_signal(int sig) 357 { 358 359 switch (sig) { 360 case TARGET_SIGCHLD: 361 case TARGET_SIGURG: 362 case TARGET_SIGWINCH: 363 case TARGET_SIGINFO: 364 /* Ignored by default. */ 365 return 0; 366 case TARGET_SIGCONT: 367 case TARGET_SIGSTOP: 368 case TARGET_SIGTSTP: 369 case TARGET_SIGTTIN: 370 case TARGET_SIGTTOU: 371 /* Job control signals. */ 372 return 0; 373 default: 374 return 1; 375 } 376 } 377 378 /* 379 * Force a synchronously taken QEMU_SI_FAULT signal. For QEMU the 380 * 'force' part is handled in process_pending_signals(). 381 */ 382 void force_sig_fault(int sig, int code, abi_ulong addr) 383 { 384 CPUState *cpu = thread_cpu; 385 CPUArchState *env = cpu->env_ptr; 386 target_siginfo_t info = {}; 387 388 info.si_signo = sig; 389 info.si_errno = 0; 390 info.si_code = code; 391 info.si_addr = addr; 392 queue_signal(env, sig, QEMU_SI_FAULT, &info); 393 } 394 395 static void host_signal_handler(int host_sig, siginfo_t *info, void *puc) 396 { 397 CPUArchState *env = thread_cpu->env_ptr; 398 CPUState *cpu = env_cpu(env); 399 TaskState *ts = cpu->opaque; 400 target_siginfo_t tinfo; 401 ucontext_t *uc = puc; 402 struct emulated_sigtable *k; 403 int guest_sig; 404 uintptr_t pc = 0; 405 bool sync_sig = false; 406 407 /* 408 * Non-spoofed SIGSEGV and SIGBUS are synchronous, and need special 409 * handling wrt signal blocking and unwinding. 410 */ 411 if ((host_sig == SIGSEGV || host_sig == SIGBUS) && info->si_code > 0) { 412 MMUAccessType access_type; 413 uintptr_t host_addr; 414 abi_ptr guest_addr; 415 bool is_write; 416 417 host_addr = (uintptr_t)info->si_addr; 418 419 /* 420 * Convert forcefully to guest address space: addresses outside 421 * reserved_va are still valid to report via SEGV_MAPERR. 422 */ 423 guest_addr = h2g_nocheck(host_addr); 424 425 pc = host_signal_pc(uc); 426 is_write = host_signal_write(info, uc); 427 access_type = adjust_signal_pc(&pc, is_write); 428 429 if (host_sig == SIGSEGV) { 430 bool maperr = true; 431 432 if (info->si_code == SEGV_ACCERR && h2g_valid(host_addr)) { 433 /* If this was a write to a TB protected page, restart. */ 434 if (is_write && 435 handle_sigsegv_accerr_write(cpu, &uc->uc_sigmask, 436 pc, guest_addr)) { 437 return; 438 } 439 440 /* 441 * With reserved_va, the whole address space is PROT_NONE, 442 * which means that we may get ACCERR when we want MAPERR. 443 */ 444 if (page_get_flags(guest_addr) & PAGE_VALID) { 445 maperr = false; 446 } else { 447 info->si_code = SEGV_MAPERR; 448 } 449 } 450 451 sigprocmask(SIG_SETMASK, &uc->uc_sigmask, NULL); 452 cpu_loop_exit_sigsegv(cpu, guest_addr, access_type, maperr, pc); 453 } else { 454 sigprocmask(SIG_SETMASK, &uc->uc_sigmask, NULL); 455 if (info->si_code == BUS_ADRALN) { 456 cpu_loop_exit_sigbus(cpu, guest_addr, access_type, pc); 457 } 458 } 459 460 sync_sig = true; 461 } 462 463 /* Get the target signal number. */ 464 guest_sig = host_to_target_signal(host_sig); 465 if (guest_sig < 1 || guest_sig > TARGET_NSIG) { 466 return; 467 } 468 trace_user_host_signal(cpu, host_sig, guest_sig); 469 470 host_to_target_siginfo_noswap(&tinfo, info); 471 472 k = &ts->sigtab[guest_sig - 1]; 473 k->info = tinfo; 474 k->pending = guest_sig; 475 ts->signal_pending = 1; 476 477 /* 478 * For synchronous signals, unwind the cpu state to the faulting 479 * insn and then exit back to the main loop so that the signal 480 * is delivered immediately. 481 */ 482 if (sync_sig) { 483 cpu->exception_index = EXCP_INTERRUPT; 484 cpu_loop_exit_restore(cpu, pc); 485 } 486 487 rewind_if_in_safe_syscall(puc); 488 489 /* 490 * Block host signals until target signal handler entered. We 491 * can't block SIGSEGV or SIGBUS while we're executing guest 492 * code in case the guest code provokes one in the window between 493 * now and it getting out to the main loop. Signals will be 494 * unblocked again in process_pending_signals(). 495 */ 496 sigfillset(&uc->uc_sigmask); 497 sigdelset(&uc->uc_sigmask, SIGSEGV); 498 sigdelset(&uc->uc_sigmask, SIGBUS); 499 500 /* Interrupt the virtual CPU as soon as possible. */ 501 cpu_exit(thread_cpu); 502 } 503 504 static inline abi_ulong get_sigframe(struct target_sigaction *ka, 505 CPUArchState *env, size_t frame_size) 506 { 507 TaskState *ts = (TaskState *)thread_cpu->opaque; 508 abi_ulong sp; 509 510 /* Use default user stack */ 511 sp = get_sp_from_cpustate(env); 512 513 if ((ka->sa_flags & TARGET_SA_ONSTACK) && sas_ss_flags(ts, sp) == 0) { 514 sp = ts->sigaltstack_used.ss_sp + ts->sigaltstack_used.ss_size; 515 } 516 517 /* TODO: make this a target_arch function / define */ 518 #if defined(TARGET_ARM) 519 return (sp - frame_size) & ~7; 520 #elif defined(TARGET_AARCH64) 521 return (sp - frame_size) & ~15; 522 #else 523 return sp - frame_size; 524 #endif 525 } 526 527 /* compare to $M/$M/exec_machdep.c sendsig and sys/kern/kern_sig.c sigexit */ 528 529 static void setup_frame(int sig, int code, struct target_sigaction *ka, 530 target_sigset_t *set, target_siginfo_t *tinfo, CPUArchState *env) 531 { 532 struct target_sigframe *frame; 533 abi_ulong frame_addr; 534 int i; 535 536 frame_addr = get_sigframe(ka, env, sizeof(*frame)); 537 trace_user_setup_frame(env, frame_addr); 538 if (!lock_user_struct(VERIFY_WRITE, frame, frame_addr, 0)) { 539 unlock_user_struct(frame, frame_addr, 1); 540 dump_core_and_abort(TARGET_SIGILL); 541 return; 542 } 543 544 memset(frame, 0, sizeof(*frame)); 545 setup_sigframe_arch(env, frame_addr, frame, 0); 546 547 for (i = 0; i < TARGET_NSIG_WORDS; i++) { 548 __put_user(set->__bits[i], &frame->sf_uc.uc_sigmask.__bits[i]); 549 } 550 551 if (tinfo) { 552 frame->sf_si.si_signo = tinfo->si_signo; 553 frame->sf_si.si_errno = tinfo->si_errno; 554 frame->sf_si.si_code = tinfo->si_code; 555 frame->sf_si.si_pid = tinfo->si_pid; 556 frame->sf_si.si_uid = tinfo->si_uid; 557 frame->sf_si.si_status = tinfo->si_status; 558 frame->sf_si.si_addr = tinfo->si_addr; 559 /* see host_to_target_siginfo_noswap() for more details */ 560 frame->sf_si.si_value.sival_ptr = tinfo->si_value.sival_ptr; 561 /* 562 * At this point, whatever is in the _reason union is complete 563 * and in target order, so just copy the whole thing over, even 564 * if it's too large for this specific signal. 565 * host_to_target_siginfo_noswap() and tswap_siginfo() have ensured 566 * that's so. 567 */ 568 memcpy(&frame->sf_si._reason, &tinfo->_reason, 569 sizeof(tinfo->_reason)); 570 } 571 572 set_sigtramp_args(env, sig, frame, frame_addr, ka); 573 574 unlock_user_struct(frame, frame_addr, 1); 575 } 576 577 void signal_init(void) 578 { 579 TaskState *ts = (TaskState *)thread_cpu->opaque; 580 struct sigaction act; 581 struct sigaction oact; 582 int i; 583 int host_sig; 584 585 /* Set the signal mask from the host mask. */ 586 sigprocmask(0, 0, &ts->signal_mask); 587 588 sigfillset(&act.sa_mask); 589 act.sa_sigaction = host_signal_handler; 590 act.sa_flags = SA_SIGINFO; 591 592 for (i = 1; i <= TARGET_NSIG; i++) { 593 #ifdef CONFIG_GPROF 594 if (i == TARGET_SIGPROF) { 595 continue; 596 } 597 #endif 598 host_sig = target_to_host_signal(i); 599 sigaction(host_sig, NULL, &oact); 600 if (oact.sa_sigaction == (void *)SIG_IGN) { 601 sigact_table[i - 1]._sa_handler = TARGET_SIG_IGN; 602 } else if (oact.sa_sigaction == (void *)SIG_DFL) { 603 sigact_table[i - 1]._sa_handler = TARGET_SIG_DFL; 604 } 605 /* 606 * If there's already a handler installed then something has 607 * gone horribly wrong, so don't even try to handle that case. 608 * Install some handlers for our own use. We need at least 609 * SIGSEGV and SIGBUS, to detect exceptions. We can not just 610 * trap all signals because it affects syscall interrupt 611 * behavior. But do trap all default-fatal signals. 612 */ 613 if (fatal_signal(i)) { 614 sigaction(host_sig, &act, NULL); 615 } 616 } 617 } 618 619 void process_pending_signals(CPUArchState *cpu_env) 620 { 621 } 622 623 void cpu_loop_exit_sigsegv(CPUState *cpu, target_ulong addr, 624 MMUAccessType access_type, bool maperr, uintptr_t ra) 625 { 626 const struct TCGCPUOps *tcg_ops = CPU_GET_CLASS(cpu)->tcg_ops; 627 628 if (tcg_ops->record_sigsegv) { 629 tcg_ops->record_sigsegv(cpu, addr, access_type, maperr, ra); 630 } 631 632 force_sig_fault(TARGET_SIGSEGV, 633 maperr ? TARGET_SEGV_MAPERR : TARGET_SEGV_ACCERR, 634 addr); 635 cpu->exception_index = EXCP_INTERRUPT; 636 cpu_loop_exit_restore(cpu, ra); 637 } 638 639 void cpu_loop_exit_sigbus(CPUState *cpu, target_ulong addr, 640 MMUAccessType access_type, uintptr_t ra) 641 { 642 const struct TCGCPUOps *tcg_ops = CPU_GET_CLASS(cpu)->tcg_ops; 643 644 if (tcg_ops->record_sigbus) { 645 tcg_ops->record_sigbus(cpu, addr, access_type, ra); 646 } 647 648 force_sig_fault(TARGET_SIGBUS, TARGET_BUS_ADRALN, addr); 649 cpu->exception_index = EXCP_INTERRUPT; 650 cpu_loop_exit_restore(cpu, ra); 651 } 652